
Skeletal muscle glucose uptake during treadmill 
exercise in neuronal nitric oxide synthase-μ knockout
mice

This is the Accepted version of the following publication

Hong, Yet Hoi, Yang, Christine, Betik, Andrew C, Lee-Young, Robert S and 
McConell, Glenn (2016) Skeletal muscle glucose uptake during treadmill 
exercise in neuronal nitric oxide synthase-μ knockout mice. American Journal 
of Physiology - Endocrinology and Metabolism, 310 (10). E838 - E845. ISSN 
0193-1849  

The publisher’s official version can be found at 
http://ajpendo.physiology.org/content/310/10/E838
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/33719/ 



1 

 

SKELETAL MUSCLE GLUCOSE UPTAKE DURING TREADMILL EXERCISE IN 1 

NEURONAL NITRIC OXIDE SYNTHASE μ KNOCKOUT MICE  2 

 3 

Yet Hoi Hong,1,2,3 Christine Yang,4 Andrew C Betik, 1,2 Robert S Lee-Young, 4 and Glenn K 4 

McConell1,2 5 

 6 

1 College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia 7 

2 Clinical Exercise Science Program, Institute of Sport, Exercise and Active Living (ISEAL), 8 

Victoria University, Melbourne, VIC Australia 9 

3 Department of Physiology, Faculty of Medicine, University of Malaya, Malaysia. 10 

4 Cellular and Molecular Metabolism, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, 11 

Australia 12 

 13 

Corresponding author: 14 

Yet Hoi Hong 15 

Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, 16 

Malaysia 17 

Email: yhhong0530@um.edu.my 18 

Phone: +603 79674921 19 

Fax: +603 79674775 20 

 21 

RUNNING TITLE: Glucose uptake during exercise in nNOSμ KO mice 22 

 23 



2 

 

ABSTRACT 24 

Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during 25 

exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle 26 

contraction, neuronal nitric oxide synthase mu (nNOSμ), in modulating glucose uptake has not 27 

been investigated in a physiological exercise model. In this study, conscious and unrestrained 28 

chronically catheterized nNOSμ+/+ and nNOSμ-/- mice either remained at rest or ran on a 29 

treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity 30 

during a maximal exercise test to exhaustion (17.7±0.6 vs 15.9±0.9 min for nNOSμ+/+ and 31 

nNOSμ-/- respectively, P > 0.05). Resting and exercise blood glucose levels were comparable 32 

between genotypes. Very low levels of NOS activity were detected in skeletal muscle from 33 

nNOSμ-/- mice and exercise increased NOS activity only in nNOSμ+/+ mice (4.4±0.3 to 5.2±0.4 34 

pmol/mg/min, P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius 35 

muscle (5 to 7-fold) and surprisingly, more so in nNOSμ-/- than nNOSμ+/+ mice (P < 0.05). This 36 

is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ-/- mice. 37 

In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise and the 38 

higher skeletal muscle glucose uptake during exercise in nNOSμ-/- mice may be due to 39 

compensatory increases in AMPK activation. 40 

 41 

Keywords: glucose transport, nitric oxide, AMPK  42 
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INTRODUCTION 43 

Skeletal muscle glucose uptake during exercise is an important physiological process for 44 

blood glucose and cellular energy homeostasis. It is regulated by intramuscular signaling that 45 

modulates membrane permeability to glucose (42). Nitric oxide (NO) is a signaling mediator that 46 

can alter membrane permeability to glucose via modulation of GLUT4 translocation (7, 43). The 47 

production of NO increases with skeletal muscle contraction/ exercise (4, 27, 45) and a series of 48 

studies using NOS inhibitors show that NO mediates skeletal muscle glucose uptake during 49 

contraction/ exercise (3, 5, 23, 35, 43, 45). In contrast, some studies found that NO does not play 50 

a role in muscle glucose uptake during contraction (7, 12, 21, 46).  Methodology differences are 51 

believed to contribute to some of the conflicting results (32).  52 

In skeletal muscle, NO from contraction may be derived from several NOS isoforms 53 

including endothelial NOS (eNOS) and neuronal NOS (nNOS), which are constitutively 54 

expressed in skeletal muscle of rodents (24, 25). Inducible NOS (iNOS) is expressed under 55 

inflammatory or disease states (1, 9) and therefore is not likely to be involved in acute 56 

contraction-mediated events of animals/ healthy subjects. The most commonly used NOS 57 

inhibitors in studies investigating the role of NO in contraction-stimulated glucose uptake, N-G-58 

