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Abstract. Some inequalities of Hermite-Hadamard type for operator convex functions in Hilbert
spaces are given. The case for matrices and convex functions is also considered. Examples for
some particular functions of interest are provided as well.

1. Introduction

The following inequality holds for any convex function f defined on R

(b−a) f

(
a+b

2

)
<

∫ b

a
f (x)dx < (b−a)

f (a)+ f (b)
2

, a,b ∈ R, a < b. (1.1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [49]). But
this result was nowhere mentioned in the mathematical literature and was not widely
known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex func-
tions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In 1974,
D. S. Mitrinović found Hermite’s note in Mathesis [49]. Since (1.1) was known as
Hadamard’s inequality, the inequality is now commonly referred as the Hermite-Hada-
mard inequality.

For related results, see [10]–[19], [22]–[29], [36]–[39] and [54].
Let X be a vector space over the real or complex number field K and x,y∈ X , x �=

y . Define the segment

[x,y] := {(1− t)x+ ty, t ∈ [0,1]}.

We consider the function f : [x,y] → R and the associated function

g(x,y) : [0,1] → R, g(x,y)(t) := f [(1− t)x+ ty], t ∈ [0,1].

Note that f is convex on [x,y] if and only if g(x,y) is convex on [0,1] .
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For any convex function defined on a segment [x,y] ⊂ X , we have the Hermite-
Hadamard integral inequality (see [20, p. 2], [21, p. 2])

f

(
x+ y

2

)
�
∫ 1

0
f [(1− t)x+ ty]dt � f (x)+ f (y)

2
, (1.2)

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x,y) : [0,1] → R .

Since f (x) = ‖x‖p (x ∈ X and 1 � p < ∞) is a convex function, then for any
x,y ∈ X we have the following norm inequality from (1.2) (see [55, p. 106])∥∥∥∥x+ y

2

∥∥∥∥
p

�
∫ 1

0
‖(1− t)x+ ty‖pdt � ‖x‖p +‖y‖p

2
. (1.3)

Let A be a selfadjoint linear operator on a complex Hilbert space (H;〈., .〉) . The
Gelfand map establishes a ∗ -isometrically isomorphism Φ between the set C (Sp (A))
of all continuous functions defined on the spectrum of A, denoted Sp (A) , and the C∗ -
algebra C∗ (A) generated by A and the identity operator 1H on H as follows (see for
instance [41, p. 3]):

For any f ,g ∈C (Sp (A)) and any α,β ∈ C we have
(i) Φ(α f + βg) = αΦ( f )+ β Φ(g) ;

(ii) Φ( f g) = Φ( f )Φ(g) and Φ
(

f
)

= Φ( f )∗ ;

(iii) ‖Φ( f )‖ = ‖ f‖ := supt∈Sp (A) | f (t)| ;
(iv) Φ( f0) = 1H and Φ( f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ( f ) for all f ∈C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A) ,

then f (t) � 0 for any t ∈ Sp (A) implies that f (A) � 0, i.e. f (A) is a positive operator
on H. Moreover, if both f and g are real valued functions on Sp (A) then the following
important property holds:

f (t) � g(t) for any t ∈ Sp (A) implies that f (A) � g(A) (P)

in the operator order of B(H) .
A real valued continuous function f on an interval I is said to be operator convex

(operator concave) if

f ((1−λ )A+ λB) � (�)(1−λ ) f (A)+ λ f (B) (OC)

in the operator order, for all λ ∈ [0,1] and for every selfadjoint operator A and B on a
Hilbert space H whose spectra are contained in I. Notice that a function f is operator
concave if − f is operator convex.

A real valued continuous function f on an interval I is said to be operator mono-
tone if it is monotone with respect to the operator order, i.e., A � B with Sp (A) , Sp (B)
⊂ I imply f (A) � f (B) .
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For some fundamental results on operator convex (operator concave) and operator
monotone functions, see [41] and the references therein.

As examples of such functions, we note that f (t) = tr is operator monotone on
[0,∞) if and only if 0 � r � 1. The function f (t) = tr is operator convex on (0,∞) if
either 1 � r � 2 or −1 � r � 0 and is operator concave on (0,∞) if 0 � r � 1. The
logarithmic function f (t) = ln t is operator monotone and operator concave on (0,∞).
The entropy function f (t) = −t ln t is operator concave on (0,∞). The exponential
function f (t) = et is neither operator convex nor operator monotone.

