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Abstract. In this paper we establish some vector inequalities for two op-
erators related to Schwarz and Buzano results. We show amongst others
that in a Hilbert space H we have the inequality

T[/AP B \'Z /AP BP  \NVE /AP 4B
2 2 ) 2 y)y 2 ?y

> [(Re (B"A) x, )|

for A,B two bounded linear operators on H such that Re (B*A) is a
nonnegative operator and any vectors x,y € H.

Applications for norm and numerical radius inequalities are given as
well.

1 Introduction

Let (H,(-,-)) be an inner product space over the real or complex numbers
field K. The following inequality is well known in literature as the Schwarz
mequality

X[yl =[x, y)l for any x,y € H. (1)
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76 S. S. Dragomir

The equality case holds in (1) if and only if there exists a constant A € K such
that x = Ay.
In 1985 the author [5] (see also [24]) established the following refinement of
(1):
XNyl =[x, y) = (x, €) (e, Yl + [(x, €) (e, y)l = [{x, )] (2)
for any x,y,e € H with |[e]| = 1.
Using the triangle inequality for modulus we have

(6 y) — (% e) (e, y)l = [{x, ) (e, y)| = 1(x, y)

and by (2) we get

Xl Iyl > 1{x,y) — (x, €) (e, y) + [(x, ) (e, y)|
> 2[(x,e) (e,y)l — [(x,y)I,

which implies the Buzano inequality [2]

LIyl + 6o w)1] > s €) fevy) 3

that holds for any x,y,e € H with |le|| =1.
A family {ej}]. e of vectors in H is called orthonormal if

ej L ey for any j,k € ] with j # k and ||e;j|| =1 for any j,k € J.

If the linear span of the family {e;}._, is dense in H, then we call it an or-
thonormal basis in H.
It is well known that for any orthonormal family {ej}]. ey We have Bessel’s

inequality

i€]

> I, )" < |Ix|]* for any x € H.
j€]

This becomes Parseval’s identity

> () = [[x||* for any x € H,
j€]
when {e]-}]. ey an othonormal basis in H.

For an othonormal family £ = {e;j},

jep we define the operator P¢ : H — H by

Pex := Z (x,ej)ej, x € H. (4)
j€]
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Some vector inequalities for two operators 77

We know that Pg¢ is an orthogonal projection and
(Pex,y) = Z (x,¢j) (e;,y), x,y € Hand (Pex,x) ZI X, €j)| 2 x€eH.
j€] j€]

The particular case when the family reduces to one vector, namely & = {e},
llell =1, is of interest since in this case Pex = (X, €) e, x € H,

<PeX,y> = <X3 e> (e,y>, x,y € H (5)
and Buzano’s inequality can be written as

1

5 LIXy I+ 166wl ] = [(Pex, )l (6)

that holds for any x,y,e € H with |e|| = 1.
In an effort to generalize the inequality (6) for general projection, in [21] we
obtained the following result

DLyl +16e )] 2 1P, y) )

for any x,y € H and P: H — H a projection on H.
In particular, we then have the inequality

<Z<X> &) (€,Y) >' (8)

j€]

[HXII [yl + 10, y)l] =

N =

for any orthonormal family {e]-}]. - and any x,y € H.

Motivated by the above results we establish in this paper some vector in-
equalities for two operators A, B for which the operator Re (B*A) is nonnega-
tive in the operator order that are related to the inequality (6). Applications
for norm and numerical radius inequalities are provided as well.

For other Schwarz and Buzano related inequalities in inner product spaces,
see [1]-[4], [5]-[14], [22]-[26], [30]-[39], and the monographs [16], [17] and [18].

