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Abstract 

Purpose 

The general aim of clinical diffusion-weighted MRI (DWI) is the inference of tissue 

structure properties, particularly pathology, from measurements of diffusion attenuation 

under conditions of varying diffusion times and b-values.  Models of water diffusion in 

tissue have been proposed to serve this purpose. Diffusion models can be broadly split 

into two types, phenomenological and structural. Phenomenological models aim to 

provide reliable mathematical descriptions of DWI signals, but biophysical 

interpretation of their model parameters is limited. The recent trend is towards 

compartment models that are based on assumptions about tissue geometry.  

Compartment models have proven successful in brain imaging, where they predict the 

diffusion signal more accurately and provide estimates of specific neural tissue features, 

such as fiber orientation distribution and axon diameter. However, compartment models 

are generally lacking for non-neural tissue. This thesis investigates compartment models 

of diffusion in four types of non-neural tissue (prostate, breast, spheroids and lymph 

nodes). 

 

Materials and Methods 

Tissue samples were acquired after institutional ethics review committee approval and 

informed written consent from patients were obtained. Seven whole human prostates 

were imaged on 9.4T Bruker MRI system in formalin fixed condition. Three samples of 

human breast tissue specimens, two samples of human lymph nodes, and one sample of 

dog lymph nodes were collected, fixed in formalin, and imaged on 9.4T Bruker MRI 

system. Six spheroids were cultured from DLD-1 (human colorectal carcinoma) cell line 

using the liquid overlay method, fixed with 4% paraformaldehyde, and imaged in a 14T 

Bruker MRI scanner. 

All diffusion-weighted measurements were performed using a pulsed gradient spin echo 

sequence. Eleven models, including different combinations of isotropic, anisotropic and 
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restricted components, were tested. Each model was fitted to the data using the 

Levenberg-Marquardt minimization algorithm in the open source Camino toolkit. 

Models were ranked using the Akaike information criterion (AIC), which compared 

models in terms of theoretical information. 

 

Results 

For DWI measurements acquired with multiple b values and multiple Δ/δ values in 

prostate tissue, compartment models incorporating both anisotropic and restricted 

components provided more information-rich descriptions of signals than single-

component models and multi-component models that did not account for restricted 

diffusion. 

One of the multi-component models, comprising both anisotropic and restricted 

components was then used for synthesizing DTI data in prostate tissue. Measured mean 

diffusivity (MD) and fractional anisotropy (FA) were calculated from DTI 

measurements. Predicted MD and FA were calculated from synthesized DTI data. The 

results demonstrated diffusion time dependence of MD and FA, which was accurately 

predicted by that multi-component restricted and anisotropic model. 

The overall AIC ranking of eleven models in breast tissue (including gland lobule, 

interlobular stroma and fat) and lymph nodes showed that multi-component restricted 

models had higher information than single-component models and multi-component 

unrestricted models. In glandular breast tissue, multi-component models that accounted 

for both anisotropy and diffusion restriction ranked highest. The AIC ranking of three 

isotropic models in spheroids showed that the model including restricted component had 

the highest information.   

 

Conclusion 

Multi-component models incorporating a restricted component and an 

isotropic/anisotropic Gaussian component provided more information-rich descriptions 

of multi-Δ, multi-b DWI measurements in four types of non-neural tissue than single-

component (ADC) model and multi-component unrestricted models. ADC model to 
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date has been the most widely used analysis for cancer assessment in clinical DWI 

studies. The low AIC ranking of ADC model suggested that the implementation of more 

sophisticated compartment models might improve performance in detection of non-

neural tumour significantly. 
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 Chapter 1 Introduction 

1.1.  Background and Motivation 

MRI is an important tool in oncological assessment because of its excellent soft tissue 

contrast. Among MRI methods, diffusion-weighted MRI (DWI) is increasingly used as 

an imaging biomarker for the detection and characterization of cancer. For example, the 

most established clinical application of DWI is the high-sensitivity detection of cerebral 

ischemia [1-3]. In other organs such as prostate and breast, DWI is also found useful for 

tumour detection [4-7]. DWI measures water molecular motion within tissue due to 

thermal motion. Depending on protocol, DWI may also be sensitive to blood flow. 

Water motion is influenced by the tissue microstructure. Hence DWI has a unique 

ability to probe the underlying tissue structure. The general aim of clinical DWI is the 

inference of tissue structure properties, particularly pathology, from measurements of 

the attenuation of DWI signal under conditions of varying diffusion times and diffusion-

weightings. Models of water diffusion in tissue have been proposed to serve this 

purpose. Diffusion models can be broadly split into two types, phenomenological and 

structural. Phenomenological models aim to provide a reliable mathematical description 

of DWI signals. Structural models are based on assumptions about tissue structure and 

are composed of one or multiple structural compartments. The most commonly used 

phenomenological model in both clinical and research environments is the apparent 

diffusion coefficient (ADC) model. The ADC model assumes a Gaussian water 

displacement probability that is manifested as monoexponential diffusion-weighed 

signal decay. The ADC model has proven extremely powerful in the detection of a 

variety of pathologies [8,9]. However, many tissues are known to exhibit non-

monoexponential signal decay, suggesting the need for a better understanding to 

elucidate biophysical properties of water diffusion within the tissue. Other 

phenomenological models including biexponential [10-12], kurtosis [13,14] and 

stretched models [15] have been used to characterize this non-monoexponential 

behavior. The diffusion tensor model, which is equivalent to a three-dimensional ADC, 

has been introduced to accounts for diffusion anisotropy [16]. Although these advanced 
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phenomenological models provide a better fit to the data, biophysical interpretation of 

their model parameters is limited. The recent trend is towards compartment models, 

which aim to quantitatively relate microstructure features to DWI signals. Most studies 

have designed compartment models to estimate specific features of neural tissue such as 

axon radius in white matter [17-21] or neurite orientation distribution [22]. White matter 

compartment models have been compared in terms of theoretical information [23-25]. 

The best model for a given set of measurement data is the one that extracts the most 

information from the data. The assumption behind this comparison is that the model 

with higher information is more close to the unknown true system and thus has a better 

prediction of tissue microstructure. The true system refers to the underlying biophysical 

mechanism that produces diffusion contrast in tissue.  

1.2.  Problem Statement 

The problem that motivates this work is that of using DWI measurements to obtain 

specific microstructure features, ideally diagnostic features, for non-neural tissue. There 

are three different, but not independent steps towards this goal. The first step is to define 

an imaging protocol that can acquire appropriate tissue structure information. The 

second step is to construct models that can relate specific tissue features to the DWI 

signal. The third step is to extract as much information as possible from the acquired 

data by selecting the model that contains highest information. This study focused on the 

second and the third steps. Compartment models are good candidates for this purpose. 

However, compartment models and rigorous comparison of compartment models are 

generally lacking for non-neural tissue. Most previous studies applied 

phenomenological models to non-neural tissues including prostate [10,26-30], breast 

[12,31-33] and lymph node [34-36]. Phenomenological models have been compared in 

terms of either cancer detection performance [30,37,38] or theoretical information 

[39,40].  

A three-compartment model named VERDICT (Vascular, Extracellular, and Restricted 

Diffusion for Cytometry in Tumours), based on intracellular, vascular, extracellular-

extravascular compartments, has recently been used to extract histological features of 

two colorectal cancer cell lines including cell size, cell density, and vascular volume 

fraction [41]. The VERDICT model successfully distinguished two cell lines while the 



	

	 3	

ADC and biexponential models failed to detect the difference. A subsequent study on 

the prostate in vivo demonstrated that the VERDICT model differentiated between 

benign and cancerous tissue more reliably than ADC and biexponential models [42].  

Both studies used an extended imaging protocol (relative to standard clinical imaging 

protocols) to determine the best form of the VERDICT model. A recent study reported a 

clinically feasible protocol for prostate microstructure characterization with the 

VERDICT model [43]. These promising results highlight the advantages of 

compartment models. The development of more advanced models and DWI acquisitions 

may lead to new cancer imaging methods that improve performance in detection of non-

neural tumor significantly. 

1.3.  Research Aims 

The aims of this study are as follows: 

1. Investigate theoretical information of single- and multi-compartment models of 

diffusion in fixed prostate tissue and identify which model extracts the most 

information from the measurement data. Eleven models, including different 

combinations of isotropic, anisotropic and restricted components, are tested. 

2. Use the best model identified in Aim 1 to predict the impact of diffusion time on 

mean diffusivity (MD) and fractional anisotropy (FA) and compare this predicted 

impact with the impact assessed from the measurement data. This experiment 

provides a new way to use and validate compartment models. 

3. Investigate compartment models of diffusion in breast tissue, lymph node tissue, 

and cultured cell constructs. 

1.4.  Thesis Structure 

Chapter 2 presents a review of DWI, biophysics of water diffusion in tissue, tissue 

modeling, structural information on prostate tissue, breast tissue, lymph node tissue and 

spheroids, and modeling techniques currently used for these types of tissue.  
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Motivated by a successful application of the three-component VERDICT model in 

prostate tissue in vivo [42], Chapter 3 investigates the non-perfusion components of the 

VERDICT model in prostate tissue ex vivo by comparing theoretical information of 

eleven compartment models.  

Chapter 4 evaluates the impact of diffusion time on MD and FA generated from both 

the measurement data and the synthesized data predicted by the best model identified in 

Chapter 3.  

Chapter 5 applies compartment models to breast tissue, lymph node tissue, and 

spheroids.  

Chapter 6 concludes the research and gives suggestions for future work.  
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 Chapter 2 Literature Review 

2.1.  Diffusion-weighted MRI (DWI) 

2.1.1. Basics of Diffusion-weighted MRI 

DWI measures random thermal motion of water molecules within tissue. In the absence 

of any obstacles, water molecules are allowed to move freely. The motion of freely 

diffusing water molecules, which is referred to as either free diffusion or self-diffusion, 

follows a Gaussian distribution. The average squared displacement (r2) of free water 

molecules over the given time in three dimensions is 

                                                            < 𝑟! >= 6𝐷𝑡                                                      [2.1]    

where t is the time interval over which water molecules are allowed to diffuse, and D is 

the diffusion coefficient that is temperature dependent. For free water at body 

temperature (37 °C), the diffusion coefficient is about 3 × 10-3 mm2/s. The typical time t 

used for clinical DWI is around 40 - 80 ms, corresponding to mean displacements on 

the order of 10 µm in free water. These resultant mean displacements are on the order of 

the cell size. Hence water diffusion in tissue is sensitive to the cellular environment. In 

biological tissue, water molecules do not move freely but instead interact with 

intracellular elements, cell membranes, and macromolecules. In such an environment, 

water motion no long follows a Gaussian distribution and the relationship stated by Eq. 

2.1 does not hold. The interactions with various cellular elements mean that 

measurement of water molecular motion in tissue reveals information about the tissue 

microstructure.  

2.1.2. Pulsed Gradient Spin Echo 

In 1965 Stejskal and Tanner introduced the pulsed gradient spin echo (PGSE) pulse 

sequence [44], which is the most widely used sequence for DWI. The PGSE sequence 

(Figure 2.1) is composed of 90° and 180° radiofrequency (RF) pulses and a pair of 

diffusion-sensitizing gradients placed on either side of 180° RF pulse. Each diffusion 

gradient has duration δ and magnitude G. The RF pulse has a short duration, oscillates 



	

	 6	

at radiofrequencies, and is primarily used for excitation and refocusing. The temporal 

separation of the diffusion gradient pulses is referred to as Δ. The time between the start 

of RF pulse and the maximum in the MRI signal is called TE (echo time).  

 

Figure 2.1: A schematic representation of a PGSE sequence 

Two diffusion-sensitizing gradients are added to a spin echo sequence. δ denotes the 

gradient pulse duration, Δ the interval between two gradients, and G the amplitude of 

the gradient.  (Reproduced from [45] with permission from Springer Berlin Heidelberg, 

Germany) 

The applied diffusion-sensitizing gradient introduces a phase shift of a spin. Figure 2.2 

shows the phase evolution of the static and moving (translating) spins during the PGSE 

sequence. After 90° RF excitation, a firstly applied gradient pulse offsets a position-

dependent phase of a spin by 

                                                       𝜙! =  𝛾 𝐺(𝑡)𝑥(𝑡)𝑑𝑡!
!                                           [2.2] 

where γ is the gyromagnetic ratio, G(t) is the magnetic field gradient and x(t) is the 

position of the spin. Next, an 180° RF pulse is applied that has the effect of reversing 

the sign of the accumulated phase shift, a second gradient pulse that is identical to the 

first gradient pulse produces another position-dependent phase change, 

                                                      𝜙! =  𝛾 𝐺(𝑡)𝑥(𝑡)𝑑𝑡∆!!
∆                                         [2.3] 

Therefore, the net phase shift is 
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                                       𝜙 = 𝜙! − 𝜙! = 𝛾 𝐺 𝑡 𝑥 𝑡 𝑑𝑡 − 𝐺(𝑡)𝑥(𝑡)𝑑𝑡)∆!!
!

!
!          [2.4]      

 

Figure 2.2: Schematic representation of the phase evolution of the static and 

moving spins during the PGSE sequence.  

After 90° RF excitation, the first gradient pulse is applied causing a diphase in all the 

spins. A 180° RF pulse is then applied flipping the phase of all the spins 180°. Finally, 

the second gradient pulse which is the same as the first gradient is applied. After the 

second gradient, static spins remain in the same position and thus the net phase shift 
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is zero. On the other hand, the moving spins change their position (red arrows in 2.2.3),  

so they do not recover the phase. This phase incoherence causes attenuation of MRI 

signal. (Reproduced from [45] with permission from Springer Berlin Heidelberg, 

Germany) 

In the case of static spins meaning that spins remain at the same position, the phase 

shifts accumulated during the application of both gradient pulses are the same, and thus 

the net phase shift is zero. In this situation, no attenuation of MRI signal (but rather 

phase change) would occur, as in the case of, for example, flow. Conversely the moving 

spins change their position so that the phase change accumulated during the second 

gradient pulse could not cancel the phase change experienced during the first gradient 

pulse. This incomplete cancellation yields a non-zero net phase shift. The phase 

incoherence within a voxel, which is the result of random motion of these spins, leads to 

attenuation of MRI signal at TE along the direction of the applied gradient pair. The 

MRI signal attenuation (S)  

                                                        𝑆 =   𝑆! exp −𝑏𝐷                                                [2.5] 

where S0 is the MRI signal attenuation in the absence of diffusion gradients, b is a 

measure of diffusion weighting, and D is the self-diffusion coefficient for free diffusion. 

In biological tissue where diffusion is generally not free, the measured D is smaller than 

the self-diffusion coefficient, namely ADC. The b-value for rectangular gradient pulses 

in the PGSE sequence is 

                                                                  𝑏 = 𝛾!𝐺!𝛿! 𝛥 − !
!

                                        [2.6] 

According to Eq. [2.6], b is a function of δ, G, and Δ. In practice, different b-values are 

usually obtained by changing values of G with fixed values of δ and Δ. It is worth 

noting that Δ is an important parameter because it determines the scale on which water 

molecules interact with the tissue structure. 

2.2.  Diffusion in Biological Systems 

Water diffusion in biological tissue is a complex process because water diffusion is 

affected by the packing geometry of the cells and cell membrane permeability that 

controls the water exchange across the membranes [46,47]. Three important types of 
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diffusion effects will be described in this section. They are restricted diffusion, hindered 

diffusion, and anisotropic diffusion. 

2.2.1. Restricted Diffusion  

Restricted diffusion refers to the trapping of water molecules inside a closed 

compartment.  In biological tissue, cell membranes provide a physical boundary that 

prevents water molecules from moving freely. For the most permeable cell membrane, 

red blood cell, only one in ten thousand water molecules which are located closely to 

the cell membrane will cross the membrane and move into the extracellular space [48]. 

Thus water diffusion in an intracellular compartment is usually highly restricted. The 

distribution of restricted diffusion is a complicated function, which deviates from a 

Gaussian function and is influenced by many factors including the cell permeability, the 

size and shape of restricting geometry, and MRI experimental parameters [49]. The 

values of Δ (diffusion time) determine the extent to which water molecules interact with 

the tissue geometry. To illustrate this, consider a water molecule undergoing free 

diffusion and restricted diffusion in a closed spherical pore of radius a as shown in 

Figure 2.3. To characterize the effect of restricted diffusion, the dimensionless variable 

ξ is defined from Eq. 2.1 where 6 is replaced by 1, t by Δ and r by a,     

                                                                        𝜉 = 𝐷∆/𝑎!                                                   [2.7]                                                     

For a short diffusion time (𝜉 ≪ 1), most water molecules do not diffuse far enough to 

feel the effects of the borders, and thus water molecular motion behaves as for free 

diffusion. As diffusion time increases (𝜉 ≈ 1), a certain fraction of water molecules will 

interact with the boundary. The mean squared displacement along the z-axis in this 

situation does not continue to rise linearly with diffusion time. Thus the observed 

diffusion coefficient D (or ADC) appears to be Δ dependent. For a very long diffusion 

time (𝜉 ≫ 1), all of water molecules feel the effect of restriction. The mean squared 

displacement becomes independent of Δ and depends only on a. Figure 2.4 shows the 

mean squared displacement of water molecules in free diffusion and restricted diffusion. 

In free diffusion, the mean squared displacement is proportional to the square root of 

diffusion time and is time dependent. In restricted diffusion, the mean squared 

displacement is sublinear in time and is limited by dimensions of the restricting 

compartment. The ADC for restricted water deceases with diffusion time over a finite 

range as a larger proportion of water molecules feel the boundary. 
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Figure 2.3 A schematic diagram comparing free diffusion with restricted 

diffusion in a sphere of radius a at three different timescales.  

The displacement of a water molecule in the z direction is measured by observing its 

starting position r0 (white circle) and then at r1 (black circle) after Δ. r denotes the 

displacement between r0  and  r1. The vertical arrows represent the displacement, Z , in 

the vertical direction. Timescale variable ξ is defined in Eq. [2.7]. (Reproduced from [50] 

with permission from John Wiley and Sons, US) 
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Figure 2.4  The mean displacement vs the square root of diffusion time. 

In free diffusion, the mean squared displacement increases linearly with the square 

root of diffusion time with a slope that is self-diffusion coefficient D. In restricted 

diffusion, the mean squared displacement is limited by the compartment dimensions, 

leading to a sublinear time evolution of the mean squared displacement and a 

decreased ADC. The ADC of restricted water decreases with diffusion time over a finite 

range as a larger fraction of water molecules feel the boundary. 
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2.2.2. Hindered Diffusion 

Hindered diffusion is a term used for describing the delay of the passage of water 

molecules because of the presence of obstacles compared with that in free water. To 

illustrate this idea, Figure 2.4 gives an example of restricted and hindered diffusion in 

brain white matter. Water diffusion inside axon (diameter, d) is restricted. To go from A 

to B, water molecules in the compact extracellular space have to travel around fibres 

rather than diffuse in a straight way. This hindrance effect results in a decrease in the 

diffusion distance covered over a given diffusion time and in the measured ADC. The 

degree of the hindrance is conventionally quantified using the tortuosity coefficient 

                                                                   𝜆 =  𝐷/𝐷∗                                                      [2.8]                       

where D is diffusion coefficient in the absence of obstacles, and D* is the measured 

ADC and would not depend on diffusion time, unless diffusion time becomes very short, 

so that diffusion paths appear free [51]. In the hindered diffusion, water molecules are 

allowed to diffuse over a long distance, as opposed to restricted diffusion, so that the 

diffusion distance remains linear with the square root of diffusion time. Other factors, 

such as transient trapping of molecules and binding of molecules to the membrane 

surface, may also make contributions to the hindrance to the diffusion [52]. 
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Figure 2.5 Restricted and hindered diffusion in white matter. 

Water diffusion inside axons of dimension d is restricted. Fibres are arranged in a 

compact way. To go from A to B, water molecules in the extracellular space have to 

move around fibres instead of diffusing in a straight way. In this situation, water 

molecules need longer diffusion time to diffuse between two locations. (Reproduced 

from [49] with permission from John Wiley and Sons, US) 

2.2.3. Anisotropic Diffusion 

Anisotropic diffusion simply means that the diffusion coefficient is not the same in all 

directions. The diffusion anisotropy may be attributed to the medium geometry or the 

presence of obstacles. A three-dimensional Gaussian probability density function is 

used to characterize the displacement of molecules in anisotropic diffusion 

                                              𝑃 𝑟!, 𝑟, 𝑡 = !

!!"#
! exp (− (!!!!)!

!!"
)                                  [2.9] 

where D is the diffusion tensor (DT). More details on DT are discussed in section 2.3.1. 

