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ABSTRACT 

The theory of retrograde menstruation as aetiopathogenesis of endometriosis formulated by 

John A Sampson in 1927, shows clear shortcomings: this does not explain why retrograde 

menstruation is a physiological process that affects 90 % of women, while endometriosis 

occurs in only 10 % of cases; it also does not explain the endometriotic foci distant from the 

pelvis, nor explains the cases of endometriosis in male patients. The immunological 

alterations of the peritoneal fluid explains the effects of disease, such as the inhibition of the 

physiological processes of cytolysis, but does not explain the cause. There is evidence to 

support the hypothesis that müllerian remnants of the endometrium, and endocervix 

endosalpinx, ectopic, are items from the genital ridge leaked during organogenesis. It is 

known that tissues derived from coelomatic epithelial and mesenchymal cells have the 

potential to metaplastically differentiate into epithelium and stroma. In addition, the 

phenotype of the ectopic endometrial cells is significantly different from those eutopics. 

There is no scientific evidence that, during organogenesis, the genes of the Homeobox and 

Wingless family play a fundamental role in the differentiation of the ducts of Muller and 

development of the anatomical structure of the urogenital tract. We present here a hypothesis 

that deregulation of genes and the Wnt signaling pathway Wnt/β-catenin leads to aberrations 

and deregulation within the mesoderm, thus, may cause aberrant placement of stem cells. In 

addition, immune cells, adhesion molecules, extracellular matrix metalloptroeinases and pro-

inflammatory cytokines activate/alter cells, creating the conditions for differentiation, 

adhesion, proliferation and survival of ectopic endometrial cells.  

 

Keywords: Endometriosis, Embryology, Body Patterning, Embryonic Stem Cells, Proteins 

homeodomain, Wingless Type Proteins. 
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Background 

 

 Endometriosis is characterized by the presence, in the anomalous endometrial tissue, 

functionally active, with the presence of stroma and glands [1]. Numerous theories have been 

proposed for the pathogenesis of endometriosis, such as, retrograde menstruation, coelomic 

metaplasia and müllerian remnants [2], a hormonal disease, autoimmune disease, genetic 

disorder or due to an environmental stimuli [3]. Amongst the various hypotheses, the one that 

enjoys the greatest consensus is retrograde menstruation. Retrograde menstruation is when 

endometrial cells and fragments desquamate during menstruation and are transported via the 

fallopian tubes into the peritoneal cavity, instead of flowing out the body, and implant and 

proliferate onto peritoneal surfaces or pelvic organs [1]. The prevalence of endometriosis is  

estimated to be 10 % [4], with a further 11 % of women whose disease is not clinically 

diagnosed [5]. Endometriosis predominantly affects the ovaries (up to 88 %), the ligaments of 

the uterus, fallopian tubes, the cervical-vaginal area, urinary tract and the rectum; the 

involvement of the urinary tract is rare (1-2 % of all cases) [6,7], of which 84 % are located 

within the bladder [8]; other organs of involvement include, pancreas, spleen [9], liver, 

intestinal tract, gallbladder [10], wall of the abdomen and the umbilicus [11]; with brain 

endometriosis also being reported [12]. The foci of endometriosis distant from the pelvis can 

be explained as being derived from buds of the embryonic genital ridge and originate within 

the müllerian ducts which, during organogenesis, are located at the top. Retrograde 

menstruation is a physiological phenomenon which occurs in 76-90 % of women [13], whilst 

disease occurs in 10 % of cases. The hypothesis of retrograde menstruation as the 

pathogenesis of endometriosis does not explain the gap between physiological prevalence 

(76-90 %) and the pathological (10 %). Interestingly, a case of endometriosis in the cul-de-sac 

and uterosacral ligaments was histologically confirmed in a patient undergoing pre-menarche 
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at 9 years of age [14]. However, this does not explain the cases of endometriosis in male 

individuals with normal phenotype (46, XY), such as: endometrioma in the abdominal wall 

[15]; endometriosis of the bladder [16]; a case histologically indistinguishable from 

endometrial tissue [17]; cystic endometriosis of the epididymis [18]; paratesticular 

endometriosis [19]; a mass located laterally to the spermatic cord, removed surgically, whose 

histology showed tissue similar to the endometrium, a proliferation of smooth muscle, 

endometrial glands and stroma [20]. Such cases of male patients can only be explained by the 

incomplete differentiation of the müllerian ducts. 

 

Hypothesis 

 

 The theory of "retrograde menstruation", as a "cause" of endometriosis, does not 

correlate with the incidence among physiological events, and prevalence of the disease does 

not correlate with the endometriotic foci distant from the pelvis in the reported cases in male 

patients. Since 1927, the year of Sampson's theory, many advances have been made in the 

direction of the effects but not the causes. We hypothesize that, during organogenesis, a 

deregulation of genes and the Wnt signaling pathway Wnt/β-catenin would produce an 

aberration and the axial extension of the identity of the anterior-posterior patterning, whilst a 

deregulation of Hox genes and cofactor Pbx1 produces an aberration in the segmentation of 

the mesoderm (Fig. 1, Fig. 2). This may cause aberrant placement of stem cells with 

endometrial phenotype, ectopic, and maintain them in quiscent niche. In post-pubertal, the 

estrogenic activity activate peritoneal macrophages with consequent induction of pro-

inflammatory cytokines TNF-α and IL-1β which, in turn, activate the binding to DNA through 

the transcription factors of NFҡB; transcriptional activity, through the inflammatory cytokines 

IL-6 and IL-8, induces the expression of VEGF that activates the vascular endothelial cell, 
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while MIF induces cell endometrial, mitosis, and the survival is supported by the activation of 

anti-apoptotic gene Bcl-2, from the degradation of the extracellular matrix by MMPs and the 

entry phone via ICAM and VCAM, creating the conditions for differentiation, adhesion, 

proliferation and survival of ectopic endometrial cells. Understanding of the biological 

mechanisms, genetic and epigenetic, which regulate the differentiation and development of 

the urogenital tract during the fetal stage, might be a priority for researching the 

aetiopathogenesis of endometriosis and understanding of our hypothesis. 

