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Abstract 

Minimum toe clearance (MTC) above the walking surface is a critical 

representation of toe-trajectory control related to tripping risk. Reliable and precise 

MTC measurements are obtained in the laboratory using 3D motion capture 

technology. Real-world gait monitoring using body-mounted sensors presents 

considerable data processing challenges when estimating kinematic parameters, 

including MTC. This Thesis represents the first study employing machine-learning to 

estimate young and older adults’ toe-height at MTC using inertial data captured 

from a foot-mounted sensor. Age-group specific Generalized Regression Neural 

Network (GRNN) models estimated MTC with root-mean-square-error (RMSE) of 

6.6 mm with 9 optimum inertial-signal features for the young and 7.1 mm with 5 

features for the older during treadmill walking. These RMSE values are 

approximately one third of the previously reported (Mariani et al., 2012; McGrath et 

al., 2011) and GRNN modeling also performed well as reflected in no significant 

difference between 3D measured reference and model estimated MTC_Height. The 

GRNN model specific to older adults showed good generalizability when applied to 

data from slower and dual task walking. 

In adopting a machine-learning technique to estimate MTC it was essential to 

determine the proportion of gait cycles not showing a clearly defined MTC event, 

i.e.” non-MTC” gait cycles. Young demonstrated only 2.9% non-MTC gait cycles but

they were more frequent in older adults (18.7%). In constrained walking conditions 

up to 37.7% of non-MTC gait cycles were observed. Eliminating the biomechanically 

hazardous MTC event by adopting more non-MTC gait cycles could be an adaptive 
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locomotion strategy in reducing the likelihood of toe-ground contact when gait is 

destabilized. Some participants revealed more than 90% of non-MTC gait cycles and 

to utilize those strides in MTC modeling, toe-height at typical MTC timing was 

demonstrated to be an appropriate measure of “indicative” toe-height in non-MTC 

gait cycles. 
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1 GENERAL INTRODUCTION 

As people age, their risk of falling increases and the consequences of a fall 

are more serious. Worldwide the population aged more than 60 was estimated to be 

688 million in 2006 but is projected to grow to almost two billion by 2050 (World 

Health Organization, 2007). Lord et al. (2006) reported that many older people fall 

even when walking on a level surface,  and in 2007 over 18,000 older Australians 

died from unintentional fall injuries (Australian Bureau of Statistics, 2012). The 

medical cost associated with falls in older adults is already very high, for example, in 

the United States of America, the total cost of all fall-related injuries for older adults 

in 1994 was $27.3 billion and it is estimated that by 2020 the cost will be $43.8 

billion (National Center for Injury Prevention and Control, 2012).  

The causes of falls are multifactorial but they can be generally categorized as 

intrinsic and extrinsic. Extrinsic factors are typically environmental features that 

destabilize the individual, such as uneven or raised surfaces, ground-based obstacles 

and stairs. Intrinsic factors specific to ageing include sensorimotor deficits, cognitive 

declines and perceptual impairments. Recent falls monitoring of frail older adults in 

long-term residential care facilities showed that 49% of falls occurred while walking 

(Robinovitch et al., 2013). From a biomechanical perspective falls during locomotion 

result from different destabilizing events with 74% are due to tripping, slipping and 

loss of balance (Sherrington et al., 2004). Most important for the present study is that 

of these falls-related biomechanical events, tripping accounts for more than 50% of 



Page 2 

 

falls (Sherrington et al., 2004) and in community-dwelling older adults there is a high 

association between tripping frequency and falling (Pavol et al.).  

Tripping results directly from unsuccessful toe-ground clearance, primarily 

during the swing phase of a gait cycle. Previous research with both young and older 

populations have, therefore, focused on how lower limb swing-phase trajectory 

control influences toe-ground clearance (Begg et al., 2007; Lai et al., 2008c; Mills et 

al., 2008). Figure 1-1 shows vertical displacement of toe with time for one complete 

gait cycle. Low clearance (~10-30mm) observed during the mid-swing phase of the 

gait cycle at Minimum Toe Clearance event (MTC_Height) in addition to high foot 

velocity (~4.60 m/s) and a single-foot base of support poses a significant hazard to 

locomotion (Begg et al., 2007; Lai et al., 2008c; Mills et al., 2008).  

 

Figure 1-1 Vertical end point foot trajectory and MTC event is illustrated during the 

mid-swing phase 
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To maintain the clearance, older adults demonstrate similar MTC_Height 

central tendency, measured by mean or median, as young individuals (Begg et al., 

2007; Mills et al., 2008). In contrast, the MTC_Height dispersion, characterized 

using either the standard deviation (SD) or inter quartile range (IQR), increases with 

ageing and this greater stride-to-stride variability in MTC_Height appears to increase 

tripping risk (Barrett et al., 2010; Begg et al., 2007; Mills et al., 2008). Failure to 

adequately compensate surface height variability by adjusting clearance at MTC 

increases tripping risk. The capacity to identify high risk toe trajectory control would 

allow the design of devices to alert pedestrians to modify their toe trajectory and 

reduce the risk of foot-ground contact (Tirosh et al., 2013). High risk gait could be 

identified by either calculating the tripping risk probability (Best & Begg, 2008) or 

by predicting lower MTC_Heights with high variability by monitoring lower limb 

trajectory parameters in real-time. The practicality of pre-emptive systems as an 

approach to falls prevention has however, been unrealized due to difficulties in 

obtaining MTC parameters using a portable measurement system during everyday 

locomotion. 

MTC has previously only been measured under controlled conditions in the 

laboratory using 3D motion tracking systems (Guangyi et al., 2009; Zhou & Hu, 

2008). Falls in older people occur, however, in the dynamic environments of 

unconstrained locomotion (Hamacher et al., 2011). Measuring MTC_Height in 

natural, everyday locomotion is, therefore, essential to understanding tripping-related 

falls (Lai et al., 2008b; Lau & Tong, 2008). Inertial Measurement Units (IMUs) 

comprising accelerometers and gyroscopes are increasingly used for motion analysis 

in unconstrained, non-laboratory environments (Dadashi et al., 2014; Ge & Shuwan, 
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2008; Lau et al., 2008; Mariani et al., 2012; Najafi et al., 2002; Zhou & Hu, 2008). 