Figure 2.5 shows isotropic and anisotropic diffusion in three different mediums. In free 
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water, the displacements of water molecules increase equally in all directions and water 

diffusion is isotropic (Figure 2.5A). Figure 2.5B shows water diffusion in an 

environment where spheres are randomly distributed. Water diffusion outside the 

spheres is isotropic because the boundaries of the spheres have no preferred direction 

and hinder water motion equally in all directions. Figure 2.5C shows water diffusion in 

a medium where cylinders are located parallel to each other. Water movement is 

hindered more in a direction perpendicular to the cylinder axis than along the cylinder 

axis. Thus water diffusion outside the cylinders is anisotropic. The neural tissue has 

been found to exhibit anisotropy. The diffusivity of water molecules along the white 

matter fibres is several-fold faster than that perpendicular to the fibres [53]. There is 

considerable interest in anisotropic diffusion properties of white matter, which are used 

for delineation of fibre tracts [54]. Diffusion anisotropy is also present in non-neural 

tissue including prostate [55,56], kidney [57] and cardiac muscle [58]. It is important to 

point out that diffusion can be both anisotropic and restricted (e.g., white matter fibres 

[53]) or both anisotropic and unrestricted (e.g., liquid crystals [59]). 

 

Figure 2.6 Schematic diagrams for water motion in free water and two different 

mediums. 

A) Free water diffusion is isotropic in the absence of any obstacles. B) Water diffusion 

outside the spheres is isotropic and hindered in the presence of the random barriers. C) 

Water diffusion outside the cylinders is anisotropic and hindered due to the aligned 

barriers to water movement. 
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2.3.  Models of DWI Signal Attenuation 

In biological tissue, the displacement of water molecules is affected by the packing of 

cells and consequently DWI signals are sensitive to the structural changes at cellular 

and subcellular scales. It is a crucial feature of DWI that is particularly appealing for 

both preclinical and clinical studies. Analytical models of water diffusion in tissue have 

been proposed to provide quantitative information about the underlying tissue 

microstructure. The analytical models of water diffusion can be broadly classified into 

two categories: phenomenological models and compartment models. Phenomenological 

models aim to provide reliable mathematical descriptions of DWI signals but have 

limited biophysical insights. Compartment models are constructed based on diffusion 

properties of each structural compartment within a tissue and aim to offer parameters 

directly related to the specific tissue structure. Compartment models have proven 

successful in brain imaging and have recently gained much attention outside of the brain. 

This section provides a review of models of water diffusion in tissue. 

2.3.1. Phenomenological Models  

Free diffusion describes the random motion of water molecules in the absence of any 

obstacles. In heterogeneous biological tissue, however, water molecules are constantly 

interacting with various tissue elements and thus water motion is highly complex. In 

such case, the self-diffusion coefficient D in Eq. 2.5 is replaced by a global parameter 

called ADC to characterize the complex diffusion in tissue.  

                                                                𝑆 = 𝑆!𝑒!!"#$                                                 [2.10]                                                                             

This simple monoexponential model is also known as the ADC model. The acquisition 

of DWI images with one zero b-value and one nonzero b-value (e.g., 0 and 1000 s/mm2) 

is often performed for clinical studies. The ADC generally displays a lower value in 

cancer than in healthy tissue. ADC is an overall concept that encompasses all concurrent 

motion effects in tissue. These motion effects include restricted diffusion, hindered 

diffusion, perfusion, and water exchange between compartments. Consequently, the 

ADC model is not able to provide specific information on tissue structure. The 

calculated ADC may be highly dependent on DWI protocols and signal analysis 

methods, although this is rarely mentioned in the clinical DWI literature [60]. 
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In heterogeneous tissue where water molecular motion is not equal for all directions, a 

single ADC is insufficient to characterize the diffusion process at the voxel scale. 

Diffusion tensor imaging (DTI) assuming a three-dimensional Gaussian model of water 

molecular displacement generalizes the ADC model to assess the anisotropy of the 

tissue [16].   

The diffusion tensor is a symmetric 3×3 matrix: 

𝐷!! 𝐷!" 𝐷!"
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

 

Moreover, the relationship between the tensor D and the DWI signal is as follows: 

                                                  𝑆 = 𝑆!𝑒! !!"!!"!!!,!,!!!!,!,!                                                       [2.11]                            

where bij is a component of the symmetric b-matrix calculated from the applied 

diffusion gradient vector (Gx, Gy, Gz). The tensor has an ellipsoidal surface. In an 

isotropic medium, the diffusion ellipsoid is a concentric sphere. In an anisotropic 

medium, the diffusion is modelled with an elongated ellipsoid. At least six diffusion-

encoded image sets acquired along noncollinear directions and one b = 0 s/mm2 image 

set are required to estimate all six diagonal and off-diagonal elements of the tensor.   

There are a number of parameters used for describing the orientation, size and shape of 

the diffusion tensor. The tensor D is diagonalized via a linear rotation to derive three 

principal axes of the diffusion tensor, known as the eigenvectors [𝜀!, 𝜀!, 𝜀!] and their 

associated eigenvalues λ1, λ2, λ3. The primary eigenvector 𝜀! and its associated 

eigenvalue λ1 indicate the direction and magnitude of the highest diffusion respectively. 

λ2 and λ3 represent the magnitudes of diffusion along 𝜀! and 𝜀! that are perpendicular to 

𝜀!. 

Of all the diffusion metrics derived from the tensor, mean diffusivity (MD) and 

fractional anisotropy (FA) are the most frequently used parameters for clinical studies 

because they are rotationally invariant. MD is the mean of the three eigenvalues and 

characterizes the size of the diffusion ellipsoid: 

                                                          𝑀𝐷 = (𝜆! + 𝜆! + 𝜆!) 3                                 [2.12]                                      
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FA measures the degree of directionality of diffusivity within a voxel and characterizes 

the shape of the diffusion ellipsoid: 

              𝐹𝐴 =  (𝜆! − 𝜆!)! + (𝜆! − 𝜆!)! + (𝜆! − 𝜆!)!/ 2𝜆!
! + 2𝜆!

! + 2𝜆!
!     [2.13]   

The values of FA range from 0, in an isotropic medium, to 1, in the case of perfectly 

linear diffusion along the primary eigenvector.   

Both ADC and DTI models assume the Gaussian distribution of molecular motion. 

However, the DWI signal attenuation in the heterogeneous tissue is widely observed to 

be non-Gaussian. Several models have been proposed to quantify this deviation from 

the Gaussian behaviour. 

It is well known that tissue exhibits non-monoexponential diffusion decay, particularly 

over a broad range of b-values (e.g., b: 0 - 3000 s/mm2). In such case, a biexponential 

model has been extensively used and has been shown to offer a better fit to the data [10-

12]: 

                                                    𝑆 = 𝑆![ 1− 𝑓 𝑒!!!! + 𝑓𝑒!!!!]                                 [2.14]                            

where Ds and Df are the slow and fast diffusion coefficients respectively, and (1 – f ) 

and f are their fractions. The biexponential model requires a wide range of b-values with 

the maximum value that is typically ≥ 2000 s/mm2. However, the exact origin of 

biexponential behaviour remains unclear. A common explanation associates Df and Ds 

in the biexponential function with extra- and intracellular compartments, respectively, 

yet this assignment is controversial [61-63]. Furthermore, biexponential behaviour has 

been observed for the signal decay from the intracellular compartment alone [64]. 

The kurtosis model has been introduced to quantify the non-Gaussian diffusion 

behaviour by using excess kurtosis [13] 

                                                            𝑆 = 𝑆!𝑒
!!!!!

!
!!

!!!!                                       [2.15] 

where K is the kurtosis reflecting the degree of the complexity of the tissue, and Dk 

represents non-Gaussian diffusion coefficient. The estimation of diffusion kurtosis 

needs DWI images acquired with at least three b-values including high b-value (about 
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2000 s/mm2) [65]. Although the biophysical interpretation of K is less straightforward, 

K has been shown to provide greater accuracy than ADC in detecting cancer [28,65,66]. 

A stretched exponential model assumes that there are a large number of Gaussian 

components having a continuous distribution of diffusivities and has been used to 

characterize the intravoxel heterogeneity [15]: 

                                                                 𝑆 = 𝑆!𝑒!(!!!)
!                                              [2.16]                                                                          

where Ds is coined as distributed diffusion coefficient, and α is the stretching parameter 

(0 < α ≤ 1). The parameter α characterizes the deviation of the signal decay from 

monoexponential behaviour. When α is 1, the stretched exponential model becomes a 

monoexponential model. Lower values of α signify increasing number of separate 

proton pools within the voxel, suggesting a higher degree of the heterogeneity. 

The biexponential model is generalized to a multiexponential model [67]: 

                                                               𝑆 = 𝑆! 𝑓!𝑒!!!!!
!!!                                         [2.17]                                          

where n ≥ 3, fi is the volume fraction of the ith component, and the sum of fi is 1. The 

multiexponential model adds extra freedom for the model to fit the data compared with 

the biexponential model. A study of water diffusion in brain tissue has demonstrated 

that DWI signal decay is better fitted by a triexponential function than monoexponential 

and biexponential models [68]. 

2.3.2. Compartment Models 

The general aim of clinical DWI is to infer tissue structure properties, particularly 

pathology, from measurements of diffusion attenuation under conditions of varying 

diffusion times and diffusion-weightings. For this purpose, compartment models are 

more useful than phenomenological models. Because compartment models are based on 

assumptions about tissue geometry and thus their model parameters are directly related 

to properties of the tissue structure. Compartment model sees biological tissue as a 

combination of compartments. These compartments represent separate populations of 

water molecules in distinct structural environments. In this way biological tissue can be 

roughly divided into intracellular and extracellular spaces. In the absence of exchange 
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between intracellular and extracellular compartments, the DWI signal S can be 

expressed as a summation of the signals from these two spaces, 

                                                                   𝑆 = 𝑓!𝑆! + 𝑓!𝑆!                                              [2.18]                      

where Si represents the signal from water in the intracellular space, Se represents the 

signal from water in the extracellular space, and fi and fe are the signal fractions of these 

two water pools, with fi + fe = 1. The precise formula of Eq. 2.18 depends on the shape 

and arrangement of cellular structures and can be modified to account for the 

permeability of cell membranes. Multi-compartment models have proven successful in 

brain white matter. White matter is mainly composed of axons, which are arranged in 

parallel bundles. Two-compartment models, based on intra- and extra-axonal 

compartments, have been proposed to model white matter [17-19,69]. These two-

compartment models often assume restricted diffusion inside axons and hindered 

diffusion outside axons. Other models described diffusion in white matter with three or 

more compartments by including other cellular structures, such as the myelin sheath, 

glial cells, and cerebrospinal fluid regions [20,21,70,71]. 

However, compartment models generally lack for non-neural tissue. One of the early 

attempts is to model DWI signals in tissue in vivo with a two-compartment model 

called intravoxel incoherent motion (IVIM) instead of the ADC model when the 

measurement is performed at low b values (< 200 s/mm2) [72,73]. In such case, the 

DWI signal decay is not Gaussian anymore due to the perfusion effects of the blood 

vessel in tissue in vivo. The IVIM model divides the tissue into vascular and non-

vascular spaces and is represented by a biexponential function 

                                               𝑆 = 𝑆![ 1− 𝑓 𝑒!!" + 𝑓𝑒!!!∗]                                 [2.19]                                                                

where f is perfusion fraction, D the diffusion coefficient and D* the perfusion coefficient. 

The IVIM model has been widely used for many cancer types such as prostate [74], 

breast [75], and kidney [76], showing that IVIM parameters may offer additional 

information for tissue characterization.  

A three-compartment model called VERDICT, which describes tissue as a composition 

of intracellular, extravascular-extracellular and intravascular compartments, has been 

recently used to model colorectal cancer [41]. The signal for the VERDICT model is    
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                                                             𝑆 =  𝑓!𝑆!!
!!!                                                 [2.20]                                  

where signal S1 is from water inside cells, S2  is  from water outside cells and blood 

vessels, S3 is from water in blood vessels, and fi is the signal fraction of the 

corresponding compartment. The precise form of each compartment model depends on 

a tissue type. The VERDICT model parameters including cell radius and vascular 

volume fraction were in good agreement with histology of colorectal tumors. More 

importantly, VERDICT model successfully distinguished two types of colorectal tumors 

and reflected the effects of chemotherapy treatment by the differences in the parameters 

while the ADC and biexponential models failed to detect either of these differences. A 

subsequent study applied VERDICT model to prostate tissue in vivo [42]. It showed 

that VERDICT model differentiated cancer from benign tissue more reliably than the 

ADC and biexponential models. These pioneering studies on compartment models have 

demonstrated their superiority in cancer detection and inference of tissue microstructure 

over phenomenological models.  To model water diffusion in non-neural tissue, two 

important effects should be taken into account: 

l Water molecules inside cells will experience restricted diffusion.  

l Water molecules in the extracellular space will experience hindered diffusion.  

Depending on cell types, cellular membranes might be considered either permeable or 

impermeable to water molecules during diffusion time of the MRI experiment. In this 

study, it is assumed there is no water exchange between compartments. To model 

restricted and hindered diffusion in non-neural tissue, five single-compartment models 

that have been used for white matter [23] are selected (Table 2.1). They are as follows:   

1. The first is an isotropic tensor, which is referred as a ‘Ball’. The model has only 

one parameter, the diffusivity D. 

2. The second referred to as ‘Zeppelin’, is a cylindrically symmetric tensor. The 

model has the principle eigenvector 𝜀 , parallel diffusivity D||, perpendicular 

diffusivity D⊥.  
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3. The third is a conventional single-component DTI model that is referred as 

‘Tensor’. The model provides the following parameters: parallel diffusivity D||, two 

perpendicular diffusivities D⊥1, D⊥2, and three orthogonal eigenvectors 𝜀, 𝜀!!, 𝜀!!. 

4. The fourth is ‘Stick’ model assuming diffusion within idealized cylinder of zero 

radius. The model has a direction n and diffusivity D as parameters. 

5. The ‘Sphere’ model describes restricted diffusion inside impermeable spherical 

pore with a non-zero radius Rs.  

The analytical expression for ‘Sphere’ model is obtained using the Gaussian phase 

distribution approximation and is given by 

             𝑙𝑛𝑆 =  −2𝛾!𝐺! !!!!!!!!!!!!!!!
!! !!!!!!!

!∆!!!!!!
! ∆!! !!!!!!

! (∆!!)

!!!!!(!!!!!!!)
!
!!!         [2.21]             

where D is the free diffusion constant and an is the nth root of the Bessel equation 

𝑎!𝑅 𝐽!
!

!𝑎!𝑅 −
!
!!!
!

𝑎!𝑅 = 0, where J is the Bessel function of the first kind. 

In this study, the applications of compartment models in four types of non-neural tissue 

have been investigated. These four types are prostate, breast, lymph node and cultured 

cells. 
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Table 2.1 Candidate compartment models for non-

neural tissue 

 (Reproduced from [23] with permission from 

Elsevier, UK) 

Model Forma 
Degrees of 

freedom 

  

𝐃 = 𝐷𝐈	              D 

 
𝐃 =  𝛼𝛆𝛆𝐓 + 𝛽𝐈,𝐷∥ = 𝛼 + 𝛽,𝐷! = 𝛽	 𝐷∥,𝐷!,𝜃,𝜙	

 
𝐃 = 𝐷∥𝛆𝛆𝐓 + 𝐷!!𝛆!𝟏𝛆!𝟏𝐓 + 𝐷!!𝛆!𝟐𝛆!𝟐𝐓 	

𝐷∥,𝐷!!,𝐷!!,𝜃,𝜙,	

𝛼	

 

𝑆 = 𝑒!!"(𝒏𝑮)! 	 𝐷,𝜃,𝜙	

 
            GPD approximation. 𝑅! > 0 𝐷,𝑅!	

a) D is the diffusion tensor. I is the identity tensor. 𝜃,𝜙,𝛼 are tensor angles. 
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2.4.  Prostate Tissue 

2.4.1. Anatomy and Histology  

The prostate consists of three major glandular regions and an anterior fibromuscular 

layer. These three regions are the peripheral zone (PZ), the central zone (CZ) and 

transition zone (TZ), which differ histologically and biologically (see Figures 2.6 and 

2.7). The CZ comprises about 25% of the total prostate volume and has the shape of an 

inverted cone immediately surrounding ejaculatory duct orifices to form part of the 

prostate base [77]. The PZ comprises about 70% of the prostate volume and extends 

posterolaterally around the CZ and distal prostatic urethra. The TZ consists of two 

independent small lobes lying anterolaterally to the proximal prostatic urethra. 

Approximately 70%-75% of prostate cancers occur in the PZ and 20%-30% in the TZ. 

Cancers originating in the CZ are rare [78]. 

  

Figure 2.7 The anatomy of the prostate  

(Reproduced from [79] with permission from Springer-Verlag Berlin Heidelberg, 

Germany) 
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Figure 2.8 Coronal section of the prostate.  

It shows the location of the peripheral zone and transition zone in relation to the 

proximal urethral and verumontanum. (Reproduced from [79] with permission from 

Springer-Verlag Berlin Heidelberg, Germany) 

Histologically, the prostate gland is globally composed of epithelium and stroma 

(Figure 2.8a) [80]. The prostate epithelial cells represent a continuum of differentiation 

from basal cells to secretory cells (Figure 2.8b). Secretory cells are cuboidal or 

columnar-shaped with clear to pale cytoplasm and pseudostratified nuclei. Basal cells 

are situated at the periphery of the gland beneath the secretory cells with blue-grayish, 

smooth nuclei. Adenocarcinoma of the prostate is an epithelial malignancy that happens 

in aging men. Over 95% of prostate cancers are adenocarcinomas [81]. Therefore, the 

prostate epithelial cells play a major role in the development of benign and malignant 

disorders. 

If a prostate cancer region is found in a tissue sample, the Gleason grading scheme is 

used to quantify the degree of malignancy [82]. The Gleason grading system is based on 

architectural features of prostate cancer and has five patterns (Figure 2.9).  
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Figure 2.9 Histology of the normal prostate gland. 

(a) Benign prostatic tissue. Prostate glands form lobulated architecture with intervening 

fibromuscular stroma. (b) Normal prostate glands. They consisted mainly of secretory 

cells and basal cells. (Reproduced from [79] with permission from Springer-Verlag 

Berlin Heidelberg, Germany) 

 

											 	

Figure 2.10 Morphologic spectrum of Gleason patterns.  

(a) Gleason pattern 3. (b) A cluster of poorly formed glands representing Gleason 

pattern 4. (c) Gleason pattern 4 cribriform carcinoma. (d) Solid nest representing 
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Gleason pattern 5. (Reproduced from [79] with permission from Springer-Verlag Berlin 

Heidelberg, Germany) 

2.4.2. Models of DWI in Prostate Tissue 

Prostate cancer is the most common cancer diagnosed in Australia and the third most 

common cause of cancer death [83]. The most commonly used tests to aid early 

detection of prostate cancer are digital rectal examination and serum prostate-specific 

antigen level. However, both tests result in overdiagnosis and overtreatment [84], as 

well as systematically miss significant tumor [85]. Recently, a great interest has been 

shown for multi-parametric magnetic resonance imaging (mpMRI), which includes T2- 

weighted imaging (T2W), dynamic contrast-enhanced MRI (DCE) and DWI. mpMRI is 

increasingly being used to assist target biopsy, risk stratification and treatment selection 

for prostate cancer [4,5]. To uniform and standardize reports of mpMRI of the prostate, 

the European Society of Urogenital Radiology published a unified Prostate Imaging 

Reporting and Data System (PI-RADS) in 2012 and upgraded to PI-RADS version 2.0 

in 2015 [78,86]. The sensitivity and specificity of T2W for prostate cancer vary widely 

[87]. DCE needs intravenous administration of contrast medium. DWI is the most 

reliable component of the mpMRI exam. A clinical study has shown that DWI 

correlates more strongly with both cancer grade and volume than do T2W and DCE [88]. 

Most clinical DWI studies applied ADC model and found that ADC values were lower 

in prostate cancer compared to normal prostate, indicating reduced water mobility 

[26,27,89-92]. Also, ADC values showed a moderate negative correlation with Gleason 

score [93,94].  

In fact, it has been shown that DWI signal decay in prostate tissue in vivo is non-

monoexponential at least in two regimes: over a range of low b–values (< 200 s/mm2) 

and over an extended b–value range including high b–values (> 2000 s/mm2) [10,95]. 

Besides, ADC values of malignant and benign tissue in the PZ and TZ showed a 

considerable overlap [96]. As the ADC model is a poor descriptor of complex diffusion 

environment of prostate tissue, more sophisticated models have been employed to 

describe non-monoexponential diffusion signals.  