For a recent monograph devoted to various inequalities for functions of selfadjoint
operators, see [41] and the references therein. For other results, see [52], [47], [51] and
[48]. For recent results, see [23], [24], [25] and the books [27] and [28].

We recall the following result concerning a Hermite-Hadamard type inequality for
operator convex functions [26] (see also [27, p. 60]):

THEOREM 1. Let f : I → R be an operator convex function on the interval I.
Then for any selfadjoint operators A and B with spectra in I we have the inequality in
the operator order

f

(
A+B

2

)
� 1

2

[
f

(
3A+B

4

)
+ f

(
A+3B

4

)]
(1.4)

�
∫ 1

0
f ((1− t)A+ tB)dt

� 1
2

[
f

(
A+B

2

)
+

f (A)+ f (B)
2

]
� f (A)+ f (B)

2
.

Motivated by the above results, we establish in this paper a generalization of (1.4)
as well as the corresponding trace versions for operators and matrices. Some quasilinear
properties of some trace functionals associated with convex functions of matrices and
applications for some instances of interest are also provided.

2. Inequalities for operator convex functions

The following representation result holds.

LEMMA 1. Let f : I → R be a continuous function on the interval I. Then for
any selfadjoint operators A and B with spectra in I and for any λ ∈ [0,1] we have the
equality

∫ 1

0
f [(1− t)A+ tB]dt = (1−λ )

∫ 1

0
f [(1− t)((1−λ )A+ λB)+ tB]dt (2.1)

+ λ
∫ 1

0
f [(1− t)A+ t ((1−λ )A+ λB)]dt.

Proof. For λ = 0 and λ = 1 the equality (2.1) is obvious.
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Let λ ∈ (0,1) . Observe that

∫ 1

0
f [(1− t)(λB+(1−λ )A)+ tB]dt =

∫ 1

0
f [((1− t)λ + t)B+(1− t)(1−λ )A]dt

and ∫ 1

0
f [t (λB+(1−λ )A)+ (1− t)A]dt =

∫ 1

0
f [tλB+(1−λ t)A]dt.

If we make the change of variable u := (1− t)λ +t then we have 1−u=(1− t)(1−λ )
and du = (1−λ )du. Then

∫ 1

0
f [((1− t)λ + t)B+(1− t)(1−λ )A]dt =

1
1−λ

∫ 1

λ
f [uB+(1−u)A]du.

If we make the change of variable u := λ t then we have du = λdt and

∫ 1

0
f [tλB+(1−λ t)A]dt =

1
λ

∫ λ

0
f [uB+(1−u)A]du.

Therefore

(1−λ )
∫ 1

0
f [(1− t)(λB+(1−λ )A)+ tB]dt

+ λ
∫ 1

0
f [t (λB+(1−λ )A)+ (1− t)A]dt

=
∫ 1

λ
f [uB+(1−u)A]du+

∫ λ

0
f [uB+(1−u)A]du

=
∫ 1

0
f [uB+(1−u)A]du

and the identity (2.1) is proved. �

THEOREM 2. Let f : I → R be an operator convex function on the interval I.
Then for any selfadjoint operators A and B with spectra in I and for any λ ∈ [0,1] we
have the inequalities

f

(
A+B

2

)
� (1−λ ) f

[
(1−λ )A+(λ +1)B

2

]
+ λ f

[
(2−λ )A+ λB

2

]
(2.2)

�
∫ 1

0
f [(1− t)A+ tB]dt

� 1
2

[ f ((1−λ )A+ λB)+ (1−λ ) f (B)+ λ f (A)]

� f (A)+ f (B)
2

.
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Proof. Since f : I → R is an operator convex function on the interval I , then by
Theorem 1 we have

f

[
(1−λ )A+(λ +1)B

2

]
�
∫ 1

0
f [(1− t)((1−λ )A+ λB)+ tB]dt (2.3)

� 1
2

[ f ((1−λ )A+ λB)+ f (B)]

and

f

[
(2−λ )A+ λB

2

]
�
∫ 1

0
f [(1− t)A+ t ((1−λ )A+ λB)]dt (2.4)

� 1
2

[ f (A)+ f ((1−λ )A+ λB)]
∫ 1

0
h(t)dt.

