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ABSTRACT 12 

The productivity and sustainability of forward osmosis (FO) – reverse osmosis (RO) 13 

system could be hindered by contaminant accumulation in the draw solution. A significant, 14 

progressive contaminant accumulation was observed when digested sludge was processed by 15 

the FO-RO system. The FO-RO system achieved stable water production and high rejections 16 

of dissolved organic matter; however, contaminant accumulation was evident by a 17 

progressive increase of contaminants in the draw solution. Mechanism for contaminant 18 

accumulation was elucidated by examining the passage and accumulation of dissolved 19 

organic matter using fluorescence excitation emission matrix (EEM) spectroscopy and size 20 

exclusion (SEC) chromatography. Contaminant that accumulated in the draw solution 21 

exhibited a distinct signature in the fluorescence EEM spectra at peak T1, suggesting protein-22 

like substance. The molecular weight of the protein-like substance was resolved by SEC 23 

chromatography, identifying a molecular weight of 200 g/mol. The molecular weight of the 24 

protein-like substance was between the estimated molecular weight cut-offs of RO and FO 25 

membranes. As a result, such low molecular weight protein-like substance diffused through 26 

the FO membrane, and was largely rejected by the RO membrane by the virtue of steric 27 

hindrance mechanism, thereby accumulating in the draw solution of the closed-loop FO-RO 28 

system. 29 

 30 

Keywords: forward osmosis; reverse osmosis; contaminant accumulation; dissolve organic 31 

matter; steric hindrance  32 
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1. Introduction 33 

Forward osmosis (FO), an osmosis-driven membrane process, could potentially 34 

advance wastewater treatment and reuse [1]. FO utilizes the osmotic pressure of a highly 35 

concentrated draw solution as the driving force to transfer water from the feed solution to the 36 

draw solution through a dense polymeric membrane. FO has demonstrated a much lower 37 

fouling propensity and higher fouling reversibility than RO, which was attributed to the lack 38 

of applied hydraulic pressure [2-5]. Consequently, FO is widely used to treat low quality 39 

feedwaters, including landfill leachate [6], anaerobic digester concentrate [7], activated 40 

sludge solution [8, 9], and municipal wastewater [10-12]. 41 

Re-concentrating diluted draw solution and producing purified water demand FO 42 

process to be coupled with a downstream process, such as nanofiltration (NF) [13], reverse 43 

osmosis (RO) [14-16], or membrane distillation (MD) [11, 12, 17, 18]. Generally, these 44 

hybrid systems purified either wastewater effluent or seawater by double membrane barriers, 45 

achieving high rejections of most contaminants. For instance, drinking water quality can be 46 

obtained by the FO-RO hybrid system when Hancock et al. [19] examined long-term 47 

performance of an FO-RO hybrid system processing 900,000 L of effluent from a membrane 48 

bioreactor. 49 

The closed-loop FO-based process is challenged by contaminant accumulation in the 50 

draw solution. Indeed, there was a notable build-up of organic matter and micropollutants in 51 

the draw solution in an FO-MD system [11, 12]. This accumulation was mainly driven by the 52 

near complete rejection of non-volatile solutes by the MD membrane in the FO-MD hybrid 53 

system, thereby leading to an undesirable contaminant accumulation in the draw solution. A 54 

similar concept was also modelled in an FO-RO system, where the RO membrane has higher 55 

rejection than the FO membrane [20]. For example, D'Haese et al. [21] modelled 56 

micropollutant accumulation in an FO-RO hybrid system, and predicted that an elevated 57 

micropollutant concentration in the draw solution deteriorated the product water quality. 58 

However, the underlying mechanisms governing the contaminant accumulation phenomenon 59 

remain largely unknown. 60 

The ability of FO-RO system to process digested sludge and recover valuable 61 

nutrients could provide a unique perspective to examine contaminant accumulation in the FO-62 

RO system [11]. The complex constituents in digested sludge comprises high concentration 63 
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of nutrient ions (ammonium and phosphate), and a wide spectrum of dissolved organic matter 64 

whose concentrations were several orders of magnitude higher than wastewater effluent or 65 

seawater [22, 23]. This magnification allows us to precisely capture the passage through, and 66 

accumulation of these contaminants in the FO-RO system. For example, Valladares Linares 67 

et al. [23] employed liquid chromatography with organic carbon detector to examined the 68 

transport of dissolved organic matter through the FO membrane, and identified an increase in 69 

the low molecular weight organic substances in the draw solution at the conclusion of the 70 

experiment. In another study, Hancock et al. [19] used fluorescence excitation and emission 71 

matrix spectroscopy to monitor the draw solution quality where an increase in fluorescence 72 

signature of protein-like substances was observed. However, there lacked an in-depth 73 

examination of the transport of dissolved organic matter, and a comprehensive understanding 74 

of the underlying mechanism in the contaminant accumulation phenomenon in FO-RO 75 

system. Such knowledge can be instrumental to FO-based closed-loop system, as well as 76 

emerging osmotic membrane bioreactor where the contaminant and salinity build-up were a 77 

key issue in a sustainable operation. 78 

 The aim of this study is to investigate the mechanism of contaminant accumulation in 79 

the closed-loop FO-RO system processing low quality digested sludge feed. The passage and 80 

subsequent accumulation of nutrients and dissolved organic matter in the FO-RO membrane 81 

were examined and quantified. Species and the corresponding molecular weight of dissolved 82 

organic matter in the draw solution and permeate were characterised by 83 

fluorescence excitation and emission spectroscopy and size exclusion chromatography. 84 