For measurements over a range of low b-values, the IVIM model has been used to 

separate true water diffusion from perfusion within capillaries in prostate tissue. 
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However, some studies reported that the IVIM model did not yield a clear added value 

for tumour detection as compared with the ADC model [95,97,98]. Other studies 

demonstrated that IVIM parameters were significantly different between prostate cancer 

and normal prostate [74,99]. Although these two studies found that the diffusion 

coefficient D of the IVIM model was significantly lower in prostate cancer than normal 

tissue, the perfusion fraction f was unexpectedly lower in tumour, which disagreed with 

findings in a DCE study of prostate cancer [100] and angiogenesis [101]. Another study 

reported a higher f in prostate cancer as compared with normal tissue [102]. 

In the healthy prostate and prostate cancer, the biexponential model provided a 

statistically better fit to the signal decay curve obtained over an extended b-value range 

[10,11]. Two studies showed that the biexponential model parameters differed 

significantly for discriminating prostate cancer from benign tissue [11,37].   

The kurtosis model has been evaluated in terms of prostate cancer detection. Two 

studies [28,65] found that the kurtosis model may contribute to the diagnosis of prostate 

cancer while one study [103] reported no significant benefit of the kurtosis model for 

cancer detection in the PZ as compared with the ADC model.  

The stretched model has been used for distinguishing prostate cancer and normal tissue. 

One study found that both distributed diffusion coefficient (Ds) and stretching parameter 

(α) were significantly lower in tumour than normal tissue [30]. 

A recent study used the triexponential model for diagnosing prostate cancer and 

suggested that the triexponential model could provide more detailed information on 

diffusion and perfusion of prostate cancer than the biexponential model [29]. 

Many studies investigated the feasibility of the DTI model for prostate cancer detection. 

MD values have been shown to be lower in tumors than in normal prostate [104-107]. 

However, measurements of diffusion anisotropy in prostate tissue have produced 

equivocal results with widely differing FA values [104,105,108-111]. It has been shown 

that low signal to noise ratios will lead to artificially high FA values [111,112]. A 

combined in vivo and ex vivo study of histologically defined prostate cancer reported 

no significant diffusion anisotropy differences between cancer and benign tissue in the 
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PZ [113].  An ex vivo study demonstrated a decrease in FA as voxel volume increased 

and wide variations in average FA between prostates [56].  

Clearly, the more complex the model becomes, the more challenging its applicability is. 

Several groups have compared some of the aforementioned models in terms of fitting 

quality, the variance of the fitted parameters and theoretical information. Quentin et al. 

[114] evaluated which phenomenological model (ADC, biexponential, statistical and 

kurtosis) fitted best to the DWI signal. They showed that a more complex model might 

provide a better fit to the data, and the ADC model is sufficient to distinguish prostate 

cancer from normal tissue using b-values ranging from 0 to 800 s/mm2. Bourne et al. 

[39] made a comparison of four popular models (ADC, biexponential, stretched and 

kurtosis) and found that the biexponential model had highest information for 

measurements including b-values above 2000 s/mm2. Jambor et al. [115] compared the 

same four models and demonstrated that the kurtosis model is the preferred model for 

characterization of normal prostate and prostate cancer using b-values up to 2000 s/mm2 

in terms of fitting quality and variance of the model parameters. Although these 

advanced models show improvement in data description compared to the ADC model, 

the biologic interpretation of the model parameters is limited.  

Whereas the development of advanced models continues within research settings, the 

ADC model remains the mainstay approach in clinical practice. Decreased ADC values 

in cancer tissue are commonly attributed to higher cellularity. The cellularity commonly 

refers to either nuclear count per unit area or nuclear area per unit area. However, a 

recent study of fixed prostate tissue has demonstrated that the clinically observed 

variations of ADC are likely to have mainly resulted from volume changes in the gland 

compartments (epithelium, stroma and lumen space) of prostate tissue having distinct 

diffusivities rather than from differences in cellularity [116]. Preliminary diffusion 

microimaging studies of formalin-fixed prostate tissue reported highly restricted 

diffusion in the epithelial cell layers, intermediated diffusion in the stroma, and free 

diffusion in ducts and acinar lumina [117,118]. Fibromuscular stromal tissue exhibited 

significantly higher diffusion anisotropy than the glandular epithelium and lumen 

spaces [55]. Fiber tracks generated from DTI data were consistent with stromal myocyte 

and actin fiber orientation seen on light microscopy [55]. These new findings motivate 
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the development of compartment models to provide more specific information on 

prostate tissue. 

The first attempt to investigate compartment model of diffusion in fixed prostate tissue 

was made by comparing the fitting quality of single and multi-compartment models 

including isotropic restricted Ball-sphere model [119]. This study found that the 

triexponential model gave the best fit to the data. A three-compartment ‘VERDICT’ 

model based on vascular, intracellular, and extracellular-extravascular compartments 

has recently been shown to successfully discriminate between normal and malignant 

prostate tissue as well as to provide model parameters consistent with histological 

features, such as cell size [42]. Moreover, an increase in VERDICT intracellular volume 

fraction was in good agreement with the proliferation of epithelial cells found in 

prostate cancer [117]. To make clinical adoption of the VERDICT models feasible, an 

experimental design optimization framework [17] has been used to reduce the scan time. 

The results showed that the VERDICT model differentiated between cancer and normal 

tissue, and the optimized protocol allowed stable fitting and sensible parameter 

estimates [43]. 

2.5.  Breast Tissue 

2.5.1. Anatomy and Histology  

Breast is an organ whose structure reflects its special function – the production of milk 

for lactation. The adult female breast spans from the second to sixth/seventh ribs. The 

superficial and deep fascia of the chest wall encompasses the base of the breast. The 

breast is composed of skin, superficial fascia, nipple-areola complex, deep fascia and 

breast parenchyma (Figure 2.10).  The parenchyma contains three principal tissue types: 

glandular epithelium, fibrous stroma, and fat. Glandular epithelium is comprised of 15-

20 lobes. Each lobe contains 20-40 terminal ductal lobular units (Figure 2.11), which 

are the functional units of the breast. The terminal ductal lobular unit consists of 

intralobular terminal duct, extralobular terminal duct, and lobule. Fibrous stroma and 

supporting structures are referred to as Cooper’s ligaments.  The ligaments are dense 

connective tissue that holds the breast upward. 
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Figure 2.11 Components of the breast 

(Reproduced from [120] with permission from Springer International Publishing, 

Switzerland) 
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Figure 2.12 Fully developed breast lobular unit  

(Reproduced from [120] with permission from Springer International Publishing, 

Switzerland) 

Two of the most frequently encountered benign breast conditions are introduced here. 

Fibroadenomas is frequently diagnosed in young women, predominantly in the 20s or 

30s [121]. They have epithelium and stroma with smooth, well-circumscribed borders. 

Lipoma is the most common soft tissue tumour in the body, with a prevalence of 2.1 per 

1000 people [122]. Its specimen is composed of bland-appearing mature adipocytes. 

For breast carcinoma, there are two broad categories with respect to its confinement to 

the ductal-lobular system of the breast or not. They are carcinoma in situ and invasive 

carcinoma. 

2.5.2. Models of DWI in Breast Tissue 

Breast cancer has the highest incidence of all malignancies occurring in women 

worldwide. Mammography is the primary screening imaging modality for the early 

detection of breast cancer, but has limitations in terms of sensitivity (39-86%) and 

specificity (88-94%), depending age and breast density [123,124]. Therefore, ultrasound 

is used in addition to mammography to improve breast cancer screening. Nevertheless, 

mammographic screening is associated with the overdiagnosis and ultrasound screening 
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requires a prohibitively long radiologist’s examination time. These inherent problems 

have stimulated research in the field of MRI. MRI has been established as the most 

powerful breast imaging technique to support breast cancer diagnosis, staging, and 

evaluation. MRI has been shown to be superior to mammography for the diagnosis of 

primary or recurrent invasive or intraductal cancer [125,126]. DCE of the breast is the 

central modality of breast MRI as it provides detailed morphologic information, and, to 

some extent, functional information, which yields an excellent sensitivity [127,128]. 

However, it is limited by a low specificity [129,130]. Among all functional MRI 

parameters, DWI with quantitative ADC mapping has emerged as a valuable adjunct to 

DCE to provide additional specificity [6,7,131]. Mammography, ultrasound, and MRI 

are scored in seven categories according to the American College of Radiology Breast 

Imaging Reporting and Data System (BI-RADS): category 0, incomplete; 1, negative; 2, 

benign; 3, probably benign; 4, suspicious; 5, highly suggestive of malignancy; 6, known 

biopsy-proven malignancy [132]. 

Many studies have demonstrated significant differences in the ADC values of benign 

and malignant breast lesions [7,133-138]. The ADC value of malignant lesions is 

usually lower than that of benign lesions. ADC has also been proven useful for 

differentiating between invasive breast cancer and noninvasive ducal carcinoma in situ 

[139]. A recent study reported high reproducibility, repeatability and diagnostic 

accuracy of ADC values in breast lesions [140]. In the meanwhile, it is important to 

realize that there are no standard measurement protocols and data processing methods 

for DWI [141]. The ADC values are affected by acquisition parameters and 

physiological parameters such as perfusion [133].  

Although the ADC model has widespread application in breast DWI, the biophysical 

basis of reduced ADC in malignant lesions remains poorly understood. There is an 

increasing use of advanced models to characterize both normal and cancer tissue. These 

models are expected to enable more powerful differentiation and classification of 

disease by providing additional specificity in the description of breast tissue. 

Recently, the use of the IVIM model in the breast has gained attention for its sensitivity 

to microvascular flow. Numerous groups have found that the IVIM model parameters, 

the tissue diffusivity (D) and the perfusion fraction (f) show significant differences 

between benign and malignant lesions (significantly lower D and higher f in malignant 
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lesions compared with benign lesions) [142-147]. Two studies reported that a 

combination of D and f improved diagnostic accuracy [142,146].  

The observed diffusion signal decay over an extended range of b-values is non-

monoexponential. The kurtosis model has been used to describe this behaviour in breast 

tissue. Several studies reported significantly higher kurtosis K in malignant lesions 

compared with benign lesions, suggesting that K added to the diagnostic accuracy of 

ADC alone [66,148,149].  

A model combing IVIM with kurtosis showed higher perfusion fraction, lower ADC0 

(ADC obtained at b = 0) and higher kurtosis in malignant lesions than in benign lesions 

and normal tissue using b-values up to 2500 s/mm2 [150]. 

DTI extends ADC by probing water motion in six or more directions to measure the full 

diffusion tensor. Many studies have demonstrated the feasibility of DTI characterization 

of normal breast [33,151] and breast cancer [152-157]. These studies reported lower 

MD values in breast cancer as compared with benign lesions. However, the results for 

FA were contradictory. Several studies reported that FA values were significantly 

different between benign and malignant lesions [152,154,155] and others found no 

difference in FA [153,156,157]. 

The biexponential model has been used to investigate water diffusion in the breast 

cancer [12,158]. They found that DWI signal decay in tumours was better fitted by a 

biexponential function than a monoexponential function, and the slow component 

fraction of the biexponential model had a positive correlation with the cellular fraction. 

A recent study applied the stretched model to characterization of structural 

heterogeneity in breast cancer and demonstrated its diagnostic benefit [159]. 

Further improvements in modelling of DWI signal decay are desired for a better 

understanding of the physiologic basis of DWI. Preliminary diffusion microimaging 

study of fixed breast tissue reported low diffusivity of epithelial cells relative to 

supporting fibrous stroma [160]. This finding is similar to that previously reported in 

prostate [117,118] and esophagus [161]. These ex vivo microimaging results can serve 

as a basis for developing more advanced models that can provide biophysical specificity. 
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A three-compartment VERDICT model that characterizes water diffusion in 

intracellular, vascular and extracellular-extravascular spaces has shown success in 

differentiating two colorectal tumor types with different cell morphology [41]. The 

precise form for each compartment within the VERDICT framework is application 

dependent. Motivated by this work, a number of versions of VERDICT have been 

applied to breast tumours in vivo [162]. They were Ball-ball-sphere, Ball-stick-sphere 

and Ball-zeppelin-sphere models. The results demonstrated that the Ball-ball-sphere 

model best explained the data and its parameters were consistent with histology 

(cellularity and cell radius). A subsequent study fitted a number of one- and two-

compartment models to ex vivo data and found that two-component anisotropic and 

restricted models (Zeppelin-sphere and Tensor-sphere) best characterized the signals in 

glandular breast tissue [163]. 

2.6.  Cultured Cell Constructs 

2.6.1. 3D culture system 

Multicellular spheroids are analogous to avascular tissue in vivo [164]. The physical 

characteristics of spheroids including size, cell density, metabolites and proliferation 

gradients are tumour type dependent [165]. Due to metabolic waste accumulation 

caused by inefficient mass transport in spheroids [164], a spheroid with a size above 

500µm in diameter commonly displays a layer-like structure consisting of a necrotic 

core, a middle layer of quiescent cells and an outer layer of proliferating cells (Figure 

2.12) [166]. 
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Figure 2.13 Microenvironments inside a spheroid. 

(A) Tumor spheroids exhibit spherical geometry with a concentric organization of dead, 

quiescent and proliferating cells. (B) Hematoxylin-and-eosin staining of an HepG2 

hepatoma spheroid. Note the cells that differentiate into smooth, epithelium-like surface 

on the spheroid. (Reproduced from [166] with permission from John Wiley and Sons, 

Germany) 

2.6.2. Models of DWI in Cell Constructs  

Multicellular three-dimensional (3D) spheroids are being used with increasing 

frequency in various aspects of cancer research. Spheroids can closely mimic the tumor 

environment by culturing cells in a spatially relevant manner, encouraging cell-cell and 

cell-matrix interactions [167]. These interactions enable the 3D-cultured cells to acquire 

morphological and cellular characteristics relevant to in vivo tumors [168]. In contrast, 

conventional two-dimensional (2D) cultured cells are grown as monolayers, losing 

physiological extracellular matrix and high serum concentrations that are present in 
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native tumors [169]. Consequently, 2D-cultured cells lose relevant properties and 

introduce artificial effects. Recent reports demonstrate low-diffusivity epithelia in 

prostate [118], breast [160], and esophagus tissue [170]. Cultured epithelial cell 

spheroids recapitulate the complex 3D microenvironment of glandular epithelia and 

therefore provide an ideal biological model system for investigation of the distinctive 

structural properties that may contribute to the observed low water mobility. 

DWI has become a well-established clinical [7,31,87] and preclinical [23,39,55,161] 

tool for characterization of biological systems. Nevertheless, to date, there are few DWI 

studies of spheroids. The measured apparent diffusivity has been used for investigating 

compartmentation of diffusion in tumor spheroids [171,172]. They demonstrated the 

presence of slow and fast compartments in spheroids. One study found that these 

distinct diffusion compartments also differed in T2 relaxation, with significantly shorter 

T2 for the slow compartment than for the fast compartment [171]. A recent study 

reported that the diffusivity of hydrogel-based spheroids was sensitive to both cell 

proliferation and Taxol treatment [173].  

2.7.  Lymph Node Tissue 

2.7.1. Anatomy and Histology  

The lymphatic system is a network of variable lymph vessels and lymph nodes that run 

throughout the body (Figure 2.13). It is an important part of our immune system. The 

lymphatic system defends the body from bacteria and other infections and destroys old 

or abnormal cells. The lymph nodes are oval or bean-shaped structures, 0.1-2.5 cm long 

that lie along the course of lymph vessels [174]. Each lymph node consists of fibrous 

capsule and parenchyma (Figure 2.14). The fibrous capsule invests the entire node and 

is separated from the parenchyma by subcapsular sinus. The parenchyma is divided into 

cortex and medulla. 
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Figure 2.14 Schematic diagram of a female being showing major locations of 

lymph nodes, thoracic duct, thymus, spleen and other lymph vessels  

(Reproduced from [175] with permission from Wikimedia Foundation, US) 
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Figure 2.15 Structure of a lymph node 

(Reproduced from [176] with permission from Cancer research, UK) 

The normal lymph node is populated mostly by lymphocytes and usually <1 cm in size 

(Figure 2.15A) [177]. Lymphoma is cancer that starts in lymphatic cells (Figure 2.15B). 

There are dozens of subtypes of lymphomas. Metastatic lymph nodes represent 

involvement of lymph nodes by non-lymphoid tumours (Figures 2.15C and 2.15D) 

[178]. 
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Figure 2.16 Histology of  normal and malignant lymph nodes 

(A) Involuted germinal center, with depletion of germinal center lymphocytes and 

depletion of the marginal zone. (B) B-lymphoblastic lymphoma/leukemia. (C) Metastatic 

nasopharyngeal carcinoma. (D) Metastatic breast carcinoma in axillary lymph node. 

(Reproduced from [178] with permission from Springer New York, US) 

2.7.2. Models of DWI in Lymph Node  

The detection and accurate staging of lymph node metastases are important for the 

prognosis, treatment, and follow-up of oncological patients. Lymph node dissection is 

the golden standard for assessing nodal involvement but increases the risk of 

complications by exposing the patient to dissection-related sequelae and morbidity 

[179]. As a result, non-invasive imaging by computer tomography (CT), conventional 

MRI, ultrasonography or positron emission tomography has been used for nodal staging. 

The criteria used by these imaging techniques to date are morphological features 

including nodal size, shape, borders, extracapsular spread, and abnormal internal 

architecture. The size is the most used criterion for determining nodal metastases. 

However, neither CT nor conventional MRI is sufficient to discriminate benign from 
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malignant lymph nodes by applying the size criterion. DWI is an imaging tool yielding 

unique information that reflects microstructural alterations in tissue. Accumulating 

evidence shows that DWI may be helpful in discriminating between malignant and non-

malignant lymph nodes by using ADC [34-36]. A recent systematic review of eighty 

studies reported that DWI had higher sensitivity (84%), specificity (95%) and area 

under curve (0.95) for detection of pelvic lymph node metastasis and recommended 

DWI as the first choice for metastasis exclusion [180]. Another review of thirteen 

studies showed that DWI appeared to be a reliable method for differentiation between 

metastatic and nonmetastatic lymph nodes in breast cancer patients [36]. 

The ADC values of metastatic lymph nodes were often found to be lower than those of 

benign lymph nodes [34-36,181,182]. However, some studies reported contradictive 

results. Several groups observed lower ADC values in benign than in malignant lymph 

nodes [183-185]. Two studies found no significant differences in ADC between benign 

and malignant lymph nodes [186,187]. In addition, the ADC values of benign and 

malignant nodes varied widely [188].  

The ADC model assumes a Gaussian water displacement probability that is well known 

to be invalid in the heterogeneous environment of biological tissue. For measurements 

that include intermediate and low b-values, the IVIM model is often used to separate 

blood flow in vessels from water motion corresponding to true diffusion [72,73]. The 

IVIM model will probably enhance the accuracy of detection of malignant lymph nodes. 

Two recent studies have demonstrated that the IVIM model is useful for discrimination 

between metastatic and nonmetastatic lymph nodes in rectal cancer [189,190].  One 

study found significantly lower D (diffusion coefficient) and D* (perfusion coefficient) 

in metastatic lymph nodes than those in nonmetastatic lymph nodes and no significant 

difference in f (perfusion fraction) [189]. However, the other study reported 

significantly higher D and f values of metastatic lymph nodes than those of normal 

lymph nodes and statistically lower D* in metastatic lymph nodes [190]. Another study 

showed that the f in lymph nodes might be helpful for prediction of treatment response 

in head and neck carcinomas [191].  



	

	 41	

2.8.  Summary 

This chapter gave general background knowledge on DWI and then described three 

principal physical modes of diffusion (restricted, hindered and anisotropic) within tissue. 

Two complementary approaches for analysing the diffusion signal were discussed. One 

is the phenomenological model that provides empirical diffusion signal representation 

but lacks specificity. The other is the compartment model that is based on the 

assumption about tissue structure and can provide estimates of specific tissue features. 

However, compartment models are generally lacking for non-neural tissue. In this work, 

compartment models for four types of non-neural tissue including prostate, breast, 

spheroids and lymph nodes were investigated. The structure of these four types of tissue 

and modelling techniques that have been used for them were reviewed in this chapter. 
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 Chapter 3 Information Based 

Ranking of Models of Diffusion in 

Prostate Tissue 

3.1.  Introduction 

This chapter compares the theoretical information of single and multi-compartment 

models of DWI signal attenuation measured over an extended range of b-values and 

multiple diffusion times in prostate tissue. It aims to identify compartments that are 

necessary for accurately describing DWI signals in prostate tissue. Most previous DWI 

studies of prostate [39,114,115] made a comparison of phenomenological models that 

lack specificity and do not account for anisotropy and restricted diffusion (see Section 

2.4.2, Chapter 2). A recently proposed three-component ‘VERDICT’ model [42] has 

demonstrated more reliable differentiation between prostate cancer and normal tissue 

than ADC and biexponential models. More importantly, the VERDICT model provides 

useful microstructural parameters such as cell size, intracellular, vascular, extracellular-

extravascular volume fractions. However, previous DWI studies [42,43] that applied the 

VERDICT framework to prostate tissue in vivo used only isotropic compartment model. 