 

Evaluation of the hypothesis 

 

Embryogenesis 

 The primordial germ cells are derived from the primitive streak (from epiblast to 

caudal area); remaining in the extra-embryonic mesenchyme to complete gastrulation and 

subsequently migrate along the allantois endoderm; maintaining the feature of cell division 

throughout the development of the embryo and preserving all the characteristics of stem cells. 

Following gastrulation, the embryonic germ cells contribute to the formation of the epithelial 

and mesenchymal tissues. The epithelial cells population of the embryo have similar 

morphological characteristics of differentiated epithelia, whilst mesenchymal cells contribute 

to the basal membrane, forming the lamina and smooth muscle of tubules and differentiation 

into connective tissue. The space beneath the epithelium and between the mesenchymal cells 

is filled with extracellular matrix molecules and their receptors [21-23]. During the early 

stages of organogenesis, the mesoderm arises from the primitive streak and gives rise to the 

epithelial coelomatic. The müllerian ducts born by invagination of coelomatic epithelium, 

during fetal development results in the female reproductive tract, which is further 

differentiated to form the uterus, oviduct and vaginal canal higher. Animal studies have 
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demonstrated that the coelomic epithelium forms the müllerian ducts [21]. The coelom is 

derived from the same lateral plate mesoderm that, in turn, are derived from the primitive 

streak [22]. The anatomy of the female urogenital tract arising from the müllerian ducts is 

completed at the time of birth with the exception of the uterus; the histological architecture 

and the tissue specificity reach full development in the post-natal period with the full radial 

patterning of 3 basic histological structures: (i) endometrium, (ii) myometrium and (iii) 

perimetrium. This results in the structured development of endometrial glands luminal 

epithelium, the organization and stratification of the endometrial stroma, and, the 

differentiation and growth of the myometrium [23-27]. 

 

Hox - Homeobox genes 

 In mammals, the Hox genes are well known for their crucial role during 

embryogenesis, and in particular the axial development of the skeleton, the hind brain, and, 

the limbs. Their involvement in organogenesis has been shown, in particular, during 

urogenital differentiation [28]. The Hox genes control the fate of cells and the segmental 

embryonic formatting. The sequential arrangement of the Hox genes on its chromosome 

associates with the spatial distribution and protein expression along the antero-posterior axis 

of the embryo [29]. The biological specificity of Hox proteins derives from cooperation with 

specific cofactors that contribute to modulate the binding to DNA for the control of the 

expression of target genes [30]. The protein cofactors include, pre-B-cell leukemia homeobox 

(PBX) and myeloid ecotropic viral integration site (MEIS) [31,32]. The sub-cellular 

localization of proteins PBX is highly regulated in different cellular contexts; it has been 

hypothesized that the binding of PBX with MEIS induces translocation to the nucleus where it 

associates with Hox proteins which regulate target genes; Pbx is necessary to allow the 

formation of heterotrimeric complex DNA binding involving Meis proteins [33, 34]. Pbx has 
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been shown to act as a direct regulator of expression of the target gene, and this adjustment 

takes place via interactions that require the cooperation of other members of the family 

homeobox as Meis and Hox [35]. These have been shown to be involved in malformations of 

the urogenital tract and its inactivation which leads to complete absence of müllerian 

structures [36,37]. This plays a critical role as a regulator of the development and the absence 

of which leads to embryonic lethality and multiple system abnormalities of tissues and organs. 

Pbx1 is extensively expressed in the mesenchymal tissues during differentiation of the 

urogenital organs, and inadequate cell proliferation leads to total absence of the adrenal 

glands, whilst the formation of the gonads shows a rudimentary sexual differentiation. The 

lack of expression of Pbx1 greatly reduces the evolution of the urogenital ridge which 

translates into reduced differentiation of the mesonephros and kidneys and in the absence of 

the müllerian ducts [38-40]. Pbx1 has been proven to be expressed in the ductus Müller but 

absent in the Wolff ductus during the differentiation of both sexes [40]. The clusters of Hox 

genes during development, are subject to transcriptional control by cofactors such as RA 

(Retinoic Acid) [40], FGF (Fibroblast Growth Factor) [41,42] and the genes of the Wnt 

signaling [43]; this loop of self-induction and/or repression of Hox genes occurs within the 

same cluster [44-46], as well as the post-transcriptional regulation [47,48]. During 

organogenesis patterning of female genital tract is regulated by homeobox transcription 

factors [49]: HoxA9 is expressed in the oviduct, HoxA10 (via BMP-4 Bone Morphogenetic 

Protein, Wnt7a and β3-integrin) and Hoxa-11 (by Emx-2 Empty spiracles homeobox gene and 

IGFB1 Insulin-like Growth Factor Binding protein) are expressed in the uterus [50]. HoxA11 

and 13 in the cervix and vagina [51]. HoxA genes play a role in regulating temporal and 

spatial expression in the formation and differentiation of the müllerian ducts [52]. 