IMUs directly measure linear accelerations and angular velocities (inertial sensor 

signals) but deriving positional data from inertial sensor signals is a major challenge 

due to noise and “drift” over time, the essential limitation to IMU technology 

(Findlow et al., 2008; Guangyi et al., 2009; Lai et al., 2008b). Techniques such as 

strap down integration and regression have improved inertial sensor data based 

measurement accuracy of stride length (Peruzzi et al., 2011; Sabatini, 2005; Sabatini 

et al., 2005), walking speed (Li et al., 2010; Mannini & Sabatini, 2014), and 

maximum toe-clearance (Mariani et al., 2010). Using IMUs to measure 

MTC_Height, a narrower-range biomechanical parameter, remains a challenge 

because small errors in integration and regression considerably affect accuracy.  

Recently Mariani et al. (2012), used a de-drifted double-integration technique 

to estimate mean MTC_Height from 12 young healthy older adults’ IMU data and 

reported the mean (-12.7 mm) and standard deviation (9.0 mm) of the difference 

between estimated and reference mean MTC_Height as accuracy and precision 

respectively. From these results, a root-mean-square-error (RMSE) of 21.7 mm can 

be estimated by summing absolute accuracy and precision. Using a quadratic 

regression modeling technique, McGrath et al. (2011) showed that foot mounted 

inertial sensors could estimate mean MTC_Height with up to 17.3 mm RMSE. Given 

that MTC_Height is typically only 10-30 mm (Barrett et al., 2010; Begg et al., 2007; 

Nagano et al., 2011), the RMSE values reported above would be impractical for 

further implementation of real-time MTC monitoring of individual stride cycles.  
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Gait research has advanced technically due to the infusion of more 

sophisticated data analysis techniques such as machine-learning (Chan et al., 2011; 

Novak et al., 2013; Pogorelc et al., 2012). Machine-learning focuses on the 

development of models to reveal the underlying relationships between input training 

data and target parameters. These models can then adapt and ‘grow’ when exposed to 

new data sets. In contrast to traditional computing methods, machine-learning is well 

suited to noisy data and situations that have no clear algorithmic solutions. The 

approach to solving the problem of estimating MTC_Height adopted here was to 

employ machine-learning to model the relationship between MTC_Height and data 

from lightweight, low power, shoe-mounted IMUs. Lai et al. (2009b), for example, 

demonstrated the application of a machine-learning technique, Generalized 

Regression Neural Network (GRNN) to learn the underlying relationship between 

MTC_Height and acceleration signals derived by double-differentiating motion 

captured position-time data. They showed that individual stride MTC_Height with 

an RMSE of 6.1 mm could be achieved one gait cycle ahead. The application of 

machine-learning, specifically GRNN, to inertial sensor data to estimate 

MTC_Height has yet to be investigated. In this project, the input characteristics were 

the IMU-kinematics and the model output was MTC_Height. An important 

consideration in the modeling process was that the generalizing capability of a 

learned model is limited by its input training set. Given ageing effects on 

MTC_Height distributions a specific model was required for older adults. 

Furthermore, it was considered important to include additional experimental gait 

conditions to validate the model’s generalizability to different gaits for both older 

and young participants.  
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To test the generalizability with respect to ageing the age-specific GRNN 

models were tested on the other age group in preferred-speed walking (condition I). 

The models were then validated in more destabilizing gait conditions, i.e., when 

walking slower than preferred (condition II) and while executing a secondary task, 

carrying a glass of water (condition III). Prior to validating the GRNN model in 

different gait conditions, it was considered important to ensure that the reference 

MTC_Height obtained from 3D motion capture for those testing conditions were 

different to preferred-speed data, which were used to train the model. 

There are a few reports (Dell’oro, 2008; Schulz, 2011) that some gait cycles 

do not show a clearly defined MTC event (Figure 1-2). Direct comparison of every 

model-estimated MTC_Height with reference measurement is clearly not possible if 

the MTC event is absent, i.e., on “non-MTC” gait cycles. It was considered critical to 

know the proportion of such non-MTC gait cycles to understand the effect of not 

accounting for non-MTC gait cycles in the MTC_Height modeling process. Because 

non-MTC trials have usually been discarded (Dell’oro, 2008), little is known about 

toe trajectory control in non-MTC stride cycles. In such non-MTC gait cycles, toe-

height extracted at typical MTC timing could be used to represent an indicative 

MTC_Height (Dell’oro, 2008). The concept of using toe-height at mean MTC_Time, 

however, has yet to be validated with larger samples, in older adults and across other 

walking conditions. Furthermore, while MTC_Height has been investigated 

extensively (Barrett et al., 2010) MTC_Time has been less frequently discussed 

(Mills et al., 2008). Given that toe-ground clearance amplitude may be related to 

timing within the stride cycle, it was considered important to characterise toe-
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trajectory control across different experimental conditions I-III above by measuring 

both MTC_Height and MTC_Time.  

 
Figure 1-2 A gait cycle without a clearly defined MTC event 

 

1.1.1 Research questions 

As an approach to further understanding of lower limb control and falls 

prevention in older adults, the present Thesis was designed to address the following 

research questions: 

Research Question 1: What are the effects of ageing and walking condition 

on MTC_Height, MTC_Time and non-MTC gait cycle frequency measures obtained 

from 3D motion-capture? 
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Research Question 2: Would machine-learning (GRNN) provide appropriate 

estimates of MTC_Height using inertial sensor signals? 

The Aims and the hypotheses to address above Research Questions are 

presented in the final section of the Literature Review (page 49). 