Monomethyl-L-arginine (L-NMMA) and N-G-Nitro-L-Arginine Methyl Ester (L-NAME), are 59 

non-specific competitive inhibitors that inhibit all of the NOS isoforms (54). Therefore, these 60 

NOS inhibitors cannot isolate the role of different NOS isoforms in skeletal muscle glucose 61 

uptake during contraction/ exercise. As such, genetically modified rodent models are imperative 62 

in this regard.  63 
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Skeletal muscle glucose uptake during treadmill exercise has previously been determined 64 

in eNOS-/- mice which were found to have higher glucose uptake compared with wild type 65 

controls (28). This was postulated to be due to the exercise-induced hypoxia in contracting 66 

muscle which, in turn, may have stimulated a greater muscle glucose uptake (28) since hypoxia 67 

is a potent stimulator of skeletal muscle glucose uptake (6). In addition, NO production during ex 68 

vivo contraction was not different between eNOS+/+ and eNOS-/- muscles (13) suggesting that 69 

eNOS may not be directly involved in NO-mediated intramuscular signaling. Given that nNOSμ 70 

is the major NOS isoform activated during contraction (27), it was surprising to find that nNOSμ 71 

knockout muscles did not have attenuated muscle glucose uptake during ex vivo contraction 72 

(16). Nevertheless, NOS inhibition of isolated nNOSμ knockout (nNOSμ-/-) and wild type 73 

(nNOSμ+/+) muscles still attenuated the increase in muscle glucose uptake (16) suggesting that 74 

NO was still playing a role in muscle glucose uptake during contraction. It should be considered 75 

that ex vivo contraction lacks the complex integrated interactions underlying in vivo exercise 76 

conditions such as neural input, blood flow and hormonal changes. Highly relevant to this 77 

context is that nNOS has been shown to mediate arterial relaxation in contracting skeletal muscle 78 

(27). Thus, in vivo studies are essential to define the role of nNOSμ in muscle glucose uptake 79 

during exercise. 80 

In this study, nNOSμ+/+ and nNOSμ-/- mice were used to investigate the effect of nNOSμ 81 

on skeletal muscle glucose uptake in conscious and unrestrained chronically catheterized mice 82 

running on a treadmill. This allows examination of the role of nNOSμ in skeletal muscle glucose 83 

uptake in a physiological unstressed condition with intact hemodynamic and intramuscular 84 

signaling responses. We hypothesized that the increase in muscle glucose uptake during 85 
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treadmill running would be attenuated in nNOSμ-/- mice because nNOSμ is the major NOS 86 

isoform activated during contraction (27).        87 

 88 

MATERIALS AND METHODS 89 

Animals 90 

All procedures were approved by The Alfred Medical Research and Education Precinct 91 

(AMREP) Animal Ethics Committee, and conformed to the Australian Code of Practice for the 92 

Care and Use of Animals for Scientific Purposes (2004, 7th Edition). nNOSμ+/+ and nNOSμ-/- 93 

littermates were generated by mating C57Bl/6 nNOSμ+/- mice originally obtained from Jackson 94 

Laboratories (Bar Harbor, ME). Genotyping was performed using tail samples obtained at day 21 95 

of age by a commercial vendor (Transnetyx Inc., Cordova, TN). Mice were housed in standard 96 

cages and maintained under constant temperature of 21 ± 1oC with 12-hour light/ dark cycle in 97 

the AMREP Animal Facility. Animals had access to standard rodent chow and water ad libitum. 98 

Both male and female mice were used for experiments at 16 weeks of age.  99 

 100 

Exercise stress test 101 

Mice were subjected to an incremental exercise stress test as previously described (29) to 102 

determine their maximum exercise capacity. Briefly, two days following a familiarization test 103 