This study investigates the non-perfusion components of the VERDICT model by 

comparing information of eleven compartment models that include anisotropic 

components. To obtain high signal-to-noise ratio (SNR) measurements to inform the 

further development of clinical imaging methods this study used measurements 

performed on formalin fixed prostates.  
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3.2.  Methods 

3.2.1. Tissue Handling and Histopathology 

Four prostates were collected with institutional ethics approval and written informed 

consent from patients, and they are: Prostate 1, age 59y, 47g, Gleason 4+4; Prostate 2, 

age 57y, 38g, Gleason 3+3; Prostate 3, 56y, 47g, Gleason 3+4; Prostate 4, healthy 

prostate, 35g. The intact prostate was sent to the pathology department immediately 

upon surgical resection and without immersion in a fixative solution. The organ was 

weighed and inked, and the seminal vesicles and any surgical clips were removed. The 

total time between resection and immersion in formalin was 6-8 hr. An experienced 

urologic pathologist confirmed that there was no significant tissue degradation due to 

delayed fixation of the specimens. The organ was immersed in 10% neutral buffered 

formalin for 24 hr and then immersed in normal saline for 24 hr to remove formalin. 

Fixed prostates were imaged for 24-48 hr before being returned to the pathology 

department for routine histology. All prostates were sectioned at 4-mm intervals in 

planes approximately parallel to imaging slices. All measurements were performed on 

fixed prostate tissue. 

3.2.2. MRI Acquisit ion 

Each organ was imaged suspended on a 5-mm saline-filled NMR tube inserted through 

the urethra and mounted in brackets in a plastic casing that maintained the tube axis 

parallel to and ~5 mm above the magnet z axis [192]. Imaging of fixed prostate tissue 

was performed at room temperature (22˚C) on a 9.4T Bruker BioSpec Avance III 94/20 

system (Bruker, Karlsruhe, Germany), which is equipped with a 72-mm internal 

diameter quadrature radiofrequency coil and BGA-12S HP gradients with maximum 

strength 660 mT/m and slew rate 4570 T/m/s. Imaging was performed transaxial to the 

urethra with the imaging planes oriented orthogonal to the 5-mm NMR tube. 

All diffusion-weighted measurements were performed using a PGSE sequence and 

preceded by the acquisition of two reference ‘b = 0’ images. To maximize SNR, all 

measurements applied the minimum available TE (~Δ + 8 ms). Intrinsic SNR was 

calculated from the ratio of the signal S, which is the mean signal intensity in a large 

intraprostatic region of interest (ROI) manually drawn inside a mid-organ slice of each 

prostate, relative to the noise level N, which is the standard deviation of the difference 
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between the ROI voxel values in the two reference ‘b = 0’ images. The DWI signal was 

sampled in three orthogonal directions. Separate DTI acquisitions were performed using 

six gradient directions. To test the generality of the model selection, each prostate was 

imaged with a different acquisition. Prostates 1 and 2 were imaged with nominal b-

value range of 50-3000 s/mm2 and voxel volume of 16 mm3 to emulate feasible clinical 

voxel volumes and b-values. Prostates 3 and 4 were scanned at high spatial resolution 

(voxel volume, 1.6 mm3 and 3.9 mm3, respectively) over an extended b-value range of 

50-10354 s/mm2. DWI and DTI acquisition parameters are detailed in Table 3.1. 
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3.2.3. Model Description 

Prostate tissue was modelled with combinations of up to three components described 

according to the taxonomy used for brain tissue DWI in [23]. There were five candidate 

components (see Table 2.1 in Section 2.3.2): 1) a Tensor which is a conventional DTI 

model providing two commonly used parameters FA and MD [193]; 2) a Zeppelin, 

Table 3.1 DWI acquisition parameters 

Prostate	 1	 2	 3	 4	
FOV	(mm2)	 64×50	 64×50	 50×50	

	
45×45	

	
Matrix	size	 32×25	 32×25	 50×50	 45×45	
Voxel	size	
(mm3)	

2×2×4	 2×2×4	 1×0.78×2	 1.4×1.4×2	

SNR	 225	 232	 291	 240	
TR	
(ms)	

2000	 2000	 2000	 2000	

δ	
(ms)	

5	 5	 10	 5	 5	 10	 5	 10	

Δ	
(ms)	
	

10,	
20,	
40,	
60,	
80	

10,	
20,	
40,	

60,	80	

40,	
60,	
80	
	

10	 20,	40	 20,	40	 20,	
40,	
80	

20,	
40,	
80	

TE	
(ms)	

(=Δ	+	8	ms)	

18,	
28,	
48,	
68,	
88	

18,	
28,	
48,	

68,	88	

93,	
93,	
93	

18	 28,	48	 33,	53	 28,	
48,	88	

28,	
48,	88	

b-value	
(s/mm2)		6-
directions	

1500	 1500	 1500	 1599	

b-value	a	
(s/mm2)	

3-
directions	

50,	
147,	
275,	
430,	
607,	
806,	
1024,	
1259,	
1512,	
1780,	
2064,	
2362,	
2674,	
3000	

50,	
147,	
275,	
430,	
607,	
806,	
1024,	
1259,	
1512,	
1780,	
2064,	
2362,	
2674,	
3000	

50,	
147,	
275,	
430,	
607,	
806,	
1024,	
1259,	
1512,	
1780,	
2064,	
2362,	
2674,	
3000	

50,	
178,	373,	
632,	951,	
1328,	
1761,	
2249,	
2790,	
3384,	
4029,	
4724,	
5470,	
5960	

50,	
178,	373,	
632,	951,	

1328,	1761,	
2249,	2790,	
3384,	4029,	
4724,	5470,	
6265,	7108,	

8000	

216,	
511,	
940,	
1507,	
2217,	
3073,	
4077,	
5231,	
6538	

	

105,	
279,	
589,	
1044,	
1646,	
2403,	
3318,	
4394,	
5631,	
7036,	
8610,	
10354	

105,	
279,	
589,	
1044,	
1646,	
2403,	
3318,	
4394,	
5631,	
7036,	
8610,	
10354	

	

a)		Nominal	b-value.		Effective	b-values	were	used	for	model	fitting.	
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which is a cylindrically symmetric tensor and also provides FA and MD; 3) a Ball 

which is an isotropic tensor and equivalent to the ADC model; 4) a Sphere describing 

water molecules diffusing inside an impermeable pore with a non-zero radius; and 5) a 

Stick assuming water diffusion in an idealised cylinder with zero radius. In total, eleven 

models were considered (Table 3.2) 

3.2.4. Model Fitt ing Method 

This study used rich data sets with a wide range of b-values and diffusion times to 

ensure stable fitting [41]. As the measured diffusivity of restricted diffusion is diffusion 

Table 3.2 Fitted models  

Name	 Components	from	

Table	2.1	in	Section	

2.3.2	

Fitted	parameters	a	 No.	parameters	

Ball	(ADC)	 Ball	 D	 1	

Bi-ball	 Ball	+	Ball	 f1			D1		D2	 3	

Ball-sphere	 Ball	+	Sphere	 	f1			D1		R		D2	 4	

DTI	 Tensor	 D||		D⊥1		D⊥2		𝜃  𝜙  𝛼	 6	

Ball-zeppelin	 Ball	+	Zeppelin	 	f1			D||		D⊥		𝜃  𝜙		D	 6	

Zeppelin-

sphere	

Zeppelin	+	Sphere	 	f1		D		R		D||		D⊥		𝜃  𝜙	 7	

Ball-tensor	 Ball	+	Tensor	 	f1		D||		D⊥1		D⊥2		 𝜃  𝜙  𝛼			D	 8	

Bi-ball-

zeppelin	

Ball	+	Ball	+	Zeppelin	 	f1			f2			D1		D2		D||		D⊥		𝜃  𝜙	 8	

Bi-zeppelin	 Zeppelin	+	Zeppelin	 	f1		D||1		D⊥1		 𝜃!  𝜙!		D||2		D⊥2			

 𝜃!  𝜙! 	

9	

Tensor-

sphere	

Tensor	+	Sphere	 	f1		D||			D⊥1		D⊥2		𝜃  𝜙  𝛼		D		R		 9	

Ball-stick-	

sphere	

Ball	+	Stick	+	Sphere	 f1			f2		D1		D2		 𝜃  𝜙		D3		R		 8	

a)		Signal	normalized	before	fitting	(S0	=	1).		Sum	of	signal	fractions		f1	+	f2	+	fn	=	1.	D	is	the	

diffusivity,	D||	is	tensor	parallel	diffusivity,	and	D⊥is	tensor	perpendicular	diffusivity.	 𝜃, 𝜙	and	𝛼	

are	tensor	angles.		R	is	sphere	radius.	
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time dependent (see Section 2.2.1 Chapter 1), the 3-direction data with multiple 

diffusion times were acquired to enable the estimation of a restriction radius. The 6-

direction data with single b-value and single δ/Δ value were acquired to enable the 

fitting of anisotropic components. The combination of 3- and 6-direction data were 

fitted to each model using the Levenberg-Marquardt minimization algorithm available 

in the open source Camino toolkit [194]. The signals were normalized to the ‘b=0’ 

signal before fitting to minimize T2 effects [41]. Model fitting was based on 

minimization of an objective function that uses an offset-Gaussian noise model to 

account for the inherent Rician distributed noise in the magnitude MRI data [41]. The 

objective function is the sum of squared errors: 

                                         𝑆𝑆𝐸 =  (𝑆! 𝛿,∆,𝐺 − 𝑆!(𝛿,∆,𝐺))!          !
!!!                      [3.1]           

where M is the number of measurements, 𝑆! 𝛿,∆,𝐺  is the signal predicted by the 

model and 𝑆!(𝛿,∆,𝐺) is the signal of the nth measurement. Firstly, the evolution of the 

objective function over 1000 runs was monitored to assess convergence to the best 

parameter estimates (with lowest objective function). This test shows that the number of 

runs that is required to obtain the best solution in each model with probability > 0.99 is 

less than 100. Subsequently, for each voxel, the best-fit parameters were chosen after 

100 perturbations of the starting point to avoid local minima. The range of model 

parameters was limited to biophysical meaningful values. For the sphere component, 

radius R was constrained so that 0.1≤ R ≤ 20 µm. All component signal fractions were 

constrained to be in [0, 1] and sum to 1. Diffusivities of all components were 

constrained to the range of 0 ≤ D ≤ 2.1 µm2/ms according to the 22oC sample 

temperature [195]. 

3.2.5. Information Based Model Ranking 

The Akaike Information Criterion (AIC) provides an estimate of the expected, relative 

distance between the candidate model and the unknown true system that generates the 

observed data, and does not require arbitrary selection of cutoffs for hypothesis testing. 

AIC is useful in selecting the best model that is estimated to be closest to the unknown 

reality. Lower AIC indicates higher model information, equivalent to less information 

loss, and predicts superior model prediction performance. In the case of DWI of tissue, 



	

	 48	

the general definition of the AIC on p. 62 of Burnham and Anderson [196] leads to the 

expression: 

                                                         𝐴𝐼𝐶 = !!"
!!

+ 2𝑝                                              [3.2] 

where SSE is the sum of squared errors returned by the fit algorithm (see Eq. [3.1]), σ is 

the noise standard deviation estimated from a pair of reference images, and p is the 

number of model parameters. AIC is the trade-off between bias and variance. If the 

number of measurements, n is comparable to the number of model parameters, p, the 

derived second-order variant of AIC called AICc is recommended: 

                                                    𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + !!(!!!)
(!!!!!)

                                           [3.3] 

A model is used for inference about the empirical data that is generated from the 

unknown full reality [196]. In this sense, the data helps determine the proper complexity 

of the model and what effects are justified. The larger data sets tend to support more 

complex models as further effects could probably be found, and reduced data sets 

possibly favour simpler models. It is worth noting that model selection informs us of 

inferences that the observed data support, not what full reality might be. AIC cannot be 

used to compare models across different data sets as the inference is conditional on the 

given data set. Furthermore, data sometimes do not support only one model as best. 

Several models would serve almost equally well for the analysis of the empirical data. 

The inability to select a single best model is not a defect of AIC. That is, the data are 

ambivalent concerning some effect or parametrization or structure [196]. 

Previous prostate ex vivo studies have validated AIC as a method of comparing 

information of models using a leave-one-out test of model prediction error [39,40]. 

Differences between model ranking AIC scores were assessed via a Mann-Whitney U-

Test performed in Matlab (Mathworks, Natick, MA, USA). 

3.3.  Results 

This section presents the evaluation and assessment of the models in terms of 

information, parameter estimates, quality of model fit and anisotropy. 
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3.3.1. AIC-based Model Ranking 

Figure 3.1 presents positional variation in the ranking of the models according to AIC 

and displays the anatomical distribution of the highest ranked models in a mid-organ 

transverse slice of each organ. Figure 3.2 shows the rank variations of each model. Box 

and whiskers plots of the variation in AIC scores within and between models for each 

prostate are shown in Figure 3.3. Log(AIC) data are presented in Figure 3.3 because 

they produced a normal distribution of the skewed raw AIC scores. 
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Figure 3.1 Variation in AIC-based model rankings for four prostates.  

(A) Anatomical distribution of the highest ranked model in a mid-organ slice from each 

prostate (see Figure. 3.2 for pathology maps of these slices). Voxel color indicates 

model according to the Model Key. The Ball-stick-sphere (brown), Zeppelin-sphere 

(yellow) and Tensorsphere (orange) models ranked highest in most voxels in all 

prostates. (B) Positional variations in AIC-based model ranking. The gray scale 

indicates the number of times each model ranked at each position. The models were 

put in order according to the trends assessed subjectively [see Fig. 3.3 for a statistical 

analysis of AIC ranks]. Data from 558 voxels from slices 5 and 6 in Prostate 1, 504 

voxels from slices 5 and 6 in Prostate 2, 1278 voxels from slices 7–9 in Prostate 3, and 

2041 voxels from slices 3–6 in Prostate 4. Model Key: the four restricted models are 

shown with a bold black border and marked with an asterisk; anisotropic models are 

shown as ellipses; vertical lines within model symbols indicate the number of 

components. 
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Figure 3.2 Rank variations of individual models in four prostates. 

Slice positions as for Figures 3.1 and 3.5. Voxel color indicates model rank and models 

are grouped according to predominant rank. 
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Figure 3.3 Box and whisker plots of log(AIC).  

Four restricted models are marked with a black asterisk. For each blue box, the central 

red mark is the median and the top and bottom edges of the box are the 25th and 75th 

percentiles. The whiskers extend to the most extreme data points. Outliers are plotted 

individually in red. Distributions were normal after the log transformation. Data from 558 

voxels from slices 5 and 6 in Prostate 1, 504 voxels from slices 5 and 6 in Prostate 2, 

1278 voxels from slices 7–9 in Prostate 3, and 2041 voxels from slices 3–6 in Prostate 

4. Results for Mann–Whitney U-test are presented in Appendix.  
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In all prostates, the top three models are the Ball-stick-sphere, Zeppelin-sphere, and 

Tensor-sphere models in the majority of voxels. No distinct variation of ranking 

according to prostate zonal anatomy was observed. The isotropic restricted Ball-sphere 

model ranked close to three multi-component restricted and anisotropic models. The 

single-component Ball/ADC and DTI models ranked low in four prostates. Multi-

component models that included anisotropic components generally contained more 

information than isotropic models, and models that account for diffusion restriction 

usually had higher information than unrestricted models. In addition, model ranking 

trends were largely independent of voxel volume, maximum b-value, maximum 

diffusion time, and whether or not two different diffusion encoding pulse lengths (δ) 

were used (Table 3.1). 

Table A.1 in Appendix A provides results of a Mann-Whitney U-test for significant 

differences in AIC scores between models. Three distinct groups of models emerge: 1) 

Ball-stick-sphere, Zeppelin-sphere, (Tensor-sphere); 2) Ball-zeppelin, (Ball-sphere), 

(Bi-ball-zeppelin), Bi-zeppelin, Ball-tensor; 3) Ball, (Bi-ball), DTI. The brackets 

indicate models that may appear in the other group in some prostates. The models in 

Group 1 have significantly lower AIC scores than those in Group 2 and 3. The results of 

this statistical analysis are consistent with the qualitative data presented in Figures 3.1 

and 3.2. 

Taken together, these results demonstrate that multi-component anisotropic and 

restricted (Ball-stick-sphere, Zeppelin-sphere and Tensor-sphere) models extract more 

information from rich data, which are acquired with a wide range of multiple b-values 

and multiple diffusion times, than single-component models and multi-component 

models that do not account for diffusion restriction.  

3.3.2. Synthesis and Fitt ing 

Figure 3.4 illustrates the fit of eleven models to the summed data from a 

homogeneously anisotropic four-voxel ROI in the normal TZ tissue. Although FA in 

these four voxels was low (0.17-0.20), the model ranking shows that the top seven 

models all include at least one anisotropic component. These seven multi-component 

anisotropic models provide better fits to the measurement data than multi-component 

isotropic models and single-component models. Nonetheless, the results also show that 
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not even the most highly parameterized models provide an exact description of the 

measurement data. 

	

Figure 3.4 Representative model fit data.  

The symbols represent measurement data and the lines show the measurements 

predicted by the models. Normalized signal S is plotted for all values of Δ and δ as a 

function of gradient strength |G| for three directions. The model rank for this specific 

data set is presented. The data are the mean of four adjacent  voxels in the TZ of 

Prostate 3 with similar primary eigenvector orientation. 
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3.3.3. Parametric Maps 

Figure 3.5 presents Zeppelin-sphere model parameter maps for all four prostates with 

mapped pathology in approximately the same slice position. The map for diffusivity of 

the Ball model is also presented for reference. Very similar parameter maps were 

obtained for the Tensor-sphere and Ball-stick-sphere models (Figures A.1, A.2 in 

Appendix A). 
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Figure 3.5 Zeppelin-sphere model parameter maps.  

Slice positions as for Figures 3.1 and 3.2. Parameter maps for the Tensor-sphere and 

Ball-stick-sphere models for the same slices are provided in Figures A.1 and A.2. For 

reference, the Ball diffusivity maps are included. 
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Figure 3.6 shows the Zeppelin-sphere model parameter histograms. The histograms are 

presented as D or R versus the component signal fraction. The diffusivities for the two 

components (‘zeppelin’ and ‘sphere’) are less than the self-diffusion coefficient for 

water at 22oC [197] in the majority of voxels, and the range of the estimated sphere 

radius is in agreement with typical cell diameters, indicating that Zeppelin-sphere model 

is biophysically plausible. Simple histograms of D and R are provided in Figure A.3 

(see Appendix A). 

 

Figure 3.6 Two-way parameter histograms for the Zeppelin-sphere model.  

The pixel brightness is proportional to the voxel count. The Zeppelin-sphere model 

returned parameters that are less than the defined limits in the majority of voxels, 

indicating that the model was biophysically plausible. 
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3.3.4. Anisotropy 

Figure 3.7 compares MD and FA of the anisotropic component in the Tensor-sphere and 

Zeppelin-sphere models with MD and FA derived from the conventional DTI model. In 

this example (a central slice from Prostate 3) both FA and MD of the tensor and 

zeppelin components show clear differences between Gleason pattern 4 cancer and 

normal tissue (see Figure 3.2 for the pathology map of this slice) that are not detected 

by the single component DTI model. 

 

Figure 3.7 MD and FA maps from Tensor-sphere, Zeppelin-sphere, and DTI 

models for Prostate 3.  

Slice position as for Figures 3.1 and 3.2. 

3.4.  Discussion 

One previous study of prostate ex vivo [39] compared four phenomenological (ADC, 

biexponential, kurtosis and stretched) models in terms of information using AIC. They 

found that the biexponential model had highest information of these four models. The 

conventional biexponential model assumes that there are two distinct ‘slow’ and ‘fast’ 
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water pools and each exhibits Gaussian behaviour. Another study of prostate ex vivo 

[40] applied the stretched exponential model to the individual components of this 

conventional biexponential model and found these two distinct water pools exhibited 

non-Gaussian diffusion dynamics. Taken together, these results suggest the presence of 

two distinct diffusion (non-perfusion) environments in prostate tissue. These two 

diffusion environments have been modelled as an isotropic restricted water pool 

combined with an isotropic unrestricted water pool in an in vivo study utilizing the 

VERDICT model [42]. However, none of these studies have modelled both diffusion 

anisotropy and restricted diffusion in prostate tissue. This study provides further 

information about the diffusion environments in prostate tissue by comparing 

information of eleven compartment models including anisotropic and restricted 

components. 

The results show that multi-component models, including anisotropic and restricted 

components, have higher information than single-component (ADC and DTI) models 

and multi-component unrestricted models. The superior performance of multi-

component anisotropic and restricted models suggests that both anisotropic and 

restricted components are required to accurately describe DWI signals measured over 

multiple b-values and multiple diffusion times. At all voxel volumes (1.6, 3.9, and 16 

mm3) tested in this study, multi-component anisotropic and restricted models 

consistently rank highest, indicating that the two water pools identified by the 

anisotropic and restricted components exist on a microscopic scale.  