1.2 Thesis organization 

The study has been presented as six chapters and brief outline of each chapter 

is presented below:  

Chapter 2: Literature Review elucidates the significance of tripping falls in 

older adults, the rationale for studying minimum-toe-clearance (MTC) and the 

necessity of a wearable, inexpensive sensor system to measure MTC. The working 

principles of inertial measurement units (IMUs), their technical challenges and 

suitability as a foot-mounted sensor system and are surveyed in this chapter. The 

concept of machine-learning, especially Generalized Regression Neural Networks 

(GRNN) and steps in adopting the GRNN technique to gait biomechanics, i.e., 

MTC_Height estimation, are presented. As the conclusion to this chapter, the Aims 

and hypotheses to operationalise the Research Questions are presented. 

Chapter 3: Technical Preparation presents the development of a wireless 

foot-mounted IMU consisting of a tri-axial accelerometer and a tri-axial gyroscope 

integrated with a microcontroller to transmit sensor data via Bluetooth to collect 

IMU kinematics of toe from the experimental conditions to address Research 

Question 2. 
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Chapter 4: Experimental Methods describes the experimental protocol used 

to collect toe trajectory gait data from 15 Young and 15 Older participants 

performing three walking conditions (I-III) using both a 3D motion tracking system 

and a foot-mounted IMU. Data processing techniques such as identifying gait cycle 

and extracting MTC event from the 3D displacement data are elaborated followed by 

inertial sensor signal processing and feature extraction to build age-specific GRNN 

models. Finally the statistical analysis procedures for MTC characteristics and non-

MTC gait cycles are presented, followed by GRNN model validation.  

Chapter 5: Experimental Results outlines the experimental results showing 

ageing and walking condition effects on toe-trajectory control for both young and 

older adults, followed by validation of toe-height at mean MTC_Time in non-MTC 

gait cycles as an indicative MTC_Height. Non-MTC gait cycle group frequency and 

individual frequency analysis are then presented. Finally GRNN model building 

outcomes for both young and older adults in preferred-speed walking are presented 

with model validation in slower and dual task walking conditions. 

Chapter 6: General Discussion summarizes the study, discusses the findings 

and highlights the remaining challenges in using foot-mounted IMUs to measure 

MTC followed by recommendations for further research in sensor technology.  
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2 LITERATURE REVIEW 

2.1 Epidemiology of ageing and falls 

The World Health Organisation defines a fall as an event which results in a 

person coming to rest inadvertently on the ground or floor (World Health 

Organization, 2007). The human cost of falling includes distress, pain, injury, loss of 

confidence, loss of independence, and mortality. Injury following a fall is associated 

with a decreased quality of life and poor functional outcome, in severe injuries these 

effects continue for a prolonged period of time. The negative consequences of falls 

increase dramatically with age in both sexes and in all racial and ethnic groups. Falls 

account for 70 percent of accidental deaths in persons 75 years of age and older 

(Fuller, 2000; Wild et al., 1981). In 2013, for example, over 25 464 older Americans 

died from fall injuries (Centers for Disease Control and Prevention, 2013).  

Direct costs associated with falls are the highest of all injury categories, for 

example, five times larger than the second ranked, road traffic accidents (Potter-

Forbes & Aisbett, 2003). Hospital stays are reported to be twice as long in older 

patients who are hospitalized after a fall than for those admitted for other conditions 

(World Health Organization, 2007). Moller (2003) suggested that unless falls 

prevention strategies are implemented or treatment costs lowered, medical treatment 

due to falls will increase threefold to $1375 million per annum by 2051 (Figure 2-1). 

In America, the total cost of all fall-related injuries for older adults in 1994 was 

$27.3 billion and it is estimated that by 2020, the cost will be $43.8 billion (SAFE 

Aging Newsletter, 2005).  
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Figure 2-1 Total fall-related health cost trends in millions, adapted from Moller 

(2003). 

 

Extrinsic falls-related factors are typically environmental features, such as 

ground surface properties or illumination, while intrinsic risk factors embrace 

perceptual-motor characteristics related to ageing, such as physical, cognitive and 

affective capacities that influence balance, visual acuity and proprioception (Figure 

2-2). Research has been conducted to investigate a variety of approaches to reduce 

falls rates. Passive fall prevention techniques such as exercise programmes, safety 

equipment and medications have been shown to help in preventing falls indirectly. A 

recent Cochrane collaboration review of 111 randomized trials including 55,303 

participants revealed that multi-component interventions consisting of two or more 

categories of exercise were effective in reducing the risk of falling (The Cochrane 

Collaboration, 2009). Yardley et al. (2008) have, however, found that nearly 60% of 

older adults would not voluntarily participate in group exercise sessions for the 

purpose of falls prevention, mainly due to lack of motivation. Furthermore, balance 

exercise interventions, such as Tai Chi, have to be executed with very high attention 
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and care. Home safety interventions, for example, handrails and shower guards are 

effective only where they are installed. These findings clearly indicate that a new 

active intervention approach is necessary for reducing the rate and risk of falling. To 

develop active intervention approaches to reduce the falls occurrence, a 

biomechanical understanding of human locomotion and lower limb trajectory control 

is critical.  

 

Figure 2-2 Risk factors for falls in older; environmental and socioeconomic risk 

factors are considered extrinsic causes while biological risk factors are intrinsic. 

Behavioural risk factors include both extrinsic and intrinsic causes, adapted from 

World Health Organization (2007) 

 

Changes to gait biomechanics with ageing have been examined in an effort to 

identify risk factors for falls and predict individuals at high risk of falling (Barrett et 

al., 2010; Mills et al., 2008; Nagano et al., 2011; Sparrow et al., 2008; Sparrow et al., 

2002; Taylor, 2012). Past studies have compared healthy young adults and carefully-

screened healthy older adults to understand ageing effects on gait control, as far as 
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possible, independent of ageing-related orthopedic, sensory or other “non-ageing” 

related lower limb trajectory control variables. Gait patterns of older individuals 

exhibit characteristic differences when compared with young adults. 

From a biomechanical perspective, 74% of falls in people aged above 65 are 

due to tripping, slipping and balance loss during locomotion (Sherrington et al., 

2004). Of these, tripping accounted for the highest percentage of falls (Figure 2-3).  