(10 m/min for 10 min) mice commenced running at a speed of 10 m/min on a 0% incline 104 

treadmill. Running speed was increased by 4 m/min every 3 min until mice were exhausted, 105 

which was defined as the point whereby mice continuously remained at the back of the treadmill 106 
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for more than five seconds despite tail prodding. Treadmill electrical stimulation was not used in 107 

any of the tests. 108 

 109 

Surgery and experimental procedures 110 

Surgery procedures were performed as previously described (2) except that only jugular 111 

vein cannulation was performed due to an observed intolerance of nNOSμ-/- mice to chronic 112 

carotid cannulation. Briefly, mice were anaesthetized with 5% isoflurane in oxygen and 113 

maintained with 2% isoflurane in oxygen throughout the cannulation procedure. Carprofen was 114 

given subcutaneously for pain relief prior to the skin incision. The right jugular vein was 115 

cannulated with a silastic catheter. The free end of the catheter was tunneled under the skin to the 116 

back of the neck where it was exteriorized. The catheter was kept patent with saline containing 117 

200 U/ml of heparin and 5 mg/ml of ampicillin, and sealed with stainless steel plugs. Mice were 118 

housed individually after surgery and body weight was monitored. Mice were used for 119 

experiments at least three days post-surgery when they had fully recovered as indicated by 120 

normal activity, healthy appearance and weight regained after surgery.  121 

On the day of the experiment, the exteriorized jugular catheter was connected, via a 122 

stainless steel connector, with Micro-Renathane tubing approximately one hour prior to the 123 

experiment. Mice were then placed in a single lane treadmill to acclimate to the environment. 124 

During the experiment, mice remained sedentary or began a single bout of exercise (t = 0 min). 125 

Exercise started at 15 m/min (0% incline) for three min and then increased to 17 m/min 126 

throughout the rest of the experiment until t = 30 min (28, 46). Sedentary mice were allowed to 127 

move freely on the stationary treadmill for 30 min. In all mice, a bolus of 13 µCi of [1,2-3H]2-128 
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deoxy-glucose ([3H]2-DG) was injected into the jugular vein at t = 5 min for evaluation of tissue-129 

specific glucose uptake. At the end of the experiment, mice were anaesthetized with a jugular 130 

vein injection of sodium pentobarbital (3 mg). A tail blood sample was immediately obtained for 131 

determination of blood glucose levels. The gastrocnemius and superficial vastus lateralis muscles 132 

from each limb and the brain were rapidly excised, frozen with liquid nitrogen-cooled tongs and 133 

stored at -80oC. A blood sample was collected via cardiac puncture after exercise and used for 134 

plasma insulin and lactate determination.   135 

 136 

Muscle glucose uptake determination 137 

The determination of muscle glucose uptake was performed as previously described (8). 138 

Muscle sample and brain tissue (~30 mg) were homogenized with 1.5 ml of MilliQ water. 139 

Phosphorylated [3H]2-DG ([3H]2-DG-6-P) was extracted from an aliquot of centrifuged  140 

homogenates (6000 rpm for 10 min at 4oC) using an anion exchange resin column (AG1-X8, 141 

Bio-Rad). Radioactivity of the samples was determined using a β-counter (Tri-Carb 2800TR; 142 

Perkin Elmer, Chicago, IL, USA). Glucose uptake for each muscle was expressed as an index of 143 

[3H]2-DG-6-P accumulation in the muscle normalized to [3H]2-DG-6-P in the brain of that 144 

mouse, as done previously (8, 11). Brain glucose uptake was used as a control for the integrated 145 

plasma [3H]2-DG concentration differences over the duration of the experiments (8) as glucose 146 

uptake into the brain except the hypothalamus occurs via passive diffusion that follows glucose 147 

concentration gradient between the blood and brain tissue (31). In addition, intracellular glucose 148 

phosphorylation under normoglycaemic condition and hexokinase II have no impact on brain 149 
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glucose uptake (14, 40). Importantly, [3H]2-DG-6-P in the brain was not different between 150 

genotypes.   151 

 152 

Blood and plasma biochemistry 153 

Plasma insulin concentrations were determined using an enzyme-linked immunosorbent 154 

assay (Mercodia, AB, Uppsala, Sweden) as per manufacturer’s instructions. Plasma lactate 155 

concentrations were analyzed with the enzymatic method of Lowry and Passonneau (30). Blood 156 

glucose levels were determined directly from the tail blood using an ACCU-CHEK Advantage 157 

monitor (Roche Diagnostics, Indianapolis, Indiana, US). 158 

 159 

Immunoblotting 160 

Immunoblotting was performed using ground frozen gastrocnemius muscle homogenized 161 

with 200 times volume of solubilizing buffer (125 mM Tris-HCl [pH 6.8], 4% SDS, 10% 162 

glycerol, 10 mM EGTA, 0.1 M DTT and 0.01% bromophenol blue) as described previously (15, 163 