The low ranking of ADC, DTI and Bi-ball/biexponential models found in this study is 

consistent with previous prostate ex vivo studies [39,40]. It is worth noting that DWI is 

the key component of prostate mpMRI exam and ADC is the mainstay approach in 

clinical DWI studies. The results in this study have demonstrated that multi-component 

anisotropic and restricted models extract more information from measurements with 

multiple b-values and multiple diffusion times than the simple ADC model. These 

results suggest that implementation of more sophisticated models, such as the 

VERDICT model, and appropriate DWI acquisition methods might improve the DWI 

performance in prostate cancer assessment significantly. 

Recently, a three-component VERDICT model has been used to characterize prostate 

tissue in vivo by providing estimates of specific tissue properties including cell size, and 
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intracellular and vascular volume fractions [42]. The VERDICT model describes DWI 

signals as the sum of three signals (S1, S2, S3) arising from separate populations of water 

in three distinct structural environments. S1 comes from a water pool inside the cells, S2 

from a water pool in blood vessels, and S3 from a water pool outside cells and blood 

vessels. The VERDICT model for prostate tissue uses an isotropic sphere to model S1, 

AstroSticks (cylinders with uniformly distributed orientations and zero diameter) [23] to 

model S2, and an isotropic diffusion tensor to model S3. The results show that the 

VERDICT model provides reliable discrimination of malignant and benign human 

prostate tissue and returns parameter estimates in agreement with histology. However, 

the in vivo VERDICT study did not model diffusion anisotropy in prostate tissue. The 

ex vivo study presented here addressed this limitation by including anisotropic 

components.  

Another important difference between this ex vivo study and the in vivo VERDICT 

study is the number of estimated parameters. The VERDICT model was applied to 

prostate tissue at clinical setting and the measurement data had a median SNR of 14 that 

is lower than that measured in this ex vivo study. To avoid overfitting the relative noisy 

in vivo data, the diffusion and perfusion coefficients of the VERDICT model were fixed 

to values that minimize fitting error (an objective function) averaged over all voxels. As 

a result, the VERDICT model has three free parameters: intracellular volume fraction, 

extracellular-extravascular volume fraction, and sphere radius.  

In contrast, the high SNR measurements with a wide range of b-values and diffusion 

times acquired in this study enable reliable fitting of highly parameterized models with 

fewer constraints on parameters. So all diffusion coefficients of the eleven models 

tested were allowed to float within the biophysical limits. Multi-component anisotropic 

and restricted models returned values of parameters (diffusivities, sphere radius, and 

signal fractions) that were less than the defined limits in the majority of voxels, 

suggesting that they were biophysically plausible models. It is noteworthy that the peak 

value of Zeppelin parallel diffusivity (Figure 3.6) is ~1.4 µm2/ms corresponding to 2 

µm2/ms at human body temperature. The value of 2 µm2/ms is consistent with the fixed 

diffusivity value used for intracellular and extracellular-extravascular compartments in 

the in vivo VERDICT study. In addition, the results show that multi-component 

anisotropic and restricted models with fewer constraints rank higher than single-
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component models and multi-component unrestricted models, indicating that the 

parameters of less constrained models contain information about the tissue structure. 

This study shows that multi-component restricted models rank higher than the models 

that did not account for diffusion restriction in the majority of voxels. This finding 

supports the in vivo VERDICT study, which uses a restricted component to describe the 

intracellular diffusion environment. Moreover, this result suggests the importance of 

inclusion of a restricted component for modeling water diffusion in prostate tissue.  

DTI-based measurements of FA in prostate tissue have produced inconsistent results 

[104,105,108-111]. Possible FA-affecting differences between the reported in vivo 

studies include voxel volume, b-values, noise and diffusion time. A recent study of 

diffusion anisotropy in prostate tissue reported wide inter-prostate FA variations and a 

strong voxel volume dependence (FA decreases with the increasing voxel volume) [56]. 

A diffusion microimaging study of prostate tissue ex vivo demonstrated significantly 

higher anisotropy in the fibromuscular stroma than the epithelium and lumen space [55]. 

At typical clinical spatial resolutions (voxel size 4–16 mm3), it is likely that 

fibromuscular stroma, epithelium and lumen space are present within a voxel. Another 

possible reason for inconsistent FA values is that significant sub-voxel diffusion 

anisotropy of the stroma may be masked by the presence of a substantial pool of 

isotropically diffusing water in epithelium and lumen space when FA is assessed with a 

simple single-component DTI model. FA calculated from the anisotropic component of 

the Tensor-sphere and Zeppelin-sphere models were higher than that derived from a 

conventional DTI model (Figure 3.7), indicating the presence of this masking effect. 

The diagnostic value of this relatively high sensitive anisotropy detection method needs 

further investigation. 

This study compared information of eleven models using AIC. Although AIC is useful 

in selecting the model which extracts the most information from the given set of 

measurement data, it is possible that the measurement data do not contain information 

that can discriminate between different tissue structures including normal tissue and 

prostate cancer. As noted in Section 1.2 Chapter 1, it is important to define an imaging 

protocol that can acquire appropriate information, particularly information that has 

diagnostic value. To improve the clinical performance of DWI, optimization of both 

DWI acquisition methods and signal models is needed. This study did not compare 
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models in terms of cancer detection performance due to the small number of patients. 

With regard to the assessment of model performance in cancer detection, most of 

previous prostate DWI studies correlated the individual model parameter with tissue 

pathology. It has been suggested that the information of models is distributed among 

model parameters [39]. Thus it is more appropriate to use combinations of model 

parameters (that include all information) for evaluating the efficacy of models for 

cancer detection in a large patient population.  

3.4.1. Limitation 

This study is based on diffusion imaging of formalin-fixed prostate tissue. There are 

several advantages of ex vivo imaging over in vivo imaging: (1) it can acquire high 

SNR and high spatial resolution measurement data; (2) it allows long scan time; (3) it is 

relatively inexpensive; (4) it is free from organ movement, perfusion, and susceptibility 

which are present in in vivo imaging. However, the absence of perfusion may cause a 

decrease in the volume of extracellular-extravascular water. This decrease would have 

an effect on signal fractions of each compartment. 

As high spatial resolution measurements require long imaging time, all four prostates 

were stabilized by formalin fixation. A previous prostate DWI study reported that 

formalin fixation caused a significant decrease in the measured diffusivity [113,192]. 

Nevertheless, it has been suggested that the formalin fixation is unlikely to affect the 

model ranking [39,198]. 

In this study, DWI signals were normalized to the ‘b = 0’ signal before model fitting to 

minimize T2 effects. Previous prostate studies [199,200] demonstrated that prostatic T2 

decay was biexponential, indicating the presence of two water pools with distinct T2 

values. To date, no studies have investigated whether different T2 water pools in 

prostate tissue correspond to two distinct water pools identified in diffusion analyses. A 

recent study extended three-component models of diffusion in white matter to account 

for T2 effects [24]. Future work will investigate compartment models that incorporate T2 

effects (probably in a similar way to [24]). 

The multi-component models tested in this study assumed no water exchange between 

compartments. The influence of cell membrane permeability on diffusion measurements 

in prostate tissue has yet to be investigated. Previous experiments on cultured cells 
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demonstrated that cell membrane permeability could have a significant impact on the 

model parameters depending on the applied diffusion time [62,201]. Stanisz et al. [70] 

constructed a three-compartment model of diffusion in white matter with exchange 

between compartments by using the modified Bloch equations proposed by Karger et al. 

[202]. Future work will explore the incorporation of compartmental exchange into 

compartment models of diffusion in prostate tissue. 

As there exist differences (in temperature, perfusion, tissue fixation, and available 

diffusion times) between ex vivo imaging and in vivo imaging, the findings presented 

here cannot be directly related to clinical prostate imaging. Nonetheless, the information 

on diffusion environments in prostate tissue obtained in this high field ex vivo study, 

which acquires high SNR measurement data with a wide range of b-values and diffusion 

times, can be used to guide future development of clinical imaging methods. 

3.5.  Conclusions 

This study provides further information on diffusion environments in prostate tissue. 

The results show that multi-component anisotropic and restricted models extract more 

information from the multi-b and multi-Δ measurement data than single-component 

(ADC and DTI) models and multi-component unrestricted models. The rankings of 

models are largely independent of maximum b-value, maximum diffusion time, and 

voxel volume over the range tested in this study. For further development of promising 

VERDICT model, this study suggests that it is important to model both diffusion 

anisotropy and diffusion restriction in prostate tissue. 
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 Chapter 4 Predicting the Impact 

of Diffusion Time on Mean Diffusivity 

and Fractional Anisotropy in Fixed 

Prostate Tissue 

4.1.  Introduction 

Diffusion time is an important parameter that determines the spatial scale of tissue 

structure probed by DWI. However, for imaging methods, DWI studies generally 

consider optimum b-values and rarely report diffusion time. The b-value (see Eq. [2.6] 

in Chapter 2 Section 2.1.2) depends on diffusion time (Δ), gradient duration (δ) and 

gradient strength (G). In practice, the selected Δ, δ, and G values vary between MRI 

scanners and depend on scanner software, available maximum gradient strength, and 

selected b-values. It is likely that the same b-value is produced from different 

combinations of Δ, δ, and G generated by different scanners. DTI model provides two 

useful parameters: MD and FA. MD values have been shown to be lower in prostate 

cancer than in normal prostate [104-107]. However, the reported FA values in prostate 

tissue in vivo vary widely [104,109-111]. It has been suggested that relative low SNR 

causes artificially high FA estimates [111,112]. This chapter aims to investigate the 

influence of diffusion time and noise on MD and FA in fixed prostate tissue. Measured 

MD and FA are derived from the inevitably noisy DTI data. To assess the actual impact 

of diffusion time (separate from the noise effect), this study uses an anisotropic and 

restricted model to generate ‘noise-free’ synthesized DTI data, which are used for 

calculating predicted MD and FA. Chapter 3 has shown that the highest three AIC-

ranked models in four prostates are Ball-stick-sphere, Zeppelin-sphere and Tensor-

sphere, all of which include both anisotropic and restricted components. Zeppelin-
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sphere model that is less parameterized than the other two models is selected for 

predicting the impact of diffusion time. 

4.2.  Methods 

4.2.1. Tissue Handling  

Three radical prostatectomy specimens were collected with institutional ethics approval 

and written informed consent from patients. Specimens were fixed in 10% neutral 

buffered formalin for 32 h. Then the fixed prostate was washed in normal saline for 24 h 

to remove formalin [56]. Each specimen was imaged suspended on a 5-mm saline-filled 

NMR tube inserted through the urethra and mounted in brackets in a plastic casing that 

maintained the tube axis parallel to and approximately 5mm above the magnet z axis 

[192]. The prostate was wrapped in parafilm to minimize dehydration during imaging. 

After imaging, the prostate was returned to the pathology department for routine 

histology. 

4.2.2. MRI Acquisit ion 

Imaging was performed at room temperature (22 ˚C) on a 9.4T Bruker (Karlsruhe, 

Germany) BioSpec Avance III 94/20 system equipped with a 72-mm internal diameter 

quadrature radiofrequency coil and BGA-12S HP gradients with maximum strength 660 

mT/m and slew rate 4570 T/m/s. Imaging was performed transaxial to the urethra with 

the imaging planes oriented orthogonal to the 5-mm NMR tube. 

All diffusion-weighted measurements were performed using a PGSE sequence and 

preceded by the acquisition of two reference ‘b = 0’ images. To investigate the effect of 

diffusion time on MD and FA, DTI acquisitions used a six-direction scheme with 

nominal b = 800, 1600 s/mm2 and a wide range of diffusion times (10 - 120 ms). Three-

direction DWI data acquired with eight b values (100 - 3000 s/mm2) and four diffusion 

times (Δ = 10, 20, 40, 80 ms) were combined with Δ = 20 ms DTI data to fit the 

Zeppelin-sphere model. To maximize SNR, all measurements applied the minimum 

available TE (~Δ + 8 ms). If measurements were performed with a fixed TE = 108 ms 

or 128 ms, this would lead to overall low SNR and introduce more artifacts. DTI and 

DWI acquisition parameters including SNR estimates are detailed in Tables 4.1 and 4.2 
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respectively. All SNRs were calculated from the ratio of the signal S relative to the 

noise level N. S is the mean signal intensity in a large region of interest (ROI) manually 

drawn inside a mid-organ slice of each prostate. N is the standard deviation of the 

difference between the ROI voxel values in the two ‘b = 0’ reference images. The signal 

S for SNR at b = 800, 1600 s/mm2, was defined as the mean ROI voxel value taken over 

all six gradient directions. 

Table 4.1 6-direction DTI acquisition parameters 

Prostate	
FOV	

(matrix)	

Voxel	size	

(mm)	

TR	

(ms)	

b-value	a	

(s/mm2)	

Δ	b	

(ms)	

TE	

(ms)	
AV	

SNR	

b=0	
SNR	

b=800	

SNR	

b=1600	

1	

50×50	

mm	

(40×40)	

1.25×1.25×2	 2200	
800	

1600	

10	 18	 2	 190	 95	 62	

20	 28	 2	 137	 74	 50	

30	 38	 2	 119	 66	 45	

40	 48	 2	 105	 59	 40	

50	 58	 2	 55	 31	 21	

60	 68	 4	 89	 50	 35	

70	 78	 4	 47	 27	 19	

80	 88	 8	 57	 32	 22	

90	 98	 8	 50	 28	 19	

100	 108	 8	 30	 16	 12	

2	

50×50	

mm	

	

(40×40)	

1.25×1.25×2	 2200	
800	

1600	

10	 18	 2	 311	 153	 97	

20	 28	 2	 211	 113	 75	

30	 38	 2	 173	 95	 64	

40	 48	 2	 103	 57	 39	

50	 58	 2	 78	 44	 30	

60	 68	 4	 105	 59	 41	

70	 78	 4	 75	 42	 29	

80	 88	 4	 63	 35	 25	

90	 98	 4	 38	 21	 15	

100	 108	 4	 28	 16	 11	

120	 128	 4	 18	 10	 7	

3	
60×60	

mm	
1.5×1.5×2	 2600	

800	

1600	

10	 18	 2	 208	 95	 60	

20	 28	 2	 165	 82	 53	
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(40×40)	

30	 38	 2	 150	 76	 49	

40	 48	 2	 140	 71	 46	

50	 58	 2	 109	 55	 36	

60	 68	 4	 147	 74	 48	

70	 78	 4	 74	 37	 24	

80	 88	 8	 137	 68	 44	

90	 98	 8	 101	 50	 33	

100	 108	 8	 77	 37	 24	

a)	Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.	

b)	δ	=	5	ms	for	all	measurements.	

	

 

 

	

Table 4.2 3-direction DWI acquisition parameters 

Prostate	
FOV	

(matrix)	

Voxel	size	

(mm)	

TR	

(ms)	

b-value	a	

(s/mm2)	

Δ	b	

(ms)	

TE	

(ms)	
AV	

SNR	

b	=	0	

1	

	

50×50	

mm	

(40×40)	

	

1.25×1.25×2	
2000	

100,	311,	

603,	965,	

1391,	1873,	

2411,	3000	

10	 18	 1	 133	

20	 28	 1	 123	

40	 48	 1	 83	

80	 88	 2	 29	

2	

	

50×50	

mm	

(64×64)	

	

0.78×0.78×2	
2200	

100,	311,	

603,	965,	

1391,	1873,	

2411,	3000	

10	 18	 4	 448	

20	 28	 4	 270	

40	 48	 4	 164	

80	 88	 4	 56	

3	

	

60×60	

mm	

(40×40)	

	

1.5×1.5×2	
2600	

100,	311,	

603,	965,	

1391,	1873,	

2411,	3000	

10	 18	 1	 152	

20	 28	 1	 134	

40	 48	 1	 90	

80	 88	 1	 44	

a)	Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.			

b)	δ	=	5	ms	for	all	measurements.	
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4.2.3. Model Description 

In Chapter 3, the Zeppelin-sphere, Tensor-sphere, and Ball-stick-sphere models 

incorporating both anisotropic hindered and isotropic restricted components have been 

demonstrated to have highest information for DWI measurements in prostate tissue. 

This study used the Zeppelin-sphere model, which has fewer free parameters than the 

other two models, to generate noise-free synthesized DTI data at each diffusion time. 

The Zeppelin-sphere model was described in detail in Chapter 3, Table 3.2.  

4.2.4. Model Fitt ing 

Figure 4.1 illustrates the process for deriving FA and MD from both measured DTI data 

and synthetic DTI data. To calculate measured FA and MD, the DTI model was fitted to 

a single b-value 6-direction DTI data set (Table 4.1) at each measured diffusion time. 

The Zeppelin-sphere model was fitted to the combined 3-direction data and Δ = 20 ms 

6-direction data. The purpose of using only the Δ = 20 ms DTI data to define the 

zeppelin parameters was to maximize the independence of the measured and predicted 

MD and FA data. The zeppelin component also provides FA and MD. The fitted 

Zeppelin-sphere model parameters were used to synthesize noise-free 6-direction DTI 

data at b = 800, 1600, and 3000 s/mm2 for each diffusion time. The inclusion of b = 

3000 s/mm2 prediction is to investigate the diffusion time dependence at ultra high b-

value. The DTI model was then fitted to the synthetic DTI data to obtain predicted FA 

and MD.  

DTI and Zeppelin-sphere model fitting used the Levenberg-Marquardt algorithm in the 

open source Camino toolkit [194]. All data were normalized to the ‘b = 0’ signal to 

minimize any T2 effects. The Zeppelin-sphere model parameters were constrained 

within biologically plausible limits. The sphere radius R was constrained to the range 

0.1 - 20 µm. Diffusivities were constrained so that 0 ≤ D ≤ 2.1 µm2/ms. Two component 

signal fractions were constrained to be in [0, 1]. The correlation between measured 

MD/FA and predicted MD/FA was accessed via the Pearson rank metric performed in 

Matlab (Mathworks, Natick, USA). 
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Figure 4.1 Calculation of FA and MD. 

Measured and predicted MD and FA values were obtained from DTI measurements 

and synthetic DTI data, respectively. Zeppelin-sphere model was fitted to the combined 

DWI data and Δ = 20 ms DTI data and then its fitted parameters were used to 

synthesize DTI data. DTI and Zeppelin-sphere model fitting were performed using the 

open source Camino toolkit.  

4.3.  Results 

Figure 4.2 illustrates the effect of diffusion time on measured mean voxel MD and FA 

at b = 800 and 1600 s/mm2, and the predicted mean voxel MD and FA at b = 800, 1600, 

and 3000 s/mm2. In all prostates, there was a general decrease in the mean voxel MD 

and a broad increase in the mean voxel FA as diffusion time increased. In Prostates 1 

and 2, measured mean voxel MD and FA increased markedly in the noisier data at long 

diffusion time (> 70 ms). The predicted mean voxel FA at b = 3000 s/mm2 is very low 

(<0.2) and appears to be diffusion time independent. In contrast, the predicted mean 

voxel MD at b = 3000 s/mm2 showed a greater diffusion time dependence than at b = 

800, 1600 s/mm2.  
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Figure 4.2 Effect of diffusion time on mean voxel MD and FA at b = 800, 1600, and 

3000 s/mm2. 

Data represent the average of 3957 voxels from slices 3-6 in Prostate 1, 3510 voxels 

from slices 3-6 in Prostate 2, and 4680 voxels from slices 6-9 in Prostate 3. 

Figure 4.3 shows the voxel-wise correlation between measured and predicted MD and 

FA at b = 800 s/mm2. Very similar plots were obtained for b = 1600 s/mm2 (see Figure 

B.1 in Appendix B). In all prostates, there was close agreement between measured and 

predicted MD over the range Δ = 10 – 70 ms. Correlation coefficients between 

measured and predicted MD are in the range of ~0.48 - 0.99 (Table 4.3). Measured and 

predicted FA showed a wider variance than MD with correlation coefficients in the 

range ~0.15 - 0.75 (Table 4.4). Measured FA was higher than predicted FA in the 

majority of voxels at long diffusion time.  
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Figure 4.3 Scatter plots of measured MD and FA versus MD and FA predicted by 

the zeppelin-sphere model for b = 800 s/mm2. 

