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1 Introduction

Let C be a convex subset of the linear space X and f be a convex function on C. If p = (py, ..., p,) is probability
sequence and X = (x1, ..., x,) € C", then

n n
f (Z pl-xi) <> pifxi) (1
i=1 i=1
is well known in the literature as Jensen’s inequality.
The Lebesgue integral version of the Jensen inequality is given below:

Theorem 1.1. Ler (2, A, ) be a measure space with 0 < u(Q2) < oo and let ¢ : I — R be a convex function
defined on an open interval I in R. If f : Q — I is such that f,¢ o f € L(2, A, ), then

1 1
— dp | < ——— du.
¢ M(Q)!f nE M(Q)!Mf) ’ @

In case when ¢ is strictly convex on I one has equality in (2) if and only if f is constant almost everywhere on 2.

The Jensen inequality for convex functions plays a crucial role in the Theory of Inequalities due to the fact that other
inequalities such as the arithmetic mean-geometric mean inequality, the Holder and Minkowski inequalities, the Ky
Fan inequality etc. can be obtained as particular cases of it.

There is an extensive literature devoted to Jensen’s inequality concerning different generalizations, refinements,
counterparts and converse results, see, for example [1-9].

In this paper we give a refinement of Jensen’s integral inequality and its generalization for linear functionals.
We also present some applications in Information Theory for example for Kullback-Leibler, total variation and Karl
Pearson y2-divergences etc.
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2 Main results

Let (2, A, i) be a measure space with 0 < u(2) < coand L(2,A,u) ={f : @ > R: f is u — measurable and
Jo f()du(r) < oo} be a Lebesgue space. Consider the set & = {w € A : p(w) # 0and p(@) = u(Q \ w) # 0}
and ¢ : (a,b) — R be a convex function defined on an open interval (a,b). If f : Q@ — (a,b) is such that
fidpo f e L(RQ, A, p), then for any set w € S, define the functional as

) w@ (1
FO-Jro) = a)? (u(w)/f ) e’ (u(w)/fd”‘)' @

We give the following refinement of Jensen’s inequality.

Theorem 2.1. Ler (2, A, t) be a measure space with 0 < u(2) < oo and let ¢ : (a,b) — R be a convex function
defined on an open interval (a,b). If f : Q@ — (a,b) is such that f,po f € L(2, A, i), then for any set v € S we
have

1 1
¢(M(Q)!fd'u) <F(¢, fio) < M(Q)Qfﬁﬁ(f)dﬂ- 4

Proof. As for any w € G we have

s _ | n@) @)
‘p(u(sz)gffd“) “’{u(m (M(w)/f ) o) (M(w)/f )}

Therefore by the convexity of the function ¢ we get

n(w) 1 p(@) 1 _ .
( (Q)/f P«) (Q) (M(w)u[fdli)'f‘(Q)ff’(u(w)/fdﬂ)—'c(fl’,f»w), ©)

Also for any w € G and by the Jensen inequality we have

k@ (1 v (1
FO-10r = e)? (u(w)w/fd“) T ue? (u(w)/ fd“)

/ B(f)dp +

IA

[ o

L L
() (€2 J

T [ B ©
From (5) and (6) we have (4). OJ

Remark 2.2. We observe that the inequality (4) can be written in an equivalent form as
it Ffi0) 29| o [ 1a
in fiw) > —
wis w@ ) T
Q

1
T S[ Bz sup F. i)

and

Remark 2.3. If0,Q2 € S and if we take w = @ or = 2, then we have F(¢, f; w) is equal to the left hand side
of (2). In this case (5) holds trivially.

Brought to you by | Victoria University Australia
Authenticated
Download Date | 5/15/17 5:43 AM



DE GRUYTER OPEN Refinement of the Jensen integral inequality =—— 223

Particularly Riemann integral version can be given as:

Corollary 2.4. Let ¢ : [a,b] — R be a convex function defined on the interval [a,b]. If f : [c,d] — [a,b], p :
[c,d] — R are such that f, fp and (¢ o f)p are all integrable on [c, d], then we have

X d d
—c d— 1 1
Lt 1225 [poswan |+ T | [porwar | | 2o | = [poswar ).
1 d X d 1 d
X —C — X
— O P e [rorrwar |+ =20 | 2 [ porswar

As a simple consequence of Theorem 2.1 we can obtain refinement of Hermite-Hadamard inequality:

Corollary 2.5. If ¢ : [a,b] — R is a convex function defined on the interval [a, b), then for any [c,d] C [a, b] we

have
d+c . X —c X +c d—x d+x
o(5°) = e () v e (50))

d
1 x—c X +c d—x d+x
—_— dt > .
d—ccf‘“’) —XS[‘Z‘?d][d—c"’( 2 )*d—c¢( 2 )}

3 Further generalization

Let E be a nonempty set, 2l be an algebra of subsets of E, and L be a linear class of real-valued functions f : E — R
having the properties:

Ll : fflgelL = (af +Pg) e Lforalle,f cR;