Now, if we multiply the inequality (2.3) by 1−λ � 0 and (2.4) by λ � 0 and add the
obtained inequalities, then we get

(1−λ ) f

[
(1−λ )A+(λ +1)B

2

]
+ λ f

[
(2−λ )A+ λB

2

]
(2.5)

� (1−λ )
∫ 1

0
f [(1− t)((1−λ )A+ λB)+ tB]dt

+ λ
∫ 1

0
f [(1− t)A+ t ((1−λ )A+ λB)]dt

� 1
2

(1−λ )[ f ((1−λ )A+ λB)+ f (B)]+
1
2

λ [ f (A)+ f ((1−λ )A+ λB)]

=
1
2

[ f ((1−λ )A+ λB)+ (1−λ ) f (B)+ λ f (A)]

and by (2.1) we obtain the second and the third inequalities in (2.2).
The first and the last inequality in (2.2) are obvious by operator convexity of

f . �

REMARK 1. If we take λ = 1
2 , then we get from (2.2) the inequality (1.4).

Some examples are as follows:

REMARK 2. Utilising different instances of operator convex or concave functions,
we can provide inequalities of interest.

If r ∈ [−1,0]∪ [1,2] then we have the inequalities for powers of operators(
A+B

2

)r

� (1−λ )
[
(1−λ )A+(λ +1)B

2

]r

+ λ f

[
(2−λ )A+ λB

2

]r

(2.6)

�
∫ 1

0
((1− t)A+ tB)r dt

� 1
2

[((1−λ )A+ λB)r +(1−λ )Br + λAr]

� Ar +Br

2
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for any two selfadjoint operators A and B with spectra in (0,∞) and λ ∈ [0,1] .
If r ∈ (0,1) the inequalities in (2.6) hold with “�” instead of “�”.
We also have the following inequalities for logarithm

ln

(
A+B

2

)
� (1−λ ) ln

[
(1−λ )A+(λ +1)B

2

]
+ λ ln

[
(2−λ )A+ λB

2

]
(2.7)

�
∫ 1

0
ln((1− t)A+ tB)dt

� 1
2

[ln((1−λ )A+ λB)+ (1−λ )lnB+ λ lnA]

� ln(A)+ ln(B)
2

for any two selfadjoint operators A and B with spectra in (0,∞) and λ ∈ [0,1] .

Let (H,〈·, ·〉) be a complex Hilbert space and {ei}i∈I an orthonormal basis of H.
We say that A ∈ B (H) is a Hilbert-Schmidt operator if

∑
i∈I

‖Aei‖2 < ∞. (2.8)

It is well know that, if {ei}i∈I and
{

f j
}

j∈J are orthonormal bases for H and A∈B (H)
then

∑
i∈I

‖Aei‖2 = ∑
j∈I

∥∥A f j
∥∥2 = ∑

j∈I

∥∥A∗ f j
∥∥2

(2.9)

showing that the definition (2.8) is independent of the orthonormal basis and A is a
Hilbert-Schmidt operator iff A∗ is a Hilbert-Schmidt operator.

Let B2 (H) the set of Hilbert-Schmidt operators in B (H) . For A ∈ B2 (H) we
define

‖A‖2 :=

(
∑
i∈I

‖Aei‖2

)1/2

(2.10)

for {ei}i∈I an orthonormal basis of H. This definition does not depend on the choice
of the orthonormal basis.

We recall that (B2 (H) ,〈·, ·〉2) is a complex Hilbert space , where the Hilbert-
Schmidt inner product is defined by

〈U,V 〉2 := tr (V ∗U) , U, V ∈ B2 (H) .

If {ei}i∈I an orthonormal basis of H, we say that A ∈ B (H) is trace class if

‖A‖1 := ∑
i∈I

〈|A|ei,ei〉 < ∞. (2.11)

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis {ei}i∈I .
We denote by B1 (H) the set of trace class operators in B (H) .
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We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) := ∑
i∈I

〈Aei,ei〉 , (2.12)

where {ei}i∈I an orthonormal basis of H. Note that this coincides with the usual defini-
tion of the trace if H is finite-dimensional. We observe that the series (2.12) converges
absolutely and it is independent from the choice of basis.

