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ABSTRACT Epilepsy detection from electrical characteristics of EEG signals obtained from the brain of
undergone subject is a challenge task for both research and neurologist due to the non-stationary and chaotic
nature of EEG signals. As epileptic EEG signals contain huge fluctuating information about the functional
behavior of the brain, it is hard to distinguish the fundamental dynamic, complex network of EEG signals
without considering the strength among the nodes as they are connected with each other on the basis of
these strengths. The prior research on natural visibility graph did not consider this issue in epileptic seizure,
although it is a very important key point to have representative information from the signals. Hence, this
paper aims to introduce a new idea for epilepsy detection using complex network statistical properties by
measuring different strengths of the edges in natural visibility graph theory, which is considered as weight.
Thus, the proposed method is named “‘weighted visibility graph”. In this proposed method, first, the epileptic
EEG signals are transformed into complex network and then two important statistical properties of a network
such as modularity and average weighted degree used for extracting the imperative characteristics from a
network of EEG signals. After that, the extracted features are evaluated by two modern machine-learning
classifiers such as, support vector machine with a different kernel function and k-nearest neighbor. The
experimental results demonstrate that the combined effect of both features is valuable for network metrics
to characterize the EEG time series signals in case of weighted complex network generating up to 100%
classification accuracy.

INDEX TERMS Average weighted degree, complex network, EEG, Epilepsy, KNN, modularity, SVM,

visibility graph, and weighted visibility graph.

I. INTRODUCTION

Epilepsy is the most common chronic neurological syndrome
after Alzheimer’s disease and stroke in the world. According
to World Wide Web, around 50 million people worldwide has
epilepsy and is suffering with this recurring and unpredictable
seizure disorder [1]. The main root of Epileptic seizure is
disproportionate, synchronized activity of vast groups of neu-
rons in the brain. Epileptic syndrome leads to range of short-
term alterations in cognition and behavior [2]. Moreover,
Epileptic patient always having mental stress and anxiety that
accompanies untimely seizure attacks. For the anti-seizure
medication, it is valuable to detect epilepsy syndrome as it
gives information about the underlying etiology. EEG is one
of the main bio-marker that can measure voltage fluctuations
of the brain and EEG data analysis helps to investigate
the patient with epilepsy syndrome as epilepsy leaves their
signature in EEG signals. As EEG data are in time series
form, therefore epilepsy detection is mostly done by using
time series analysis techniques ranging from linear methods

to non-linear methods. Linear methods to analyze time series
data comprise time-frequency analysis, i.e. from Fourier
transformation to wavelet transformation [3]-[5]. Non-linear
methods include the calculation of Lyapunov exponents,
entropy and co-relation dimensions [6]-[8]. However, these
methods are not able to perpetuate all characteristics of EEG
time series data such as, non-stationary, chaotic nature [10].
Henceforth, there is continuous research towards the
development of new techniques that can detect epilepsy syn-
drome by preserving the relevant as well as important infor-
mation and further more provide additional information about
epileptic EEG signals. As EEG signals are non-linear and
chaotic in nature, traditional linear methods are not sufficient
to represent epileptic EEG data [9]-[11]. This motivates us to
use a complex network technique for the detection of epilepsy
disorder.

In 2006, Zhang and Small [13] introduced the concept of
mapping time series to complex network and discovered that
complex network is an alternative approach to visualize the
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underlying hidden patterns of the time series. The presence
of different behavior (chaotic or fractal) of time series can
be distinguished by using different network measurements,
as the statistical properties of the network could be utilized to
obtain the information present in the time series. In the current
era, complex network and graph theory approach is becoming
the emergent field to detect various brain disorders [14].
The complex network approach introduces a new direction
in the neuroscience field to detect brain abnormalities by
investigating the changes in the characteristic properties of
the EEG complex network. The presence of multiple behavior
of time series is distinguished by using different network
attributes because different time series exhibit different sta-
tistical features.

In 2008, Lucas et al. [15], introduced a visibility graph to
map time series data into complex network and demonstrate
that visibility graph can inherit several non-linear charac-
teristics of time series. In 2010, first time visibility graph
algorithm applied by Ahmadlou ez al. [16], for the detection
of brain disorder named as Alzheimer syndrome and they
obtained very promising results. Afterward, many researchers
and clinicians for the detection of epilepsy disorder [17], [18]
have used this visibility graph algorithm, but their proposed
approaches have some limits as they have not considered
an important fact that in network, the links exhibit different
strengths and all the nodes of the network are connected
with each other based on this strength. Zhu ef al. [19] has
introduced the concept of weight in the complex network
to detect epilepsy, but they have implemented this on the
horizontal visibility graph, which is a subgraph of visibility
graph. Also, they did not clearly mention on which criteria
they used an edge weight function and how it helps to detect
the sudden fluctuation in epileptic EEG signals. Therefore,
addressing the limitation of the existing methods, we develop
an algorithm considering a new edge weight for the natural
visibility graph in the complex network.