Membrane pore radii and molecular weight cutoffs of FO and RO membrane were estimated 85 

and correlated to the characteristics of dissolved organic matter to delineate contaminant 86 

accumulation in the draw solution. 87 

http://www.ncbi.nlm.nih.gov/pubmed/22054082
http://www.ncbi.nlm.nih.gov/pubmed/22054082
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2. Materials and methods 88 

2.1. Digested sludge feed 89 

Anaerobically digested sludge was collected from an anaerobic digester of the Eastern 90 

Treatment Plant in Melbourne (Victoria, Australia). The sludge centrate was obtained by 91 

screening the sludge through a 0.5 mm sieve, then centrifuging at 4,500 rpm for 25 min 92 

(Avanti J-26S XPI, Beckman Coulter, Fullerton, CA). The centrate was kept at 4ºC and used 93 

within two weeks to ensure the consistent solution chemistry.  94 

2.2. Forward and reverse osmosis membranes 95 

A flat-sheet, polyamide thin-film composite membrane from Hydration Technology 96 

Innovations (Albany, OR) was used for the FO process. The FO membrane is made of a thin 97 

selective polyamide active layer on top of a porous polysulfone support layer [24, 25]. An 98 

RO membrane (SW30) was supplied by Dow FilmTec (Minneapolis, MN), which was made 99 

of a thin aromatic polyamide active layer and a thick, porous support layer. Key membrane 100 

transport parameters, membrane pore radii and molecular weight cutoffs were determined to 101 

elucidate the contaminant accumulation phenomenon in the FO-RO system.  102 

2.2.1. Key mass transfer parameters 103 

Key membrane transport parameters were characterised following the protocol 104 

previously described by Cath et al. [25], including the pure water permeability coefficient of 105 

the active layer, A, and the salt (NaCl) permeability coefficient of the active layer, B. Briefly, 106 

the membrane A and B values were determined using a laboratory RO cross-flow filtration 107 

system (section 2.3). The membrane A value was measured at a pressure of 10 bar using 108 

deionised water. NaCl was then added to the feed solution to determine the B value. The RO 109 

system was stabilised for two hours before recording permeate water flux with 2000 mg/L 110 

NaCl solution, NaCl
wJ , and taking feed and permeate samples to determine the observed NaCl 111 

rejection, Ro. The membrane A value was calculated by dividing the pure water permeate flux 112 

( RO
wJ ) by the applied hydraulic pressure, ∆P: 113 

                    PJA RO
w ∆=                        (1) 114 



  

6 

 

The observed salt (NaCl) rejection, Ro, was calculated from the difference between the 115 

bulk feed (cb) and permeate (cp) salt concentrations, Ro = 1 − cp/cb, and then the membrane B 116 

value was determined from: 117 
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where kf is the mass transfer coefficient for the cross-flow of RO membrane cell. 119 

 The mass transfer coefficient (kf) was experimentally determined using the Sutzkover 120 

et al. method [26]. Using the permeate and feed salt concentrations (and thus, the 121 

corresponding osmotic pressures based on van’t Hoff equation, πp and πb, respectively), the 122 

applied pressure (ΔP), the pure water flux ( RO
wJ ), and the permeate flux with the 2,000 mg/L 123 

NaCl solution ( NaCl
wJ ) enabled the evaluation of the salt concentration at the membrane 124 

surface. This membrane surface concentration was used with thin-film theory for 125 

concentration polarization to determine kf:  126 
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2.2.2. Estimation of average membrane pore radius 128 

A set of inert, neutral organic tracer – erythritol, xylose, and glucose (Sigma-Aldrich, 129 

Saint Louis, MO) – were used to estimate the membrane average pore radius. These organic 130 

tracers are neutrally charged, and do not adsorb to the membrane. As a result, they do not 131 

have a specific attractive or repulsive interaction with the membrane. The solutes were 132 

individually dissolved in Milli-Q water to obtain a concentration of 50 mg/L (as total organic 133 

carbon (TOC)). Prior to the RO filtration experiments with these reference organic solutes, 134 

the membrane was pre-compacted at 18 bar for one hour and subsequent experiments were 135 

conducted at 8, 10, 12, 14, and 16 bar with a cross-flow velocity of 9 cm/s. At each pressure 136 

value, the RO filtration system was operated for one hour before taking permeate and feed 137 

samples for analysis. This pressure range ensured that the organic tracer rejection can be 138 

clearly distinguished at a reasonable permeate flux range. 139 

The membrane average pore radius was determined based on the pore hindrance 140 

transport model previously described by Xie et al. [27] for FO membranes. The pore 141 
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hindrance model that incorporates steric exclusion and hindered convection and diffusion was 142 

successfully used to estimate the membrane pore size, including nanofiltration and reverse 143 

osmosis membranes [28, 29], as well as FO membranes [27, 30, 31]. In this model, the 144 

membrane was considered as a bundle of cylindrical capillary tubes with the same radius. In 145 

addition, it was assumed that the spherical solute particles enter the membrane pores in 146 

random fashion. Specifically, the ratio of solute radius (rs) to the membrane pore radius (rp), 147 