If A � 0 and P ∈ B1 (H) with P � 0, then

0 � tr (PA) � ‖A‖ tr (P) . (2.13)

Indeed, since A � 0, then 〈Ax,x〉 � 0 for any x ∈ H. If {ei}i∈I an orthonormal
basis of H , then

0 �
〈
AP1/2ei,P

1/2ei

〉
� ‖A‖

∥∥∥P1/2ei

∥∥∥2
= ‖A‖〈Pei,ei〉

for any i ∈ I. Summing over i ∈ I we get

0 � ∑
i∈I

〈
AP1/2ei,P

1/2ei

〉
� ‖A‖∑

i∈I
〈Pei,ei〉 = ‖A‖ tr (P)

and since

∑
i∈I

〈
AP1/2ei,P

1/2ei

〉
= ∑

i∈I

〈
P1/2AP1/2ei,ei

〉
= tr

(
P1/2AP1/2

)
= tr (PA)

we obtain the desired result (2.13).
This obviously imply the fact that, if A and B are selfadjoint operators with A � B

and P ∈ B1 (H) with P � 0, then

tr (PA) � tr (PB) . (2.14)

Now, if A is a selfadjoint operator, then we know that

|〈Ax,x〉| � 〈|A|x,x〉 for any x ∈ H.

This inequality follows by Jensen’s inequality for the convex function f (t) = |t| defined
on a closed interval containing the spectrum of A.

If {ei}i∈I is an orthonormal basis of H , then

|tr (PA)| =

∣∣∣∣∣∑i∈I

〈
AP1/2ei,P

1/2ei

〉∣∣∣∣∣� ∑
i∈I

∣∣∣〈AP1/2ei,P
1/2ei

〉∣∣∣ (2.15)

� ∑
i∈I

〈
|A|P1/2ei,P

1/2ei

〉
= tr (P |A|) ,

for any A a selfadjoint operator and P ∈ B1 (H) with P � 0.
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COROLLARY 1. Let f : I → R be an operator convex function on the interval I.
Then for any selfadjoint operators A and B with spectra in I, for any P∈B1 (H) with
P � 0, tr (P) = 1 and for any λ ∈ [0,1] we have the inequalities

tr

[
P f

(
A+B

2

)]
(2.16)

� (1−λ )tr
(

P f

[
(1−λ )A+(λ +1)B

2

])
+ λ tr

(
P f

[
(2−λ )A+ λB

2

])

�
∫ 1

0
tr (P f [(1− t)A+ tB])dt

� 1
2

[tr [P f ((1−λ )A+ λB)]+ (1−λ )tr [P f (B)]+ λ tr [P f (A)]]

� 1
2

(tr [P f (A)]+ tr [P f (B)]) .

The proof follows by the property (2.14) and the inequality (2.2).
Similar particular inequalities of interest may be stated if one chooses various

operator convex functions. However the details are not presented here.

3. Inequalities for matrices

Let Mn denote the space of n×n matrices with complex elements. Let Hn denote
the n× n Hermitian matrices, i.e. the subset of Mn consisting of all matrices A ∈ Hn

such that A∗ = A. There is a natural partial order on Hn : a matrix A ∈ Hn is said to be
positive semi-definite in case

〈v,Av〉 � 0 for all v ∈ C
n, (3.1)

in which case we write A � 0. A is said to be positive definite in case the inequality
(3.1) is strict for all v �= 0 in Cn, in which case we write A > 0. Notice that in the
finite-dimensional case we have A > 0 if and only if A � 0 and A is invertible. Let H+

n
denote the n×n positive definite matrices.

A function f : (0,∞)→ R is said to be operator monotone in case when whenever
for all n and all A,B ∈ H+

n

A � B ⇒ f (A) � f (B) .

The following result is well know.

THEOREM 3. Let f : R (R+)→ R be continuous and let n be a natural number.
If f is monotone increasing, so is A �→ tr [ f (A)] on Hn (H+

n ) . Likewise, if f is convex,
so is A �→ tr [ f (A)] on Hn (H+

n ) , and strictly so if f is strictly convex.

The following Hermite-Hadamard type trace inequality holds.
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THEOREM 4. Let f : R (R+)→ R be continuous convex. Then for any A,B∈Hn

(H+
n ) we have the inequality

tr

[
f

(
A+B

2

)]
�
∫ 1

0
tr ( f [(1− t)A+ tB])dt � 1

2
(tr [ f (A)]+ tr [ f (B)]) . (3.2)

The proof follows by the Hermite-Hadamard type inequality (1.2) applied for the
convex function A �→ tr [ f (A)] defined on Hn (H+

n ) .
We can prove the following improvement of (3.2).