 

Wnt - Wingless genes 
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 Wnt4 is essential for the formation of the müllerian ducts. [53] In fact it is involved in 

numerous anomalies and female genital morphology in endometrial glandular and stromal 

breakdown. Wnt7 is involved in the maintenance of HoxA10 and HoxA11 genes whilst Wnt5 

in the development of the genital anterior-posterior axis [54,55]. Wnt5a and Wnt7a are 

necessary for proper glandular genesis and are expressed, respectively, in the stroma of the 

uterine and uterine epithelium [56]. Downstream of Wnt genes, β-catenin [57] is associated 

with the Foxa2 forkhead family [58]. There are 3 types of signaling pathways: Wnt/β-catenin, 

Wnt/JNK (c-Jun N-terminal kinases) and Wnt/Ca2+. Wnt binds via cell surface receptors, to 

disable the Axin complex, consequently inhibiting the phosphorylation of β-catenin from the 

complex by Axin [59]. β-catenin enters the nucleus in cooperation with factors Lymphoid 

Enhancer Factor / Transcription Factor (LEF / TCP), which by binding to DNA activates gene 

transcription [60]; the absence of stimulation by Wnt causes the phosphorylation of β-catenin 

from the Axin complex, which is phosphorylated and then targeted for ubiquitination and 

degradation in the proteasome [61]. It was shown that an estrogenic compound may interfere 

with Wnt expression and/or β-catenin target genes with a consequent alteration of the 

development of the female reproductive tract [62, 63]. The signaling pathway of canonical 

Wnt genes and Wnt/β-catenin, are associated in the control of different types of stem cells and 

can act as a factor niche to keep the embryonic stem cells (EmSC) in a state of self-renewal 

[64-66]. 

 

Müllerian derivatives and remains 

 

Congenital anomalies of the urogenital tract: During organogenesis differentiation between 

male and female urogenital systems takes place. Between the eighth week and the fourth 

month the male urogenital tract initially develops from embryological structures which are 
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resolved with female-specific activation of the male genome. A missing or incomplete 

differentiation results in disorders of sex development, chromosonic abnormalities (such as, 

Turner syndrome and Klinefelter's syndrome), Müllerian agenesis, Rokitansky syndrome, 

developmental disorders or testicular androgen insensitivity syndrome (or Morris syndrome). 

 

Remains and Müllerian derivatives: Sexual differentiation is, in some congenital diseases, 

absent or incomplete, thus, it is plausible to assume that they can co-exist in the development 

of müllerian remnants in asymptomatic individuals. Many müllerian events suggest that 

tissues derived from the epithelium and mesenchymal cells coelomate (Secondary Müllerian 

System) and have the potential to differentiate directly into epithelial cells and stromal cell; 

possibly a metaplastic hypothesis for the pathogenesis of endometriosis [67]. The peritoneal 

cavity is a matrix for the benign and malignant proliferation of the secondary müllerian 

system where it can develop endometriosis, endosalpingiosis and endocervicosis [68]. Under 

immunologically  “normal” conditions, the peritoneal cavity has the ability to prevent the 

evolution towards endometriosis, however, failure to remove fragments of endometrial tissue 

from the peritoneal cavity induces local inflammation, activation of macrophages which 

secrete cytokines and chemokines some of which can cause metaplasia of the peritoneum or 

the development of müllerian residues [69]. Pelvic masses and congenital malformations 

associated with müllerian have been reported at the time of diagnosis of endometriosis, 

comprising of smooth muscle tissue within the uterine cavity, but, pose diagnostic uncertainty 

between smooth muscle metaplasia or müllerian remnant of the system [70,71]. It is 

speculated that in males with normal male phenotype who develop endometriosis, have 

prostatic utricle as a remnant of the uterus embryo [15]. 
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Müllerianosis: There are considerable difficulties in the differential diagnosis between 

endometriosis and müllerianosis. The main difference is that, in endometriosis, ectopic 

endometrial tissue cyclically executes outside of the uterine cavity invading the outer surface 

of other organs, whilst, in müllerianosis, there is tissue present in the endosalpinx, 

endometrium and endocervix, whose most common form is found in peritoneal pockets. Batt 

RE et al. have laid down 3 conditions for the diagnosis of müllerianosis: 1) no evidence of 

pelvic endometriosis, 2) no direct communication with endocervix, endometrium or 

endosalpinx, and, 3) no surgery to the reproductive organs. Given the presence of the 3 

components, endometrium, endocervix and endosalpinx, supports the hypothesis that 

müllerian remnants generated from the genital ridge leaked during organogenesis [72]. In the 

presence of defects in the genesis of the genital tract, differentiation and cell migration can be 

incomplete or aberrant. Any cells with aberrant gene expression in the migratory path through 

the rear pelvic floor can be implanted abnormally. Pluripotent cells can cause endometrial 

metaplasia or endometriosis in post puberty. Studies on the coelomic cavity and müllerian 

duct, both in the fetal period and in adulthood, suggests that the epithelium coelomatic, 

fabrics and related adult epithelia müllerian derivatives, have common embryological origin 

[73]. In fact, in peritoneal biopsies of the cul-de-sac in female infants who had died from 

sudden infant death syndrome (SIDS), had a small whitish plaque, (~200μm in diameter), 

which showed glandular epithelium with well-defined structures surrounding the stroma [74]. 