In this study, we introduce a novel method in the detection
of epileptic EEG signal to determine a weight of the edge
between the two nodes by means of radian function, which
is clearly described in Section II (B). The reason behind
selecting the action as an edge weight function is also dis-
cussed in that section. After transformation of EEG signals
into the weighted visibility graph, two important character-
istics of a network: modularity and the average weighted
degree are extracted from the weighted visibility graph as
features. The reason of considering these two features as
they are very prominent to provide the valuable information
about the time series acquired by analysis of the structural
pattern of complex networks. Finally, the extracted feature
set is tested by two popular machine learning techniques:
SVM and KNN. In our previous research [20], we developed
different edge weight method in the complex network for
detection of epilepsy syndrome. In that methodology, we
considered the directional nature of the observations as an
edge weight for the visibility graph in the complex network.
We extracted only one feature: average weighted degree of
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the complex network of the weighted visibility graph in that
method [20], which sometimes may not convey all of the
important information of the complex network. The exper-
imental evaluation of that method was performed only one
case study: Set A vs Set E from Bonn University data (see
description in Section II (A)). Dealing the issues, this study
explores an enhanced method for epileptic seizure detection
method which is evaluated by four case studies as discussed
in Section III. The experimental results prove the consistency
of the proposed method in this paper. To the best of our
knowledge, the edge weight concept in a visibility graph with
the modularity and average weighted degree is totally new in
the epilepsy detection and has not been used before.

Epileptic EEG data are nonlinear in nature and this non-
linear nature exhibit multi-fractal behavior [21]. Detection
of epilepsy abnormality from the complex network of EEG
signals can be possible by retrieving comprehensive infor-
mation from their structure. The most promising method is
to decompose the EEG networks into groups of highly inter-
linked nodes named as clusters and used a proper function,
which helps to discriminate between different kinds of EEG
signals. Modularity and average weighted degree are the
most promising feature for this purpose. In this study, we
introduce a novel technique to detect epilepsy by mapping
EEG signal into weighted network named as a weighted
visibility graph (WVG). Then two statistical properties of
network named as modularity and average weighted degree
of the network are extracted as features and classification
experiment are performed on different EEG data set by using
two most popular machine learning classifiers named as,
SVM and KNN. The experimental results are quite promising
with 100% accuracy in the classification of EEG signals
of epileptic seizure activity set (E) and healthy person with
eyes open (A). Moreover, the results for other classification
test cases also suggest that our proposed technique is best
appropriate to differentiate between different kinds of EEG
signals.

This remaining paper has been structured as: Section 2
presents the complete description of the data set used in
the experimental part along with the proposed methodology.
Section 3 comprises the detailed discussion about the experi-
mental procedure and the results. Conclusions along with the
future work are stated in section 4.

Il. MATERIAL AND METHOD
The flow chart of the proposed methodology is shown
in Fig. 1. The dataset and the different steps of the methodol-
ogy has been discussed below.

A. DATASET

In this paper, we have analyzed the online available EEG
repository of epilepsy data that has been developed and
issued by the department of epilepsy in Bonn university,
(http://epileptologie-bonn.de/cms/front_content.php? idcat =
193&lang=3) Germany. The complete EEG database com-
prises of five sets denoted as A, B, C, D and E. Each
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FIGURE 1. Schematic flow chart of the proposed methodology.

set contains 100 single channel EEG signals of 23.6s from
five separate classes. For the recording of EEG signals the
10-20 system of electrode placement is used. All EEG
recordings were made with the same 128-channel amplifier
system, using an average common reference. The recorded
data were digitized at 173.61 samples per second using 12-bit
resolution. The band-pass filter setting is 0.53 Hz to 85 Hz.
In this research study, we have used all the five data set
to evaluate the performance of our proposed methodology.
The detail explanation of this database is available in
Andrezejak et al. [22]. Each channel EEG signal has
4097 sample data points. However, in order to reduce the
computation time we had segmented the each channel with
1024 data sample points per segment.

Fig. 2 illustrates the example of EEG signals from each
channel of five sets (A to E). The brief description of the data
set has been described below:

Set A: The surface EEG recorded of five healthy volunteers

with their eyes open.

The surface EEG recorded of five healthy volunteers

with their eyes closed.

Set C: The intracranial recording in seizure free interval
during the hippocampal formation of the opposite
hemisphere of the brain of patient.

Set D: The intracranial recording of epileptogenic zone of
epileptic patient in seizure free interval.

Set E: The dataset is recorded during seizure activity, i.e.
ictal period.

Set B:

6556
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In this research study, we used the above-mentioned data
sets to evaluate the performance of the proposed technique
by defining four different groups of problems (test cases) as
described in Table III of results and discussion section.

