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Abstract. Entropy, conditional entropy and mutual information for discrete-

valued random variables play important roles in the information theory. The

purpose of this paper is to present new bounds for relative entropy D(p||q)
of two probability distributions and then to apply them to simple entropy

and mutual information. The relative entropy upper bound obtained is a

refinement of a bound previously presented into literature.

1. Introduction

The relative entropy D(p||q) (see [1],[2]) is the measure of distance between two
distributions. It can also be expressed like a measure of the inefficiency of assuming
that the distribution is q when the true distribution is p.

Definition 1.1. The relative entropy, of the Kullback-Leibler distance, between
two probability mass functions p(x) and q(x) is defined as

D(p||q) :=
∑
x∈X

p(x) ln
(p(x)
q(x)

)
= Ep ln

(p
q

)
,

where ln(·) is the natural logarithm.

A fundamental property of the relative entropy is the following.

Theorem 1.2. Let p(x), q(x), x ∈ X be two probability mass functions. Then

D(p||q) ≥ 0,

with equality if and only if p(x) = q(x) for all x ∈ X.

Obtaining a lower bound, the above fundamental inequality can be improved as
follows (see [2]).

Theorem 1.3. Let p(x), q(x) be two probability mass functions for x ∈ X. Then

D(p||q) ≥ 1
2

(∑
x∈X

|p(x)− q(x)|
)2

.

As an upper bound for relative entropy, we have taken into consideration the
result presented by Dragomir et al. [3, Theorem 1]. Other bounds can also be
found in [4, 5, 6, 7].
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Theorem 1.4 ([3]). Let p(x), q(x) > 0, x ∈ X be two probability mass functions.
Then

D(p||q) ≤
∑
x∈X

p2(x)
q(x)

− 1 =
1
2

∑
x,y∈X

p(x)q(x)
(p(x)

q(x)
− p(y)

q(y)

)(q(y)
p(y)

− q(x)
p(x)

)
,

with equality if and only if p(x) = q(x) for all x ∈ X.

2. A new inequality for strictly convex functions

First we need a generalization of the classical Lagrange’s theorem.

Theorem 2.1. Let n be a natural number, and f : [a, b]→ R a continuous function
on [a, b] and derivable on (a, b), with b > a > 0. Then exists distinct c1, c2, . . . , cn ∈
(a, b) such that

f(b)− f(a)
b− a

=
f ′(c1) + f ′(c2) + · · ·+ f ′(cn)

n
.

Proof. First we split the interval [a, b] into n equal subintervals, as [a, x1], [x1, x2],
. . . , [xn−1, b], with

x1 − a = x2 − x1 = · · · = b− xn−1 =
b− a

n
.

Now applying the Lagrange Theorem for each interval, we obtain that exists c1 ∈
[a, x1], c2 ∈ [x1, x2], . . . , cn ∈ [xn−1, b] such that

f(x1)− f(a)
b−a
n

= f ′(c1),
f(x2)− f(x1)

b−a
n

= f ′(c2), . . . ,
f(b)− f(xn−1)

b−a
n

= f ′(cn).

Summing the above equalities, yields that

f(b)− f(a)
b− a

=
f ′(c1) + f ′(c2) + · · ·+ f ′(cn)

n
.

the proof is complete. �

Applying the condition of strictly convex functions to the function f , we obtain
the following result.

Theorem 2.2. Let n be a natural number, and f : [a, b]→ R a continuous function
on [a, b], diffferentiable on (a, b) and strictly convex, with b > a > 0. Then

f ′(a) +
n−1∑
i=1

f ′
(
a + i

b− a

n

)
< n

f(b)− f(a)
b− a

<

n−1∑
i=1

f ′
(
a + i

b− a

n

)
+ f ′(b).

Proof. As f is a strictly convex function implies that f ′ is an increasing function, so
because from the above theorem exist c1 ∈ [a, x1], c2 ∈ [x1, x2], . . . , cn ∈ [xn−1, b],
with x1 − a = x2 − x1 = · · · = b− xn−1 = b−a

n . This implies

f ′(a) < f ′(c1) < f ′(x1), f ′(x1) < f ′(c2) < f ′(x2), . . . , f ′(xn−1) < f ′(cn) < f ′(b)

and considering the result of the previous theorem and summating, we get the
wanted result. �



EJDE-2016/237 BOUNDS FOR KULLBACK-LEIBLER DIVERGENCE 3

Remark 2.3. It is easy to see that for any positive natural number n

nf ′(a) ≤ f ′(a) +
n−1∑
i=1

f ′
(
a + i

b− a

n

)
and

n−1∑
i=1

f ′
(
a + i

b− a

n

)
+ f ′(b) ≤ nf ′(b),

because a < a + i b−a
n and a + i b−a

n < b, for i = 1, 2, . . . , n− 1.

3. New bounds for relative entropy

To present a general inequality for − ln x we start with a helpful result, which
can be deducted by simple calculus.

Lemma 3.1. Let a, b, t, T be real numbers with b 6= 0 and T > t > 0. Then the
following two inequalities are equivalent

t <
a

b
< T

and

b
T + t− b

|b| (T − t)

2
< a < b

T + t + b
|b| (T − t)

2
.

Now, applying Theorem 2.2 to the function − ln x and taking into consideration
the previous Lemma, yields the following result.