L2 :1€eL,ie.,if f(t) =1forallt € E, then f € L;

L3 : feL EieA= fyg €L,

where x g, is the indicator function of Ej. It follows from Ly, L3 that y g, € L forevery E; € 2.
A positive isotonic linear functional A : L — R is a functional satisfying the following properties:

Al  A(af + Bg) = aA(f) + BA(g) for f,ge L,a,f eR;
A2 : feL,f(t)y>0onE = A(f) > 0;

It follows from L3 that for every Ej € 2 such that A(y £,) > 0, the functional A g, is defined for a fixed positive

isotonic linear functional A as Ag, (f) = %, forall f € L, with A(1) = 1. Furthermore, we observe that
1

A(xe,) + A(XENE,) = 1,

A(f) = A(fxE) + A(fXE\E))- )

Jessen (see [10, p-47]) gave the following generalization of Jensen’s inequality for convex functions.

Theorem 3.1. Let L satisfy L1 and L, on a nonempty set E, and assume that ¢ : [a,b] — R be a continuous
convex function. If A is linear positive functional with A(1) = 1, then for all f € L such that ¢(f) € L we have
A(f) € [a,b] and

P(A(S)) = AP(f)): ®)
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The following refinement of (8) holds.

Theorem 3.2. Under the above assumptions, if ¢ : [a, b] — R is a continuous convex function, then

BAG) = DA, 43 E1) < AG(): ©
where A A
D £ E) = Mg (SEEEL )+ aup)o (G2

Sor all non empty set E1 € A such that0 < A(xg,) <1

Proof. Since

D A(S. ) A(S. )
B .50 = a0 (SE220) At (4257)

i.e. D(A, f.¢:E1) = A(xe)P (AE, () + A(xe\EDS (AENE, (f)) -

Using the inequality (8) we obtain

D(A, f.:E1) < AP (f) -xe) + AP (f) - 2E\E) = AP (). (10)

This proves the second inequality in (9).
The first inequality follows by using definition of convex function and identity (7). O

4 Applications for Csiszar divergence measures

Let (2, A, u) be a probability measure space. Consider the set of all density functionson i tobe S := {p|p : @ —
R, p(s) > 0, [o p(s)du(s) = 1}.

Csiszdr introduced the concept of f —divergence for a convex function f : (0,00) — (—00, 00) (cf. [11], see
also [12]) by

1@ = p(s)f(%) du(s). p.qes.
Q

By appropriately defining the convex function f, various divergences can be derived. We give some important
f-divergences, playing a significant role in Information Theory and Statistics.
(i) The class of y-divergences: The f-divergences, in this class, are generated by the family of functions

fa)=|u—11* u>0and a>1.

15,(q.p) = / P 7(s) | qs) — p(s) ¥ duacs).
Q

For o = 1, it gives the total variation distance.

Vig.p) = / L 4(s) — p(s) | dus).
«Q

For o = 2, it gives the Karl Pearson y2-divergence,

B 2
Lot = [ POR g,
Q

(ii) e-order Renyi entropy : For o > 1 let
f@)=1t%*, t>0.
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Then I gives a-order entropy

Dal(q. p) = [ 4% () P (s) du(s).
«Q

(iii) Harmonic distance: Let

2t
)=——, t>0
S 1+t
Then Iy gives Harmonic distance
2p(s)q(s)

Du(q.p) = du(s).

p(s) +4q(s)
Q

(iv) Kullback-Leibler: Let
f@)= tlogt, t>0.

Then f-divergence functional give rise to Kullback-Leibler distance [13]

q(s)

du(s).
()) w(s)

Dk p) = / 4(s) 1og(
Q

One parametric generalization of the Kullback-Leibler [13] relative information was studied in a different way by
Cressie and Read [14].
(v) Jeffreys divergence: Let

f@)= (@ —1)logt, t >0.

Then f-divergence functional give Jeffreys divergence

J(g.p) = [ (p(s) — (s))ln(q(()))du(s).

(vi) The Dichotomy class: This class is generated by the family of functions g : (0, 00) — R,

u—1—1log u, a=0
ga(u) = a(l —oy leu+1—a—u®] a e R\{0,1}; (11)
1 —u+ulogu, oa=1.
This class gives, for particular values of «, some important divergences. For instance, for o« = % it provides

a distance, namely, the Hellinger distance.

There are various other divergences in Information Theory and Statistics such as Arimoto-type divergences,
Matushita’s divergence, Puri-Vincze divergences etc. ( cf. [15], [16]) used in various problems in Information Theory
and statistics. An application of Theorem 1.1 is the following result given by Csiszar and Korner (cf. [17]).