THEOREM 5. Let f : R (R+)→ R be continuous convex. Then for any A,B∈Hn

(H+
n ) and λ ∈ [0,1] we have the inequality

tr

[
f

(
A+B

2

)]
(3.3)

� (1−λ )tr
(

f

[
(1−λ )A+(λ +1)B

2

])
+ λ tr

(
f

[
(2−λ )A+ λB

2

])

�
∫ 1

0
tr ( f [(1− t)A+ tB])dt

� 1
2

[tr [ f ((1−λ )A+ λB)]+ (1−λ )tr [ f (B)]+ λ tr [ f (A)]]

� 1
2

(tr [ f (A)]+ tr [ f (B)]) .

Proof. Utilising Lemma 1 we have the equality

∫ 1

0
tr ( f [(1− t)A+ tB])dt (3.4)

= (1−λ )
∫ 1

0
tr ( f [(1− t)((1−λ )A+ λB)+ tB])dt

+ λ
∫ 1

0
tr ( f [(1− t)A+ t ((1−λ )A+ λB)])dt

for any A,B ∈ Hn (H+
n ) and λ ∈ [0,1] .

Utilizing a similar argument to the one in the proof of Theorem 2 we obtain the
desired result (3.3). We omit the details. �

It is known that if A and B are commuting, i.e. AB = BA , then the exponential
function satisfies the property

exp(A)exp(B) = exp(B)exp(A) = exp(A+B).

Also, if X is invertible and a,b ∈ R with a < b then

∫ b

a
exp(tX)dt = X−1 [exp(bX)− exp(aX)] .
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Moreover, if A and B are commuting and B−A is invertible, then

∫ 1

0
exp((1− s)A+ sB)ds =

∫ 1

0
exp(s(B−A))exp(A)ds

=
(∫ 1

0
exp(s(B−A))ds

)
exp(A)

= (B−A)−1 [exp(B−A)− In]exp(A)

= (B−A)−1 [exp(B)− exp(A)] .

If we write the inequality (3.3) for the convex function f (t) = expt, then for any com-
muting A,B ∈ Hn with B−A is invertible we have

tr

[
exp

(
A+B

2

)]
(3.5)

� (1−λ )tr
(

exp

[
(1−λ )A+(λ +1)B

2

])
+ λ tr

(
exp

[
(2−λ )A+ λB

2

])

� tr
(
(B−A)−1 [exp(B)− exp(A)]

)
� 1

2
[tr [exp((1−λ )A+ λB)]+ (1−λ )tr [exp(B)]+ λ tr [exp(A)]]

� 1
2

(tr [exp(A)]+ tr [exp(B)]) ,

for any λ ∈ [0,1] .
If we apply the inequality (3.3) for the convex function f (t) = tr, r ∈ (−∞,0)∪

[1,∞) then we have the matrix power trace inequalities

tr

[(
A+B

2

)r]
(3.6)

� (1−λ )tr
([

(1−λ )A+(λ +1)B
2

]r)
+ λ tr

([
(2−λ )A+ λB

2

]r)

�
∫ 1

0
tr ([(1− t)A+ tB]r)dt

� 1
2

[tr [((1−λ )A+ λB)r]+ (1−λ )tr (Br)+ λ tr (Ar)]

� 1
2

(tr (Ar)+ tr (Br)) ,

for any A,B ∈ H+
n and for any λ ∈ [0,1]

If r ∈ (0,1) then the inequalities in (3.6) reverse.
If we choose in (3.6) r = 2 and take into account that

∫ 1

0
tr
(
[(1− t)A+ tB]2

)
dt =

1
3
tr
(
A2 +AB+B2) ,
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then from (3.6) we have the quadratic inequality

tr

[(
A+B

2

)2
]

(3.7)

� (1−λ ) tr

([
(1−λ )A+(λ +1)B

2

]2
)

+ λ tr

([
(2−λ )A+ λB

2

]2
)

� 1
3
tr
(
A2 +AB+B2)

� 1
2

[
tr
[
((1−λ )A+ λB)2

]
+(1−λ )tr

(
B2)+ λ tr

(
A2)]

� 1
2

(
tr
(
A2)+ tr

(
B2)) ,

for any A,B ∈ Hn and for any λ ∈ [0,1] .

4. Some quasilinearity properties

Consider f : R (R+)→ R and continuous convex function and A,B ∈ Hn (H+
n ) .