Corollary 3.2. Let a, b > 0, with m = min{a, b}, M = max{a, b} and n ≥ 1 a
natural number, then

(a− b)
1
a
≤ (a− b)

( n−1∑
i=1

1
nm + i(M −m)

+
m + M + b− a

2nmM

)
≤ ln a− ln b

≤ (a− b)
( n−1∑

i=1

1
nm + i(M −m)

+
m + M + a− b

2nmM

)
≤ (a− b)

1
b
,

with equality holding for a = b.

Proof. If a = b then the inequality is obvious, so if a 6= b, by applying Theorem
2.2 to the function − ln x defined on the interval I = [m, M ] and taking cont that
f(M)−f(m)

M−m = f(b)−f(a)
b−a we obtain

− 1
nm
−

n−1∑
i=1

1
nm + i(M −m)

<
ln a− ln b

b− a
< −

n−1∑
i=1

1
nm + i(M −m)

− 1
nM

.

The equivalence from Lemma 3.1, yields

(a− b)
2
∑n−1

i=1
1

nm+i(M−m) + m+M
nmM −

b−a
M−m

m−M
nmM

2
< ln a− ln b

< (a− b)
2
∑n−1

i=1
1

nm+i(M−m) + m+M
nmM + b−a

M−m
m−M
nmM

2
,
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which is equivalent to

(a− b)
( n−1∑

i=1

1
nm + i(M −m)

+
m + M + b− a

2nmM

)
< ln a− ln b

< (a− b)
( n−1∑

i=1

1
nm + i(M −m)

+
m + M + a− b

2nmM

)
and by comparing with the previous remark we obtain the wanted result. �

We present the main result of this article, namely, new bounds for the relative
entropy, where we have considered two probability mass function p(x) and q(x), x ∈
X.

Theorem 3.3. Let p(x), q(x) > 0, x ∈ X be two probability mass functions, with
m(x) = min{p(x), q(x)} and M(x) = max{p(x), q(x)}, x ∈ X. If r(x) = p(x)−q(x),
then ∑

x∈X

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x) + r(x)

2nm(x)M(x)

)
≥ D(p||q)

≥
∑
x∈X

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x)− r(x)

2nm(x)M(x)

)
,

with equality if and only if p(x) = q(x) for all x ∈ X.

Proof. Setting a = q(x) and b = p(x) in Corollary 3.2 we obtain

− r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x) + r(x)

2nm(x)M(x)

)
≤ ln q(x)− ln p(x)

≤ −r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x)− r(x)

2nm(x)M(x)

)
,

and multiplying by −p(x) yields

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x) + r(x)

2nm(x)M(x)

)
≥ p(x) ln

p(x)
q(x)

≥ p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x)− r(x)

2nm(x)M(x)

)
,

from which summing over x ∈ X we get the wanted result. �

Remark 3.4. From Corollary 3.2 and Theorem 3.3 we deduce that∑
x∈X

p2(x)
q(x)

− 1
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≥
∑
x∈X

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x) + r(x)

2nm(x)M(x)

)
≥ D(p||q),

which leads us to the conclusion that the upper bound of relative entropy provided
by Theorem 3.3 is stronger that the one from [3].

Furthermore we present new bounds for entropy and mutual information.

Corollary 3.5. Let X be a random variable whose range has |X| elements and
has the probability mass function p(x) > 0, with m(x) = min{p(x), 1/|X|} and
M(x) = max{p(x), 1/|X|}, x ∈ X. If r(x) = p(x)− 1/|X|, then∑

x∈X

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x) + r(x)

2nm(x)M(x)

)
≥ ln |X| −H(X)

≥
∑
x∈X

p(x)r(x)
( n−1∑

i=1

1
nm(x) + i(M(x)−m(x))

+
m(x) + M(x)− r(x)

2nm(x)M(x)

)
.

The equality holds if and only if p(x) = 1/|X|.

Proof. It follows from Theorem 3.3 applied for D(p||q), where p(x) = p(x) and
q(x) = 1/|X|), i.e. D(p(x)||1/|X|). �

Corollary 3.6. Let X, Y be two random variables with a joint probability mass
function p(x, y) and marginal probability mass function p(x) and p(y), with p(x, y),
p(x), p(y) > 0, x ∈ X, y ∈ Y and mx,y = min{p(x, y), p(x)p(y)} and Mx,y =
max{p(x, y), p(x)p(y)}, x ∈ X, y ∈ Y . If rx,y = p(x, y)− p(x)p(y), then∑

(x,y)∈X×Y

p(x, y)rx,y

( n−1∑
i=1

1
nmx,y + i(Mx,y −mx,y)

+
mx,y + Mx,y + rx,y

2nmx,yMx,y

)
≥ I(X; Y )

≥
∑

(x,y)∈X×Y

p(x, y)rx,y

( n−1∑
i=1

1
nmx,y + i(Mx,y −mx,y)

+
mx,y + Mx,y − rx,y

2nmx,yMx,y

)
,

The equality holds if and only if X and Y are independent.

Proof. It follows from Theorem 3.3 applied for D(p||q), where p(x) = p(x, y)
and q(x) = p(x)p(y), i.e. D(p(x, y)||p(x)p(y)) and where m(x) = mx,y, M(x) =
Mx,y, r(x) = rx,y. �
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