Data are from 3957 voxels in Prostate 1, 3510 voxels in Prostate 2, and 4680 voxels in 

Prostate 3. The scatter plots for b = 1600 s/mm2 is provided in Figure B.1 in Appendix 

B. 
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Table 4.3 Correlation of measured MD and 

predicted MD a 

Prostate	 Δ	(ms)	 b	=	800s/mm2	 b	=	1600s/mm2	

1	

10	 0.959	(0.956,	0.961)	[<0.05]	 0.959	(0.956,	0.961)	[<0.05]	

20	 0.965	(0.963,	0.967)	[<0.05]	 0.966	(0.963,	0.968)	[<0.05]	

30	 0.959	(0.956,	0.961)	[<0.05]	 0.958	(0.955,	0.960)	[<0.05]	

40	 0.952	(0.949,	0.955)	[<0.05]	 0.958	(0.956,	0.961)	[<0.05]	

50	 0.929	(0.925,	0.933)	[<0.05]	 0.948	(0.945,	0.951)	[<0.05]	

60	 0.891	(0.885,	0.898)	[<0.05]	 0.936	(0.932,	0.940)	[<0.05]	

70	 0.894	(0.887,	0.900)	[<0.05]	 0.942	(0.939,	0.946)	[<0.05]	

80	 0.885	(0.878,	0.891)	[<0.05]	 0.948	(0.945,	0.951)	[<0.05]	

90	 0.815	(0.805,	0.826)	[<0.05]	 0.927	(0.922,	0.931)	[<0.05]	

100	 0.749	(0.735,	0.762)	[<0.05]	 0.906	(0.900,	0.911)	[<0.05]	

2	

10	 0.956	(0.953,	0.958)	[<0.05]	 0.956	(0.953,	0.959)	[<0.05]	

20	 0.957	(0.954,	0.960)	[<0.05]	 0.958	(0.955,	0.961)	[<0.05]	

30	 0.949	(0.946,	0.953)	[<0.05]	 0.955	(0.952,	0.958)	[<0.05]	

40	 0.929	(0.924,	0.933)	[<0.05]	 0.944	(0.940,	0.947)	[<0.05]	

50	 0.899	(0.893,	0.905)	[<0.05]	 0.926	(0.922,	0.931)	[<0.05]	

60	 0.845	(0.836,	0.855)	[<0.05]	 0.894	(0.887,	0.900)	[<0.05]	

70	 0.775	(0.762,	0.788)	[<0.05]	 0.849	(0.839,	0.858)	[<0.05]	

80	 0.758	(0.743,	0.771)	[<0.05]	 0.836	(0.826,	0.846)	[<0.05]	

90	 0.707	(0.690,	0.723)	[<0.05]	 0.806	(0.794,	0.817)	[<0.05]	

100	 0.631	(0.611,	0.651)	[<0.05]	 0.770	(0.756,	0.783)	[<0.05]	

120	 0.484	(0.459,	0.509)	[<0.05]	 0.669	(0.650,	0.687)	[<0.05]	

3	

10	 0.978	(0.977,	0.980)	[<0.05]	 0.979	(0.977,	0.980)	[<0.05]	

20	 0.984	(0.983,	0.985)	[<0.05]	 0.984	(0.983,	0.985)	[<0.05]	

30	 0.984	(0.984,	0.985)	[<0.05]	 0.987	(0.986,	0.987)	[<0.05]	

40	 0.986	(0.985,	0.987)	[<0.05]	 0.988	(0.987,	0.988)	[<0.05]	

50	 0.984	(0.984,	0.985)	[<0.05]	 0.988	(0.987,	0.989)	[<0.05]	

60	 0.981	(0.980,	0.982)	[<0.05]	 0.989	(0.989,	0.990)	[<0.05]	

70	 0.981	(0.980,	0.982)	[<0.05]	 0.989	(0.988,	0.990)	[<0.05]	
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80	 0.978	(0.977,	0.980)	[<0.05]	 0.982	(0.981,	0.983)	[<0.05]	

90	 0.969	(0.967,	0.970)	[<0.05]	 0.980	(0.979,	0.981)	[<0.05]	

100	 0.947	(0.944,	0.950)	[<0.05]	 0.975	(0.973,	0.976)	[<0.05]	

a)	Data	are	Pearson	rank	correlation	coefficients	with	95%	confidence	interval	in	a	

parenthesis	and	p	value	in	a	bracket.	Data	are	the	same	as	for	Fig	4.3	
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Table 4.4 Correlation of measured FA and 

predicted FA a 

Prostate	 Δ	(ms)	 b	=	800s/mm2	 b	=	1600s/mm2	

1	

10	 0.548	(0.526,	0.570)	[<0.05]	 0.695	(0.679,	0.711)	[<0.05]	

20	 0.560	(0.539,	0.582)	[<0.05]	 0.663	(0.645,	0.680)	[<0.05]	

30	 0.519	(0.495,	0.541)	[<0.05]	 0.666	(0.648,	0.683)	[<0.05]	

40	 0.443	(0.418,	0.468)	[<0.05]	 0.610	(0.590,	0.629)	[<0.05]	

50	 0.329	(0.301,	0.356)	[<0.05]	 0.518	(0.495,	0.541)	[<0.05]	

60	 0.293	(0.265,	0.322)	[<0.05]	 0.466	(0.442,	0.491)	[<0.05]	

70	 0.217	(0.187,	0.247)	[<0.05]	 0.358	(0.330,	0.385)	[<0.05]	

80	 0.206	(0.176,	0.236)	[<0.05]	 0.344	(0.316,	0.371)	[<0.05]	

90	 0.152	(0.122,	0.183)	[<0.05]	 0.269	(0.240,	0.298)	[<0.05]	

100	 0.151	(0.121,	0.182)	[<0.05]	 0.238	(0.208,	0.267)	[<0.05]	

2	

10	 0.673	(0.654,	0.690)	[<0.05]	 0.712	(0.696,	0.728)	[<0.05]	

20	 0.715	(0.698,	0.731)	[<0.05]	 0.723	(0.707,	0.738)	[<0.05]	

30	 0.705	(0.688,	0.722)	[<0.05]	 0.745	(0.730,	0.759)	[<0.05]	

40	 0.652	(0.632,	0.670)	[<0.05]	 0.748	(0.733,	0.762)	[<0.05]	

50	 0.596	(0.575,	0.617)	[<0.05]	 0.691	(0.674,	0.708)	[<0.05]	

60	 0.572	(0.549,	0.594)	[<0.05]	 0.653	(0.633,	0.671)	[<0.05]	

70	 0.504	(0.479,	0.529)	[<0.05]	 0.595	(0.573,	0.616)	[<0.05]	

80	 0.484	(0.458,	0.509)	[<0.05]	 0.553	(0.530,	0.576)	[<0.05]	

90	 0.444	(0.417,	0.470)	[<0.05]	 0.516	(0.491,	0.540)	[<0.05]	

100	 0.403	(0.375,	0.430)	[<0.05]	 0.456	(0.430,	0.482)	[<0.05]	

120	 0.359	(0.329,	0.387)	[<0.05]	 0.376	(0.347,	0.404)	[<0.05]	

3	

10	 0.661	(0.645,	0.677)	[<0.05]	 0.743	(0.730,	0.755)	[<0.05]	

20	 0.673	(0.657,	0.688)	[<0.05]	 0.716	(0.702,	0.730)	[<0.05]	

30	 0.642	(0.625,	0.658)	[<0.05]	 0.743	(0.729,	0.755)	[<0.05]	

40	 0.621	(0.603,	0.638)	[<0.05]	 0.736	(0.722,	0.748)	[<0.05]	

50	 0.608	(0.590,	0.626)	[<0.05]	 0.709	(0.695,	0.723)	[<0.05]	

60	 0.581	(0.561,	0.599)	[<0.05]	 0.694	(0.679,	0.709)	[<0.05]	

70	 0.519	(0.497,	0.539)	[<0.05]	 0.646	(0.629,	0.662)	[<0.05]	

80	 0.496	(0.474,	0.517)	[<0.05]	 0.626	(0.609,	0.643)	[<0.05]	
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Figure 4.4 displays parametric maps of the Zeppelin-sphere model for each prostate. In 

all prostates, the anisotropic zeppelin component had higher diffusivity and greater 

signal fraction than the restricted sphere component. The Zeppelin-sphere model also 

provides a good fit to the measurement data. Representative Zeppelin-sphere model fits 

are presented in Figure 4.5.    

																					 	

Figure 4.4 Zeppelin-sphere model parameter maps. 

90	 0.468	(0.445,	0.490)	[<0.05]	 0.567	(0.547,	0.586)	[<0.05]	

100	 0.437	(0.414,	0.460)	[<0.05]	 0.534	(0.513,	0.554)	[<0.05]	

a)	Data	are	Pearson	rank	correlation	coefficients	with	95%	confidence	interval	in	a	

parenthesis	and	p	value	in	a	bracket.	Data	are	the	same	as	for	Fig	4.3	
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Data are from slice 3 in Prostate 1, slice 3 in Prostate 2, and slice 7 in Prostate 3. 

	

Figure 4.5 The fit of Zeppelin-sphere model to representative voxels from each 

prostate. 

Voxel data are from slice 5 in Prostate 1, slice 5 in Prostate 2, and slice 8 in Prostate 3. 

To illustrate a masking effect of the isotropic sphere component on apparent FA, Figure 

4.6 shows the voxel-wise correlation between measured FA of the DTI model and the 

FA of the zeppelin component. As expected the Zeppelin FA was higher than DTI-
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based FA except at long diffusion time where relatively low SNR caused an 

overestimation of DTI-based FA. 

	

Figure 4.6 Scatter plots of measured FA versus Zeppelin FA at b = 800 s/mm2. 

Data is the same as Fig 4.3. 

4.4.  Discussion  

Microimaging studies of fixed prostate tissue have demonstrated highly restricted 

diffusion and low anisotropy in the epithelium, and intermediate diffusivity and high 

anisotropy in the stroma [55,118]. Although previous studies of prostate tissue ex vivo 

indicated the existence of two distinct water diffusion environments [39,192,203], they 

did not model either diffusion anisotropy or restricted diffusion. A recent ex vivo 
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prostate study, which applied the stretched exponential model to the individual 

components of a ‘double-Gaussian’ biexponential model, found that these two distinct 

water pools were internally heterogeneous and their diffusion dynamics were diffusion 

time dependent (the tested diffusion times are 10, 20 and 40 ms) [40]. DWI studies of in 

vivo prostate also support the presence of two non-vascular diffusion environments 

[11,42]. The application of the VERDICT framework in prostate in vivo has used 

isotropic unrestricted and isotropic restricted components to describe these non-vascular 

water pools [42] but neglected the diffusion anisotropy. The superior performance of 

multi-component anisotropic and restricted models found in Chapter 3 is consistent with 

the presence of distinct diffusion microenvironments in prostate tissue. These 

anisotropic and restricted models would be expected to provide more accurate 

prediction of DWI signals in prostate tissue than isotropic restricted, biexponential, DTI 

and ADC models, which are previously used for modeling diffusion in prostate tissue. 

Thus this study used one of the anisotropic and restricted models tested in Chapter 3 for 

generating synthesized DTI data. This study shows that diffusion time dependence of 

MD and FA is observed for the 10 - 120 ms diffusion times and the anisotropic and 

restricted model accurately predicts the diffusion time dependence. 

The range of the fitted Zeppelin-sphere parameters including signal fractions, 

diffusivities, and a sphere radius in this study is consistent with that of the same model 

parameter estimates in Chapter 3. It is noteworthy that the sphere radius (R) found in 

this study and Chapter 3 is generally lower than the R obtained by fitting the VERDICT 

model to in vivo data [42]. This difference is likely due to formalin fixation.  

This study provides an independent validation of Zeppelin-sphere model, which 

describes DWI signals in prostate tissue as a sum of two signals respectively from an 

anisotropic Gaussian component (zeppelin) and an isotropic restricted component 

(sphere). This study also proposes a new way of using compartment models: application 

of compartment models for predicting the impact of diffusion time on MD and FA. 

4.4.1. Effect of diffusion time and noise on MD 

Both measured and predicted mean voxel MD showed a decrease as diffusion time 

increased from 10 ms to 70 ms. At long diffusion time (Δ > 70 ms), the measured mean 

voxel MD started to increase in noisier data from Prostates 1 and 2 and the predicted 

mean voxel MD for these two prostates continued decreasing, indicating that the 
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increase in the measured mean voxel MD is a result of noise. The decrease of MD with 

diffusion time can be explained by the diffusion theory. At very short diffusion time, 

most water molecules do not have enough time to interact with the surrounding 

environment and the MD will be equivalent to the self-diffusion coefficient. With 

increasing diffusion time, more water molecules will have a chance of interacting with 

barriers and the MD will decrease. Therefore, measuring diffusion time dependence of 

the diffusivity may provide insights into the tissue microstructure [204]. For all 

prostates, the absolute change in MD over the range of tested diffusion times was 

similar. This absolute change at b = 800, 1600 and 3000 s/mm2 was also similar.  

The SNRs at b = 800, 1600 s/mm2, Δ = 80-120 ms for Prostates 1 and 2 are low and 

range from 7 to 35. Above Δ = 70 ms, predicted MD still correlated strongly with 

measured MD while predicted FA showed a weak correlation with measured FA. These 

results indicate that MD is less susceptible to experimental noise, as compared to FA. 

This is probably because the calculation of MD by averaging three eigenvalues reduces 

the bias of each eigenvalue due to noise. Many prostate studies show that MD is 

significantly lower in tumours than benign tissue and is useful for the diagnosis and 

grading of prostate cancer [107,111,205,206]. However, FA in prostate cancer has been 

reported to be higher [109], lower [104], or similar [113] as compared with normal 

prostate. 

4.4.2. Effect of diffusion time and noise on FA 

Both measured and predicted mean voxel FA was low and increased as the diffusion 

time increased at b = 800 and 1600 s/mm2. This low mean voxel FA is in agreement 

with a previous study of diffusion anisotropy in seven prostates ex vivo [56]. The very 

low mean voxel FA at b = 3000 s/mm2 predicted by the Zeppelin-sphere model suggests 

that FA is basically independent of diffusion time at ultra high b-value. Above Δ = 70 

ms, the measured FA in Prostates 1 and 2 showed a larger increase than the predicted 

FA for these two prostates and the measured FA in Prostate 3. This suggests that a large 

measured FA increase at long diffusion time is also likely due to noise. As noted by 

Pierpaoli et al [207], increasing noise (smaller SNR) can cause the eigenvalues of the 

diffusion tensor to diverge rapidly from their true values. As a result, the measured 

diffusion anisotropy will be significantly overestimated. A study of noise effect on 
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measurements of anisotropy suggests that SNR should be greater than ~20 to obtain 

meaningful metrics from DTI measurements [208].  

Which prostate tissue features could lead to the increase of FA with diffusion time at 

low b = 800 and 1600 s/mm2? Preliminary microimaging studies of fixed prostate tissue 

demonstrated higher anisotropy and diffusivity in the stroma than those in the 

epithelium [55,118]. In normal prostate, the stroma constitutes the largest volume 

fraction. The DWI signal arising from the stroma may be a main source of the 

anisotropic high diffusivity signal. If this hypothesis is true, then the FA increase can be 

interpreted as increasing lateral diffusion hindrance in the roughly parallel packing of 

stromal myocytes [55]. A previous study of diffusion anisotropy in prostate tissue 

reported a decrease in mean voxel FA at b = 1600 s/mm2 with increasing diffusion time 

(Δ = 20, 40, 80 ms) [56]. They only tested the dependence on FA over three diffusion 

times. In this study, FA at b = 1600 s/mm2 showed an overall increase over ten/eleven 

diffusion times (Δ = 10 – 120 ms) and fluctuated between 20 ms and 80 ms. The 

decrease of mean voxel FA with increasing b-value was observed. This decrease can be 

illustrated by the assumption of the fitted Zeppelin-sphere model. At low b-value, the 

high diffusivity water pool (the anisotropic zeppelin component) dominates the DWI 

signal. As the b-value increases, the signal from high diffusivity water pool will be 

strongly attenuated and the contribution of the low diffusivity water pool (the isotropic 

sphere component) will become significant.  

The zeppelin-sphere model accurately predicted the diffusion time dependence of both 

MD and FA. The zeppelin-sphere model describes DWI signals in prostate tissue as the 

sum of two separate signals arising from an anisotropic unrestricted water pool (the 

zeppelin component) and an isotropic restricted water pool (the sphere component). The 

high diffusivity zeppelin component and the low diffusivity sphere component are 

consistent with the presence of distinct diffusion microenvironments in prostate tissue 

[118]. The possibility that the anisotropic unrestricted and isotropic restricted water 

pools correspond to the stroma and the epithelium respectively requires further 

investigation. 

4.4.3. Clinical insights 

Clinical use of the ADC model for prostate cancer detection is widespread. ADC is 

commonly calculated from a 3-direction measurement in conventional prostate DWI. In 



	

	 81	

this study, MD was calculated from a 6-direction DTI measurement. If voxel anisotropy 

were high, this would produce a strong direction dependence of ADC calculations based 

on a 3-direction measurement. The average FA in this study was very low. This 

suggests that ADC calculated from 3-diretion DWI data will be minimally affected by 

anisotropy and thus MD can be equivalent to ADC. 

The measured ADC may be highly dependent on imaging parameters [8] and 

measurements of anisotropy in the prostate in vivo have produced equivocal results 

[104,105,109,209]. As mentioned in Introduction, diffusion time is rarely reported 

explicitly. This study demonstrated diffusion time dependence of MD and FA in 

prostate tissue. These results indicate that unreported diffusion time differences between 

previous DWI studies of prostate tissue might have contributed to inconsistent results 

for the values of ADC and FA.    

It is noteworthy that ADC is the mainstay of the mpMRI-based prostate cancer 

assessment. In the new PI-RADS guideline, the recommended DWI imaging parameters 

include b-value, TE, TR, slice thickness, FOV, In plane dimension but not diffusion 

time [78]. A specification of recommended diffusion time in mpMRI-DWI should be 

included. 

4.4.4. Limitations 

This study was based on DWI of prostate tissue ex vivo from a small number of patients. 

Ex vivo results cannot be directly related to in vivo prostate imaging. The differences 

from in vivo imaging include the absence of tissue perfusion and high temperature and 

the presence of formalin fixation and a wide range of diffusion times. All of these 

differences may significantly influence MD and FA. Nevertheless, the diffusion time 

dependence of MD and FA demonstrated in this study highlights the importance of 

considering and reporting diffusion time in clinical studies of prostate tissue.  

In this study, all measurements applied the minimum available TE (~Δ + 8 ms) to 

maximize SNR. DWI signals were normalized to the ‘b = 0’ signal before model fitting 

to minimize T2 effects. Therefore, the influence of TE on MD and FA would be 

expected to be not significant. Although previous prostate studies [199,200] 

demonstrated the presence of two water pools with distinct T2 relaxation rates, it is not 
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clear whether different T2 water pools correspond to two distinct water pools identified 

in diffusion analyses. It is an important topic for future work.  

Zeppelin-sphere model used in this study assumes no water exchange between 

compartments. The influence of cell membrane permeability on diffusion measurements 

in prostate tissue has yet to be investigated. Previous experiments on cultured cells 

demonstrated that cell membrane permeability could have a significant impact on the 

model parameters depending on the applied diffusion time [62,201]. The Zeppelin-

sphere model does not account for T2 effects. Future work will explore the 

incorporation of compartmental exchange and T2 effects into this two-component 

anisotropic and restricted model. 

In the current study, only Δ = 20 ms DTI data were used to define the orientation of the 

Zeppelin component. To improve Zeppelin-sphere model prediction about diffusion 

anisotropy, future work will perform the Zeppelin-sphere model fitting by including 

DTI data at all diffusion times. 

4.5.  Conclusions 

In summary, this study reports diffusion time dependence of MD and FA in fixed 

prostate tissue observed for Δ = 10 - 120 ms. The two-component anisotropic and 

restricted model accurately predicts the impact of diffusion time on MD and FA. These 

results validate the Zeppelin-sphere model, which describes DWI signals in prostate 

tissue as a sum of two signals respectively from an anisotropic unrestricted water pool 

and an isotropic restricted water pool. These findings highlight the importance of 

considering and reporting diffusion time in clinical DWI studies and consensus methods. 
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 Chapter 5 Applications to Other 

Tissues 

5.1.  Introduction 

In clinical DWI studies, the ADC model has been commonly used for studying cancer 

types including breast [31,32,210,211] and lymph nodes [34-36,181,182]. The ADC 

model assumes a Gaussian water displacement probability and is well known to be 

invalid in the heterogeneous environment of biological tissue. Although ADC values of 

malignant breast lesions are on average lower than those of benign lesions, there is a 

substantial overlap in ADC values between malignant and benign breast lesions. There 

is also a wide variation in the reported ADC values of benign and malignant lymph 

nodes [188]. These findings highlight limitations of the simple ADC model. A three-

component VERDICT model, which characterizes water diffusion in the vascular, 

extracellular-extravascular and intracellular compartments, has recently shown success 

in differentiating colorectal cancer tumours and distinguishing between benign and 

malignant prostate tissue [41,42]. Compartment models are generally lacking for non-

neural tissue. Chapters 3 has demonstrated higher information of anisotropic and 

restricted multi-component models than the ADC model and other unrestricted models 

in prostate tissue ex vivo, suggesting that the implementation of more sophisticated 

models may improve the performance of DWI in prostate cancer assessment. Recent 

studies report low diffusivity epithelia in prostate [118], and breast [160]. Epithelia are 

important tissue structures as many cancers are of epithelial origin. Cultured epithelial 

cell spheroids demonstrate many of the physiological properties of glandular epithelia 

and provide a well-controlled environment for studying distinctive structural properties 

that may contribute to the observed low water mobility [212]. Spheroids have been 

rarely used to investigate diffusion dynamics. Motivated by the successful application 

of compartment models in prostate tissue, this chapter extends the investigation in 

Chapter 3 by performing similar experiments on breast tissue, lymph nodes, and 

spheroids. 
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5.2.  Methods 

5.2.1. Tissue Handling and Histopathology 

The study was conducted with institutional ethics approval and written informed 

consent from tissue donors.  