In addition, in fetal autopsies, the incidence of ectopic endometrium in 5 different locations 

identified in the recto-vaginal septum close to the cable Douglas near the mesenchymal 

tissues of the wall rear of the uterus in the cannula at the level of the muscular wall of the 

uterus. Thus, one possible reason of endometriosis, is the dislodgement of primitive 

endometrial tissue outside the uterine cavity during organogenesis [75,76]. 
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Müllerian cyst remains in cavitated: Accessory and Cavitated Uterine Masses (ACUM) is a 

sporadic condition seen in young females, which has significant clinical manifestations, in 

particular severe dysmenorrhea and recurring pelvic pain. The diagnosis presents considerable 

difficulties, so as to be placed in the differential with uterine malformations such as 

bicornuate uterus and segmental atresia, cystic areas or degenerate with adenomyosis, 

leiomyomas and degenerated primary dysmenorrhea essential [77]. ACUM is diagnosed more 

frequently in women aged less than 30 years and in nulliparous women (although sporadic 

cases are reported of women over the age of 30 years and multiparous) [78]. The term Asian 

juvenile cystic adenomyoma was used for the diagnosis of cases with clinical and 

histopathological features similar to ACUM [77,78]. The ACUM are generally located at the 

level of insertion of the round ligament and is likely associated to a dysfunction of the female 

gubernaculum. The aetiopatogenic hypothesis classifies this as a new variety of Müllerian 

anomalies [79] which may be caused by duplication or from ectopia and the persistence of 

müllerian duct, whose fabric is to be placed in an ectopic position at the level of the attack of 

the round ligament and could be related to a dysfunction of the gubernaculum [79,80]. 

 

Stems cells 

 

Human embryonic stem cells (hEmSC): hEmSC are pluripotent cells derived from various 

stages of embryonic development and represent the only form of stem cells able to proliferate 

indefinitely and to differentiate into all types of tissue-specific cells. The hEmSC are 

generally derived from the inner cell mass of the blastocyst to the stage of pre-implantation 

embryo. hEmSC cell lines are well characterised in regards to genomic integrity and 

pluripotency and express high levels of telomerase activity. Telomerase (or terminal 

transferase) is a ribonucleoprotein that adds telomere repeats to the chromosomal ends and 
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thus, maintains telomere length, and is crucial in the replication life span [81]. The expression 

of telomerase correlates with immortality of cell lines, and, the reintroduction of telomerase 

activity in some cell lines extends their replication activity [82]. The hEmSC, being 

pluripotent possess the characteristics to differentiate into the 3 germ layers which form all 

tissues of the embryo - (i) ectoderm, (ii) mesoderm, and, (iii) endoderm. They have specific 

morphological and molecular properties, they possess specific properties that epigenetic 

chromatin structure is open-ended to allow the entry of transcription factors, and, regulates 

gene expression [83]. In the promoter regions of pluripotency genes OCT4 (octamer-binding 

transcription factor 4) and Nanog (homeobox transcription factor - regulator involved-in inner 

cell mass and embryonic stem) it denotes a marked reduction in methylation of CpG 

nucleoids (cytosine-phosphate-guanine nucleotide) [84]. These properties are necessary to 

characterize the epigenetic hEmSC in a pluripotent state and distinctive, undifferentiated stem 

cell hEmSCs derived from cell lines that form both the endoderm and mesoderm. For 

endoderm differentiation Activin-A ligand activates transforming growth factor beta (TGF-β) 

[85], bone morphogenetic protein (BMP),, fibroblast growth factor (FGF) and the Wnt family 

of genes, which are typical modulators of the mesoderm [86]. 

 

Endometrial stem progenitor cells (hESP): Adult stem cells are found in an undifferentiated 

form and have the characteristics of self-renewal through cell division dependent 

microenvironment or niche. They are important for the regeneration and recovery of organs 

and tissues by ensuring regular functional maintenance. The human endometrium is 

composed of epithelium, glands and stroma, which during the menstrual cycle are subject to 

profound changes in tissue structure and function; the recovery is ensured by the presence of 

the endometrial progenitor stem cells that are assumed to reside within the basal layer [87]. 

Several lines of endometrial stem cells and progenitor cells have been characterized that show 
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large plastic capacity with high availability differentiation [23,88-90]. Endometrial stem 

progenitor cells (hESP), differ for patterns of expression of cell surface markers for clonal 

efficiency, to the microenvironment of the niche, and endometrial localization [91,92]. In fact, 

in a study of clonal analysis of endometrial epithelial cells and stromal cells derived 

temporally on the phases of the cycle, non-clonogenicity ranged from proliferative to 

secretory phase endometrium and between cycling and inactive, for both epithelial stromal 

cells, showing that the inactive endometrium contains clonogenic epithelial cells and stromal 

cells [93]. Some studies have suggested the origin of hESP from bone marrow as a source of 

exogenous [94,95]. Endometriotic lesions are detectable in a functionally pathological stage, 

and it is extremely rare to detect microscopically the phases of attachment and proliferation of 

endometrial tissue in the peritoneum, which is an area with  high incidence of injury [96]. The 

origin of the cells within ovarian endometriomas are monoclonal, whilst peritoneal lesions are 

polyclonal [97-99]. The cells that give rise to ectopic endometrial implantation must 

necessarily possess the ability to migrate, the angiogenic potential for proliferation and 

pluripotency to form glandular tissue and the hESP cells demonstrate all the requirements 

[87]. Inded a hypothesis was formulated in that repeated physical and biochemical injuries 

caused by inflammatory cytokines and reactive oxygen species are able to trigger the cell 

cycle of quiescent stem cells that may be involved in the development of benign and 

malignant endometrial aberrations as endometrial hyperplasia, endometriosis and endometrial 

cancer [100]. 