2 Vector inequalities for two operators

For a bounded linear operator T we use the concepts of absolute value and real
part of T defined as

T+T*
ITI = (T*T)"/? and Re (T) = J; (9)

We have the following vector inequality:
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78 S. S. Dragomir

Theorem 1 Let A,B two bounded linear operators on H such that Re (B*A)
is a nonnegative operator. Then for any x,y € H we have the inequality

AP +BE N2 /IAR L [BE A\
I A N R

> (Re (B*A) x,x)"/? (Re (B*A) y,y)"/? (10)
2 2
+ ‘<Wx,y> — (Re (B*A) x,y) ‘

Proof. Using Schwarz inequality we have
IAx = Bx|[* Ay — By||* > [{Ax — Bx, Ay — By)[? (11)
for any x,y € H.
Observe that
|Ax — Bx||* = (Ax, Ax) — (Ax, Bx) — (Bx, Ax) + (Bx, Bx)
= (A*Ax,x) — (B*Ax,x) — (A*Bx,x) + (B*Bx, x)

= (IAPx%,%) + (BFx,x) = (B"A+A"B)x, %) (12)
2 2
=2 [<A|—2me,x> — (Re (B*A) x, x)] >0

and, similarly,

2 2
Ay =Byl =2 (P Py ) - ey 20 as)

for any x,y € H.
We also have

2 2
(Ax — Bx, Ay — By) :2{<w;“3x,y> — (Re (B*A) x,y>] (14)

for any x,y € H.
Using the inequality (11) and the equalities (12)-(14) we get

2
[<|A|2+|B|x, x> — (Re (B*A) x, x)}

2
2 2
X [<WU,U> - <Re(B*A)y,y>] (15)
2 2
> (P ) — e 3 A )
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Some vector inequalities for two operators 79

for any x,y € H.
Since Re (B*A) > 0, then we have

<|A|2 + B

> x,x> > (Re (B*A)x,x) >0

and 5 5
IA? +|B| .
<2 Y,y ) > (Re(B*A)y,y) >0

for any x,y € H.
Using the elementary inequality that holds for any real numbers a, b, c,d

(ac —bd)? > (a? — b?)(c? — d?),

A+ (B2 \'?/IAR+ B 12
2 o 2 9y

— (Re(B*A)x,x)"/*(Re(B*A)y, y)/?)?

(PP A <16>

Al* + |BJ* .
X sz,y — (Re(B*A)y,y)
for any x,y € H.

Making use of (15) and (16) we get

AR+ B2 \"?/|AP +[B] 172
2 X — 2 YV

we have

— (Re(B*Ax,x)'*(Re(B*A)y, y)'/?)? (17)
(PR e ar |
for any x,y € H.
Since
<'A|2 er |B|2x,x>]/2<|A|2 ; |B|2y>y>]/z > (Re(B*A)x,x)"*(Re(B*A)y, y)'/?

for any x,y € H, then by taking the square root in (17) we get the desired
result from (10). O
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80 S. S. Dragomir

Corollary 1 With the assumptions in Theorem 1 we have

AP +[BP \VE/IAPHIBE VR | /IAR +[BP
2 ) 2 y)y 2 )y (18)

> (Re(B*A)x, x)"/2(Re(B*A)y,y)"/? — [(Re(B*A)x,y)| > 0

<|A|2+|B|2 ‘/2<|A|2+|B|2 >‘/2
X, X +

IAIZ+IBI2 >
(19)
(Re(B*A)x,x)"/?(Re(B*A)y,y)'/? + |(Re(B*A)x, y)|
for any x,y € H.

Proof. From the triangle inequality we have

P 2 2 2
<Wx,y>—<Re(B*A)x,y> > ‘<|AJZF|B|X,y> —{Re(B*"A)x, )|

and

<IAI2 +[BJ?

2 2
3 "ok~ (RelB A )| > [Re(r AR )|~ | (55 Pk w)

for any x,y € H, which together with (10) produce the inequalities (18) and
(19). O

Remark 1 With the assumptions in Theorem 1 we have

1[<|A|2+|B|2X X>’/2<|A|2+|B|2y y>‘/2
2 2 2 (20)

2 2
N ‘<WJZF|B|X’IJ>H > [(Re(B*A)x, y)l

for any x,y € H.