 

Figure 2-3 Destabilizing events causing falls; tripping accounted for the highest 

percentage of falls adapted from Sherrington et al. (2004) 

 

Tripping is defined as an event in which the most distal feature of the swing 

limb, usually the lowest part of the shoe or foot, makes unanticipated contact with 

either the supporting surface or an obstacle with sufficient force to destabilise the 

pedestrian. Control of the sagittal plane toe trajectory is clearly an important 

consideration for safe walking since a lack of control could increase tripping risk. In 

a typical gait cycle, as shown in Figure 2-4, following events are observed in 

common: Toe-off  (TO) - the toe breaks contact with the walking surface and enters 
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the swing phase, first maximum (mx1) - the first maximum peak vertical 

displacement of the toe (25% into swing), second maximum (mx2) - the highest 

vertical displacement of the toe i.e., the second maximum peak, usually greater than 

mx1 observed at 90% of swing and minimum toe clearance (MTC) - the lowest toe-

ground clearance between mx1 and mx2 (50% into swing). Among these gait events, 

MTC has been identified as a critical gait cycle event in determining the risk of 

tripping. 

 

Figure 2-4 Sagittal plane toe vertical displacement within a time-normalized gait 

cycle; important cyclic events toe-off  (TO), first maximum (mx1), MTC and second 

maximum (mx2) are marked. 

 

2.2 Minimum Toe Clearance (MTC) 

Toe clearance above the walking surface at MTC is only 10 mm to 30 mm 

(Figure 2-4) and instantaneous progression velocity is three times the walking 

velocity (Figure 2-5). These biomechanical tripping-related risk factors are further 

compounded by the consideration that at MTC the body is single-limb supported and 
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the whole body centre of mass (COM) is outside the supporting base formed by the 

single stance foot. Balance recovery from tripping-related destabilization at MTC is, 

therefore, likely to be difficult.  

 

Figure 2-5 When the pedestrian walking at 1.4 m/s, the foot velocity at MTC event 

was 4.6 m/s, more than three times the walking speed, adapted from Winter et 

al.(1991). 

 

2.2.1 Ageing effects on MTC 

Murray (1969) obtained MTC_Height from participants aged between 20 and 

87 years (Figure 2-6) in preferred and faster walking speed. While MTC_Height was 

found to be increasing with age (Figure 2-6) no statistical tests were reported by 

Murray (1969).  
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Figure 2-6 Longitudinal study results of ageing effects on MTC_Height in preferred 

and fast speed walking, adapted from Murray, et al. (1969). Overall with ageing 

MTC_Height increased.  

 

Figure 2-7 from Begg et al.(2007) presents MTC_Height distributions for 

young and older adults in treadmill walking at preferred speed. To examine inter- 

and intra-individual toe –trajectory control, MTC_Height distributions were 

characterised using two measures of central tendency, either the mean or median, and 

two variability (dispersion) descriptors standard deviation (SD) or inter quartile 

range (IQR).  These MTC_Height histograms show non-normal distributions for both 

young and older adults. Begg et al. (2007) suggested, therefore, that median and IQR 

would better represent MTC_Height central tendency and dispersion than the mean 

and SD.  
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Figure 2-7 (a)Young vs. (b)Older MTC_Height histograms for preferred-speed 

walking, obtained from Begg et al. (2007). 

 

MTC_Height mean or median was unaffected by age (Barrett et al., 2010; 

Begg et al., 2007; Mills et al., 2008). Critically, however, MTC_Height SD or IQR 

was significantly greater in the older than the young (Begg et al., 2007; Mills et al., 

2008).  Greater inter-stride MTC_Height variability (Figure 2-7) relative to their 

younger counterparts implies greater likelihood of toe-ground contact and is widely 

interpreted as an indication that older adults are at increased risk of tripping when 
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walking on level surfaces. In a recent review Barrett et al. (2010) summarized the 

effect of age (young versus older adults) and falls history (older fallers versus older 

non-fallers) on characteristics of MTC_Height associated with increased risk of 

tripping. MTC_Height median or mean and IQR or SD from different studies were 

extracted and used to calculate standardized effect sizes (Cohen’s d) and their 

corresponding 95% confidence intervals. Eleven out of 12 studies suggested 

increased MTC dispersion in healthy older adults compared to young groups. Two 

studies which compared older adults with and without a falls history confirmed that 

MTC variability is associated with a previous history of falls.  

The unambiguous link between toe-ground clearance at MTC and tripping 

risk motivated a statistical modeling approach to calculate the probability of toe 

contact with an obstacle based on MTC_Height distribution characteristics (Best & 

Begg, 2008). Best & Begg (2008) proposed calculating tripping probability for 

varying unseen obstacle heights using MTC_Height median, IQR, skewness (S) and 

Kurtosis (K). The probability of a certain MTC_Height occurring during normal 

walking was calculated by numerically integrating an exponential power distribution 

incorporating median, SD, S and K. For example, tripping probability for an unseen 

obstacle height of 5 mm was calculated to be 1 in 95 strides. While MTC is a useful 

gait parameter for determining ageing effects on toe trajectory control, MTC 

modeling can also be used to calculate the risk of tripping.  

As MTC_Height is a very narrow-range biomechanical gait parameter it is 

measured using a high accurate 3D motion capture systems in laboratories. In 

reporting the MTC_Height, there has been inconsistency between studies that can, in 
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major part, be accounted for by differences in measurement. Begg et al. (2007), for 

example, reported group mean MTC_Heights for young and older of 14.2 mm (SD = 

6.15 mm) and 14.8 mm (SD = 7.85 mm) respectively. In contrast, Dell’oro (2008) 

found greater group mean MTC_Heights for both groups (Young = 23.0 mm and 

Older = 20.4 mm). As shown in Figure 2-8, Begg et al. (2007) reference 

MTC_Height from the toe vertical displacement at toe-off but Dell’oro (2008) 

measured MTC_Height from the walking surface, i.e. the treadmill belt. In the 

present study MTC_Height was measured from the walking surface as reported by 

Dell’oro (2008), as the interest was to obtain the toe-clearance above the walking 

surface.  