B. TRANSFORMATION OF TIME SERIES EEG

SIGNALS TO COMPLEX NETWORK

Complex network theory is a branch of complexity science,
which deal with graph theory, statistical physics and data
analysis. Nowadays it is becoming an emerging technique in
the field of quantitative analysis of long-range dependency
and fractality of time series data. As this branch provides sev-
eral methods to study the underlying dynamics of time series
data. Visibility graph is one of the method among them. The
Visibility Graph (VG) technique has the property to charac-
terize the time series in terms of graph theory as it can inherit
the dynamical properties of the time series data from which it
was created. The resulting network can be used to acquire
the valuable information about the time series. According
to Liu et al. [23] VG is robust to noise and not stimulated
by the selection of choice of some parameters (threshold
value ¢ as like in TSCN [24] and recurrence network). The
literature study also reveals that the topological invariant
of visibility graph is closely allied to the underlying EEG
time series data. Therefore, it is efficient to distinguish the
different underlying dynamical edifices in the EEG recording
of healthy and epileptic patient. That is the main motive of
using the natural visibility graph in the analysis of EEG signal
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FIGURE 2. Example of single channel of EEG time series data of five subsets (A, B, C, D and E).

in this paper for edge detection. In this paper EEG time series
data are transformed to weighted visibility graph. We used
the following steps to construct the weighted visibility graph
with the help of the natural visibility graph.

1) STEP | (CONSIDERED EACH DATA SAMPLE POINTS OF
TIME SERIES DATA AS THE NODES OF THE GRAPH)

For the construction of a Weighted Visibility Graph (WVG)
of EEG time series data, consider G=(N,E) be a graph where
N={n;j},i = 1,2,....... N, are the nodes and E = ¢;,
i=1,2,3,............ N, are the edges of the graph. A time
series x(#;),i = 1,2,....... N of N sampling points and
node n; correspond to data sample point x;.

2) STEP Il (THE EDGES (LINK) BETWEEN THE NODES OF
THE WEIGHTED VISIBILITY GRAPH ARE BUILT UPON

THE NATURAL VISIBILITY GRAPH EQUATION)

In order to find the links between different nodes of the
weighted visibility graph, we used the natural visibility graph
algorithm which was developed by L. La Caesar et al., in
2008 [15]. The visibility graph is based upon the concept
of Euclidean plane where each vertex represents the point’s
location and the links between the associated nodes is only
possible if there is visibility between them. According to VG
method, the edges between any two pair of nodes exits only,
if they satisfied the following rule:

Ie —Iq
I, — 1y

x(te) < x(ta) + (x(1p) — x(1a)) , a<c<b (1)

Where, x, = x(t,) and X, = X(ty)are the data sample points
and t, and t, are any two arbitrary time events and t. is any
event exits between them i.e. t; < t; < ty. Fig. 3 illustrates
the VG of time series data that represent the edge construction
based on visibility among them
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FIGURE 3. Visibility Graph.

3) STEP Il (DETERMINE THE EDGE WEIGHT

BETWEEN TWO NODES)

Literature studies in the field of network theory have exposed
that more robust result of complex network can be obtained
by preserving weight information in it [25] as compared
to binary network (which just only gives information about
the links either exits between two nodes or not). Because
weighted complex network plays a significant role to dis-
tinguish between weak and potentially less important edges
(links) as different edges have different strength. In this
paper EEG time series data are described by constructing a
weighted visibility graph. Weight is a value that is associated
with the edge of a graph. Weighted graph can be represented
as a triple G (V, E, w) where w: E—>R weighted function.
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FIGURE 4. Example to represent the edge weights between different data
points.

In this paper, all the edges of the graph are directional in
nature as a link between node n, = x, and node n, = xp
is considered to have direction from n, to node n, where
a < b. In this paper, the absolute value of edge weight has
been considered. The edge weight is calculated by equation 2.
Wqp = arctan M, a<b 2)
Ih —Ig
Where, w,, represents the weight of the edge between
node n, and node n, and in this paper we have considered
all the edge weight value in radian function. The arctan is arc
tangent which is an inverse trigonometric function that helps
to detect the sudden change in the EEG signals. We clearly
explain the advantage of the above edge weight in EEG
data analysis in Example 1: Afterwards the following simple
Example 2 illustrates how edge weight is calculated with the
help of equation 2.

Example 1: Let’s consider an EEG time series X = {10, 20,
30, 25, 50, 10, 70, 60, 65, 100} with associated time t = {1,
2,3,4,5,6,7,8,9, 10}. As it is clear from the Fig. 4 that x
(t;) = 10 and x (t¢) = 10 i.e. both are having the same value
and also there is a sudden fluctuation at x(t7) = 70. The angle
between x(t1) and x(t7) is &1 and o5 is the angle between x(tg)
x(t7). According to the equation 2 the edge weight between
x(t;) and x(t7) is:
=10 471 = o

7—1

Similarly the edge weight is calculated between x(t7) and

x(tg) which is:

w17 = arctan

0-10

7—-6
Thus the above example clearly states that even though the
two nodes (data sample points) are having same values, but
their strength to connect with third node will vary account
of their edge weight. Also with the fluctuating values of
EEG signals, the edge weights will also vary which helps to
discriminate between different kinds of EEG signals.