λ = rs/rp, is related by the distribution coefficient φ when only steric interactions are 148 

considered: 149 

     ( )21 λϕ −=                                             (4) 150 

The real rejection of the organic tracers (Rr), which takes into account concentration 151 

polarisation, was determined from:  152 

          ( )( )ce

c

o

L
r KP

K
c
cR

ϕ
ϕ

−−−
−=−=

1exp1
11                           (5) 153 

where co and cL are the solute concentration just outside the pore entrance and pore exit, 154 

respectively; φ is the distribution coefficient for hard-sphere particles when only steric 155 

interactions are considered; Kc is the hydrodynamic hindrance coefficient for convection; and 156 

Pe is the membrane Peclet number defined as: 157 

                       
εDK
lJKPe

d

vc=                                                       (6) 158 

Here, Kd is the hydrodynamic hindrance coefficient for diffusion, Jv is the membrane 159 

volumetric permeate flux, D is the Stokes-Einstein diffusion coefficient, l is the theoretical 160 

pore length (i.e., active layer thickness), and ε is the effective porosity of the membrane 161 

active later. Details on the calculations of Pe, Kc and Kd are given elsewhere [28, 32]. The φKc 162 

and φKd are two hindrance factors accounting for solute convection and diffusion, 163 

respectively. These factors significantly depend on the ratio of solute radius (rs) to the 164 

membrane pore radius (rp), λ.  165 

 The real rejection in Eq. 5 is linked to the observed rejection Ro using the film theory 166 

which accounts for concentration polarization: 167 
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where kf is the mass transfer coefficient and Jv is the water permeate flux. A detailed, step-by-169 

step flow chart for determination of FO and RO membrane average pore radii was showed in 170 

Figure S3, Supplementary Data. 171 

2.3. Forward osmosis (FO) – reverse osmosis (RO) system 172 

The FO-RO system used in this study consisted of an FO membrane cell, an RO 173 

membrane cell, circulation gear pumps for FO process, a positive displacement pump for RO 174 

filtration, and temperature control equipment (Supplementary Data, Figures S1).  175 

The FO and RO membrane cells have identical dimensions. The FO membrane cell was 176 

made of acrylic plastic and designed to hold a flat-sheet membrane under moderate pressure 177 

differential without any physical support. The flow channels were engraved in the acrylic 178 

blocks that make up the feed and permeate semi-cells. Each channel was 2 mm deep, 90 mm 179 

wide, and 120 mm long. The RO membrane cell was a rectangular stainless-steel crossflow 180 

cell, with an effective membrane area of 110 cm2 (10 cm × 11 cm) with a channel height of 181 

2 mm. 182 

 In the FO-RO system, the draw solution reservoir of the FO process was also the feed 183 

reservoir for the RO process. Variable speed gear pumps (Micropump, Vancouver, WA) were 184 

used to circulate feed and draw solutions at a cross-flow velocity of 9 cm/s. A Hydra-Cell 185 

pump (Wanner Engineering Inc., Minneapolis, MN) was used to circulate the draw solution 186 

for RO filtration. The feed solution temperature was maintained at 25 °C using a water bath 187 

(Neslab RTE 7, Thermo Scientific, Waltham, MA). Weight changes of the draw and RO 188 

permeate reservoirs were recorded by digital balances (Mettler Toledo, Hightstown, NJ) 189 

connected to a computer.  190 

2.4. Experimental protocol for FO-RO system operation  191 

The sludge centrate feed was processed by the FO-RO system, achieving 14 litres of 192 

permeate water. The initial volumes of sludge centrate feed and draw solutions were 4 and 1 193 

litres, respectively. The sludge centrate feed was replenished in batch mode to ensure 194 

relatively stable feed solution chemistry during the operation of the FO-RO system. 195 

Specifically, 2 L of sludge centrate feed was introduced to the feed tank when the 50% water 196 

recovery by the FO-RO system was achieved (i.e., two litres product water). For the FO 197 

process (active layer faced feed solution), 0.6 M NaCl draw solution generated a water flux 198 

of 20 L m-2 h-1. In the RO process, the same water flux was obtained at a hydraulic pressure 199 
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of 58 bar. Water flux of the FO-RO system was recorded continuously. During the operation, 200 

the draw solution was not replenished in order to examine the passage and subsequent 201 

accumulation in the draw solution. The RO process continuously concentrated the diluted 202 

draw solution to the required concentration of 0.6 M NaCl (periodically monitored by the 203 

conductivity meter). 204 

FO membrane flushing was conducted for each permeate volume of 2 L, where the FO 205 

membrane was flushed by deionised water at a doubled crossflow velocity (i.e., 18 cm/s) for 206 

30 min. After FO membrane flushing, the sludge centrate feed was replenished to 4 litres. 207 

Feed, draw, and permeate samples were taken at specific time intervals for characterisation.  208 

2.5. Feed, draw and permeate water characterisations 209 

2.5.1. Water quality 210 

Feed, draw and permeate water samples were subjected to a comprehensive water 211 

quality analysis, including pH, conductivity, total organic carbon (TOC), ultraviolet (UV) 212 

absorbance at 254 nm (UV254) and 220 nm (UV220), ammonium and phosphate. Specifically, 213 

TOC was measured using a total organic carbon analyser (TOC-VCPH/CPN) (Shimadzu, Japan). 214 