If we assume that A is a bounded linear operator such that Re (Az) > 0,
then by taking B = A* above, we have the inequalities

AP +HIATE  \VE/IAR AT\
5 %X 5  YY

> (Re(A%)x,x)"/%(Re(A%)y,y)"/? (21)
2 *|2
# (P )~ Relatin )|
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Some vector inequalities for two operators 81

AP+ IATE  NVEJIAR AT \VE | IAR 4 AT
2 ) 2 U»U 2 )y (22)

> (Re(A%)x, x)"/2(Re(A%)y,y)"/? — [(Re(A?)x,y)| > 0,

AR+ A2\ /IAR + |A*P V2 1 /|AR + B
f&x fy,y + #X»y
> (Re(A%)x,x) "2 (Re(A%)y,y)"/? + |(Re(A?)x, y)]

ZKWZHA* > <|A|2+|A*|2 y> ) (24)

2 *|2
. ‘<|A|+2|A|xy>u > [(Re(A2)x, )

(23)

and

for any x,y € H.
Assume that A is invertible, then by selecting B = (A~")* above and taking
into account that

BE=BB=A""(A") =A" (A" = (A*A) " =|A[?

then from the above we get the inequalities

AR+ A2 \Y2/IAR + A2 172
fX,X fy,y

A2+ A (25)
> el i+ (25 ) — e,
AP HIAT?  \VE/IARHIA A\
2 Y 2 y)y ( )
26
|A|2+|A|*
< % )| = ]yl =166 u)l = 0,
<|A|2+A| >‘/2<|A2+|A| >‘/2
Xy X Y,y
(27)

X Tyl =+ 10, )

‘<|A|2+|A| -2 >
+ X, Y

Brought to you by | Victoria University Australia
Authenticated
Download Date | 5/15/17 3:29 AM



82 S. S. Dragomir

AR+ A AR + A2\
2+K<A+A >>}<> ) 29
2 )| = [(x)]

for any x,y € H.
If A,B > 0 with AB = BA, then from (10) we have

A2+ B2 \V2/A24B2 \'2
> %x) (5 Wy

2 BZ
> (ABx, ) 2By ) 2 (M Py ) - (A

+132XX 12 A2+82 YR/ A B
) y»U 2 7y (30)

> (ABx, x)"/?(ABy, y)l/z |(ABx,y)| > 0,

< <+WXX‘ <AL+W >V{+<AL+WX >
Y )U 2 )y (31)

> (ABx,x)"/2(ABy,y)"/? 4+ |(ABx, y)|

1[/A2+B2 \"2/A24+B2  \1?

2 2 X’)X 2 y)y
A? + B?

+ ‘< 3 x,y>H > [(ABx, y)|

and

(29)

)

and

for any x,y € H.
We observe that if A = 11y and B = P, with P a projection on H, then we
obtain from (32)

1[/Tu+P \"* /1 +P V2144 P
ZK 5 x,X> <H2 y,y> +'<Hzx,y>H2|<Px,y>l (33)

for any x,y € H.
If e € H,||e|| =1 then by taking P = P, defined in the introduction, we get
the inequality

T2 4100 @R T2l + 16w, 0] 1 w) + (s € erwil
> I(x,€)(e,u)|

(34)
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Some vector inequalities for two operators 83

for any x,y € H.
Since

106, 9) + (6, ) (e, u)l < L u)| -+ 1(x, €) (e, )
then by (34) we have
L0 @R 2 IR+, e 7 Ho il e) e w)l] = s ebie il

which implies that

1 1/2 1/2
3 ([ + 1%, @02] 2yl + 1y, @) P2 + 1%, 9)1) = I, ed(e,y)l - (35)
for any x,y € H.
We recall that U : H — H is a unitary operator if WU = UU* = 1y, If U
and V are unitary operators with Re (V*U) > 0, then by (20) we have
1 *
5 LIl + 106wl ] > [(Re (VU x, )| (36)

for any x,y € H.
In particular, if U is a unitary operator with Re (U) > 0 then by taking
V =1y in (36) we get
1
5 LRyl + 166 y)] > [(Re(W)x, )| (37)

for any x,y € H.