 

Stem/progenitor cells residing in adult uterus (SP): The mucosal lining of the uterus 

remarkably regenerates during the reproductive years of a woman and this plasticity of the 

endometrium has been attributed to a small population of stem/progenitor cells, known as side 

population (SP). In fact, SP cells reside in the adult basal endometrium and is assumed to be 
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the remains of the original epithelial cells, the Müller Duct (MD) [101]. The SP has all the 

features that define poorly differentiated stem cells that are able to divide asymmetrically and 

quiescently [102]. The stem cells, to maintain the pool of progenitors from which arise the 

differentiated cells, are programmed to have a long lifespan; in order to activate the 

mechanisms of protection from senescence and stress of DNA, including the activation of 

several signaling pathways such as Shh (Sonic hedgehog), Wnt/β-catenin, Bmi-1 (B 

lymphoma Mo-MLV insertion region 1 homolog)  the expression of Bcl-2 anti-apoptotic and 

the increased capacity of the repair of DNA damage [103-108]. The SP are characterized by 

high expression of stem cell markers and low levels of differentiation markers, high 

expression of genes that are part of some of the signal transduction pathways such as the 

Wnt/β-catenin [109] and of genes involved in regulation of cell cycle [110]. Compared with 

other stem cells, the SP are small, even smaller than those from non SP [111,112] and have 

endoplasmic reticulums with ribosomes which indicates a lack of metabolic activity [113]. 

The SP are generated in the embryo, and, persist in specific niches, where they can remain 

mitotically quiescent for long periods of time maintaining the capacity for self-

renewal,symmetric division and the ability to rapidly produce progenitors for asymmetric 

division [114]. The microenvironment surrounding stem cells contribute to a number of 

functions, such as, physical anchorage for stem cells as well as cell-cell communiation 

mediated by direct contact and/or indirect extracellular factors. In as such, Wnt ligands are 

secreted by both stem cells and niche cells, BMPs are released from the cells and niche Shh 

epithelial cells, which interact between neighboring cells through the Notch signal 

transmembrane. This microenvironment also provides signaling through the cellular receptor 

integrin [115] and its co-expression with CD133 (prominin-1) in basal cell lysophospholipids 

[116] as well as through signaling mediated by metalloproteinases [117]. The identification 

and characterization of SP cells will further aid in our understanding of normal human 
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endometrial regenerative cyclic processes and the pathophysiology of human endometrial 

proliferative diseases, including endometriosis, endometrial hyperplasia and cancer [118,119]. 

 

Mesenchymal stem cells from bone marrow:  Mesenchymal stem cells (MSC) are multipotent 

stromal cells which have the ability to differentiate into a variety of specialized cell types. 

Cells derived from bone marrow, known as bone marrow stromal cells (BMSC) have been 

used in a number of studies. It has been hypothesized that endometrial stem cells may 

originate from mesenchymal stem cells of the bone marrow. Stem cells derived from bone 

marrow are able to differentiate into hematopoietic cells and contribute to the maintenance of 

different tissues; cells of the bone marrow donor-derived have been identified in the uterine 

human endometrium [120]. In fact,  CD45+ hematopoietic progenitor cells colonize within the 

epithelial layer of the uterus, and. during pregnancy over 80 % of epithelial cells are derived 

from these cells [121]. In addition, in intravenous transplantation of bone marrow stem cells, 

the epithelial (0.02÷48 %) and stromal (0.03÷52 %) compartments arose from the donor 

[122]. Furthermore, endometrial regenerative cells (ERC) compared to BMSC cells are 

similar but not identical in regards to, their morphology, the production of cytokines, the 

inhibition of mixed leukocyte reactions, the expression micro RNA (miRNA) and global gene 

expression. However, ERC are affected by over-expression of gene immune path, whilst 

BMSC are affected by over-expression of gene path stem/tumor; ERC also show greater 

inhibition of proliferation [123]. In other studies, ERC have been isolated from menstrual 

blood, which are distinct from the MSC as they do not express the BMSC marker STRO-1 

(cell surface protein expressed by bone marrow stromal cells and erythroid precursors) 

[124,125]. It is not known whether the transplanted cells retain all the characteristics of stem 

cells, and whether they behave like those for the physiological endometrial cyclicity; the 
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mechanism of physiological recruitment of stem cells from the bone marrow into the uterus is 

not clear. 

 

Stem cell niche: In adults, stem cells reside in a physiologically limited and specialized 

microenvironment, called a niche, which supports stem cells but changes in nature and 

position according to the type of fabric [126,127]. The niche is a collection of cells in a 

specific anatomic location which together aid in the maintainance (number, proliferation and 

fate) of stem cells via secretion of extrinsic factors [128-130]. The morphological 

configuration of the dimensional niche can define the number of stem cells within a tissue. 