Samples of breast tissue were collected from three patients during surgery, immersed in 

10% neutral buffered formalin, and stored for 4-6 weeks. All the samples were imaged 

in a plastic casing, sampled according to the plastic casing size and washed in 

phosphate-buffered saline (PBS) containing 0.2% v/v Magnevist [117] for 3-4 days 

prior to imaging. 

Spheroids were cultured from DLD-1 (human colorectal carcinoma) cell line using the 

liquid overlay method. 96-well plates were coated with sterile 0.75% (w/v) low-melting 

point agarose in PBS. The agar-coated wells were seeded with 1.8x106 cells/ml and 

incubated under standard conditions for 4 days without motion in order to secure 

optimal cell aggregation (final spheroids diameter of ~500 µm). Six spheroids were 

fixed with 4% paraformaldehyde for two hours, washed four times with PBS, and 

transferred to a 5-mm flat-bottom Shigemi NMR tube for imaging.  

One sample of lymphoma from a dog and two samples of benign lymph nodes from two 

human patients were collected, immersed in 10% neutral buffered formalin, and stored 

for a night at room temperature. The samples were then washed with PBS containing 

0.2% v/v Magnevist [117] before imaging. 

5.2.2. MRI Acquisit ion 

Imaging of breast tissue and lymph nodes was performed at room temperature (22 ˚C) 

on a 9.4T Bruker (Karlsruhe, Germany) BioSpec Avance III 94/20 system equipped 

with a 72-mm internal diameter quadrature radiofrequency coil and BGA-12S HP 

gradients with maximum strength 660 mT/m and slew rate 4570 T/m/s. Imaging of 

spheroids was performed at 25 ˚C in a 14T Bruker (Karlsruhe, Germany) AV600 

scanner. 

All diffusion-weighted measurements were performed using a PGSE sequence and 

preceded by the acquisition of two reference ‘b = 0’ images. Three-direction DWI data 
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were acquired at high spatial resolution with b-value range 50 - 3000 s/mm2. Additional 

DTI acquisitions were performed using six gradient directions. DWI and DTI 

acquisition parameters are detailed in Tables 5.1 and 5.2.  

	

 

	

 

	

	

 

	

	

	

	

	

	

	

	

	

	

 

 

 

Table 5.1 DWI acquisition parameters 

used for imaging breast tissue 

Breast	 1	 2	 3	
FOV	(mm2)	 50×30	 50×30	 60×40	
Matrix	size	 50×30	 50×30	 60×40	
Voxel	size	
(mm3)	

1×0.78×1	 1×0.78×1	 1×1×1	

SNR	 105	 209	 81	
TR	(ms)	 4200	 4200	 2500	
δ	(ms)	 5	 10	 5	 5	 5	 10	
Δ	(ms)	 10,	20,	

40,	80	
20,	

40,	80	
10,	20,		
			40	

20	 10,	
20,	

40,	80	

20,	40	
80	

TE	(ms)	 18,	28,	
48,	88	

33,	
53,	93	

18,	28,		
48	

28	 18,	
28,	

48,	88	

33,	53,	
93	

b-value	
(s/mm2)	

6	directions	

965,	
1873	

800,	
1600	

196,	
435,	
1189,	
2302,	
3000	

965,	
1873	

b-value	a	
(s/mm2)	

3	directions	

100,	
311,	
603,	
965,	
1391,	
1873,	
2411,	
3000	

50,	
196,	
435,	
766,	
1189,	
1702,	
2306,	
3000	

100,	
311,	
603,	
965,	
1391,	
1873,	
2411,	
3000	

a)	Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.	
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5.2.3. Model Description 

In this study, eleven models (see Table 3.2 in Chapter 3), including different 

combinations of isotropic, anisotropic and restricted components, were tested on breast 

tissue and lymph nodes. It was assumed that diffusivity of spheroids was the same in all 

directions. So three isotropic models (Ball, Bi-ball, Ball-sphere) were tested on 

spheroids. 

Table 5.2 DWI acquisition parameters 

used for imaging spheroids and lymph 

nodes 

Tissue	 Spheroids	 Lymph	nodes	
FOV	(mm2)	 5×5×1.6	 35×35	

Matrix	size	 62×62×20	 64×64	
Voxel	size	
(mm3)	

0.08×0.08×0.08	 0.5×0.5×0.5	

SNR	 17	 70	
TR	(ms)	 400	 2000	
δ	(ms)	 2	 2	 2	 5	
Δ	(ms)	 10	 20	 40	 10,	20,	

40,	80	
TE	(ms)	 19	 26	 46	 22,	29,	49,	89	
b-value	
(s/mm2)			

6	directions	

1000	 800,		
1600	

b-value	a	
(s/mm2)	

3	directions	

100,	
311,	
603,	
965	

100,	
311,	
603,	
965,	
1391,	
1873	

100,	
311,	
603,	
965,	
1391,	
1873,	
2411,	
3000	

100,		
311,		
603,		
965,		
1391,		
1873,		
2411,		
3000	

a)	Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.	
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5.2.4. Model Fitt ing and Ranking 

Each model was fitted to the combined 6- and 3-direction data using the Levenberg-

Marquardt minimization algorithm in the open source Camino toolkit [194].  Data were 

normalized to the ‘b = 0’ signal to reduce T2 dependence. Diffusivities were constrained 

to be within biologically plausible limits so that 0 < D < 2.1 µm2/ms. For the ‘sphere’ 

model, the radius was constrained to be 0.1 < R < 20 µm. AIC was calculated to provide 

an objective quantitative estimate of the information of the models. Eleven models were 

fitted voxel by voxel in breast tissue and lymph nodes. A recent microimaging study of 

breast tissue ex vivo demonstrated that epithelial cell layers in gland had lower 

diffusivity than their adjacent supporting stroma [160]. Motivated by this finding, the 

performance of the eleven models in gland lobules from Breast 1 was also assessed. 

5.2.5. ROI selection 

For breast tissue including fat, gland lobule and interlobular stroma, 3445, 3289 and 

4765 voxels from 3-4 slices in Breast 1, 2 and 3 respectively were selected for analysis. 

These selected voxels are from manual definition of masks that excluded the capsule 

and NMR tube on reference (b = 0) images. For glandular breast tissue, 68 ROIs (102 

voxels) delineating gland lobule were drawn freehand on T2 weighted image of a 

representative slice of Breast 1 (Fig 5.4A). Note that these ROIs do not include fat and 

interlobular stroma.  

Four voxels from the center of each spheroid were selected on a reference (b = 0) image 

(Fig 5.6). 

The total of 1203 voxels from dog and human lymph nodes were selected for analysis 

by manual definition of masks that excluded the background. 
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5.3.  Results 

5.3.1. Breast Tissue 

Figure 5.1 shows the overall AIC rankings of the eleven models over all voxels from 

three or four adjacent slices of three breast samples and the anatomical distribution of 

the highest ranked models in a representative slice of each breast sample. Figure 5.2 

presents the rank variation of the individual models. In all breast tissue samples, either 

Zeppelin-sphere or Ball-sphere model was ranked highest in the majority of voxels. The 

other restricted two-component model, Tensor-sphere model ranked closely to 

Zeppelin-sphere and Ball-sphere models. For Breast 2, the three-component Ball-stick-

sphere and Bi-ball-zeppelin models did not find a solution within diffusion constraints 

in the majority of voxels so they were ranked lowest. These results indicate that two-

component restricted models provide more information-rich descriptions of multi-b, 

multi-Δ, DWI measurement data than single- and multi-component models that do not 

account for diffusion restriction. 
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Figure 5.1 Variation of model rankings in three breast samples.  

A) Anatomical distribution of the highest ranked model in a representative slice from 

each breast. Voxel color indicates model according to the Model Key. B) Variation in 

model ranking positions. The gray scale indicates the number of times each model 

ranked at each position. The model order is based on the trends assessed subjectively. 

Data are from 3445 voxels from slices 9-11 in Breast 1, 3289 voxels from slices 9-11 in 

Breast 2, and 4765 voxels from slices 1-4 in Breast 3. Model Key: the four models 

containing a restricted component are shown with a bold black border; models with an 

anisotropic component are shown as ellipses; vertical lines indicate the number of 

components; models including a restricted component are marked with an asterisk. 
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Figure 5.2 Variation in rankings of individual models in three breasts. 

Slice positions as for Fig 5.1. Voxel color indicates model rank and models are grouped 

according to predominant rank. 
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Figure 5.3 Ball-sphere model parameter maps. 

Slice positions as for Fig 5.1. Parameter maps for the Zeppelin-sphere model for the 

same slices are provided in Figures C.1. 

Parametric maps derived from the Ball-sphere model are presented in Figure 5.3. Figure 

5.4B presents the AIC ranking of the eleven models over 102 voxels from 68 gland 

ROIs (see Fig 5.4A) of breast tissue. The models that included the restricted sphere 

component ranked highest, while the unrestricted Ball (ADC), Bi-ball (biexponential) 

and DTI models ranked lowest. 
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Figure 5.4 Variation of model rankings in gland ROIs. 

A) T2 weighted image of a representative slice from breast tissue showing gland ROIs 

in red. B) Variation of model rankings. The gray scale indicates the number of times 

each model ranked at each position. The model order is based on the trends assessed 

subjectively. Data are from 102 voxels of 68 gland ROIs in slice 9 of breast tissue. 

Figure 5.5 illustrates the fit of eleven models to a representative voxel from gland ROIs 

with the corresponding AIC ranking position. The FA value of the representative voxel 

is 0.1, which is the average FA of all gland ROIs. The anisotropic and restricted two-

component models ranked highest in the representative voxel and provided a better fit 

than the isotropic restricted model and unrestricted models. 
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Figure 5.5 Fits of eleven models. 

Normalized signal S is plotted as function of the gradient strength G. The raw signal is 

shown with point markers and the model fit as solid lines. Data are from the 

representative voxel with FA = 0.1 which is the mean FA of 68 gland ROIs in slice 9 of 

breast tissue.  

Table 5.3 summarizes values of the sphere radius R from the four restricted models in 

all gland ROIs. The mean sphere radius is approximately 13 µm. 
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5.3.2. Epithelial Cell Spheroids 

In the majority of the 24 selected voxels (Fig 5.6), the ranking of three isotropic models 

by AIC showed that the Ball-sphere had higher information in spheroids than Bi-ball 

and Ball models. 

																																					 	

Figure 5.6 A reference (b = 0) image of spheroids showing 24 selected voxels 

marked with *. Scale bar = 500 µm. 

Table 5.3 Sphere radius estimates from four 

models in breast tissue a 

Model	 R	(μm)	
Mean	±	standard	deviation	

Zeppelin-sphere	 12±4	

Ball-stick-sphere	 13±3	

Tensor-sphere	 12±3	

Ball-sphere	 13±3	

a)	Data	from	102	voxels	of	68	gland	ROIs	in	slice	9	of	breast	tissue	
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Figure 5.7 Variation of model rankings in spheroids. 

The gray scale indicates the number of times each model ranked at each position. The 

model order is based on the trends assessed subjectively. Data are from 24 selected 

voxels of spheroids. 

Table 5.4 lists the estimated Ball-sphere model parameters for fits to the 24 individual 

voxels. The ball component has higher diffusivity and lower signal fraction than the 

sphere component. The sphere radius of 10.9 µm is consistent with typical cell 

diameters for spheroids [213]. 

	

 

Table 5.4 Mean and standard deviation of 

Ball-sphere parameters in 24 voxels of 

spheroids 

R	(μm)	 10.9±3.9	

fsphere	 0.68±0.15	

Dball	(μm2/ms)	 1.5±0.9	

Dsphere	(μm2/ms)	 0.93±0.77	
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5.3.3. Lymph Node Tissue 

Figure 5.8 shows the variation in AIC ranking of eleven models for lymph nodes. Three 

samples of lymph nodes were imaged (Fig 5.8A). The blue dyed sample is dog 

lymphoma. The other two samples are benign human nodes. Four restricted models 

were ranked highest in the majority of voxels. The single-component ADC and DTI 

models ranked lowest. 

																									 	

Figure 5.8 Variation of model rankings in lymph nodes. 

A) 9.4T imaging setup for three lymph nodes. The blue dyed sample at the top is dog 

lymphoma. The round sample in the middle and the sample at the bottom are benign 

human lymph nodes. B) The anatomical distribution of the highest ranked model in a 

single slice of three lymph nodes. Voxel color indicates model according to the model 

symbol in 5.8C. C) Variation in model rank positions. The gray scale indicates the 

number of times each model ranked at each position. The model order is based on the 
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trends assessed subjectively. Data are from 1203 voxels in a single slice of lymph 

nodes. 

5.4.  Discussion  

Restricted and hindered diffusion of water within a complex environment of biological 

tissue leads to a non-Gaussian water displacement probability, which is manifested as 

non-monoexponential DWI signal decay over a range of b-values. In addition, perfusion 

effects may significantly affect DWI measurements that include very low b-values (for 

example, b < 100 – 150 s/mm2) and cause non-monoexponential DWI signal attenuation. 

The biexponential-based IVIM model has been used to separate perfusion from true 

diffusion in breast and lymph nodes in vivo [146,147,189,191]. However, its description 

of diffusion in the non-vascular environment remains simple and does not account for 

tissue geometry. An in vivo pilot study of breast tumours utilized the VERDICT 

framework, which addressed the limitations of the IVIM model by modelling the non-

vascular environment as a combination of a restricted diffusion component and an 

unrestricted Gaussian diffusion component [162].  

This study provided further information about the non-vascular diffusion environment 

in breast tissue and lymph nodes by comparing eleven different compartment models, 

and about the diffusion environment in spheroids by comparing three compartment 

models. The results show that multi-component models that account for diffusion 

restriction provide more information-rich descriptions of multi-Δ, multi-b DWI 

measurements in all three types of tissue than ADC and other unrestricted models. This 

study also suggests that both anisotropic and restricted components are required to 

accurately describe DWI signals in breast gland lobule. In clinical DWI studies of breast 

tissue and lymph nodes, the ADC model has been the most commonly used approach 

for cancer detection. The relatively poor performance of the ADC model in this study 

suggests that more sophisticated DWI protocols and models may improve cancer 

imaging. 

The restriction radius of 10.9 µm estimated by the Ball-sphere model is consistent with 

the known cell size in spheroids grown from epithelial cells. Many cancers are of 

epithelial origin. Cultured epithelial cell spheroids can mimic the tumour 

microenvironment and provide a well-controlled environment for studying numerous 
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tissue properties. Thus studies of water diffusion in cultured spheroids will enhance 

understanding of the tissue microstructure properties that affect diffusion contrast.  

5.4.1. Breast Tissue 

In Breast samples 1 and 3, the Ball-sphere model ranked highest in the majority of 

voxels from breast tissue including gland lobule, interlobular stroma, and fat. This 

finding is consistent with a recent study of breast tumour in vivo testing three versions 

of the VERDICT model (Ball-ball-sphere, Ball-stick-sphere, and Ball-zeppelin-sphere 

models) [162]. The in vivo VERDICT study shows that the Ball-ball-sphere model, 

which used ball and sphere components to describe the non-vascular diffusion 

environment, characterized the tumour structure the best and returned parameters in 

agreement with histological features. There is an important difference between this 

study and the in vivo breast VERDICT study. The VERDICT model fixed the 

pseudodiffusion coefficient of the vascular component and assumed intra- and extra-

cellular diffusivities to be equal. These constraints are necessary to avoid overfitting of 

the relatively low SNR in vivo data. In contrast, this study allowed all diffusivities to 

float within biophysical limits. That is because this study used high SNR measurements 

with a wide range of b-values and diffusion times, which enable reliable fitting of 

highly parameterized models with few constraints on parameter values. The Ball-sphere 

model returned values of parameters (diffusivities, sphere radius, and signal fractions) 

that were less than the defined limits in the majority of voxels, suggesting that it was a 

biophysically plausible model. In all three breast samples, the multi-component 

restricted models were superior to unrestricted models, indicating the importance of 

accounting for restricted diffusion in any modelling of breast tissue. 

Breast gland lobules (the ROIs in Fig 5.4A) are comprised of epithelium and 

intralobular fibrous stroma. A preliminary microimaging study of fixed breast tissue 

demonstrated lower diffusivity in the epithelium than that in the fibrous stroma [160]. 

The highest AIC ranking of multi-compartment restricted and anisotropic models (Fig 

5.4B) is consistent with the presence of distinct diffusion microenvironments in breast 

gland lobules. A recent study of breast tissue ex vivo also demonstrated that two-

component restricted and anisotropic models best characterized the signals in glandular 

breast tissue [163]. The range of the fitted Zeppelin-sphere parameters including signal 

fractions and diffusivities (see Figure C.1 in Appendix C) in this study is consistent with 
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that of the same model parameter estimates in [163]. In addition, anisotropic restricted 

models ranked higher than the isotropic restricted Ball-sphere model, indicating the 

presence of significant diffusion anisotropy in one population of water molecules at 

voxel volume = 0.78 mm3. This suggestion is supported by the observed high anisotropy 

in the fibrous stroma [160]. In Chapter 3, anisotropic restricted models were also found 

to have highest information in fixed prostate tissue and returned the sphere radius 

estimates consistent with the typical cell size. Similar to the finding in [160], lower 

diffusivity and low anisotropy in epithelium relative to fibromuscular stroma have been 

reported for prostate tissue [55,117,118]. The results obtained from both breast gland 

lobules and prostate tissue strongly suggest that the isotropic restricted and anisotropic 

unrestricted water pools identified in diffusion analyses correspond to epithelium and 

stroma respectively. This possibility requires further investigation.  

5.4.2. Epithelial Cell Spheroids 

This study shows that the two-component Ball-sphere model has highest information of 

three isotropic models in the majority of selected voxels. The Ball-sphere model uses 

isotropic restricted (sphere) and isotropic unrestricted (ball) components to describe the 

diffusion environment in spheroids. The ball component has higher diffusivity than the 

sphere component. Previous studies demonstrated the presence of fast and slow 

diffusing water pools in tumour cell spheroids [171,172]. It is worth noting that the 

study of Smouha et al. [171] used non-negative least square analysis instead of a two-

component model to analyse diffusion and T2 relaxation in C6 glioma and MLS human 

carcinoma spheroids. They found that the fast and slow diffusing water pools also 

differed in T2 relaxation and the diffusivity of the slow diffusing water pool exhibited 

diffusion time dependence. The slow diffusing water pool described by Smouha et al. 

[171] probably corresponds to the sphere component, and the fast diffusing water pool 

to the ball component. The mean sphere radius of 10.9 µm for fits to 24 voxels in 

spheroids is in good agreement with typical cell diameter (~20-25 µm) for DLD-1 

spheroids [213], strongly suggesting that the restricted water pool primarily consists of 

intracellular water. This suggestion is supported by Smouha et al. [171] showing that 

the volume fraction of the slow diffusing water pool was consistent with the 

intracellular volume fraction. Taken together, these results suggest that the isotropic 

restricted sphere component and the isotropic unrestricted ball component correspond to 

intracellular water and extracellular water respectively. The low ball signal fraction 
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(extracellular volume fraction) in spheroids support the hypothesis that tight junctions 

between epithelial cells function as a barrier by minimizing any signal from fast 

diffusing paracellular water and thus cause the low diffusivity of epithelia observed in 

diffusion microimaging [118,160,170]. The sphere signal fraction of 0.68 is noteworthy, 

as the intracellular volume fraction of pelleted single cells, for example yeast [214] and 

erythrocyte [215], does not normally exceed 0.5.  

5.4.3. Lymph Node Tissue 

This study shows that multi-component restricted models extract more information from 

DWI measurements in lymphoma and benign lymph nodes than single-component 

(ADC and DTI) models and multi-component unrestricted models. In Chapter 3 and this 

Chapter, multi-component restricted models have also been found to have higher 

information than single-component (ADC and DTI) models and multi-component 

unrestricted models in prostate, breast, and spheroids. These results indicate the 

importance of accounting for restricted diffusion in modelling of diffusion in these four 

types of non-neural tissue. 