We denote by [A,B] the closed matrix segment defined by the family of matrices
{(1− t)A+ tB, t ∈ [0,1]} . We also define the trace functional

ϒ f (A,B; t) := (1− t) tr [ f (A)]+ ttr [ f (B)]− tr [ f ((1− t)A+ tB)] � 0 (4.1)

for any t ∈ [0,1] .
The following result concerning a trace quasilinearity property for the functional

ϒ f (·, ·; t) may be stated:

THEOREM 6. Let f : R (R+)→ R be a continuous convex function and A,B∈Hn

(H+
n ) . Then for any C ∈ [A,B] we have

0 � ϒ f (A,C;t)+ ϒ f (C,B;t) � ϒ f (A,B; t) (4.2)

for each t ∈ [0,1] , i.e., the functional ϒ f (·, ·;t) is superadditive as a function of matrix
interval.

If [C,D] ⊂ [A,B] , then

0 � ϒ f (C,D;t) � ϒ f (A,B; t) (4.3)

for each t ∈ [0,1] , i.e., the functional ϒ f (·, ·;t) is operator nondecreasing as a function
of matrix interval.

Proof. Let C = (1− s)A+ sB with s ∈ (0,1) . For t ∈ (0,1) we have

ϒ f (C,B;t) = (1− t)tr [ f ((1− s)A+ sB)]+ ttr [ f (B)]
− tr [ f ((1− t)[(1− s)A+ sB]+ tB)]
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and

ϒ f (A,C;t) = (1− t)tr [ f (A)]+ ttr [ f ((1− s)A+ sB)]
− tr [ f ((1− t)A+ t [(1− s)A+ sB])]

giving that

ϒ f (A,C; t)+ ϒ f (C,B;t)−ϒ f (A,B;t) (4.4)

= tr [ f ((1− s)A+ sB)]+ tr [ f ((1− t)A+ tB)]
− tr [ f ((1− t)(1− s)A+[(1− t)s+ t]B)]− tr [ f ((1− ts)A+ tsB)] .

Now, for a convex function ϕ : I ⊂ R → R , where I is an interval, and any real
numbers t1, t2,s1 and s2 from I and with the properties that t1 � s1 and t2 � s2 we
have that

ϕ (t1)−ϕ (t2)
t1 − t2

� ϕ (s1)−ϕ (s2)
s1 − s2

. (4.5)

Indeed, since ϕ is convex on I then for any a ∈ I the function ψ : I\{a}→ R

ψ(t) :=
ϕ(t)−ϕ (a)

t−a

is monotonic nondecreasing on I\{a} . Utilising this property repeatedly we have

ϕ (t1)−ϕ (t2)
t1− t2

� ϕ (s1)−ϕ (t2)
s1− t2

=
ϕ (t2)−ϕ (s1)

t2− s1

� ϕ (s2)−ϕ (s1)
s2− s1

=
ϕ (s1)−ϕ (s2)

s1 − s2
,

which proves the inequality (4.5).
Consider the function ϕ : [0,1]→R given by ϕ(t) := tr [ f ((1− t)A+ tB)] . Since

f is convex on I it follows that ϕ is convex on [0,1] . Now, if we consider, for
given t,s ∈ (0,1) , t1 := ts < s =: s1 and t2 := t < t + (1− t)s =: s2, then ϕ (t1) =
tr [ f ((1− ts)A+ tsB)] and ϕ (t2) = tr [ f ((1− t)A+ tB)] giving that

ϕ (t1)−ϕ (t2)
t1− t2

= tr

[
f ((1− ts)A+ tsB)− f ((1− t)A+ tB)

t (s−1)

]
.

Also
ϕ (s1) = tr [ f ((1− s)A+ sB)]

and
ϕ (s2) = tr [ f ((1− t)(1− s)A+[(1− t)s+ t]B)]

giving that

ϕ (s1)−ϕ (s2)
s1 − s2

= tr

[
f ((1− s)A+ sB)− f ((1− t)(1− s)A+[(1− t)s+ t]B)

t (s−1)

]
.
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Utilising the inequality (4.5) and multiplyingwith t (s−1)< 0 we deduce the following
inequality

tr [ f ((1− ts)A+ tsB)]− tr [ f ((1− t)A+ tB)] (4.6)

� tr [ f ((1− s)A+ sB)]− tr [ f ((1− t)(1− s)A+[(1− t)s+ t]B)] .