 

Figure 2-8 MTC_Height measurement using different lower reference 
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2.2.2 Task and speed effects on MTC 

It was considered important to include additional experimental gait conditions 

to verify the generalizability of the machine-learned model for estimating 

MTC_Height. For this purpose, in the present study, a dual task walking experiment 

was devised in which participants undertook a concurrent task of carrying a glass of 

water. The dual task required attention to be shared, disturbing performance on one 

or both tasks if processing capacity was exceeded (Ka-Chun et al., 2008). Performing 

a concurrent task while walking is considered hazardous to older people (Canning, 

2005; Ka-Chun et al., 2008; Laessoe et al., 2008). Sparrow et al. (2002) investigated 

ageing effects on dual task walking and found that the resource cost of walking was 

greater in older people. Furthermore, a more challenging foot-targeting task had 

higher attention demands than an unconstrained condition for both young and older 

groups. A common observation on dual task walking is that participants slow down 

in response to increased attention demands (Hollman et al., 2007; Speciali et al., 

2012). An answer to the question of how performing a concurrent task while walking 

(dual task) changes lower limb gait characteristics, Nordin et al. (2012) reported that 

older individuals aged 75 years and above who demonstrated change in gait 

parameters such as mean step-width, mean step-time and step-length variability when 

walking while carrying a cup and saucer were less falls prone. Given Nordin et al.’s 

(2012) report on reduced post-study falls observations, it was expected that a similar 

dual task condition older adults would significantly modify toe-trajectory control for 

safer gait, reflected in MTC parameters.  

In an attempt to understand the changes to MTC_Height while executing 

similar dual task walking, carrying a glass of water on a tray, Schulz et al. (2010)  
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reported no difference in mean MTC_Height in young healthy adults. While their 

experiment provided useful background to dual task effects on MTC, they neither 

reported MTC_Height variability nor included older adults in the experimental 

design. Further, any effects on MTC characteristics in a dual task condition could be 

due to dual tasking, reduced walking speed or the interaction of both independent 

variables. In preferred-speed treadmill walking MTC_Heights are typically 15.6 mm 

(Begg et al., 2007) and 14.9 mm (Mills et al., 2008). Miller et al. (2009) reported that 

MTC_Height reduced by 4.3 mm per 1 m/s of increase in speed. In contrast, Winter 

et al. (1991) reported no change in MTC_Height when walking speed was greater 

than preferred. To confirm dual task effects on toe trajectory control it was, 

therefore, important to run a speed-matched control condition without the dual task 

constraint. Schulz et al. (2011) normalized gait cycles to accommodate different 

waking speeds while dual tasking but no previous reports incorporated a speed-

matched control trial when comparing dual tasking and preferred-speed walking. No 

reports of slower walking effects on MTC have been found.  

To collect sufficient sequential gait cycles for gait research, for example to 

model tripping risk using MTC_Height (Begg et al., 2007) and to analyse lower limb 

joint angle related to toe-trajectory control (Mills et al., 2008) treadmill walking has 

been chosen (Riva et al., 2013; Sparrow et al., 2008; Tirosh et al., 2013). Treadmill 

walking, however, has demonstrated changes to natural walking mechanics and may 

not properly represent normal overground locomotion (Nagano et al., 2011). Nagano 

et al. (2011) reported significantly lower dominant foot MTC_Height during 

preferred-speed treadmill walking for both young and older (n=11 for each group) 

than preferred- speed overground walking. The choice of procedure is influenced by 
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whether an extended data set is required, as in tripping risk calculation using 

MTC_Height, (Begg et al., 2007) or only a more limited sample is needed to 

statistically test between-group or between-condition effects (Schulz, 2011). The 

aims of the current Thesis required continuous IMU data for MTC_Height modeling 

that were only practicably obtainable using treadmill walking.   

2.2.3 Non-MTC gait cycles 

The earlier discussion of MTC as a characteristic of the swing phase 

trajectory may suggest that all gait cycles demonstrate a well-defined MTC event. In 

a doctoral research project, however, Dell’oro (2008) reported that considerable 

number of gait cycles did not show a well defined MTC event (Figure 2-9). Dell’oro 

(2008) documented that 8,814 gait cycles of 75,193 strides (11.7%) from both young 

and older (n=12 for each group) in preferred-speed treadmill walking and in attention 

division gait tasks did not demonstrate MTC. Dell’oro (2008) indicated that 50% of 

her participants demonstrated at least 10% non-MTC gait cycles and those 

individuals were excluded from the statistical analysis. In young adults MTC does 

appear to be reliably observed unless a significant change to lower limb trajectory is 

demanded, such as clearing obstacles or climbing stairs. Schulz (2011), for example, 

found that in young participants, 98% of gait cycles in unconstrained preferred-speed 

level walking demonstrated an MTC event but the frequency declined to 80% during 

obstacle crossing. Most previous studies, however, have not reported the frequency 

of non-MTC gait cycles, suggesting that either MTC was observed consistently both 

within or between participants or a proportion of non-MTC gait cycles were 

discarded.  
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Figure 2-9 Illustration of non-MTC gait cycle adapted from Dell’oro (2008). Non-

MTC gait cycle’s toe-off was observed at frame number 18669. 

 

In the present project the goal of the computational model was to estimate 

MTC_Height for every gait cycle using IMU-kinematics. It was, therefore, essential 

to determine whether individuals consistently show an MTC event and, if not 

determine the frequency of non-MTC cycles as a proportion of total gait cycles. 

MTC data for individual participants in each age group were examined to account for 

the frequency of non-MTC cycles within each age group. Examination of non-MTC 

gait cycles for age groups would also be important for determining further age-

specific toe trajectory controls. This analysis was considered essential for any future 

application of the foot sensor technology in either MTC_Height estimation or in 

tripping-falls prevention because some individuals may show too few MTC cycles 

for a viable MTC-based hazard detection approach. In this respect, Non-MTC cycles 

“hidden” in group frequency could be due either to many participants having a 

relatively equal number of non-MTC cycles or caused by relatively few participants 
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who do not display a characteristic MTC event at all. Individual non-MTC 

frequencies, therefore, were calculated for both young and older across walking 

conditions. Walking condition manipulations included in the present project, slower 

and carrying a glass of water enabled the analysis of non-MTC frequencies across 

age groups and conditions.  