Many previous studies have investigated the feasibility of DWI in differentiating benign 

from malignant lymph nodes using the ADC model. The ADC values of malignant 

lymph nodes were usually found to be lower than those of benign lymph nodes [34-

36,181,182]. However, some studies observed higher ADC values in malignant than in 

benign lymph nodes [183-185]. Two studies found no significant differences in ADC 

between benign and malignant lymph nodes [186,187]. Inconsistent ADC values 

reported in previous DWI studies of lymph node highlight the limitation of ADC model. 

Two recent studies have used the IVIM model for discrimination between malignant 

and benign lymph nodes in rectal cancer [189,190]. Although both studies demonstrated 

its diagnostic value, they reported inconsistent differences between some IVIM model 

parameters (diffusion coefficient and perfusion fraction) of malignant and benign lymph 

nodes. Neither the ADC model nor the IVIM model accounts for restricted diffusion. 

The overall AIC ranking in lymph nodes shows that Ball (ADC), Bi-ball (biexponential) 

and DTI models rank lowest. This finding suggests that more sophisticated models such 

as VERDICT model that includes a restricted component may provide more accurate 

and reliable detection of malignant lymph nodes. 
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5.4.4. Limitations 

This study has several limitations. The results were obtained from a small number of 

samples for each type of tissue. Future work will assess the performance of 

compartment models, in particular multi-component restricted models, in a large 

number of samples.  

This study is based on diffusion imaging of formalin-fixed tissue. Ex vivo imaging has 

several advantages: (1) it can acquire high SNR and high spatial resolution 

measurement data; (2) it allows long scan time; (3) it is less expensive than in vivo 

imaging; (4) it is free from organ movement, perfusion, and susceptibility which are 

present in in vivo imaging. However, the absence of perfusion may lead to a decrease in 

the volume of extracellular-extravascular water. This decrease would be expected to 

affect the signal fractions for each compartment. 

Formaldehyde fixation stabilizes the tissue against degradation by cross-linking proteins. 

However, tissue fixation results in a significant reduction in measured diffusivity 

[113,192]. Nevertheless, previous DWI studies of prostate and white matter suggest that 

formalin fixation is unlikely to affect the model ranking [39,198]. 

The eleven models tested in this study assume no water exchange between 

compartments. Previous experiments on cultured cells demonstrated that cell membrane 

permeability could have a significant impact on the model parameters depending on the 

applied diffusion time [62,201]. Future work will add permeability parameters to 

account for exchange between compartments. 

In this study, DWI signals were normalized to the ‘b = 0’ signal before model fitting to 

minimize T2 effects. A previous study of tumour cell spheroids demonstrated that the 

fast and slow diffusing water pools identified in diffusion analyses also differed in T2 

relaxation [171]. They found that T2 for the slow diffusing water pool was significantly 

shorter than that for the fast diffusing water pool. Future work will explore the 

incorporation of T2 effects into compartment models. 

The differences between ex vivo and in vivo imaging include tissue perfusion, 

temperature, tissue fixation, the available range of diffusion times and gradient strength. 

Although the results presented in this ex vivo study cannot be directly related to in vivo 

imaging, they clearly describe some tissue structure features that can be detected by 
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DWI and provide basic science evidence to inform the further development of clinical 

imaging methods. 

5.5.  Conclusions 

When DWI is performed in breast tissue, lymph nodes and spheroids over a wide range 

of b-values and multiple diffusion times, multi-component restricted models extract 

more information from DWI measurements than single-component models and multi-

component models that do not account for diffusion restriction. These results highlight 

the importance of inclusion of a restricted diffusion compartment in modelling of 

diffusion in breast tissue, lymph nodes and spheroids. 

The superior performance of restricted and anisotropic two-component models in gland 

ROIs is consistent with the presence of distinct diffusion microenvironment in breast 

gland lobules. Development of clinical DWI methods sensitive to changes in this 

microenvironment might increase accuracy of breast cancer detection. In cultured 

epithelial cell spheroids, the isotropic and restricted model returns the mean sphere 

radius consistent with known cell diameter. Many cancers are of epithelial origin. 

Cultured epithelial cell spheroids can mimic the tumour microenvironment and provide 

a well-controlled environment for studying tissue properties. Thus investigation of 

diffusion dynamics in spheroids will enhance understanding of the tissue microstructure 

properties that affect diffusion contrast in clinical imaging. 
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 Chapter 6 Conclusions 

DWI has become a popular clinical imaging method as it has the ability to probe the 

tissue microstructure. Its main clinical application has been the diagnosis of 

neurological disorders. It also becomes a standard imaging method for detection of 

cancer lesions in other organs such as prostate and breast. To infer tissue structure from 

DWI measurements, a variety of models have been proposed to characterize DWI 

signals in tissue.  The recent trend is towards compartment models, which are based on 

assumptions about the underlying tissue structure. Compartment models have been 

mainly used in the brain. They can provide more insightful information on tissue 

features such as axon radius in white matter [17-21] or neurite orientation distribution 

[22]. However, compartment models are generally lacking for non-neural tissue. A 

three-component VERDICT model, which is based on vascular, extracellular-

extravascular and intracellular compartments, has recently been used to characterize 

diffusion signals in colorectal cancer cell lines and prostate tissue, and produced 

promising results [41,42]. 

The work in this thesis has implemented predefined compartment models in prostate, 

breast, lymph nodes and spheroids, selected models that extract the most information 

from the given set of measurement data and identified compartments which are 

necessary for accurately describing DWI signals in these four types of non-neural tissue. 

As noted in Chapter 1, the ultimate goal of this work is to obtain specific microstructure 

features (ideally diagnostic features) for these four types of tissue using DWI 

measurements. There are three distinct, but not independent processes. The first step is 

defining a DWI scan protocol that can acquire appropriate tissue structure information. 

The second step is constructing models that can relate microstructural features to DWI 

signals. The third is extracting as much information as possible from the acquired data 

by selection of a model that has highest information. This thesis focuses on the second 

and third steps. The following section summarized the key findings and conclusions of 

each non-neural tissue experiment.  
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6.1.  Non-neural Tissue  

The first study presented in Chapter 3 investigated the theoretical information of single- 

and multi-compartment models of diffusion in prostate tissue and identified which 

model extracted the most information from the measurement data. Eleven models, 

including different combinations of isotropic, anisotropic and restricted components, 

were tested. Models were ranked using AIC [196]. This study used high SNR data 

obtained by imaging four whole formalin-fixed prostates on a 9.4T MRI system. A 

range of acquisition parameters including voxel size, b-value and diffusion time was 

used.  

In all four prostates, multi-component anisotropic and restricted models extracted more 

information from the multi-b and multi-Δ measurement data than single-component 

(ADC and DTI) models and multi-component unrestricted models. The rankings of 

models are largely independent of maximum b-value, maximum diffusion time, and 

voxel volume over the range tested in this study. Multi-component models that included 

anisotropic components generally ranked higher than models that did not. In addition, 

multi-component models that included a restricted component generally ranked higher 

than unrestricted models. Taken together, these results suggest that both anisotropic and 

restricted components are necessary for accurately describing DWI signals in prostate 

tissue. These findings provide further information about the non-perfusion components 

of the VERDICT model previously used for prostate in vivo [42] and demonstrate that 

appropriate DWI measurements can probe multiple tissue structure features. This study 

also highlights the limitations of ADC and DTI models. Most of work described in this 

study was published in NMR in Biomedicine, title “Information-based ranking of 10 

compartment models of diffusion-weighted signal attenuation in fixed prostate tissue” 

[216]. 

The first study shows that the highest three AIC-ranked models in four prostates are 

Ball-stick-sphere, Zeppelin-sphere and Tensor-sphere, all of which include both 

anisotropic and restricted components. Zeppelin-sphere model is less parameterized 

than the other two models. The second study reported in Chapter 4 used the Zeppelin-

sphere model to predict the impact of diffusion time on MD and FA. Then this predicted 

impact was compared with the impact assessed from the measurement data. This 

experiment performed diffusion tensor imaging of three formalin-fixed prostates at 9.4T 
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with a wide range of diffusion times (10 – 120 ms). Measured MD and FA were 

calculated from DTI measurement data. The Zeppelin-sphere model was used to 

synthesize noise-free DTI data for each diffusion time. Predicted MD and FA were then 

calculated from the synthetic DTI data. 

In all three prostates, the diffusion time dependence of measured MD and FA was 

observed for the 10 – 120 ms diffusion times. There was a general decrease in the mean 

voxel MD and a broad increase in the mean voxel FA as diffusion time increased. The 

Zeppelin-sphere model accurately predicted the impact of diffusion time on MD and FA. 

This accurate prediction validated the Zeppelin-sphere model, which described DWI 

signals in prostate tissue as a sum of two signals respectively from an anisotropic 

Gaussian component (zeppelin) and an isotropic restricted component (sphere). 

Diffusion time is an important parameter but is rarely reported explicitly in clinical 

DWI studies. The diffusion time dependence of MD and FA found in this experiment 

highlight the importance of considering and reporting diffusion time in clinical DWI 

studies and consensus methods.    

The third experiment reported in Chapter 5 investigated compartment models of 

diffusion in breast, lymph node, and spheroids. The eleven models tested in Chapter 3 

were used for modeling diffusion in breast tissue and lymph nodes. It was assumed that 

diffusivity of spheroids was the same in all directions. So three isotropic models (Ball, 

Bi-ball, and Ball-sphere) were used for modeling diffusion in spheroids. Models were 

ranked using AIC [196]. 

In breast, lymph nodes and spheroids, multi-component restricted models extract more 

information from multi-b and multi-Δ measurement data than single-component models 

and multi-component unrestricted models. These results highlight the importance of 

inclusion of a restricted diffusion compartment in modelling of diffusion in these three 

types of non-neural tissue. In breast gland lobules, multi-component restricted and 

anisotropic models had highest information. The high AIC ranking of these restricted 

and anisotropic models is consistent with the presence of distinct diffusion 

microenvironment in breast gland lobules. Development of clinical DWI methods 

sensitive to changes in these microenvironments may be the key to increased accuracy 

of breast cancer detection. In cultured epithelial spheroids, the two-component isotropic 

and restricted model returns the mean sphere radius consistent with known cell diameter. 
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Epithelia are important tissue structures as many cancers are of epithelial origin. 

Cultured epithelial cell spheroids demonstrate many of the physiological properties of 

glandular epithelia and provide a well-controlled environment for studying these tissue 

properties. Thus, investigation of diffusion dynamics in spheroids will enhance 

understanding of the tissue microstructure properties that may contribute to the reported 

low water mobility in prostate [118] and breast [160].  

6.2.  Advances in Knowledge 

This study made the following main advances in knowledge: 

l Multi-component models including both anisotropic and restricted components 

extracted more information from multi-Δ, multi-b DWI measurement data in 

prostate tissue ex vivo than single-component (ADC and DTI) models and multi-

component models that did not account for restricted diffusion. 

l Model ranking trends in prostate tissue were largely independent of voxel size, 

maximum b-value, and maximum diffusion time over the range tested in this study. 

l A diffusion time dependence of MD and FA in prostate tissue ex vivo was 

observed. Two-component anisotropic and restricted (Zeppelin-sphere) model 

accurately predicted the impact of diffusion time on MD and FA over a range of 10 

– 120 ms diffusion times.  

l Multi-component models that accounted for restricted diffusion extracted the most 

information from multi-Δ, multi-b DWI measurement data in breast tissue ex vivo 

including gland lobule, interlobular stroma, and fat.  

l In glandular breast tissue, multi-component restricted and anisotropic models 

extracted more information from multi-Δ, multi-b DWI measurement data than 

single-component models, the isotropic restricted model and multi-component 

models that did not account for restricted diffusion. 

l Two-component isotropic and restricted model extracted more information from 

multi-Δ, multi-b DWI measurement data in formalin-fixed DLD-1 spheroids than 

ADC/Ball and biexponential/Bi-ball models. 
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l In spheroids, the mean sphere radius from the isotropic and restricted model was 

10.9 µm which was consistent with the known cell size. 

l Multi-component models that accounted for restricted diffusion extracted more 

information from multi-Δ, multi-b DWI measurement data in lymph nodes ex vivo 

than single-component (ADC and DTI) models and multi-component unrestricted 

models 

Overall, this study provided further information about the diffusion (non-perfusion) 

environments of four types of non-neural tissue (prostate, breast, lymph nodes, and 

spheroids). Preliminary microimaging studies of fixed prostate and breast tissue have 

demonstrated that epithelium has lower diffusivity and lower anisotropy than the 

adjacent supporting stroma [55,117,118,160]. In both prostate and glandular breast 

tissue, multi-component models incorporating an isotropic restricted component and an 

anisotropic Gaussian component extracted the most information from multi-Δ, multi-b 

DWI measurement data. These results strongly suggest that the isotropic restricted and 

anisotropic unrestricted water pools identified in diffusion analyses correspond to 

epithelium and stroma respectively. This possibility needs further investigation. The 

zeppelin-sphere model accurately predicted the impact of diffusion time on MD and FA. 

This result provides an independent validation of two-component anisotropic and 

restricted models used for describing the diffusion environments in prostate tissue. The 

application of Zeppelin-sphere model for predicting the influence of diffusion time 

proposes a new way of using and validating compartment models. In cultured epithelial 

cell spheroids, two-component isotropic and restricted model had highest information in 

the majority of selected voxels and the mean sphere radius was consistent with known 

cell diameter. These findings support the possibility that an isotropic restricted water 

pool corresponds to the epithelium. The high AIC ranking of multi-component 

restricted models in lymph nodes suggests the presence of restricted diffusion in one 

water pool. In lymph node DWI, the biophysical basis for diffusion contrast in tissue is 

poorly understood. Diffusion microimaging studies of lymph nodes are required to 

develop a clear understanding of the tissue microstructure properties that affect 

diffusion contrast. The results presented in this study provide basic science evidence to 

guide future development of clinical imaging methods. 
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6.3.  Future Work 

A previous study of prostate tissue in vivo utilizing a three-component VERDICT 

model used only isotropic components [42]. The study of prostate tissue ex vivo in 

Chapter 3 addressed this limitation by including anisotropic components and 

demonstrated that multi-component models, incorporating an anisotropic Gaussian 

component and an isotropic restricted component, had the highest information. The 

VERDICT model that uses an anisotropic Gaussian component to characterize water 

diffusion in extracellular-extravascular space needs to be tested on prostate tissue in 

vivo. 

The eleven models tested in this thesis assumed no water exchange between 

compartments. The multi-component restricted models have consistently had higher 

information in all four types of tissue than single-component model and multi-

component unrestricted models. Future work will define multi-component restricted 

models that account for water exchange between compartments and test these new 

models on the four types of tissue. 

Due to the small number of non-neural tissue samples included in this study, the 

quantitative assessment of models for cancer detection was not made. A large number 

of tissue samples are required to evaluate the diagnostic performance of the models 

tested in this study for cancer imaging. 

In this study, DWI signals were normalized to the ‘b = 0’ signal before model fitting to 

minimize T2 effects. Previous prostate studies [199,200] demonstrated that prostatic T2 

decay was biexponential, indicating the presence of two water pools with distinct T2 

values. The existence of different T2 components in prostate tissue may have an effect 

on the distinct water pools identified in diffusion analyses. There is evidence that the 

fast and slow diffusing water pools identified in tumour cell spheroids have 

significantly different T2 relaxation rates [171]. A recent study extended three-

component models of diffusion in white matter to account for T2 effects [24]. Future 

work will investigate compartment models that incorporate T2 effects (probably in a 

similar way to [24]). 

The candidate models tested in this study were selected using a high SNR information-

rich measurement with multiple diffusion time and a wide range of b-values. However, 
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it remains unknown whether a noisier less rich clinical data set still broadly supports 

candidate models chosen using a high SNR information rich measurement. The 

influence of measurement richness on the AIC ranking of models needs to be 

investigated.  
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 Appendices 

Appendix A    Supporting Information for Chapter 3 

Table A.1 P-values from Mann-Whitney U-test.  

Insignificant differences (P > 0.05) between models are shown in bold type. 1 – Ball, 2 

– Bi-ball, 3 – Ball-zeppelin, 4 – Bi-ball-zeppelin, 5 – Zeppelin-sphere, 6 – Bi-zeppelin, 7 

– Tensor-sphere, 8 – Ball-sphere, 9 – Ball-tensor, 10 – DTI, 11 – Ball-stick-sphere 

Prostate 1 

 2 3 4 5 6 7 8 9 10 11 

1 4×10-21 2×10-45 6×10-46 2×10-75 8×10-46 3×10-74 2×10-49 7×10-45 5×10-16 2×10-75 

2  6×10-12 3×10-13 2×10-56 5×10-13 1×10-55 2×10-13 1×10-11 7×10-8 2×10-60 

3   0.48 2×10-33 0.54 1×10-32 0.78 0.89 4×10-33 2×10-41 

4    6×10-29 0.89 3×10-28 0.7 0.39 7×10-34 3×10-37 

5     2×10-29 0.9 3×10-33 7×10-34 3×10-70 3×10-4 

6      6×10-29 0.78 0.45 9×10-34 5×10-38 

7       1×10-32 3×10-33 1×10-68 2×10-4 

8        0.68 2×10-35 5×10-41 

9         1×10-32 7×10-42 

10          9×10-71 

 

Prostate 2 

 2 3 4 5 6 7 8 9 10 11 

1 0.01 3×10-11 2×10-11 2×10-35 1×10-5 2×10-19 7×10-17 3×10-11 0.38 8×10-18 

2  9×10-5 7×10-5 1×10-23 0.06 5×10-10 3×10-8 9×10-5 4×10-4 3×10-9 

3   0.95 2×10-11 0.06 0.02 0.11 0.93 4×10-14 0.03 

4    3×10-11 0.05 0.02 0.13 0.89 3×10-14 0.03 

5     8×10-16 3×10-6 7×10-8 1×10-11 1×10-39 4×10-6 

6      4×10-5 7×10-4 0.07 1×10-7 1×10-4 

7       0.41 0.01 2×10-23 0.9 

8        0.1 1×10-20 0.51 

9         4×10-14 0.02 

10          1×10-21 
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Prostate 3 

 2 3 4 5 6 7 8 9 10 11 

1 1×10-87  1×10-95 5×10-97 4×10-112 7×10-97 1×10-111 1×10-107 1×10-95 1×10-4 2×10-112 

2  4×10-7 6×10-11 4×10-80 3×10-10 3×10-76 1×10-40 4×10-7 2×10-80 5×10-94 

3   0.99 4×10-60 0.14 1×10-56 8×10-21 0.99 2×10-89 3×10-78 

4    1×10-48 0.71 1×10-45 8×10-14 0.08 2×10-91 1×10-68 

5     3×10-51 0.69 5×10-22 5×10-60 3×10-111 2×10-18 

6      5×10-48 4×10-15 0.15 4×10-91 2×10-71 

7       4×10-20 1×10-56 1×10-110 2×10-19 

8        9×10-21 4×10-104 2×10-54 

9         2×10-89 2×10-78 

10          5×10-112 

 

Prostate 4 

 2 3 4 5 6 7 8 9 10 11 

1 4×10-22 4×10-23 3×10-23 6×10-40 4×10-23 4×10-39 1×10-39 4×10-23 0.21 2×10-39 

2  0.55 0.47 3×10-17 0.51 3×10-15 5×10-15 0.59 2×10-20 2×10-20 

3   0.85 2×10-15 0.92 1×10-13 3×10-13 0.99 1×10-21 9×10-19 

4    1×10-14 0.91 5×10-13 1×10-12 0.82 1×10-21 5×10-18 

5     4×10-15 0.52 0.25 1×10-15 2×10-39 0.01 

6      2×10-13 6×10-13 0.9 1×10-21 2×10-18 

7       0.63 7×10-14 2×10-38 0.003 

8        2×10-13 5×10-39 7×10-4 

9         1×10-21 7×10-19 

10          1×10-38 
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Figure A.1 Tensor-sphere model parameter maps. 

Slice positions as for Fig. 3.1. 
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Figure A.2 Ball-stick-sphere model parameter maps. 

Slice positions as for Fig. 3.1. 
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Figure A.3 One-way parameter histograms fro Zeppelin-sphere model  
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Appendix B    Supporting Information for Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Scatter plots of measured MD and FA versus MD and FA predicted by the 

zeppelin-sphere model for b = 1600 s/mm2. 

Data are from 3957 voxels in Prostate 1, 3510 voxels in Prostate 2, and 4680 voxels in 

Prostate 3 
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Appendix C    Supporting Information for Chapter 5 

 

Figure C.1 Zeppelin-sphere model parameter maps. 

Slice positions as for Fig 5.1. 

 