Finally, by (4.4) and (4.6) we get the desired result (4.2).
Applying repeatedly the superadditivity property we have for [C,D] ⊂ [A,B] that

ϒ f (A,C;t)+ ϒ f (C,D;t)+ ϒ f (D,B;t) � ϒ f (A,B; t)

giving that

0 � ϒ f (A,C;t)+ ϒ f (D,B;t) � ϒ f (A,B; t)−ϒ f (C,D; t) ,

which proves (4.3). �
For t = 1

2 we consider the functional

ϒ f (A,B) := ϒ f

(
A,B;

1
2

)
=

tr [ f (A)]+ tr [ f (B)]
2

− tr

[
f

(
A+B

2

)]
� 0,

which obviously inherits the superadditivity and monotonicity properties of the func-
tional ϒ f (·, ·; t) .

We are able then to state the following

COROLLARY 2. Let f : R (R+)→ R be a continuous convex function and A,B∈
Hn (H+

n ) . Then we have the following bounds

inf
C∈[A,B]

[
tr

[
f

(
A+C

2

)]
+ tr

[
f

(
C+B

2

)]
− tr [ f (C)]

]
(4.7)

= tr

[
f

(
A+B

2

)]

and

sup
C,D∈[A,B]

[
tr [ f (C)]+ tr [ f (D)]

2
− tr

[
f

(
C+D

2

)]]
(4.8)

=
tr [ f (A)]+ tr [ f (B)]

2
− tr

[
f

(
A+B

2

)]
.

Proof. By the superadditivity of the functional ϒ f (·, ·) we have for each C ∈ [A,B]
that

tr [ f (A)]+ tr [ f (B)]
2

− tr

[
f

(
A+B

2

)]

� tr [ f (A)]+ tr [ f (C)]
2

− tr

[
f

(
A+C

2

)]

+
tr [ f (C)]+ tr [ f (B)]

2
− tr

[
f

(
C+B

2

)]
,
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which is equivalent with

tr

[
f

(
A+C

2

)]
+ tr

[
f

(
C+B

2

)]
− tr [ f (C)] � tr

[
f

(
A+B

2

)]
. (4.9)

Since the equality case in (4.9) is realized for either C = A or C = B we get the desired
bound (4.7).

The bound (4.8) is obvious by the monotonicity of the functional ϒ f (·, ·) as a
function of matrix interval. �

Consider now the following functional

Ω f (A,B; t) := tr [ f (A)]+ tr [ f (B)]− tr [ f ((1− t)A+ tB)]− tr [ f ((1− t)B+ tA)] ,

where, as above, f : R (R+)→ R is a continuous convex function and A,B∈Hn (H+
n )

while t ∈ [0,1] .
We notice that

Ω f (A,B;t) = Ω f (B,A;t) = Ω f (A,B;1− t)

and
Ω f (A,B;t) = ϒ f (A,B;t)+ ϒ f (A,B;1− t) � 0

for any A,B ∈ Hn (H+
n ) and t ∈ [0,1] .

Therefore, we can state the following result as well:

COROLLARY 3. Let f : R (R+)→ R be a continuous convex function and A,B∈
Hn (H+

n ) . The functional Ω f (·, ·;t) is superadditive and nondecreasing as a function
of matrix interval.

In particular, if C ∈ [A,B] then we have the inequality

1
2

[tr [ f ((1− t)A+ tB)]+ tr [ f ((1− t)B+ tA)]] (4.10)

� 1
2

[tr [ f ((1− t)A+ tC)]+ tr [ f ((1− t)C+ tA)]]

+
1
2

[tr [ f ((1− t)C+ tB)]+ tr [ f ((1− t)B+ tC)]]− tr [ f (C)] .

Also, if C,D ∈ [A,B] then we have the inequality

tr [ f (A)]+ tr [ f (B)]− tr [ f ((1− t)A+ tB)]− tr [ f ((1− t)B+ tA)] (4.11)

� tr [ f (C)]+ tr [ f (D)]− tr [ f ((1− t)C+ tD)]− tr [ f ((1− t)C+ tD)]

for any t ∈ [0,1] .
Perhaps the most interesting functional we can consider is the following one:

Φ f (A,B) =
tr [ f (A)]+ tr [ f (B)]

2
−
∫ 1

0
tr [ f ((1− t)A+ tB)]dt. (4.12)
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Notice that, by the second Hermite-Hadamard trace inequality for convex functions we
have that Φ f (A,B) � 0.