Further, it was also critical to identify an indicative toe-height for non-MTC 

gait cycles at usual MTC event time to compare the model-estimated MTC_Height 

with the 3D motion capture reference MTC_Height. MTC was considered to occur 

during mid-late swing phase. Mills et al. (2008) used MTC_Time to analyse the 

lower limb joint angles at the MTC event to further understand swing phase 

biomechanics. Dell’oro (2008) examined mean MTC_Time for one young adult and 

proposed that toe-height at mean MTC_Time could be incorporated in non-MTC gait 

cycles to conduct MTC characteristics analysis. This technique of an indicative 

MTC_Height, however, was yet to be validated in larger population including both 

young and older adults and different walking conditions. From a clinical 

biomechanical point of view, it was considered important to investigate the 

difference between young and older groups in terms of non-MTC gait cycles and 

MTC_Time, in addition to MTC_Height to further understand toe-trajectory control. 

Given the lack of previous research findings on MTC timing characteristics and non-

MTC gait cycles, when formulating the testable hypotheses to address the Aims 

listed at the end of Literature Review (page 49),  the age, condition effects on 

MTC_Time and non-MTC gait cycles were more speculative than for MTC_Height. 

From a biomechanical perspective, however, by attaining MTC earlier (shorter 

MTC_Time), it was expected that the pedestrian may transit more quickly from the 
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hazardous low-clearance zone of the toe trajectory to the higher clearance phase. 

Further, exhibiting a greater proportion of non-MTC gait cycles mechanism was 

anticipated to minimise the possibility of toe-ground contact in a challenged gait.  

2.3 Inertial Measurement Units (IMUs) 

An IMU is a single electronics module which collects linear acceleration and 

angular velocity data respectively from accelerometers and gyroscopes (Castillo, 

2005).  IMUs are increasingly used in gait related applications, such as falls 

detection, activity classification, and gait parameter estimation. In automatic falls 

detection applications (Medical Alert Advice; Philips), accelerometers are used to  

measure a sharp decrease in whole body acceleration while falling, followed by a 

corresponding deceleration “spike” on landing (Lee & Carlisle, 2011; Lindemann et 

al., 2005).  Accelerometers in smart phones enabled development of applications 

(iDown and Fall Alert) to detect falls and call a designated person in case of an 

emergency. Senior users, however, have reported that the device picks up only half 

of falls and frequently registers activities of daily living (ADL) as a fall (Lindemann 

et al., 2005). Identifying ADL using IMU technology is crucial for developing a 

continuous gait monitoring system (Meng et al., 2009.; Nyan et al., 2006; 

Santhiranayagam et al., 2013). For example, Meng et al. (2009) demonstrated IMUs 

comprising accelerometers and gyroscopes to differentiate walking in different 

terrains such as a flat surface, ascending and descending stairs, and ascending and 

descending walkways. 
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2.3.1 Working principle of inertial measurement units 

The location and orientation of an object free to move in 3D space is 

determined by its position, described by three degrees of freedom (x, y, z) and 

attitude, characterised by three rotational degrees of freedom (ψ, θ, φ). Analogous to 

an IMU system, the human vestibular system detects these six independent variables 

simultaneously, (Zeng & Zhao, 2011). The semicircular canals sense rotational 

movements while the otoliths are sensitive to translation (Figure 2-10). The 

semicircular canal and the otolith sense the body acceleration and head rotation, 

which are subsequently transferred to the central and peripheral neural system for 

balance control and gaze stabilization. 

 

Figure 2-10 Inner ear mechanism to detect position and motion of the head (a) The 

six independent variables fully describing the motion characteristics of an object. (b) 

Schematic of the human vestibular system showing the three perpendicular semi-

canals and the otolith (utricle and saccule) in the inner ear (Zeng & Zhao, 2011). 

 

Recent developments of micro-electro-mechanical systems (MEMs) have 

provided the impetus for miniaturized, low cost accelerometers and gyroscopes that 

can be integrated into practical portable devices. MEMs accelerometers are based on 
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Newton’s second law of motion, i.e. when acceleration is applied to a mass an 

inertial force develops that displaces the mass in the opposite direction (Castillo, 

2005; Zeng & Zhao, 2011). As shown in Figure 2-11 when acceleration occurs, 

inertial forces displace the movable plates with respect to the fixed plates opposing 

the direction of motion. Change in the gaps between the moving plates and the fixed 

plates alter the electrical capacitance (Cl, Cr) of the system, which is measured as a 

voltage output. Produced voltage is proportional to the applied acceleration of the 

object.  

 

Figure 2-11 Working principle of MEMs accelerometer, adapted from 

(Santhiranayagam, 2015); When the sensor is displaced in the direction as shown in 

the figure, an inertial force is created in the opposite direction. Inertial force 

displaces the movable plates and creates unequal capacitances Cr and Cl between 

fixed plate and movable plate 

 

The principle of MEMs gyroscopes is the Coriolis Effect on a vibrating 

structure. In MEMs gyroscopes, a pair of oppositely vibrating masses (capacitive 
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sheets) is attached by a string, similar to a tuning fork (Figure 2-12). The goal is to 

measure the rotation applied about the axis perpendicular to the vibrating objects’ 

direction of motion. When rotation is applied “Coriolis” forces are generated on the 

vibrating masses as shown in the figure below (Figure 2-12). These Coriolis forces 

displace the vibrating masses and change the overlapping areas of fixed plates and 

vibrating mass resulting in a difference in capacitance (Cl, Cr) between the plates. 

The difference in capacitance is amplified, demodulated, and filtered to produce a 

voltage that is proportional to the angular velocity. When the objects undergo only 

linear acceleration in any direction, the distance between individual masses and the 

fixed plate will be equal, thus the difference in capacitance remains zero. 