Example 2: Table I represents the EEG time series data

with their corresponding nodes and data sample point values.
The edge between the nodes is determined with the help of
equation 1. Then the edge weight between different nodes are

We7 = arctan =154 =y
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TABLE 1. Representation of Eeg Time Series with their corresponding
Nodes, Data Sample Points and Edges

Time Series Data Data Points Time Nodes
X1 100 4 1
Xz 124 t 2
X3 153 t; 3
X4 185 ty 4
Xs 210 ts 5
X6 220 ts 6
X7 216 t; 7
Xs 222 ts 8
X9 240 ty 9
X 265 to 10

e 1471 @

1.325

o 0
e 1325 0.785

1.405
1.438 1.421
1.539 1.437@
14§ 49 1.482
1.534 Nos
e 1.538 s 1.495 \{'s
: 1.501
1524 Q
1.536 1,508
1.533
1.51 1.53
1.566

e 1.529 1'% 1.516
FIGURE 5. Weighted Visibility Graph.

calculated by using equation 2. The Table II represents the
edge between the nodes and weight values associated with
the edges of EEG time series data of Table I. In Table II,
Ej, represents the edge between node 1 and node 2 and
w2 = 1.529 represent the weight value associated with this
edge.

4) STEP IV (CONSTRUCTION OF WEIGHTED

VISIBILITY GRAPH(WVG))

Finally weighted visibility graph is constructed by using the
edge weight value calculated in the last step. Fig. 5 represents

the weighted visibility graph which is constructed on the basis
of data available in Table I and Table II.

C. FEATURE EXTRACTION
Feature extraction is a significant part for classification of
EEG signal data. Technically, a feature represents the distinc-
tive property and an identifiable measurement obtained from
a segment of a pattern.

The feature extraction process compresses the large vol-
ume EEG data into relevant and important feature vector set
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TABLE 2. Example of edges and weight between different nodes of eeg time series data of tab.

Edges Weight (w) Edges Weight (w) Edges Weight (w)
Ep; 1.529 Eis 1.533 Ep 1.566
Eus 1.535 Eis 1.534 Eio 1.516
Eas 1.536 Ex 1.538 Ez 1.510
Ex1o 1.514
Esy 1.539 Es 1.501 Es o 1.508
Ess 1.530 Es 1.480 Es10 1.495
Ese 1.471 Esg 1.325 Eso 1.438
Esio 1.480
E¢ 1.325 Ees 0.785 Eeo 1.421
E 10 1.482
Ess 1.405 Ez 1.487 E710 1.509
Eso 1.515 Es 1o 1.524
Eo 1o 1.530

at the cost of minimum loss of information. Therefore, it
helps in analysis (classification) process by making it more
easily and fast in computational speed. In this paper, we
have extracted two statistical properties of network named as
modularity and the average weighted degree of network as
features from the weighted visibility graph as these features
are able to focus on how the valuable information about the
time series can be acquired by analysis the structural pattern
of complex networks. We have introduced modularity feature
in the weighted visibility graph to help in distinguishing
between various types of EEG signals by detecting commu-
nities among their complex network.

The average weighted degree is the second introduced
features as it is clear from the section II that because of
fluctuations in the epileptic EEG signals the edge weight
will show a discrepancy and different kinds of EEG signals
exhibit different edge weight among their nodes and thus their
resultant networks has a different average weighted degree
values.

1) MODULARITY

In a complex network, the modularity concept was introduced
by Newman [26]. Modularity is a quality function instead
of a method to discover modules (communities). Modularity
is a measurement of the quality of partition of the network
into clusters (communities). According to Newman if G is a
weighted network and A is the weighted adjacency matrix of
that network then the modularity Q is defined as:

1 kik;
0= o Z (Ai,j - %>5 (Ci, G}) 3)
i
Where A;; symbolize the weight of the links(edge)
between node i; m=1/2 Zi'Aij represent the total number of
links in the network, k; = in, j is the weighted degree of
the vertex i, C; is the cluster name to which vertex i belongs
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to, §(C;,C;) is 1 if both nodes i and node j belongs to the same
cluster otherwise §(C;,C;) is equal to 0. In this paper,we have
used the Louvain method [27] for modularity calculation of
the complex network of EEG signals because it is an easy and
efficient method extensively used in the field of community
detection from vast complex network. Louvain method is
comprised of two parts. Using optimization of modularity in
the local manner, the small communities are identified first.
In the second part, the nodes belong to the same commu-
nity are grouped together to rebuild the new network with
vertices of the graph are the communities. These two steps
will iteratively repeat until the highest value of modularity is
accomplished (i.e. There is no increase in modularity value
via integration of two communities). When community a
combined into community b, then, according to Louvain [27]
the modularity gain is:

an + ka,bn _ (Ztot + ka >2i|

2m 2m

[5G -@)] @

Where, ), represent the total weights of the links that
comes under community b; ), is the total weights of the
links that are incident to the vertices in the community; kg 4y
is the total weights of the edges from the community a to
community b; k, is the total weights of the edges incident to
node a; m is the total weight of all the edges in the network.