38). Five µg of total protein from whole homogenates were separated on SDS-PAGE gels (Bio-164 

Rad Laboratories, Hercules, CA), which was then wet transferred onto polyvinylidine fluoride 165 

(PVDF) membranes. Following membrane blocking with 5% skim milk in TBS solution, they 166 

were probed with the following primary antibodies overnight: phospho-AMPKα Thr172 (1:1000), 167 

phospho-TBC1D1 Ser660 (1:1000), AMPKα (1:1000), TBC1D1 (1:500), α-tubulin (1:1000) (Cell 168 

Signaling Technology, Danvers, MA, USA); nNOS (1:10,000), eNOS (1:10,000), iNOS (1:2000) 169 

(BD Biosciences, San Jose, California, USA); GLUT4 (1:8000) (Thermo Scientific, Rockford, 170 

IL, USA), and actin (1:40,000) (Sigma Aldrich, St Louis, MO, USA). Chemiluminescent signal 171 
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was developed with ECL substrate (SuperSignal West Femto, Pierce, MA, USA) and it was 172 

captured with a charge-coupled device (CCD) camera using Quantity One software (Bio-Rad). 173 

Pre-stained molecular weight markers were immediately imaged under white light source 174 

without changing the membrane position. To quantify both phosphorylated and total protein 175 

abundance, phosphorylation-specific primary antibody signal was first determined and then 176 

stripped (62.5 mM Tris-HCl pH 6.8, 2% SDS, 0.8% β-mercaptoethanol), re-blocked and re-177 

probed with primary antibody against the total protein. Loading control proteins were always 178 

probed on non-stripped membranes and actin was used for all proteins except GLUT4. Actin and 179 

GLUT4 have similar molecular weights and it was not possible to probe both of these proteins 180 

without undertaking the stripping process, therefore α-tubulin was used as a loading control for 181 

GLUT4 abundance.  182 

 183 

NOS activity assay 184 

NOS activity was determined as described previously (29) using radiolabeled L-185 

[14C]arginine. NOS activity was expressed as picomoles of L-[14C]citrulline formed per min, per 186 

mg of protein. It was determined based on the difference between samples incubated with and 187 

without L-NAME. 188 

  189 

Statistical analysis 190 

All data are expressed as means ± SEM. Statistical analysis was performed using SPSS 191 

statistical package using one factor ANOVA (genotype) or two-factor ANOVA (genotype and 192 

exercise). If there was a significant interaction, specific differences between mean values were 193 
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identified using Fisher’s least significance test. The significance level was set at P < 0.05. No 194 

sex-specific differences were observed in muscle glucose uptake during exercise (male vs 195 

female: nNOSμ+/+: 1.72±0.23 vs 1.50±0.14, p > 0.05; nNOSμ-/-: 1.72±0.10 vs 2.10±0.17, p > 196 

0.05) and therefore, data from male and female mice were pooled and analyzed together.   197 

 198 

RESULTS 199 

Body weight and exercise capacity of nNOSμ+/+ and nNOSμ-/- mice 200 

At 16 weeks of age, the body weight of nNOSμ-/- mice was significantly (P < 0.05) lower 201 

than that of nNOSμ+/+ littermates (Table 1). The ratio of male to female mice was not 202 

significantly different in either genotype (Table 1). The maximum running speed achieved 203 

during the exercise stress test was similar between genotypes (Table 1). Similarly, the maximum 204 

running times were not different between these mice although nNOSμ-/- mice tended (P = 0.10) 205 

to run for a shorter time than nNOSμ+/+ littermates (Table 1).  206 

 207 

Blood glucose level 208 

At the end of the experiment, blood glucose concentration from the sedentary mice was 209 

not significantly different between genotypes (7.9 ± 0.5 mmol/l vs 7.3 ± 0.8 mmol/l for 210 

nNOSμ+/+ and nNOSμ-/- respectively, P > 0.05). Exercise had no effect on the blood glucose 211 

concentration compared with the sedentary state and remained similar between genotypes (8.7 ± 212 

1.0 mmol/l vs 7.1 ± 0.3 mmol/l for nNOSμ+/+ and nNOSμ-/- respectively, P > 0.05).     213 

 214 
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Skeletal muscle glucose uptake 215 