 

Figure 2-12 Working principle of MEMs gyroscope adapted from (Santhiranayagam, 

2015); when the sensor is rotated about axis of rotation as shown by red arrow, 

FCoriolis forces in vibrating masses moves the masses and change the effective 

capacitance Cr and Cl between fixed plate and vibrating masses. 
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2.3.2 Inertial sensor signals based MTC_Height estimation  

A foot-mounted sensor system consisting of a tri-axial accelerometer and a 

tri-axial gyroscope was developed as described in Chapter 3 to capture inertial sensor 

signals. As IMU measure acceleration and angular velocity, deriving positional 

measurement such as MTC_Height is not a straightforward process. The traditional 

technical approach to estimating MTC_Height from inertial sensor signals has 

limitations that required an entirely new method to be developed; a principal aim of 

the present investigation. As a background to the considerations in developing a 

modeling technique for application in this project three fundamental limitations of 

earlier approaches, and proposed solutions, are reviewed below. 

Sensor Orientation 

To obtain MTC_Height, a positional measurement from IMU-measured 

linear acceleration and angular velocities, signals must be first transformed from the 

local sensor axis (ẞ) to a global reference system (R) as shown in Figure 2-13. For 

this purpose sensor’s initial orientation must be known. Using the accelerometer 

readings, sensor’s initial inclination with respect to gravity is determined. An 

additional device, such as a magnetometer is required to obtain initial sensor 

transverse planar orientation of the sensor with respect to magnetic North. With the 

advent of MEMs magnetometer, it was possible to integrate orientation estimation to 

accelerometer and gyroscope system. 
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Figure 2-13 IMU co-ordinate system (ẞ) and global reference coordinate system (R) 

 

 Co-ordinate Transformation  

To track the continuous change in the orientation of sensor axes (ẞ) with 

respect to the reference co-ordinate system three dimensional angular velocities are 

obtained from gyroscopes. The angular velocities are integrated over time to obtain 

the change in angle over them time from the initial orientation. This computationally 

complex problem is approached using quaternion vector representing the orientation 

of the sensor body co-ordinate system ẞ with respect to the reference co-ordinate 

system (R).  
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“Drift” over time  

Following inertial sensor signal co-ordinate transformation to a global 

reference system, gravitational components of the accelerometer signals are isolated 

before double-integrating to obtain a displacement signal (Sabatini et al., 2005). In 

the integration process, thermal–mechanical and electronic noise in the 

accelerometers introduce a nonlinear error; the essential limitation to IMU 

technology (Djurić, 2000; Thong et al., 2004). Sabatini (2005) proposed a strap-

down integration technique to improve the accuracy of positional measurements 

using an IMU by exploiting the cyclical properties of the walking gait. In the strap-

down technique, integration is carried over each stride cycle to reset the drift in foot 

velocities to zero (Li et al., 2010; Yun et al., 2007). 

Mariani et al. (2012) employed strap-down integration techniques to estimate 

MTC_Height from 12 healthy adults performing short walking trials at self-selected, 

slow, and fast speeds. The method computed foot orientation and trajectory from 

sensor signal data fusion, combined with gait event detection of toe-off and heel-

strike. Three algorithms were devised for 2D and 3D foot models and the results 

were validated against optical motion capture for 2D and 3D data respectively. Their 

system obtained -12.7 mm accuracy and 9 mm precision (average and standard 

deviation of the difference between the reference MTC obtained from a motion 

capture system and the estimated MTC using an IMU), resulting in an overall root-

mean-square-error (RMSE) of 21.7 mm. Given that MTC_Height is typically only 

20-30 mm, the MTC_Height estimation accuracy using inertial sensor signals with 

integration techniques would not be sufficient. 
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2.4 Modeling approaches to MTC_Height estimation 

The approach to modeling MTC_Height using IMU data in the present Thesis 

was also simultaneously pursued by McGrath et al. (2011) who proposed a quadratic 

regression model to link raw IMU kinematic data to MTC_Height mean and 

coefficient of variation. McGrath et al. (2011) conducted an experiment in which 

nine healthy young adults walked at different walking speed conditions (1.56m/s, 

1.10m/s, 0.65m/s, and 0.48m/s) wearing a tri-axial accelerometer and a tri-axial 

gyroscope mounted on foot and shank with data collected using a 3D motion capture 

system. In a modeling approach, transforming raw data into features that better 

represent the underlying relationship between the target parameter and the raw data 

is critical. McGrath et al. (2011) used correlation (r) analysis between reference 

MTC_Height and features calculated over a synchronized portion of the vertical 

angular velocity and acceleration signals for each walking trials for each subject. 

Mean values of both absolute angular velocity and vertical linear acceleration 

showed maximum r values. In this proof of concept study, McGrath (2011) used 

those identified inertial-signal features to model MTC_Height and demonstrated that 

quadratic regression (RMSE = 17.34 mm) outperformed a linear regression (RMSE = 

35.86 mm) by estimating MTC_Height by 50% more accurate. An improved RMSE 

for quadratic regression suggested a non-linear relationship between inertial 

kinematics and MTC_Height.  

McGrath (2011) fitted a quadratic regression curve to MTC_Height and 

related IMU features but did not validate the model using an unknown sample set to 

test the model’s generalizability (Figure 2-14). In developing a modeling approach to 
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estimate MTC_Height it is essential to validate the performance of the model with 

unknown dataset to the model, i.e., a blind data set. For future developments in real-

time MTC monitoring, it is also important to estimate stride-specific MTC_Height 

rather than estimating the mean and coefficient of variation of a number of strides 

captured from a walking trial. The above limitations were addressed in the present 

project by building models for young and older adults to estimate MTC_Height for 

each stride and testing these models in different conditions, i.e., dual task walking 

and slower walking.  