UV220, UV254 and concentrations of ammonium and phosphate were measured using a Hach 215 

DR 5000 spectrophotometer following standard methods.  216 

2.5.2. Fluorescence excitation-emission matrix spectroscopy 217 

Fluorescence intensities of feed, draw and permeate samples at 20 °C were measured 218 

for excitation wavelengths between 240 and 450 nm and emission wavelengths between 290 219 

and 580 nm (in 5 nm increments) with a scanning fluorescence spectrophotometry (Perkin-220 

Elmer LS-55). Samples were prepared and analysed according to Cory and McKnight [33], 221 

and Ohno [34]. Fluorophores detected at specific wavelength pairs within an excitation-222 

emission-intensity matrix (EEM) are related to specific fractions of dissolved organic matter 223 

based on previous studies [35, 36]. All samples were diluted to a TOC concentration of 2 224 

mg/L for resolving and comparing of EEM spectra. 225 

2.5.3. Size exclusion chromatography 226 

Size exclusion chromatography (SEC) was used to separate and identify the molecular 227 

weight and distribution of dissolved organic matter in the feed, draw and permeate samples. 228 

The SEC analysis is the separation technique based on the molecular (solute) size of the 229 
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components. Separation is achieved by the differential exclusion from the pores of the 230 

packing material, of the sample molecules as they pass through a bed of porous particles. 231 

SEC was obtained by a liquid chromatography equipped with a UV-visible photodiode array 232 

(PDA) detector (λ = 200-800 nm) [37]. The water sample was separated by a TSK gel column 233 

(G3000 SW, Tosoh Bioscience, Japan) at room temperature, with a phosphate buffer (10 mM 234 

KH2PO4, 10 mM Na2HPO4) as the mobile phase. The column was operated with a flow-rate 235 

of 0.5 mL/min and a 100 μL injection volume. The SEC column was calibrated by a series of 236 

polystyrene sulphonate (PSS) standards, with molecular weights of 3420, 4600, 6200, 15650 237 

and 39000 g/mol. These PSS standards have molecular weights that were significantly higher 238 

than organic matters; and thus, acetone, a neutral solute, was included as a low molecular 239 

weight standard. A linear equation of the form log(MW) = a-b(t) was obtained with a 240 

coefficient of determination R2>0.999 (Figure S2, Supplementary Data), where MW is the 241 

molecular weight; t is the peak retention time. The obtained SEC chromatography was plotted 242 

as a contour map to identify the major dissolved organic matter peaks, and UV intensities of 243 

wavelengths 220 nm and 254 nm were selected to demonstrate the molecular weight and 244 

distribution of humic-like and protein-like substances, respectively, in the water samples. 245 

3. Results and Discussion 246 

3.1. Characteristics of digested sludge feed  247 

Constituents in the feed sludge centrate were characterised by fluorescence EEM and 248 

SEC chromatography (Figure 1), coupled with water quality analyses (Table 1). Generally, 249 

the digested sludge centrate was comprised of high concentrations of nutrients (ammonium 250 

and phosphate) as well as abundant dissolved organic matter, which was challenging for the 251 

double membrane barriers in the FO-RO system.  252 

A close examination of the dissolved organic matter in the feed was performed by 253 

fluorescent EEM and SEC chromatography. Feed sludge centrate exhibited two strong 254 

signatures in the fluorescence EEM as peak C (λex/em=320-360/390-460 nm) and peak T1 255 

(λex/em=275-290/330-370 nm), respectively (Figure 1A). Specifically, fluorophores in peak C 256 

are associated with visible humic-like substances occurring in natural organic matter derived 257 

from plant material [38]; while that in peak T1 was attributed to tryptophan and protein-like 258 

materials related to microbial activities [34, 36, 39].  259 
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Similar observations were obtained in the SEC chromatography where two significant 260 

fingerprints were identified at the wavelengths of 220 nm and 254 nm (Figure 1B), which 261 

were characteristic of amino groups and aromatic content [40], suggesting that peaks 262 

corresponds to protein- and humic-like substances, respectively. A close examination of the 263 

SEC chromatography also showed the markedly different molecular weight distribution of 264 

protein- and humic-like substances in the feed matrix (Figure 1C). Specifically, the molecular 265 

weight distribution of protein-like substances was narrow, ranging from 220 to 240 g/mol; 266 

while that of humic-like substances was broad, varying from 300 to 10,000 g/mol.  267 

[Figure 1] 268 

[Table 1] 269 

3.2. Key membrane properties 270 

Key membrane mass transport parameters – pure water permeability (A), salt (NaCl) 271 

permeability (B), and observed salt (NaCl) rejection – were plotted in Figure 2. The TFC FO 272 

membrane exhibited higher water permeability, and higher salt permeability (i.e., lower salt 273 

rejection) in comparison with the RO membrane. This trend was consistent with the 274 

permeability-selectivity trade-off in polymeric membrane where the higher water permeation 275 

comes at the cost of lower salt rejection [41]. 276 

[Figure 2] 277 

The real rejection (Rr) of each organic tracer was determined from the observed 278 

rejections (Ro) by accounting for concentration polarisation effects using Eq. 7 and the mass 279 

transfer coefficient calculated from Eq. 3. The real rejections obtained at different permeate 280 

fluxes were used to calculate the membrane average membrane pore radius based on the 281 

membrane pore hindrance transport model presented earlier (Eq. 5). The parameters φKc and 282 