Gastrocnemius muscle glucose uptake at rest (sedentary state) was not different between 216 

genotypes (Fig. 1A). Exercise significantly increased glucose uptake in gastrocnemius muscle (5 217 

to ~7-fold) and the exercise-induced glucose uptake (fold-increase) was significantly higher in 218 

nNOSμ-/- compared with nNOSμ+/+ mice (P < 0.05) (Fig 1B). A similar muscle glucose uptake 219 

pattern was observed in the superficial vastus lateralis (SVL) muscle (Fig 1C & 1D). 220 

 221 

Plasma insulin and lactate levels 222 

At the end of the exercise, plasma insulin was not different between genotypes (1.00 ± 223 

0.16 vs 0.89 ± 0.17 µg/l for nNOSμ+/+ and nNOSμ-/- respectively, P > 0.05). Plasma lactate was 224 

significantly elevated following exercise compared with the sedentary state (main effect, P < 225 

0.05), and the increases following exercise were similar across genotypes (6.0 ± 0.5 vs 5.4 ± 0.7 226 

mmol/l for nNOSμ+/+ and nNOSμ-/- respectively, P > 0.05).  227 

 228 

Protein expression and phosphorylation  229 

The expression of actin and α-tubulin proteins was not different between genotypes and 230 

they were used as loading controls. Total AMPKα expression in gastrocnemius muscle was not 231 

different between genotypes (Fig 2A and 2B). For sedentary muscles, AMPKα Thr172 232 

phosphorylation relative to AMPKα abundance was also not different between genotypes. 233 

Exercise significantly increased skeletal muscle AMPKα Thr172 phosphorylation of both nNOSμ-234 

/- and nNOSμ+/+ mice compared with their respective sedentary group (Fig 2C). The increase in 235 
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AMPKα Thr172 phosphorylation was significantly greater in nNOSμ-/- mice compared with 236 

nNOSμ+/+ mice (Fig 2C). Expression of TBC1D1 in gastrocnemius muscle was also similar 237 

between genotypes (Fig 3A and 3B) and there was no difference in sedentary TBC1D1 Ser660 238 

phosphorylation relative to TBC1D1 abundance between genotypes (Fig 3C). Exercise increased 239 

TBC1D1 Ser660 phosphorylation (Fig 3C; main effect, P < 0.05). There was no iNOS detected in 240 

either nNOSμ+/+ or nNOSμ-/- skeletal muscle. Endothelial NOS (eNOS) (Fig 4A) and GLUT4 241 

(Fig 4B) protein expressions were not different between genotypes.   242 

 243 

Expression of nNOSμ, nNOS splice variants and NOS activity  244 

Neuronal NOSμ and nNOSβ (which are splice variants of nNOS) were detected in 245 

gastrocnemius muscles of nNOSμ+/+ but not nNOSμ-/- mice (results not shown), as we have 246 

previously reported in EDL muscles (16). Exercise caused a significant increase in NOS activity 247 

in gastrocnemius muscles from nNOSμ+/+ mice (P < 0.05). Low levels of NOS activity were 248 

detected in gastrocnemius muscle from nNOSμ-/- mice (Fig 5) which is in accordance with 249 

previous data from EDL muscles (16) and brain tissues of nNOSμ-/- mice (18). 250 

 251 

DISCUSSION 252 

In this study we observed that skeletal muscle glucose uptake increased to a significantly 253 

greater extent during 30-min of moderate intensity treadmill running in nNOSμ-/- mice than 254 

nNOSμ+/+ littermates. The higher muscle glucose uptake in nNOSμ-/- mice was observed together 255 

with a greater increase in skeletal muscle AMPK phosphorylation during exercise in nNOSμ-/- 256 

mice.    257 
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Given that NO is involved in GLUT4 translocation and nNOSμ is the main NOS isoform 258 

that produces NO during contraction in skeletal muscle (27), it is surprising and interesting to 259 

find that glucose uptake during physiological in vivo exercise was enhanced instead of 260 

attenuated in mice genetically lacking nNOSμ. Nevertheless, it was recently reported that 261 

although NO is involved in mediating skeletal muscle glucose uptake during ex vivo contraction, 262 

nNOSμ is not essential in this process (16). Skeletal muscle glucose uptake during ex vivo 263 

contraction was normal in mice with or without nNOSμ however glucose uptake was attenuated 264 