AQy, = |:

2) AVERAGE WEIGHTED DEGREE

The average weighted degree of the network as described
above is the second extracted feature of the weighted visi-
bility graph. If a ANxN = {ajj} is an adjacency matrix with N
number of nodes is used to represent the weighted visibility
graph, then a; = 1 if there is an edge from node i to j
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otherwise it’s 0. According to [28] the weighted degree of the
node i is the total weights of all the edges attached to node i
which is represented by:

Wd,' = Z Wij (5)
JeB()

Where B(i) signifies the neighborhood of node i and wy;
represents the weight of the edges between nodes i and j. And
the average weighted degree of the network is the average
mean of the total weights of the incident links on all the
vertices in the network [1].

D. CLASSIFICATION

The classification technique helps to discriminate the
unknown testing set of observations into their appropriate
classes on the basis of the training set of known observa-
tions. A classification technique used a mathematical func-
tion named as a classifier to predict the right class of unknown
observation of testing data set. In this paper, we have used
two well-known supervised machine learning classification
method named as Support Vector Machine (SVM) classifier
and KNN classifier for the evaluation of the performance
of the proposed technique by utilizing the resulting features
extracted from feature extraction technique

1) SUPPORT VECTOR MACHINE (SVM)

Currently SVM is a powerful classifier in the field of biomed-
ical science for the detection of abnormalities from biomed-
ical signals. SVM is an efficient classifier to classify two
different sets of observations into their relevant class. It is
capable to handle high dimensional and non-linear data excel-
lently. On the basis of the structure of training data sets,
it helps to predict the important characteristics of unknown
testing data. As in this paper, to evaluate the performance of
the proposed technique we are having four test cases with two
different sets of class so we preferred this classifier for better
accuracy results. SVM mechanism is based upon finding the
best hyperplane that separates the data of two different classes
of category. It is enriched with the property of having different
sets of kernel function for the classification of different types
of data. The working description of SVM classifier and addi-
tional information about different kernel functions are details
discussed in [29]. In this paper, we have used the following
three different kernel functions of SVM Classifier to analyze
the performance of different test cases problems.

1) Linear kernel function:
K@,y =x"y (6)

2) Polynomial kernel function with degree d:

K@y =(xy+1)’ ™

3) Radial basis kernel function with width o:

Kx,y)= e((*\\zz\l )2) ®)
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TABLE 3. The classification description of different groups of problem
along with their eeg data sets.

Test

case Data Group Classification Problem Description

Test I Set A vs Set E Heatl}y persons w1tk} eye open vs Epileptic
patients during seizure activity

Test IT Set B vs Set E Heathy persons w1th eye clo§e‘ vs Epileptic
patients during seizure activity

Test Il Set C vs Set E Hlpppcampal seizure free vs Eplleptlc
patients during seizure activity

TestIV  SetD vs St E Epileptic seizure free vs Epileptic patients

during seizure activity

Where, K(x, y) is termed as the kernel function, which is
built upon the dot product of two invariant x and y.

2) K-NEAREST NEIGHBOR (KNN)

The second classifier used for the classification of different
test cases of EEG signals is the K-Nearest Neighbor (KNN)
classifier as it is simple and robust to even noisy and large
training data set. It is also adaptive in nature because of using
local information for prediction of unknown data. It performs
the classification task on the basis of frequent class of its
nearest neighbors in the feature space [30]. There are several
metrics to define the distance in KNN algorithm, but in
this paper, we had used the Euclidean distance. If s is the
training set and y is the unknown test data, then KNN method
will obtain the K nearest neighbors from the s by using the
following Euclidean distance between s and y i.e.

D(xy,8) = | Y (si — %)’ ©)
i=1

E. PERFORMANCE EVALUATION MEASUREMENTS

In this paper the set A, B, C and D are considered as positive
class and set E is considered as the negative class respectively.
In order to evaluate the classification performance for dif-
ferent test cases in this paper, we have used the following
measures parameters in (10)—(12), as shown at the bottom
of the next page where, True Positive stands for correctly
identified non-seizure activity, True Negative is the correctly
identified seizure activity, False Positive is the false iden-
tification of non-seizure activity, and False Negative is the
falsely recognized seizure activity.