Pe/Jv are uniquely related to Rr. Thus, they could be determined by fitting the reference 283 

organic solute rejection data to the model (Eq. 5) using an optimization procedure (Solver, 284 

Microsoft Excel). As the parameters φKc and Pe/Jv can be expressed as a sole function of the 285 

variable λ (which is the ratio of solute radius (rs) to membrane pore radius (rp)), λ can be 286 

obtained for each organic tracer and the membrane. The membrane average pore radius was 287 

then calculated for each reference solute rejection data. 288 
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 For each membrane, the membrane pore radii obtained from three organic tracers only 289 

slightly deviated from one to another (within 5%). Results reported in Table 2 show that the 290 

average pore radius of the FO membrane (0.42 nm) is larger than that of the RO membrane 291 

(0.34 nm). The estimated membrane pore radii also agreed with the membrane mass transport 292 

parameters (Figure 2) where the FO membrane with a relatively larger membrane pore radius 293 

(0.42 nm) demonstrated higher water permeability and lower salt (NaCl) rejection than the 294 

RO membrane with a smaller pore radius (0.34 nm).  295 

 Molecular weight cut-off curves for the FO and RO membrane was plotted using 296 

parameters obtained in Table 2 (Figure 3). Briefly, the average membrane pore radii obtained 297 

for the FO and RO membranes were translated to an approximate Stokes radius (radius of 298 

equivalent sphere) as well as molecular weight using the Wilke and Chang and the Stokes-299 

Einstein equations. The estimated molecular weight cut-offs (90% solute rejection) for the 300 

FO and RO membranes were 250 and 180 g/mol, respectively. This result also agreed well 301 

with the better salt rejection by the RO membrane in comparison with the FO membrane.  302 

This discrepancy in membrane mass transport parameters and, more importantly, in 303 

membrane pore radii and molecular weight cut-off between FO and RO membranes played 304 

an important role in contaminant accumulation in draw solution in the FO-RO system. 305 

Because the active layer of both FO and RO membrane used here is polyamide, it was 306 

expected that solute-membrane interactions of these two membranes are similar, thereby 307 

minimizing variations in solute mass transport through the membranes and the solute 308 

rejection based on surface charge, adsorption or hydrogen bonding effects. Indeed, the zeta 309 

potential measurements showed that there was marginal difference between FO and RO 310 

membranes (Figure S4, Supplementary Data). As such, it was hypothesized that contaminants 311 

that permeate through the FO but not the RO membrane can accumulate in the draw solution, 312 

resulting in a solute build-up in the draw solution, thereby deteriorating the productivity and 313 

product quality of the FO-RO process. 314 

[Table 2] 315 

[Figure 3] 316 
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3.3. FO-RO system performance 317 

3.3.1. Water production 318 

Stable water production by the FO-RO system was achieved when digested sludge 319 

centrate was processed (Figure 4). This insignificant water flux decline of RO membrane 320 

demonstrated the effectiveness and robustness of FO process as a pre-treatment barrier for 321 

subsequent fouling sensitive RO process.  322 

For low quality digested sludge feed (Table 1), evident by high TOC concentration 323 

(1,647 mg/L) and abundant dissolved organic matter (Figure 1), significant water flux decline 324 

was observed for the FO process. Water flux decline in FO could be attributed to both feed 325 

salinity build-up and membrane fouling. Reverse diffusion of NaCl draw solute elevated feed 326 

salinity, thereby reducing the overall driving force (i.e., effective osmotic pressure difference) 327 

in FO. On the other hand, FO membrane fouling was largely reversible following membrane 328 

flushing with deionized water, which resulted in nearly complete water flux recovery (Figure 329 

4A). This result further confirmed the low fouling propensity of FO in processing low quality 330 

feed streams [2, 3, 42]. In addition, the insignificant water flux decline (less than 8%) in the 331 

RO filtration was also observed after processing 14 litres digested sludge centrate, suggesting 332 

FO being an effective barrier for the downstream RO filtration.  333 

[Figure 4] 334 

3.3.2. Rejection of organic matters and nutrients 335 

The FO-RO system effectively rejected (>95%) organic matter (indicated by TOC and 336 

UV254 and UV220 measurements) and inorganic salts (indicated by ammonium and phosphate), 337 

thereby leading to high quality product water (Figure 5). This high rejection was attributed to 338 

the double membrane barriers against the various contaminants, which agreed with previous 339 

studies [19, 22]. 340 

A distinctive difference between ammonium (86%) and phosphate (92%) rejection by 341 

the FO membrane was observed (Figure 5C). The high rejections of ammonium and 342 

phosphate reported here are consistent with previous studies [7, 43]. Both electrostatic 343 

interaction and steric hindrance governed the rejections of ammonium and phosphate in FO. 344 

FO membrane was negatively charged at the experimental pH [44]. Thus, electrostatic 345 

repulsion between negatively charged FO membrane surface and phosphate ion led to high 346 
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phosphate rejection. On the other hand, both ammonium and phosphate ions are hydrated in 347 

aqueous solution, and hydration of these two ions significantly increases their hydrated 348 

molecular sizes. Indeed, hydrated radii for ammonium and phosphate are 0.33 and 0.49 nm 349 