by NOS inhibition (L-NMMA) in both groups. The reduction in glucose uptake during 265 

contraction with L-NMMA was reversed by L-arginine indicating a critical role of NO in 266 

mediating glucose uptake in skeletal muscle during ex vivo contraction (16). Under 267 

physiological in vivo exercise conditions, various factors beyond the signaling events within the 268 

muscle including endocrine, vascular, neural and internal milieu inputs that work in an integrated 269 

fashion could affect skeletal muscle glucose uptake.  270 

Neuronal NOSμ-/- mice used in this study were generally comparable with their nNOSμ+/+ 271 

littermates in a number of phenotypic features that may directly or indirectly influence muscle 272 

glucose uptake. The blood glucose level at rest (sedentary) and during exercise was similar in 273 

both genotypes implying that the higher glucose uptake in nNOSμ-/- mice was not due to higher 274 

blood glucose levels (17). Similarly, plasma insulin levels after exercise were not different 275 

between genotypes suggesting that the observed higher glucose uptake in nNOSμ-/- mice was not 276 

due to a potential additive effect of insulin on contraction-stimulated glucose uptake (57).  277 

Exercise stimulated a greater muscle AMPK phosphorylation in nNOSμ-/- mice compared 278 

with nNOSμ+/+ littermates. AMPK is a metabolic fuel sensor that can be activated following 279 

metabolic stress/ perturbations in which the degradation of ATP and the consequent 280 
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accumulation of ADP and AMP increase the ADP/ATP and AMP/ ATP ratio which leads to an 281 

increase in phosphorylation of AMPK (51). The higher AMPK phosphorylation in nNOSμ-/- 282 

mice suggests that they may have endured a higher metabolic stress. However, both groups of 283 

mice had similar maximum exercise capacity (maximal running speed and time) which suggests 284 

that the metabolic stress levels may have been similar. Although not statistically significant, it is 285 

possible that the 10% longer running time in the control mice compared with the nNOSμ-/- mice 286 

could be important during high intensity exercise. We unfortunately did not measure oxygen 287 

uptake or carbohydrate oxidation during this study. Alternatively, AMPK can also be activated 288 

under hypoxic conditions (10, 56). nNOS has been shown to be involved in mediating arteriolar 289 

relaxation in contracting muscles (27, 50). Therefore, it is plausible that nNOSμ-/- mice might 290 

have attenuated blood flow during exercise causing some degree of muscle hypoxia and a higher 291 

intramuscular metabolic stress (48) leading to a subsequent increase in phosphorylation of 292 

AMPK. It is unfortunate that we were unable to measure blood flow in these mice during 293 

exercise due to intolerance of the nNOSμ-/- mice to chronic carotid artery catheterisation.  294 

However, eNOS-/- mice with lower exercise-induced increases in blood flow to the contracting 295 

muscle and a likely greater hypoxic state in the muscles have no greater increase in AMPK 296 

phosphorylation during exercise (28). Indeed, we have shown previously that there is little effect 297 

of hypoxia on glucose uptake during exercise in humans (56). Therefore, hypoxia-induced 298 

increases in AMPK phosphorylation in nNOSμ-/- mice during exercise appear to be an unlikely 299 

stimulus for the greater increase in AMPK phosphorylation during exercise and thus the reasons 300 

for this finding remain unclear.  301 

Though the higher muscle glucose uptake in nNOSμ-/- mice could be due to the increased 302 

AMPK phosphorylation, we have no direct evidence to prove a causal relationship between these 303 
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parameters in nNOSμ-/- mice as we have not investigated glucose uptake during exercise in these 304 

mice while preventing the increase of AMPK activation. It may be worthwhile to compare 305 

skeletal muscle glucose uptake during ex vivo contraction in nNOSμ-/- muscles that are crossed 306 

with an AMPK dominant negative mouse strain. 307 

TBC1D1 has been implicated in the regulation of muscle glucose uptake during 308 

contraction/ exercise in which glucose uptake is decreased in muscle overexpressing TBC1D1 309 

mutated on several predicted AMPK phosphorylation sites (53). TBC1D1 Ser660 phosphorylation 310 

is one of the downstream effectors of AMPK (53) that is stimulated during contraction in mice 311 