IIl. RESULTS AND DISCUSSION
In order to examine the validation of the proposed research
work, the proposed method is implemented on the benchmark
data: Bonn university epileptic EEG data.
The proposed technique is tested on the four different
groups of problems (test cases) as described in Table II1.
Two classification algorithms named as SVM with dif-
ferent kernel functions and KNN classifier using Euclidean
distance have been implemented using MATLAB R2015b

VOLUME 4, 2016
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FIGURE 6. A Weighted visibility graph of healthy person with eyes open
(set A).

(version 8.6, 64 bits). As each channel of every set con-
tains 4097 data sample points for 23.6 seconds. According
to Tang et al. [17], there is no significance to use a large
number of observations for the conversion of time series
EEG data into complex network as the quantification of
complexity and self- similar nature of a graph does not need
many nodes. In order to include more data, the segmentation
of a signal provides more information that is meaningful
and can be considered as a part of the entire data set [17].
Moreover, from our previous research [1] we have also inves-
tigated that there is not much difference in the accuracy per-
formance when considering segmented and non-segmented
approach of EEG signals. In addition, the segmentation of
EEG signal makes the computation faster. By considering
this information into account, we divided each channel into
four segments, i.e. Segl=1024, Seg2=1024, Seg3=1024,
Segd=1025 data sample points and segmentation is done on
the basis of a particular time period i.e. each segment contains
the data for 5.9 Sec. Then these four segments are further used
as a four independent samples.

As in each data subset, there are 100 channel data with
4097 data points, therefore after segmentation; we have
400 segments with 1024 data sample points. According to the
proposed methodology, firstly each segment is converted into
a weighted visibility graph. As Fig. 6 and Fig. 7 represents
the example of visualization of the weighted visibility graph
by using 50 data sample points for single segment of set A
(healthy patient with eyes open) and set E (seizure activity)
and also clearly demonstrate the difference in the topolog-
ical structure of both the weighted visibility graphs, where
the different colors of nodes represents different groups of

FIGURE 7. A Weighted visibility graph of epileptic seizure activity (set E).

modules on the basis of modularity. The main motive behind
the consideration of edge weight in visibility graph is to
detect the sudden fluctuation occurs during Epileptic seizure
attacks.

During the epileptic seizure activity, the amplitude of EEG
signals, displays immense fluctuations and our proposed edge
weight based algorithm helps to discover this sudden fluctua-
tion for detection of epileptic syndrome because the complex
network with seizure activity exhibit different edge weight
value which further affect their statistical attributes (features).

For feature extraction part, we have used two statistical
properties of complex network named as modularity and
average weighted degree. Fig. 8 represent the box plot dia-
gram of the modularity feature set of all the 400 segments of
each set A, B, C, D and E with N=1024 per segment. A clear
significant difference in the values of the feature set of all
the different EEG data set is shown in this Fig.8. Therefore,
it is clear from the figure that set E has lowest modularity
values as compared to other sets (Set A, B, C and D). Accord-
ing to Blondel et al. [27], the modularity value of complex
network lies between [—1,1] and the closer is the value of
modularity to 1, the stronger is the community structure i.e.
the better is the partition of the network. Moreover, according
to community structure criteria, Fig. 8 also characterized that
Set A, B, C and D has dense connections among the nodes
inside the modules as compared to Set E. Similarly Fig. 9
represent the box plot diagram of second extracted feature
named as average weighted degree with 400 segments of each
set (A, B, C, D and E) and N=1024 per segment.

Asitis clearly visible from Fig. 9 that the average weighted
degree of Set E has the highest value as compared to other

True Positive

Sensitivity = — : (10)

True Positive+False Negative

True Negative

Specificity = © %8 _ (11)

True Negative+False Positive

True Positive+True Negative
Accuracy = — . T e — (12)
True Positive+False Negative+True Negative+False Positive
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TABLE 4. The Performance Classification of different test cases of EEG data set with SVM Linear Kernel function Classifier by using each Features

Individually as well as by Combining these two features.

Performance for modularity features set

Performance for average weighted degree

Performance for combined feature

of WVG features set of WVG vector set of WVG
Data Group
Sensitivity Specificity  Accuracy Sensitivity Specificity Accuracy Sensitivity ~ Specificity Accuracy

(%) (%) (%) (%) (%) (%) (%) (%) (%)
Set Avs E 100 99 99.5 100 100 100 100 100 100
Set Bvs E 100 93.45 96.5 89.28 100 94 99.46 93.86 96.5
Set Cvs E 98 98.49 98.25 80.64 100 88 98.5 98.5 98.5
Set D vs E 93.33 91.66 92.5 85.47 100 91.5 92.3 90.24 91.25

EEG data set

FIGURE 8. Boxplot of the modularity features set of different sets of EEG
signals.