[45], respectively, which are comparable to or larger than the estimated FO membrane pore 350 

radius (0.42 nm) (Table 2). Varying solute sizes of ammonium and phosphate also affect their 351 

diffusivities through the FO and RO membrane based on the solution-diffusion theory. 352 

Indeed, ammonium ion possessing four-times lower diffusion coefficient (9.4 × 10-11 m2s-1) 353 

than phosphate solute (2.28 × 10-10 m2s-1) led to a lower membrane rejection. As a result, 354 

steric hindrance also played an important role in rejections of ammonium and phosphate. 355 

The difference in FO and RO membrane rejections of organic matter and nutrients 356 

resulted in the accumulation of these contaminants in the draw solution (section 3.4). 357 

Subsequently, the accumulation of contaminants in the draw solution may compromise the 358 

overall system productivity and efficiency. This potential detrimental effect could be 359 

reflected by the passage of dissolved organic matter substances that were abundant in the 360 

digested sludge feed through FO and RO membranes, and the accumulation of dissolved 361 

organic matter in the draw solution as the cumulative permeate volume increases. 362 

[Figure 5] 363 

3.4. Contaminant accumulation in the draw solution 364 

3.4.1. Draw solution water quality 365 

Marked build-up of nutrient ions and organic matter in the draw solution was 366 

observed, and the concentrations increased as the cumulative permeate volume increased 367 

(Figure 6). This detrimental accumulation phenomenon was driven by the lower rejection of 368 

FO membrane in comparison with RO membrane in the FO-RO system. Indeed, previous 369 

studies modelled the contaminant accumulation in the FO-RO system [20, 21], and suggested 370 

that the elevated contaminant concentration in the draw solution could deteriorate product 371 

water quality.  372 

The passage of dissolved organic matter and subsequent accumulation in the draw 373 

solution were evident by the increase in the UV absorbance at wavelengths of 220 and 254 374 

nm, respectively (Figure 6B). In particular, UV220 exhibited a significantly higher 375 

contaminant accumulation than UV254. This difference could be attributed to the different 376 

rejections of the FO and RO membranes (Figures 2, 3 and Table 2), as well as the different 377 
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molecular weight and distribution of dissolved organic matter in the digested sludge centrate 378 

feed (Figure 2). Specifically, dissolved organic matter that contributed to UV254 absorbance 379 

possessed high molecular weight from 400 to 10,000 g/mol, which was well rejected by the 380 

FO membrane with molecular weight cut-off at 250 g/mol. On the other hand, the organic 381 

matter that induced UV220 intensity exhibited a narrow molecular weight distribution at 382 

approximate 220 g/mol, which was lower than the FO membrane molecular weight cut-off 383 

(250 g/mol), but close to the RO membrane with molecular weight cut-off at 180 g/mol 384 

(Figure 3). As a result, it is hypothesized that the accumulation of dissolved organic matter in 385 

the FO-RO system was mainly driven by the virtues of steric hindrance (size exclusion) of 386 

the FO and RO membranes. Fluorescence EEM spectroscopy and SEC chromatography were 387 

employed to continuously examine the dissolved organic matter in the draw and permeate 388 

solution to provide further insights to this hypothesis.  389 

[Figure 6] 390 

3.4.2. Fluorescence EEM spectra 391 

Fluorescence EEM spectra of draw solution and permeate samples collected 392 

continuously from FO-RO process are illustrated in Figure 7. The draw solution EEMs 393 

demonstrated that a much lower intensity of fluorophore response peaks previously identified 394 

in feed EEMs could be still present, particularly the protein-like substances (Figure 1). This 395 

suggests that a broad class of fluorophores can be effectively removed by the FO membrane; 396 

however a fraction of the dissolved organic matter was still able to transport through the FO 397 

membrane. For instance, the draw solution EEM spectra demonstrated the fluorophore peak 398 

T1 (λex/em=275-290/330-370 nm), corresponding to weight protein-like fluorophores (e.g., 399 

tryptophan or other types of amino acids with phenyl groups), were poorly rejected by the FO 400 

membrane. This observation also agreed with the aforementioned UV absorbance results 401 

(Figure 6).  402 

[Figure 7] 403 

Accumulation of fluorophores in the draw solution was further revealed by EEM 404 

spectra. The intensities of peaks C and T1 (representative of fulvic- and protein-like 405 

substances, respectively) increased as the cumulative permeate volume increased (upper row, 406 

Figure 7). More importantly, the intensity of peak T1 (protein-like substances) increased at a 407 

faster rate than that of peak C (visible humic-like substances). Such accumulation resulted in 408 
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discernible fluorescence signatures for peak T1 as the amount of permeate processed 409 

increased, which suggested the protein-like substances had low molecular weight.  410 