(53) and exercise in humans (22). The increase in TBC1D1 Ser660 phosphorylation with exercise 312 

in nNOSμ-/- mice suggests that an AMPK-TBC1D1 mechanism may potentially be involved in 313 

stimulating the higher glucose uptake in these mice which, however, remained to be investigated. 314 

AMPK can also phosphorylate other downstream mediators such as AS160 to stimulate muscle 315 

glucose uptake (26) although there is evidence that AMPK-mediated AS160 phosphorylation 316 

does not have a role in muscle glucose uptake during contraction (52).        317 

A caveat to the interpretation of the data using genetically-modified mice needs to be 318 

considered. The loss of a protein of interest during development that spans the entire lifespan 319 

could possibly induce secondary adaptations including compensatory overexpression of closely 320 

related proteins (33). These changes could mask the effects elicited by the loss of the protein of 321 

interest. In this study, no compensatory increase in iNOS, eNOS, nNOS splice variants, or 322 

GLUT4, all of which could directly or indirectly affect muscle glucose uptake, were detected in 323 

nNOSμ-/- mice. Likewise, there was no difference in total AMPK or TBC1D1 expression 324 

between genotypes. These data suggest that nNOSμ, similar to ex vivo contraction (16), may not 325 

play a role in muscle glucose uptake during in vivo exercise because total loss of nNOSμ did not 326 



16 

 

attenuate glucose uptake nor elicit a compensatory response in the proteins examined. It should 327 

be considered, however, that there may have been compensatory increases in the other potential 328 

proteins that may regulate skeletal muscle glucose uptake including Ca2+/ calmodulin-dependent 329 

protein kinase (CaMKII) (58), protein kinase C (20), and Rac1/PAK1 (49). 330 

In addition, an exacerbated ROS accumulation during exercise in nNOSμ-/- mice may 331 

have contributed to the higher muscle glucose uptake. Muscle contraction/ exercise increases 332 

ROS production in the heart and skeletal muscles (41, 47), and ROS increases muscle glucose 333 

uptake during ex vivo contraction (36, 47). Following acute exercise, there is significantly higher 334 

accumulation of ROS in the myocytes from mice lacking nNOS compared with controls (44). If 335 

a similar effect is conferred by nNOS in skeletal muscle during exercise as in the myocytes, it is 336 

plausible that muscle glucose uptake in nNOSμ-/- mice could be increased as a result of ROS-337 

induced glucose uptake. Nevertheless, some studies have shown that ROS has no stimulatory 338 

effect on muscle glucose uptake during in vivo conditions in rats (34) and humans (37).  339 

The relative roles of nNOSμ could also be affected by the exercise intensity. Given that it 340 

has been shown that nNOS is expressed at higher levels in fast-twitch muscles than slow-twitch 341 

muscles (24, 36) it would be expected that nNOS would have a greater contribution to glucose 342 

uptake during exercise in fast-twitch muscles and/ or at higher exercise intensities. In fact, we 343 

have shown that NOS inhibition significantly attenuates the increase in glucose uptake during ex 344 

vivo contraction in EDL (mainly fast-twitch) but not in soleus muscles (mainly slow-twitch) 345 

(36). However, the fiber type effects on muscle glucose uptake during in vivo exercise are 346 

unclear. It is possible that there was no effect of a lack of nNOSμ on glucose uptake during 347 

exercise because the intensity of exercise was insufficient to substantially activate nNOSμ. 348 

However, the observed increase in NOS activity during exercise suggests that nNOSμ was 349 
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indeed activated. Further studies should examine the effects of nNOSμ on glucose uptake during 350 

exercise at different intensities. 351 

 In this study, we observed very low levels of NOS activity in nNOSμ-/- mice while eNOS 352 

abundance was not different between the genotypes. Together with the previous finding that 353 

NOS activity is normal or increased in eNOS+/- and eNOS-/- mice, respectively (28), these data 354 

indicate that nNOSμ is the predominant NOS isoform responsible for NOS activity in skeletal 355 

muscle. This finding is in agreement with a study showing that nNOS is the predominant NOS 356 

isoform that activates NO downstream signaling via cGMP during ex vivo contraction (27). 357 