The asymmetric cell division of stem cells allows the self-renewal and differentiation of the 

cell produced by providing a simple method for tissue homeostasis; divisions are dependent 

on cell polarity within the cell and are influenced by cell niche. Most of the asymmetric 

divisions determine a stem cell, and a cell differentiation in which the daughter cell is placed 

outside of the niche. The self-preservation given to the daughter cell allows it to keep features 

such as stem cell proliferation and maintenance of undifferentiated state [131]. The ability of 

cells to divide asymmetrically to produce 2 different cell types provides the cellular diversity 

proper to each multicellular organism. The asymmetric localization of cell-cell junctions 

and/or the intrinsic cells is crucial to the fate and position within the niche and is used to 

specify cell polarity and asymmetric divisions that determine the polarity of the cell fate; the 

asymmetric divisions are directly regulated by genes that control the process of division and 

determine different fates for the two daughter cells [132]. The molecular signaling Shh, BMP, 

FGF and Notch are implicated in the control of stem-cell self-renewal and regulation of the 

fate of the lineage in different systems [128-130]. Reactive oxygen species (ROS), a natural 

byproduct of metabolism of oxygen plays an important role homeostastis. However, during 

stress, the levels of ROS increases as well as the number of free radicals, such as, superoxide 
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radical anion, hydrogen peroxide and hydroxyl radical, which cause DNA damage. The levels 

of intracellular ROS plays a crucial role in the control of self-renewal capacity of stem cells in 

the long term as they may involve signaling of JNK (c-Jun N-terminal kinases) and FoxO 

(trigger for apoptosis through up-regulation of genes) and sub-regulation of Polycomb 

(protein Able to remodel chromatin and Hox gene silencing) [133]. 

 

Marking of endometrial cells 

 

 The phenotype of SP cells is similar to that of adult stem cells and is detected with 

fluoro-cytometric analysis using Hoechst 33342 dye (H33342 Bisbenzimide 

trihydrochloride), through the expression of ABC transporters, Brand gene expression Bcrp1 

(ABCG2) that characterizes the phenotype of SP [134]. It was shown that the upper fraction is 

composed mainly of epithelial cells while the lower fraction contains both the epithelial and 

stromal cells; populations expressing epithelial CD9+ and E-cadherin while the portion 

stromal express CD13+ demonstrated the presence of endometrial progenitor stem cells [135]. 

Cunha GR et al. obtained the differentiation of hEmSC into mesodermal cells; the line of 

hESCs with genetic characterization of Forkhead protein- green fluorescent protein that 

regulates cell regionalization, placed under the control of MIXL1 (Mix paired-like), 

homeobox protein that acts as a transcription factor for the regulation of cell fate, 

demonstrating that FRT (female reproductive tract) arises from embryonic bodies 

characterized by MIXL+ ; have also observed the expression of Hoxa-10 and Pax2 during 

development of hESCs epithelial FRT [136]. The use of cell surface markers was used for the 

isolation of endodermal progeny of hESCs. SOX17, FOXA1, FOXA2, HNF1β, HNF4α, 

KITL, SHH and HB9 were used as markers expressed in cells CD49e+ CD141+ CD238+ ; 
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OCT4, NANOG, and MEOX1 SOX7 were used to mark the pluripotency expressed in cells 

CD49e-/low CD141-CD238 [137]. 

 

Consequences and discussion 

 

 John A Sampson, publication in 1921, reported observations in 14 patients with cysts 

in that the coating was similar to that in hematomas in the uterine lining with both having 

content similar to the phase of the menstrual cycle [138]; whilst the study of 1927, of 293 

cases in a period of 5 years, presented at the "American Gynecological Society", adopted the 

theory of retrograde menstruation as the aetiopathology of endometriosis [139]. The problem-

related histogenesis of endometriosis does not accept or reject the theory of Sampson JA, but 

provided a direction for research. The basic question is why retrograde menstruation is a 

physiological process that affects 90 % of women and endometriosis occurs only in 10 % of 

cases? How do we  explain the endometriotic foci away from the pelvis? How are we to 

explain the cases of endometriosis in male patients? The theory of endometriosis, such as 

endometrial cells from functional retrograde menstruation, since its formulation, has shown 

gaps. Endometriotic lesions are detectable at a pathological stage, and it is extremely rare to 

be able to detect microscopically the phases of attachment and proliferation of endometrial 

tissue in the peritoneum [96]. Numerous studies have attempted with rigorous methods, to 

give answers as to why the eutopic plant develops resistance to the elimination by the immune 

system, demonstrating the altered function of macrophages and natural killer cells: that in the 

early stages of the disease there is a prevalence of pro-inflammatory cytokines (Th1 profile), 

whilst in late stages this changes to a Th2 profile [140]; that alterations of immune peritoneal 

exert an immunosuppressive effect on the activity of phagocytic and cytotoxic immune cells 

infiltrating the endometrial tissue, promoting immunoescaping, survival and growth of 
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endometrial cells [141-144]. Therapeutic strategies can be improved through the use of non-

steroidal anti-inflammatory drugs [145], combination oral contraceptives [146,147], progestin 

[148], selective progesterone receptor modulators [149], GnRH agonists [150], and, 

aromatase inhibitors [151,152]. Ultimately we are able to demonstrate the pathophysiological 

mechanisms that allow grafting of endometriotic cells and the inhibition of the physiological 

processes of cytolysis, but the origin of these cells remains unknown. In 1987, Redwine and 

colleagues examined peritoneal biopsies of the cul-de-sac of female infants who died from 