3 Inequalities for norm and numerical radius

Let (H; (- >) be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [27, p. 1]:
W(T) = {(Tx,x), x € H, ||| =1}.
The numerical radius w (T) of an operator T on H is defined by [27, p. 8]:
w (T) = sup { N[, A € W(T) } = sup {|(Tx, ), Ix] =1}

It is well known that w (-) is a norm on the Banach algebra B (H) and the
following inequality holds true

w(T) <||T|| £2w(T), for any T € B(H).

Utilising Buzano’s inequality (3) we obtained the following inequality for the
numerical radius [13] or [14]:
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84 S. S. Dragomir

Theorem 2 Let (H;(-,-)) be a Hilbert space and T:H — H a bounded linear
operator on H. Then

WA(T) < 2 [w(T 4+ T, (3)

The constant % is best possible in (38).

The following general result for the product of two operators holds [27, p.
37]:

Theorem 3 If W,V are two bounded linear operators on the Hilbert space
(H,<~,->), then w(UV) < 4w (U)w (V). In the case that UV = VU, then
w(UV) <2w (W)w (V). The constant 2 is best possible here.

The following results are also well known [27, p. 38].

Theorem 4 If U is a unitary operator that commutes with another operator
V, then
w(UV) <w(V). (39)

If U is an isometry and UV = VU, then (39) also holds true.

We say that U and V double commute if UV = VU and UV* = V*U. The
following result holds [27, p. 38].

Theorem 5 If the operators U and V double commute, then
w(UV) <w (V) [[U]. (40)
As a consequence of the above, we have [27, p. 39]:

Corollary 2 Let U be a normal operator commuting with V. Then
w(UV) <w(UWw(V). (41)

A related problem with the inequality (40) is to find the best constant c for
which the inequality
w(UV) <cw (U) ||V

holds for any two commuting operators U,V € B (H) . It is known that 1.064 <
¢ < 1.169, see [3], [35] and [36].
In relation to this problem, it has been shown in [25] that:
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Some vector inequalities for two operators 85

Theorem 6 For any W,V € B (H) we have
(UV +Vvu
Y T2

For other numerical radius inequalities see the recent monograph [18] and
the references therein.

) < Vaw (W) V] (42)

Theorem 7 Let A, B two bounded linear operators on H such that Re(B*A)
18 a nonnegative operator. Then for any U,V € B (H) we have

2 2N\ 1/2 2 2\ 1/2
IIVRe(B*A)UHS% (WHBl> u V(WHBI)

’ ? (43)
LUy (AR EBEY
2 ) )
N ANG 2, iy V2
w(VRe(B AN < + || (AZHBEN Tl |y (A +IBE
: j ’ (44)
L (v (AEEBEY
2 2
and
A cmeN"2 AR+ By 2.
w(VRe(B*AIU) < (2> u +‘(2) v
(45)

1 A2 +[BJ?
(v (A5 )

Proof. From the inequality (20) we have

. et 1[/IAR + B VEIAR 4+ BR . 2
‘(Re(B A)lUx,V y>| < 7 KZUX, Ux fv y, V'y

Al* + B
N <| | 2| |Ux,V*y>H

for any x,y € H, which is equivalent to
‘(VRe(B*A)Ux,y)‘

1/, AP + B VAR +BE . \T?
fzK” T2 W) VgV (46)

Al? + [BJ?
)|
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for any x,y € H.
Taking the supremum over x,y € H, ||x|| = |[y|| =1 we have

‘(VRe(B*A)Ux, y) ‘

[VRe(B*A)U|| = sup
Ixll=llyll=1
1 2 B2 1/2 2 B2 1/2
21w [(wAEBE N AR B
2 |x||=llyll=T 2 2