We also observe that

Φ f (A,B) =
∫ 1

0
ϒ f (A,B;t)dt =

∫ 1

0
ϒ f (A,B;1− t)dt. (4.13)

Utilising this representation, we can state the following result as well:

COROLLARY 4. Let f : R (R+)→ R be a continuous convex function and A,B∈
Hn (H+

n ) . The functional Φ f (·, ·) is superadditive and nondecreasing as a function of
matrix interval. Moreover, we have the bounds

inf
C∈[A,B]

[∫ 1

0
[tr [ f ((1− t)A+ tC)]+ tr [ f ((1− t)C+ tB)]]dt− tr [ f (C)]

]
(4.14)

=
∫ 1

0
tr [ f ((1− t)A+ tB)]dt

and

sup
C,D∈[A,B]

[
tr [ f (C)]+ tr [ f (D)]

2
−
∫ 1

0
tr [ f ((1− t)C+ tD)]dt

]
(4.15)

=
tr [ f (A)]+ tr [ f (B)]

2
−
∫ 1

0
tr [ f ((1− t)A+ tB)]dt.

REMARK 3. The above inequalities can be applied to various concrete convex
functions of interest.

If we use the inequality (4.8), then we have

sup
C,D∈[A,B]

[
tr (Cr)+ tr (Dr)

2
− tr

[(
C+D

2

)r]]
(4.16)

=
tr (Ar)+ tr (Br)

2
− tr

[(
A+B

2

)r]
,

where r ∈ (−∞,0)∪ [1,∞) and A,B ∈ H+
n .

If r ∈ (0,1) , then

sup
C,D∈[A,B]

[
tr

[(
C+D

2

)r]
− tr (Cr)+ tr (Dr)

2

]
(4.17)

= tr

[(
A+B

2

)r]
− tr (Ar)+ tr (Br)

2
,

for any A,B ∈ H+
n .
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We have the logarithmic bounds

sup
C,D∈[A,B]

[
tr

[
ln

(
C+D

2

)]
− tr [ln(C)]+ tr [ln(D)]

2

]
(4.18)

= tr

[
ln

(
A+B

2

)]
− tr [ln(A)]+ tr [ln(B)]

2

for any A,B ∈ H+
n .

The following bound for the exponential also holds

sup
C,D∈[A,B]

[
tr [exp(C)]+ tr [exp(D)]

2
− tr

[
exp

(
C+D

2

)]]
(4.19)

=
tr [exp(A)]+ tr [exp(B)]

2
− tr

[
exp

(
A+B

2

)]
.

for any A,B ∈ Hn.
If we use the inequality (4.15), then we get the following bounds

sup
C,D∈[A,B]

[
tr (Cr)+ tr (Dr)

2
−
∫ 1

0
tr [((1− t)C+ tD)r]dt

]
(4.20)

=
tr (Ar)+ tr (Br)

2
−
∫ 1

0
tr [((1− t)A+ tB)r]dt,

where r ∈ (−∞,0)∪ [1,∞) and A,B ∈ H+
n .

If r ∈ (0,1) , then

sup
C,D∈[A,B]

[∫ 1

0
tr [((1− t)C+ tD)r]dt− tr (Cr)+ tr (Dr)

2

]
(4.21)

=
∫ 1

0
tr [((1− t)A+ tB)r]dt− tr (Ar)+ tr (Br)

2
,

for any A,B ∈ H+
n .

We also have the bound for the logarithm

sup
C,D∈[A,B]

[∫ 1

0
tr [ln((1− t)C+ tD)]dt− tr [ln(C)]+ tr [ln(D)]

2

]
(4.22)

=
∫ 1

0
tr [ln((1− t)A+ tB)]dt− tr [ln(A)]+ tr [ln(B)]

2
,

for any A,B ∈ H+
n .

The following bound for the exponential also holds

sup
C,D∈[A,B]

[
tr [exp(C)]+ tr [exp(D)]

2
−
∫ 1

0
tr [exp((1− t)C+ tD)]dt

]
(4.23)

=
tr [exp(A)]+ tr [exp(B)]

2
−
∫ 1

0
tr [exp((1− t)A+ tB)]dt,

for any A,B ∈ Hn.
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[8] W. W. BRECKNER AND G. ORBÁN, Continuity properties of rationally s -convex mappings with val-

ues in an ordered topological linear space, Universitatea “Babeş-Bolyai”, Facultatea de Matematica,
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[48] J. MIĆIĆ, Y. SEO, S.-E. TAKAHASI AND M. TOMINAGA, Inequalities of Furuta and Mond-Pečarić,
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