Theorem 4.1. Letr f : [0,00) — R be a convex function and p, q be positive functions from S. Then the following
inequality is valid,
Ir(q.p) = f(D). (12

Theorem 4.2. Let f : [0, 00]— R be a convex function, then for any p and q in S we have:
1 1
1ra.p = u@f |~ [0an) |+ 1@)f | = [a©due) | = s (13)
w(w) J (@) J

Proof. By substituting ¢ (s) = f(s), f(s) = Z((i)) and du(s) = p(s)du(s) in Theorem 2.1, we deduce (13). O
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Proposition 4.3. Let p,q € S, then we have

V(g,p) > 2 sup /q(S)dM(S) — u(w)| (= 0).
wed 2

Proof. By putting f(x) = |x — 1| for all x > 0 in Theorem 4.2 we get (14).

Proposition 4.4. Forany p, q € S,

[ (Jo 1©dus) —p@)*| ) e
5 > > — > 0).
2. = sup {2 s ([ g0t - ) 2 0

weES
w

Proof. By making use of the function f(x) = (¢ — 1)? in Theorem 4.2 we get
2
weS

/p(S) (@— l)zdu(S) > sup 4 (o) L/61(S)a’/L(S)—1
2 p(s) B M(w)w

2

. 1
1@ | / d)dus) 1] L0

. / (q(s) — p(s))? { (f,, a(©)du(s) — p())’
1.€.
5 P(S) weS

T MY E ST ) (- ) i(zo)'

Since by Arithmetic-Geometric mean inequality we have

@)1= p) = 3w + (1 - p)] = §
g Ren =4 M =7
therefore ( )
L a(s)dpu(s) — p(w) 2 i
w(w)(1l — pu(w) > 4(Q[Q(S)du(s) — M(a))) (= 0).

Proposition 4.5. For any p, q € S, we have:

- 1—Lﬂ@MM”1<MWMmm Aquw)@ﬂmmm N
l)Kliﬂ,P)__hl[(l_/L@u)) .(gggjzagygg,) > 0).

Proof. By putting f(¢) = ¢ In(¢) in Theorem 4.2 one can get first inequality in (16).

To prove the second inequality, we utilize the inequality between the geometric mean and harmonic mean,

xDlyl—Oé > ﬁ, x,y,a€l0,1],
x5
we have for . )
oo Jwd® me) | L= fy 46)dp(s) /q(S)d,u(s) .
M(w) 1— pL(a)) J
(1__Luq@0dN@0)l_hﬂﬂ”duw) (j;q%ﬂdﬂﬂﬂ)ﬁ”q“”““5)>l
1 — pu(w) ’ w(w) =1,

for any w € &, which implies the second inequality in (16).
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Proposition 4.6. For any p, q € S, we have:

(1= f,, 4(6)dp(s) (@) ]W‘”)‘fm AN
@ p)=in (j‘é% {[(1 — @) J, 46)du(s)
- (1) = [, 46)dp(s))? .
wes \ [, 4()dp(s) + p(@) =2 [, q(s)dp(s)nw) | ~

a7

Proof. By putting f(x) = (x — 1) In(x), x > 0 in Theorem 4.2 we have

[ o (@ _1)1 (q( >)dﬂ(s)> sup (M(w)(waI(S)du(S) _1) (f 4(5)dus)

p(s) p(s) wes w(w) w(w)

- d d
() (Jtotr)

d

= Sup fQ(S)dM(S) () (f q(s)dpu(s)
weS H(a))
d

QQ(S)du(S) M(a))) f ‘1(5) M(S)

that is

1= [, a(s)du(s)
J(q.p) = (EZ% ((u(a))—a[q(s)du(S)) In (I——u(a)))
d
- (u(w) - q(S)du(S)) I (W))

w
proving the first inequality in (17).

Utilizing the elementary inequality for positive numbers ,

Inb—Ina - 2
b—a “a+b’

a,b>0

we have

1-— d d
(M(w) - / q(s)du(s)) [m ( {w_qlis(i) )“(S)) I (fw q;ES(L)M(S))]

w
In l—fi,q(S)du(s) —In Ju @($)d L (s)
—u(w) (w)
- (u(w)— / q(s)dms)) (Fheig) i (4552)
w

1—J,a(s)duls) [, a(s)du(s)
1—u(w) u(w)

x [1 o 4O)HES) _ o q(s)dum]
— n(w) w(w)

1—[, a(s)du(s) S a(s)d L (s)
(@) — [, g0dn)® () - ()

w(@)(1 — p(w)) ' 1—[,a(s)du(s) [, a(s)duls)
I—u(w) u(w)

_ (@) = [, a()dp(s)” 2

o)1 = u(w T1=Jpa()du(s) | Jua(s)duls)
p(@)(1 = p(w)) plioni ™ + Lt 22

_ 2(u(@) — [, 4(5)dp(s))? -
S 4®)dp(s) + (@) =2 [, q()dp()p(@) ~

for each w € G, giving the second inequality in (17). O
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Proposition 4.7. For any p, q € S, we have:

o o
Datq-p) = swp | (u)'™ | [a@dn© | +0-u@)'= (1= [q@ane | {1 as)
weS 2 s
Proof. By putting f(x) = x¥ for o >1, x > 0,in Theorem 4.2 we get the required inequalities. O
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