3.4.3. SEC chromatography 411 

The SEC chromatography further examined the dissolved organic matter that was 412 

identified in the fluorescence EEM spectra (Figure 8), and shed light on the mechanism that 413 

governs the passage and accumulation of dissolved organic matter in the FO-RO system. The 414 

contour map of draw solution and permeate samples resolved the concentrations and 415 

molecular weights of the dissolved organic matter that diffused through the FO and RO 416 

membranes and accumulated in the draw solution (Figure 8).  417 

[Figure 8] 418 

 SEC chromatography of draw solution illustrated a progressive increase in the peak 419 

area at retention time of 48 minutes (upper row, Figure 8), corresponding to the solute 420 

molecular weight of 200 g/mol, which was smaller than the estimated molecular weight cut-421 

off of FO membrane (250 g/mol). This result agreed with the steric hindrance (size exclusion) 422 

mechanism, which played an important role in the passage and accumulation of dissolved 423 

organic matters. This observation, together with fluorescence EEM spectra, suggested low 424 

molecular weight, protein-like dissolved organic matters diffused through the FO membrane. 425 

In addition, these low molecular weight protein-like substances also passed through the RO 426 

membrane with molecular weight cut-off of 180 g/mol, enabling detection of small peaks at 427 

50 minutes towards the conclusion of the FO-RO system operation (lower row, Figure 8). 428 

 SEC chromatography of draw solution and permeate obtained at wavelengths of 220 429 

nm and 254 nm at the end of the FO-RO system operation provided further detail of the 430 

composition of dissolved organic matter in the draw solution and product water (Figure 9). 431 

Specifically, the dominant species in the draw solution exhibited strong absorbance at 432 

wavelength of 220 nm, confirming the presence of protein-like substance, with molecular 433 

weight of 200 g/mol (Figure 9A). It could be attributed to the steric hindrance (size 434 

exclusion) mechanism in the FO mass transfer. It is also noteworthy that the small shoulder 435 

peak showed at the retention time of 43 minutes, suggesting the presence of compounds with 436 

molecular weight of 300 g/mol. This protein-like substance with larger molecular weight 437 

might be due to the aggregation of protein-like substances in the draw solution. A much 438 

smaller portion of humic-like substance also could be found in the draw solution at 439 

http://www.ncbi.nlm.nih.gov/pubmed/22054082
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wavelength of 254 nm, suggesting the molecular weight of 180 g/mol. Due to the 440 

accumulation of protein-like substances in the draw solution, the same peak with two orders 441 

of magnitude lower intensity was also identified in the product water (Figure 9B), which is of 442 

concern to the product water quality.  443 

[Figure 9] 444 

3.5 Implications 445 

Transport and subsequent accumulation of contaminants in the FO-RO system 446 

reported here have significant implications for the management and advancement of the FO-447 

based system. The accumulation of undesirable contaminants in the draw solution not only 448 

demands additional management of the draw solution, but also jeopardises the entire system 449 

productivity and performance. The robust, double-barrier concept of the FO-RO system can 450 

be compromised due to this detrimental contaminant accumulation. Indeed, several prior 451 

investigations either modelled this phenomenon or provided experimental evidence. For 452 

instance, D'Haese et al. [21] modelled the TrOC accumulation in an FO-RO hybrid system 453 

and predicted that an elevated TrOC concentration in the draw solution deteriorated the 454 

product water quality. Xie et al. [11, 12] reported the concentrations of organic matter and 455 

TrOCs in the draw solution increased substantially as the water recovery increased and 456 

proposed two strategies – activated carbon adsorption and ultra-violet oxidation – to mitigate 457 

this effect. 458 

The transport and accumulation mechanisms elucidated here shed light on the 459 

mechanisms for contaminant build up in FO draw solutions and identifies the need for draw 460 

solution management when processing challenging waste streams [46]. In addition, the 461 

mechanisms highlighted here also open opportunity for development of high performance FO 462 

membrane, thereby reducing the margin in solute rejection between FO and RO membranes. 463 

4. Conclusion 464 

Results reported here demonstrated contaminant accumulation in the FO-RO system 465 

when processing digested sludge centrate that was abundant with nutrients and dissolved 466 

organic matter. Despite the high rejection of the FO-RO system, contaminant accumulation 467 

was evident by a progressive increase in the nutrient and dissolved organic matter in the draw 468 

solution. More importantly, the passage and accumulation of dissolved organic matter were 469 

identified and quantified by fluorescence EEM spectra and SEC chromatography to elucidate 470 
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the mechanism for the detrimental accumulation phenomenon. The major constituent that 471 

accumulated in the draw solution exhibited a distinct signature in the fluorescence EEM 472 

spectra at peak T1 (λex/em=275-290/330-370 nm), suggesting protein-like substance. The 473 

molecular weight of the protein-like substance was examined by SEC chromatography, 474 

indicating a molecular weight of 200 g/mol. This observation agreed well with the estimated 475 

FO (0.42 nm, with molecular weight cut-off at 250 g/mol) and RO (0.34nm, with molecular 476 

weight cut-off at 180 g/mol) membrane pore radii. The low molecular weight protein-like 477 

substance diffused through the FO membrane, and was mainly rejected by the RO membrane 478 

by the virtue of steric hindrance (i.e., size exclusion) mechanism. This contaminant 479 

accumulation phenomenon may affect the productivity and sustainability of the FO-RO 480 

system. 481 
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 620 

 621 

Figure 1: Characteristics of digested sludge feed by (A) fluorescence excitation-emission 622 

matrix spectroscopy with peak C and peak T1; (B) size exclusion chromatography with UV-623 

visible photodiode array (PDA) detector in a contour map, and (C) size exclusion 624 

chromatography at wavelengths of 220 nm and 254 nm as a function of molecular weight 625 

distribution.  626 
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 628 

Figure 2: Key mass transfer parameters, water and salt (NaCl) permeability coefficients, and 629 

observed NaCl rejection for the FO and RO membranes Error bars represent standard 630 

deviation from duplication measurements of two membrane samples.  631 
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 633 
Figure 3: The modelled rejections of FO and RO membranes as a function of molecular 634 
weight based on the pore hindrance model (Equation 5). The relevant organic tracer 635 
parameters in Table 2 were used in the model calculations. The molecular weight was 636 
translated to an approximate Stokes radius (radius of equivalent sphere) using the Wilke and 637 
Chang and the Stokes-Einstein equations.  638 
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Table 1: Key physicochemical properties of digested sludge centrate (average ± standard 

deviation from duplicate measurements)  