2 BZ
(V)]

AP+ [BP? 12 AP + (B V2o )
<u*| 2+ B UX’X> . <V| 2+ |V*y)y>
l[yll=1

|
< | sup
2L =1 2 2
Al? + [BJ?
IxlI=lyl=T 2
1/2 1/2
O, LA+ 1B A2+ B, A% + B2
Since
2 2 2 2\ 1/2
AL BE (AL A (B u
2 2
and
2 g 2 L BR 1/2
VIAI+| 'v*: |Al* + B e
2 2
then 12 12
2 2 2 2
u*IAI + |B| u _ |A|* + [B| u
2 2
and
AR+ BRI | 1AR + 1B 2 A2 + B2/
va I\ 2 Vi =V 2

Using (46) we also have

1 Al + B2 2/ A1 +|BJ2 172
‘(VRe(B*A)Ux, x)‘ < 3 [<U.*||—2H|Ux,x> <V||—2H|V*X,x>
(48)

Al? + [BJ?
+‘<V| | —ZH |UX,X>H
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Some vector inequalities for two operators 87

for any x € H, [|x|| = T.
Taking the supremum over x € H, ||x| =1 we have

w(VRe(B*A)U) = sup ‘(VRe(B*A)Ux,xH
[Ix]|=1

AZ BZ 1/2 AZ BZ 1/2
sup <U*||+||UX,X> sup <V||+||V*x,x>
lIx[I=1 lIx[|=1

2 2
AlZ + |BJ?

+ sup <V||+||Ux,x>’

IxlI=1 2

2 2\ 1/2 2 2N\ 1/2
T (AP BENY2 (AR + 1B
2 2 2

A 2 2
W <V||+|B|U>]
2
and the inequality (44) is proved.

By the arithmetic mean — geometric mean inequality we have

AZ BZ 1/2 AZ BZ 1/2
(AR ) AR B
2
<

2 2 2 2
[<U* Al —2HB| Ux,x> + <V|A —2HB| V*x,x>] (50)

1 2 Bz1/22 2 Bz1/2 2
(O25) = (52) v )

2
for any x € H, [|x|| = 1.
From (48) we have

1
< _
-2

(49)

N —

N |

|(VRe(B*A)Ux, x)|

2 2\ 1/2
1 |A|* + [B] u
-4 2

1 AI* +|BJ?
+ 3 '<V2Ux,x

2 2 2N\ 1/2
A B
o (AR

2} x,x> (51)

for any x € H, ||x|| = 1.
Taking the supremum over x € H, [[x|| = 1 in (51) we get the desired
inequality (45). O
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88 S. S. Dragomir

Corollary 3 If A,B > 0 with AB = BA, then for any U,V € B (H) we have

IVABU| < 1“ (Az + Bz) v uH Hv <A2 + Bz>1/2
=3 2

2
1 A? + B2 (52)
*zHV( )
2 2N\ 1/2 2 2\ 1/2
w(VABU) < H[ (AZEBY T ylflly (ALEB
2 2 2 (53)
—i—lw Vv A’ + B u
2 2
and
2 2\ 172 2 2 2\ 1/2 2
wVABU) < LI (AZEBY ul o (AEET) e
4 2 2
(54)

1 AZ + B2
+2w<v( : )u)

Remark 2 If we take in Corollary 3 A = 1y and B = P, a projection on H,
then we get

1| /Tq+P\'"? Th+P\'"?
Iveuj < < | (FE0) v (2
2 2 2 (55)
1 Ty+P
“zv ()
1/2 1/2
W(VPU)Sl Ty+P ull v Ty+P
2 2 2
(56)
1 T+ P
and
1/2 2 1/2 2
WVPU)Sl Ty+P ul + Ty+P Vv
4 2 2
(57)

(1)
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Corollary 4 Let T be a unitary operator with Re (T) > 0. Then for any U,V €
B (H) we have

1

IVRe Ty U]l < S[IUWIVI -+ U], (58)
w(VRe (T)U) < %[HUH IVIF+w (VW) | (59)
and : :
w(VRe (T)U) < o || U+ [V ||+ 5w (V) . (60)
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