Set A, B, C and D. Hence the above analysis results divulge
that these two combined feature vectors set are able to imitate
the characteristic disparity of different kind of EEG signals.
And also one of the important reasons of achieving higher
accuracy results for different test cases.

Table IV lists the experiments for the classification results
of all the four test cases by using each of the two features
separately and also by combining these two features. Firstly
the experiment for the classification was performed for all the
test cases with each feature set separately. Then tested for the
two combined features using SVM with linear kernel func-
tion. Table IV clearly displays that average weighted degree
feature provides 100% accuracy for test case I whereas modu-
larity feature provide more improved classification results on
the remaining three test cases. Thus to acquire overall better-
quality results for all the four test cases, these two feature
vectors are combined and again SVM classifier with linear
kernel function applied.

The results, for each individual feature and their com-
bination demonstrates that the classification performance
increased by combining these two features. As shown
in Table IV, the combined feature set yield 100% accuracy
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Average weighted degree of network

300
200 ‘ ‘

Set A Set B Set Set D Set
EEG Data Set

FIGURE 9. Boxplot of the average weighted degree features set of
different sets of EEG signals.

for test case I, 96.5% for test case II, 98.5% in test case 111
and 91.25% in test case IV. Therefore, by taking this infor-
mation into account, the remaining experiments of this paper
performed by combining these two features.

As different kernel functions of the SVM classifier plays
different role in the classification. Thus, in order to evalu-
ate the classification performance of these features set, we
applied additional SVM with RBF kernel function and SVM
with polynomial kernel function. Table V represents the clas-
sification performance of these two kernel functions of SVM.
The Table V clearly demonstrates that SVM classifier with
polynomial kernel function has a better overall accuracy as
compared to RBF kernel function and linear kernel function.

Furthermore, in order to explore the performance of the
proposed technique, we applied another machine learning,
supervised classification method named as KNN for different
test cases. Different values of K has been experimented on the
combined feature vector set and it was investigated that for
K=3 and K=10, KNN provides more significant results for
all the test cases. Table VI presents the classification perfor-
mance of the proposed methodology in all the test cases with
different values of nearest neighbor and it is examined that
KNN classifier with K=10 has better overall classification
performance results as compared to K=3.
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TABLE 5. The performance classification of different sets of EEG data using SVM classifier with RBF kernel function and polynomial kernel function.

SVM with RBF kernel function

SVM with polynomial kernel function

Data Group
Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)
Set A vs Set E 100 100 100 100 100 100
Set B vs Set E 99.46 93.86 96.5 99.47 95.21 97.25
Set C vs Set E 98.5 98.5 98.5 98 98.49 98.25
Set D vs Set E 90.95 95.26 93 90.6 96.25 93.25
TABLE 6. The performance classification of different sets of EEG data using KNN with K=3 and K=10.
KNN(K=3) KNN (K=10)
Data Group
Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)
Set A vs Set E 100 100 100 100 100 100
Set B vs Set E 98.90 95.19 93 97.3 91.16 94.25
Set C vs Set E 96.5 96.5 96.5 97.05 98.97 98
Set D vs Set E 90.68 92.34 91.5 91.26 93.81 92.5

Performance comparision among the reported classifiers

100

o8

o6

o4

o2

20

Classification- accuracy (%)

38

86
Set A vs Set E

SetB vs Set E

Set C vs Set E Set D vs Set E

—— NN (K=3) 100 93 96.5 91.5
KINN (K=10) 100 24.25 o8 92.5
SVM LINEAR 100 26.5 o8.5 21.25
SVM RBF 100 26.5 98.5 o3

— 4— SVM POLY 100 97.25 °8.25 23.25

FIGURE 10. Performance comparison of the reported classifiers in term of overall accuracy.

Fig. 10 illustrates the comparative analysis of the classi-
fication accuracy of the proposed technique on all the four
test cases with different classifiers that are applied in the
above experiments. According to the classification results
shown in the Fig.10, it is clearly observing that for all of the
experimental classifier used in this paper, the accuracy result
is very close to each other.

Even though the SVM classifier with linear and RBF kernel
functions shows the same accuracy value, i.e. 96.5% for
the test case II and 98.5% of the test case III. In addition,
it is examined that the proposed technique is 100% effi-
cient to discriminate between EEG signals of seizure and
healthy patient with eyes open. The overall classification
performance, i.e. sensitivity, specificity and accuracy with
combined feature vector sets for test case I is 100% with
all different classifiers which is clearly demonstrated by all

VOLUME 4, 2016

of the above classification experimentation tables. It is also
observed that this proposed methodology achieves higher
experimental results for all test cases.