SIDS, reported a case with well-defined structure glandular epithelium surrounded by stroma 

[74]. Fujii S in 1991, suggested that the tissues derived from epithelial and mesenchymal cells 

coelomatic accompaniment, called "Secondary Müllerian System" have the potential to 

differentiate into epithelium and stroma, metaplastic, and that this potential is a basic concept 

in the pathogenesis endometriosis [153]. Batt RE et al. in 2007, concluded that the presence of 

endometrium and endocervix endosalpinx, which supports the hypothesis of müllerian 

remnants generated from the genital ridge leaked during organogenesis [72]. Master PG et al. 

in 2012, investigated fetal autopsies and noted the presence of ectopic endometrium, 

assuming that one possible cause of endometriosis was the dislocation of primitive 

endometrial tissue outside the uterine cavity during organogenesis [76]. Bouquet de Jolinière 

J et al. in 2012, demonstrated that reproductive organs derived from autopsies of female 

fetuses (via immunohistochemical analysis) were identified ectopic, and, concluded that 

endometriosis may develop from misplaced endometrial glands and/or residues of embryonic 

cells [154]. hESCs, identified in the basal layer of the endometrium, appear to possess the 

phenotype that contains all the characteristics of self-renewal and differentiation that occurs in 

the context of the niche in which they exist, or in those in which they migrate. hESCs possess 

a potential immunomodulatory triggered by hypoxic stimuli, proteolytic, inflammatory, in 

order to induce angiogenesis, intercellular communication, migration, and capacity to 
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differentiate into cells of the same lineage (Fig. 1, Fig. 2) [155]. It was also hypothesized that 

the hESCs may have originated from mesenchymal stem cells of the bone marrow; studies on 

the expression of miRNA and global gene expression, showed that they could be considered 

similar but not identical, and that the endometrial regenerative cells were affected by over-

expression of gene immune path, whilst bone marrow stromal were characterized by over-

expression of gene path stem/tumor. In addition, the regenerative cells showed a greater 

inhibition of endometrial proliferation (Fig. 1, Fig. 2) [123]. It has not been demonstrated 

whether the transplanted cells retain the characteristics of stem cell, if they behave as 

physiological ones for endometrial cyclicity, but, above all, mechanism of physiological 

recruitment in the uterus has not been shown. Moreover, Delbandi and colleagues evaluated 

characteristics of the cells and ectopic endometrial stromal eutopics in women with respect to 

controls eutopics of healthy women and noted that ectopic endometrial stem cells differ from 

eutopics, with a greater capacity for proliferation, greater adhesion to the extracellular matrix, 

increased invasiveness and higher levels of pro-inflammatory cytokines, IL-6 and IL-8 [156]. 

The Hox genes control cell fate and segmental embryonic patterning along the antero-

posterior axis of the embryo [29] in cooperation with specific cofactors and in particular, 

through the Notch signaling pathway, determining positional identity and the activities of the 

genetic cascade of somitogenesis [157]. The morphogenetic processes axial extension, the 

segmentation of the mesoderm and anterior-posterior patterning are regulated by the 

interaction between Hox genes and Wnt: while Wnt, RA and FGF regulate the axial extension 

and the identity of the anterior-posterior patterning, Hox, Cdx (paraHox genes) and Notch are 

involved in the segmentation of the mesoderm [158]. PBX and MEIS contribute to modulate 

the binding to DNA for the control of the expression of target genes and Pbx1, in particular, is 

widely expressed in mesenchymal tissues during the differentiation of the urogenital organs 

[38-40]. Wnt7 has been shown to be involved in the maintenance of the genes HoxA10 and 
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11, and Wnt5 in the development of the genital anterior-posterior axis [54,55]. Three 

members of the family Wnt (Wnt4, Wnt5a and Wnt7a) have proved to be fundamental for 

uterine development: inactivation of Wnt4 causes sex reversal; Wnt7 causes inactivation of 

stratified epithelium, stroma and the absence of thin gland; inactivation of Wnt5 inhibits the 

development of the correct anatomy of the uterus [119]. In the presence of defects of 

adjustment, on the part of the genes responsible, during organogenesis differentiation of the 

urogenital tract and/or the migration of the cells may be aberrant or incomplete, and any cells 

with aberrant gene expression during the migratory path may implant themselves in the 

anomalous [73]. Tissues derived from the epithelium and mesenchymal cells accompanying 

coelomatic have the potential to differentiate directly into epithelium and stroma and [67]. 