Parameter Value 

Turbidity (NTU) 59 ± 9 

Electrical Conductivity (mS/cm) 2.72 ± 0.12 

pH (-) 7.12 ± 0.02 

Total organic carbon (mg/L) 1,847 ± 20 

Ammonium (mg/L) 838 ± 25 

Phosphate (mg/L) 323 ± 12 

UV254 (cm-1) 1 0.85 ± 0.02 

UV220 (cm-1) 1 0.69 ± 0.01 
1 feed sample was diluted by 50 times with deionised water, and was measured using a 1 cm 639 
quartz cuvette.  640 
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Table 2: Estimated average membrane pore radii for FO and RO membranes obtained from 641 

organic tracer experiments 642 

Organic tracer  Solute size 1 
rs (nm) λ=rs/rp Pore radius 

rp (nm) 

Pore 
length/porosity, 

l/ε (µm) 
RO membrane  

Erythitol 0.26 0.79 0.33 3.08 
Xylose 0.29 0.86 0.34 1.74 
Glucose 0.32 0.89 0.36 1.03 

             Average 0.34 1.95 
FO membrane  

Erythitol 0.26 0.63 0.41 0.08 
Xylose 0.29 0.69 0.42 0.18 
Glucose 0.32 0.75 0.43 0.11 

             Average 0.42 0.12 
1 calculated from estimated membrane pore radius using Stokes equation  643 
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 645 

Figure 4: Water production by the FO – RO system: (A) FO and (B) RO process. 646 

Experimental conditions: digested sludge centrate feed (Table 1); draw solution of 0.6 M 647 

NaCl; temperatures of feed and draw were 20 °C; and cross-flow rates of 1 L/min 648 

(corresponding to cross-flow velocity of 9 cm/s) for the feed and draw. FO membrane 649 

flushing was conducted when water flux decreased to 50% of its initial value. Deionized 650 

water was used to flush the fouled FO membrane for 30 min at a cross-flow velocity of 18 651 

cm/s. RO process was operated at the hydraulic pressure of 28 bar (406 psi) using SW30 RO 652 

membrane at RO feed (i.e., draw from FO process) temperature of 20 °C, the cross-flow rate 653 

of the RO feed was 1 L/min (corresponding to cross-flow velocity of 9 cm/s).  654 
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Figure 5: Rejections of total organic carbon (TOC), and UV220, UV254 absorbance by (A) FO 657 

process, and (B) FO-RO process; and rejections of ammonium and phosphate by (C) FO 658 

process, and (D) FO-RO process, as a function of cumulative permeate volume. Experimental 659 

conditions are described in Figure 1.  660 
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 662 

Figure 6: (A) Concentrations of total organic carbon (TOC), ammonium, and phosphate in 663 

the draw solution as a function of cumulative permeate volume; and (B) UV absorbance at 664 

wavelengths of 220 nm (UV220) and 254 nm (UV254) in the draw solution as a function of 665 

cumulative permeate volume. Error bars represent standard deviation from duplicate 666 

measurements. Experimental conditions were described in Figure 1.  667 
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 668 

 669 

Figure 7: Fluorescence excitation and emission matrix (EEM) spectra for draw (upper row) and permeate (lower row) solutions at specific time 670 

intervals (day 1, 3, 5 and 7). Total organic carbon concentrations for all solutions were normalised to 5 mg/L for comparison. EEM spectra were 671 

collected at excitation wavelengths between 240 and 450 nm, and emission wavelengths between 290 and 580 nm (in 5 nm increment). The 672 

fluorescent intensity scaling bar for draw solution (0 to 800) was twice larger than that for permeate (0 to 400). 673 
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 674 
 675 

Figure 8: Size exclusion (SEC) chromatography for draw (upper row) and permeate (lower row) solutions at specific time intervals (day 1, 3, 5 676 

and 7). The SEC chromatographs were plotted as a contour map. SEC chromatography was obtained by a liquid chromatography equipped with 677 

a UV-visible photodiode array (PDA) detector (λ = 200-800 nm), using a size exclusion gel column (G3000 SW, Tosoh Bioscience, Japan) at 678 

room temperature, with a phosphate buffer (10 mM KH2PO4, 10 mM Na2HPO4) as the mobile phase.679 
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 681 

Figure 9: Size exclusion chromatography for (A) draw solution, and (B) permeate, at 682 

wavelengths of 220 nm and 254 nm at the conclusion of the FO-RO operation. The molecular 683 

weight was calibrated as peak retention time using polystyrene sulphonate with a series of 684 

molecular weight. SEC chromatography conditions were described in Figure 8. 685 
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