Moreover, Fig. 10 also represent that SVM with poly-
nomial kernel function accomplish the highest accuracy as
compared to other classifiers therefore it is best suitable when
using these two statistical properties as combined features.
Fig. 11 represent 100% performance accuracy of set E vs
set A by combining two feature vector sets via using (a)
SVM classifier with linear kernel function, (b) SVM clas-
sifier with RBF kernel function, (c) SVM classifier with
polynomial function, (d) KNN classifier with K=3, () KNN
classifier with K=10 with 1024 data samples per segment,
where training group 1 signifies seizure activity and train-
ing group 2 mean EEG data of healthy patients with eyes
open.
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Scatter Diagram of Simulated Data
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FIGURE 11. lllustration of classification accuracy for set A vs set E by combining two features and using classifier (a) SVM with
linear kernel, (b) SVM with RBF kernel, (c) SVM classifier with polynomial, (d) KNN with K=3, (e) KNN with K=10.

Table VII presents the comparative analysis of the classifi-
cation accuracy of the proposed method with different meth-
ods in the literature that perform experimentation on the same
EEG data set and illustrate that the proposed methodology is

more accurate for detection of epileptic seizure as compared
to them.

Finally, the above analysis results reveal that the combina-
tion of these two features (modularity and average weighted
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TABLE 7. Comparative analysis of the accuracy of the proposed work
with existing work that used the same data set for their experimentation.

Data Set Authors Features ACE;:)ZI <y
Srinivasan et al.,2005[12] 5 99.6
Siuly et al. ,2011[31] 9 99.9
Nicolaou et al., 2012[32] 1 93.42
AvsE Guohun Zhu et al., 2014 [19] 2 99.0
Ghayab et al., 2016[34] 9 99.90
S. Husain et al.,2014[35] - 99.8
Our proposed technique 2 100
Siuly et al. ,2011[31] 9 93.6
BvsE Guohun Zhu et al., 2014 [19] 2 97.0
Our proposed technique 2 97.25
Guohun Zhu et al., 2014 [19] 2 98.0
CvsE Siuly et al. ,2011[31] 9 96.20
Our proposed technique 5 98.25
Y .Kumar et al.,2014[33] - 93
Siuly et al. ,2011[31] 9 93.60
DvsE Guohun Zhu et al., 2014 [19] 2 93
Nicolaou et al., 2012[32] 1 83.13
Our proposed technique 2 93.25

degree) of the complex network is very useful to characterize
the underlying dynamics of different EEG signals with dif-
ferent brain conditions. This paper investigates that as ictal
EEG signals (set E) are more chaotic in nature and therefore
it is difficult to divide it into different clusters (communities)
and this is the main reason why the modularity feature set
of ictal EEG has the lowest value as compared to other EEG
data sets. This work can be enhanced for detection of other
brain disorders. The data sample points per segments can be
varied according to the requirement. This novel technique
can also be applicable to other time series data. Moreover,
in future this proposed technique can be used with
WSN-based healthcare applications [36] to make available
high-quality medical services. It is our believe that this pro-
posed methodology will support the technicians to build
a software system that will provide support for automatic
detection of epileptic seizure and also will help the expert
neurologist to identify epileptic signals and collect valuable
information about the brain state which will further aid for
improving the diagnosis of epilepsy from EEG signals.

IV. CONCLUSION

In this paper, we introduce a novel technique to detect epilep-
tic seizure activity from brain EEG signals considering modu-
larity and average weighted degree features with edge weight
in the natural visibility graph. In the proposed methodol-
ogy, firstly the EEG time series data are converted into a
weighted visibility graph (WVG). Then the modularity and
average weighted degree are extracted from the WVG as
features and after that, the features are tested by employ-
ing two popular machine learning methods: SVM and KNN
classifiers. In this study, the SVM classifier was assessed
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with three kernel function (e.g. Linear kernel, RBF kernel
and polynomial kernel) and an optimum parameter value
for k were obtained after an empirical evaluation. Then the
classification performance of the proposed methodology was
measured on several groups of EEG signals such as, Set A
vs Set E, Set B vs Set E, Set C vs Set E, and Set D vs Set E
and achieved promising results. Moreover the classification
performance results (i.e. sensitivity, specificity and accuracy)
for ictal (set E) and normal healthy person EEG (set A)
is achieved byl100%. This study explores that EEG signals
can be best described by weighted network for detection of
epilepsy as the nodes interact with each other with varying
strength. It is also investigated that due to the chaotic nature
of ictal EEG data it is difficult to divide it into different
modules. Hence the results in small values of modularity
feature and large value for average weighted degree features
were compared to other EEG signals. The pilot study in this
paper, has examined that the proposed methodology is best
suitable to discriminate between two different EEG signals.
This work can be enhanced to real-time detection of epilepsy
disorder. We are currently planning to extend this proposed
methodology to detect other brain disorders through EEG,
such as, Alzheimer’s disease, autism, dementia and also in
the field of motor imagery EEG data and mental imagery task
EEG data.
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