Hoang Ngoc and colleagues studied embryonic finds, and came to the conclusion that the 

myometrium is derived from the primitive mesenchyme, and the endometrium is derived from 

mesoltelio coelomatic [159]. The signaling pathway of canonical Wnt, the Wnt/β-catenin, is 

implicated in the control of various types of stem cells and can act as a factor to maintain the 

niche hESP in a state of self-renewal [64-67]. Targeted research on the coelomic cavity and 

the müllerian duct epithelium suggest that coelomatic and associated tissues, epithelia adults 

and müllerian derivatives have a common embryological origin, and that pluripotent cells can 

cause endometrial metaplasia or endometriosis in post pubertal stage [73]. The estrogenic 

activity active peritoneal macrophages with consequent induction of pro-inflammatory 

cytokines TNF-α and IL-1β which, in their turn, activate the binding to DNA through the 

transcription factors of NFҡB; through inflammatory cytokines IL-6 and IL-8, induces the 

expression of VEGF that activates the vasculature endothelial cell, while MIF induces cell 

mitosis endometrial, and survival is supported by the activation of anti-apoptotic gene Bcl-2, 

from the degradation of the extracellular matrix by MMPs and the entry phone via ICAM and 

VCAM (Fig. 1, Fig. 2) [160]. 
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Conclusion 

 

 It is ncessary to understand the biological and genetic mechanisms that regulate the 

differentiation of the urogenital tract during the phase of embryonic organogenesis, in the 

period of completion of development of the urogenital tract, and in post-puberty. It is 

important to study the signaling pathways of Hox genes and cofactors Pbx and Meis genes 

and Wnt signaling pathway Wnt/β-catenin. It is necessary to deepen the knowledge on 

embryonic stem cells, niches and the functioning of the regulatory mechanisms of the states 

of quiscenze, self-renewal, proliferation and functional specialization. The research on 

immuno-phenotype, proliferation capacity, invasiveness and adhesion to the extracellular 

matrix of the endometrial stem cells (hESCs) eutopic and ectopic should be implemented. The 

study of the causal mechanisms of endometriosis involves in-depth knowledge of 

embryology, genetics, biology, histology, immunology and specific expertise in medical 

research with multidisciplinary teams which together, will lead to understanding our 

hypothesis and etiology of endometriosis.. 
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Figure legends 

 

Fig. 1.  

The epithelial cell populations of the embryo have similar morphological characteristics of 

differentiated epithelia, whilst mesenchymal cells contribute to the basal membrane, forming 

the lamina and smooth muscle of tubules and differentiation into connective tissue. During the 

early stages of organogenesis, the mesoderm emerges from the primitive streak and gives rise 

to coelomic epithelium. The müllerian ducts (Wnt4 is essential) arise from invagination of the 

coelomic epithelium during fetal development resulting in the female reproductive tract, 

which further differentiates to form the oviduct, uterus and vaginal canal higher. The clusters 

of Hox genes during development, undergo the transcriptional control by cofactors such as 

retinoic acid RA [40], FGF and Wnt signaling; during organogenesis patterning of the female 

genital tract is regulated by homeobox transcription factors: HOXA9 is expressed in the 

oviduct , Hoxa-10 (by BMP-4, Wnt7a and β3-integrin) and Hoxa-11 (via Emx-2 and IGFB1 ) 

are expressed in the uterus, Hoxa-11 and 13 cervix and vagina. The Wingless genes are 

implicated in endometrial glandular and stromal morphology: Wnt7 has been shown to be 

involved in the maintenance of the genes HoxA10 and HoxA11, while in the development 

Wnt5 genital anteroposterior axis: Wnt5a and Wnt7a are both necessary for proper glandular 

genesis , and Wnt5a, in particular, is a critical element in the endometrial glandular formation 

which entails the role of epithelial-mesenchymal interaction required for uterine development. 

As a downstream effector of the Wnt genes, it has been demonstrated that the involvement of 

β -catenin and FoxA2, in the absence of stimulation by Wnt, causes the phosphorylation of β-

catenin which is phosphorylated and then targeted for ubiquitination and degradation in the 

proteasome. In the signaling pathway of the canonical Wnt genes, Wnt/β-catenin, is 
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implicated in the control of various types of stem cells and can act as a niche factor to keep 

the EmSC (Embryonic Stem Cell) in a state of self-renewal. 

 

Fig. 2.  

Fetal development: the morphogenetic processes of the axial extension, of the segmentation 

of mesoderm and anterior-posterior patterning are regulated by the interaction between Hox 

genes and Wnt signaling network in a gene that involves Wnt/β-catenin, in the extension and 

axial the identity of the anterior-posterior patterning, while the cofactors of Hox gene, Pbx1 

and Meis1 are involved in the segmentation of the mesoderm; Wnt7 has been shown to be 

involved in the maintenance of the genes HoxA10 and HoxA11, while in the development 

Wnt5 genital anterior-posterior axis; Wnt4 is involved in the sexual way, Wnt7 in the 

epithelium, stroma and glands, Wnt5 in the anatomy of the uterus. Postnatal development: 

molecular signaling of Shh, BMP, FGF and Notch are implicated in the control of stem cell 

self-renewal and in regulating the fate of the lineage; the estrogenic activity active peritoneal 

macrophages with consequent induction of pro-inflammatory cytokines TNF-α and IL-1β 

which, in turn, activate the binding to the DNA through the transcription factors of NFҡB; the 

transcriptional activity through inflammatory cytokines IL-6 and IL-8, induces the expression 

of VEGF that activates the vasculature endothelial cell, while MIF induces cell mitosis 

endometrial and survival is supported by the activation of the anti-apoptotic gene Bcl-2 , from 

the degradation of the extracellular matrix by MMPs and the entry phone via ICAM and 

VCAM. Post-pubertal development: the eutopic plant develops resistance to elimination by 

the immune system, demonstrating altered function of macrophages and natural killer 

peritoneal cells; in the early stages of the disease there is a prevalence of proinflammatory 

cytokines (Th1 profile), while in the late stages cytokines predominantly fibrogenic and 

angiogenic action (Th2 profile) prevails. 
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