Interestingly, eNOS abundance in skeletal muscle was not different between nNOSμ-/- and their 358 

wild type littermate control mice in this study, as opposed to our previous study that found a 359 

compensatory increase of eNOS expression in nNOSμ-/- muscles (55). However, in that study the 360 

control mice were C57Bl/6 mice rather than littermate controls (55). Others have also found no 361 

compensation of eNOS expression in myocytes and uterus of mice lacking nNOS when 362 

comparing to their wild type littermates (19, 39). This highlights the importance of using 363 

littermate controls as a proper experimental control.    364 

In summary, nNOSμ is not essential for skeletal muscle glucose uptake during in vivo 365 

exercise. The greater muscle glucose uptake observed in nNOSμ-/- mice than nNOSμ+/+ mice 366 

during moderate intensity treadmill exercise may be due to the observed greater increase in 367 

AMPK activation during exercise.  368 

 369 
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FIGURE LEGENDS 559 

Figure 1: Gastrocnemius muscle glucose uptake normalized to brain glucose uptake of that same 560 

animal (ratio) (A), and relative to sedentary state (fold change) (B), superficial vastus lateralis 561 

(SVL) muscle glucose uptake normalized to brain glucose uptake of that same animal (ratio) (C), 562 

and relative to sedentary state (fold change) (D). Data are means ± SEM, n = 11 & 3 for 563 

sedentary nNOSμ+/+ and nNOSμ-/- respectively, and 10 & 6 for exercise nNOSμ+/+ and nNOSμ-/- 564 

respectively. * P < 0.05 vs sedentary of the same genotype, # P < 0.05 vs exercise nNOSμ+/+.  565 

 566 

Figure 2: Representative blots for AMPK, AMPKα Thr172 phosphorylation and actin (A), 567 

gastrocnemius muscle AMPKα abundance in sedentary muscles (B), and gastrocnemius muscle 568 

AMPKα Thr172 phosphorylation relative to AMPKα abundance (C). Data are means ± SEM, n = 569 

9 & 4 for sedentary nNOSμ+/+ and nNOSμ-/- respectively, and 9 & 5 for exercise nNOSμ+/+ and 570 

nNOSμ-/- respectively.* P < 0.05 vs sedentary of the same genotype; # P < 0.05 vs exercise 571 

nNOSμ+/+. 572 

 573 

Figure 3: Representative blots for TBC1D1, TBC1D1 Ser660 phosphorylation and actin (A), 574 

gastrocnemius muscle TBC1D1 abundance in sedentary muscles (B), gastrocnemius muscle 575 

TBC1D1 Ser660 phosphorylation relative to TBC1D1 abundance (C). Data are means ± SEM, n = 576 

9 & 4 for sedentary nNOSμ+/+ and nNOSμ-/- respectively, and 9 & 5 for exercise nNOSμ+/+ and 577 

nNOSμ-/- respectively. † P < 0.05 main effect for exercise. 578 

  579 
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Figure 4: Gastrocnemius muscles eNOS (A) and GLUT4 (B) protein expressions in sedentary 580 

state relative to actin and tubulin abundance respectively. Data are means ± SEM; n = 9 for 581 

nNOSμ+/+ and 4 for nNOSμ-/-. For GLUT4 protein expression, bands at 45 and 40 kDa 582 

represented glycosylated and de-glycosylated GLUT4 respectively. Both bands were used for 583 

data analysis. 584 

 585 

Figure 5: Gastrocnemius muscle NOS activity at rest (sedentary) and during exercise. Data are 586 

means ± SEM; n = 7 & 3 for sedentary nNOSμ+/+ and nNOSμ-/- respectively; and 7 & 5 for 587 

exercise nNOSμ+/+ and nNOSμ-/- respectively. * P < 0.05 vs sedentary of the same genotype; ‡ P 588 

< 0.05 vs nNOSμ+/+ of the same condition. 589 

590 
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Figure 2 593 
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Figure 3 595 
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Figure 4 597 
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Figure 5 598 
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Table 1: Body weight and exercise capacity of nNOSμ+/+ and nNOSμ-/- mice  600 

 nNOSμ+/+ nNOSμ-/- 

Male : female (number) 15 : 15 6 : 8 

Body weight (g) 29.0 ± 0.8 23.6 ± 1.0  ‡ 

Max running speed (m/min) 31.5 ± 0.9 29.4 ± 1.2 

Max running time (min) 17.7 ± 0.6 15.9 ± 0.9  

Values are means ± SEM, n = 30 and 14 for nNOSμ+/+ and nNOSμ-/- respectively. ‡ P < 0.05 vs 601 

nNOSμ+/+. 602 
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