 

Figure 2-14 Mean MTC_Height (minimum ground clearance, MGC) and coefficient 

of variation MTC_Height outputs from quadratic regression for foot senor against 

mean MTC_Height and  coefficient of variation (CV) of MTC_Height derived from 

optical motion capture system adapted from McGrath, et al. (2011). 
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The non-linear relationship between MTC_Height and other swing phase 

trajectory kinematic variables within the same stride is due to toe-trajectory 

modulations following toe-off. If there were no discrete changes to toe trajectory 

following toe-off, any two events would be predicted to be highly correlated 

(Santhiranayagam et al., 2010). Table 2-1 for example, shows correlations between 

mx1_Height and MTC_Height (refer Figure 2-4) for young and older adults in 

preferred-speed walking from the present study. It can be seen that young adults 

showed lower correlations than older adults and this ageing effect on the correlations 

between swing-phase variables would also be reflected in the related IMU 

kinematics. It was, therefore, anticipated that separate models built using inertial-

signal features would be required for older and younger people.  

Table 2-1 Correlations (corr, r) between mx1 and MTC for young (YP) and older 

(OP) individuals obtained from present study's preferred-speed walking data 

Preferred-speed walking data 

 

Young 

corr ( r) 

 Older 

corr (r ) 

YP01 0.75 OP01 0.84 

YP02 0.55 OP02 0.76 

YP03 0.41 OP03 0.89 

YP04 0.32 OP04 1.00 

YP05 0.94 OP05 0.94 

YP06 0.43 OP06 0.87 

YP07 0.64 OP07 0.95 

YP08 0.36 OP08 0.91 

YP09 0.84 OP09 0.99 

YP10 0.61 OP10 0.83 

YP11 0.50 OP11 0.56 

YP12 0.77 OP12 0.33 

YP13 0.60 OP13 0.80 

YP14 0.59 OP14 0.82 
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2.5 Machine-Learning in gait analysis 

Machine-learning is being employed in different application areas such as 

aerospace, automobile, weather forecast, financial market analysis and real estate 

business in which a large volume of data needs to be processed fast enough and with 

high accuracy to address continuous demands. Machine-learning techniques are 

envisioned to result in more cost-effective, efficient, and easy-to-use systems, which 

would address global shortages in medical personnel and rising medical costs. Given 

the non-linear relationship between inertial kinematics and MTC_Height in the 

present project a machine-learning approach was considered more appropriate to 

modeling toe-height. Machine-learning offers the ability to investigate nonlinear data 

relationships, enhance data interpretation, design more efficient diagnostic methods 

and extrapolate model functionality (Lai et al., 2009a; Shilton et al., 2012). Machine-

learning is a mathematical, algorithm-based technology that forms the basis of 

historical data mining and modern big-data science (Bell, 2014). It is a fusion of 

learning mechanisms and computation specifically suited for powerful decision 

systems capable of interpreting and processing large volumes of data such as 

extended walking trials providing multiple gait cycles.  

An essential component of the machine-learning based wearable-sensor 

approach to gait measurement is that the computational model is required to learn the 

specific relationship between the input signals, represented by signal features and the 

estimated target gait parameter (Bell, 2014).  Artificial learning was inspired by the 

human brain which learns from previous experience and continuously updates 

information to form new knowledge structures. The brain is an interconnected web of 

neurons transmitting elaborate patterns of electrical signals (Shiffman, 2012). As 
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shown in Figure 2-15, dendrites in a neural cell receive multiple inputs from other 

inter-connected neurons and fire an output via axon.  A perceptron is the simplest 

artificial neural network (ANN) with inputs, a processor and an output (Shiffman, 

2012). Depicting the human brain in ANN, multiple interconnected layers are created 

with several nodes in each layer. These nodes receive inputs, weigh them and sum to 

generate an output (Figure 2-16).  

 

 
 

Figure 2-15 Dendrites in a neural cell receive input signals from inter-connected 

neurons and based on those inputs, fire an output signal via an axon (adapted from 

(Shiffman, 2012)) 

 

Machine-learning techniques such as supervised learning, unsupervised 

learning, symbolic learning and genetic learning, have been applied to pattern 

recognition and system modeling. In supervised learning an external supervisor 

provides a set of parameters and desired outputs to the machine and trains the 

machine to learn the relationship between input parameters (features) and the outputs 
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(targets). Once the machine has learned the relationship, it could be used to estimate 

the targets of new features which the machine has not seen previously. 

 
 

Figure 2-16 Two layer neural network with 3 inputs. Nodes in these layers receive 

the inputs, weigh them and sum to generate outputs. 

 

Rescio et al. (2013), for example, used a supervised clustering technique 

(one-class support vector machine classifier) to detect falls event successfully out of 

IMU data collected from several practical every day activities such as walking, 

sitting down in a chair, lying down and kneeling down. In an activity recognition 

application, Terrier et al.(2001) employed a Neural Networks (NN) technique to 

detect level, downhill, and uphill walking from accelerometers located at the hip and 

pelvic bone. Begg et al. (2005), showed that the support vector machines could be a 

useful tool to differentiate different types of gaits for example young and old gait 

cycles could be classified with up to 90% accuracy.   

Using a Generalized Regression Neural Network (GRNN), Lai et al. (2009b) 

demonstrated the potential of a machine-learning technique in lower-limb trajectory 
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gait biomechanics. Lai et al. (2009b) recorded foot positional data from 10 healthy 

adults (25–32 years) and 11 older adults (65–82 years) with a history of falls using a 

3D motion capture system. They obtained acceleration data by double differentiating 

the position-time signal and extracted 5 peak amplitudes and corresponding 

normalized time with respect to toe-off event as input features to GRNN model. Lai 

et al. (2009b) demonstrated that acceleration features from double differentiated 

motion-captured 3D displacement-time data could predict individual stride 

MTC_Height with an RMSE of 6.1 mm one gait cycle ahead. In Lai et al.’s study 

(2009b), the GRNN machine was able to learn the underlying relationship between 

toe trajectory control and acceleration derived double differentiating motion captured 

position-time data.  

The GRNN is based on nonlinear regression theory for function estimation 

(Specht, 1991). The network architecture of GRNN is a one-pass learning algorithm 

which does not require an iterative training procedure as in the back-propagation 

method (Specht, 1991). Even with sparse data in a multi-dimensional measurement 

space, the algorithm provides smooth transitions from one observed value to another 

(Özgür, 2006). Unlike feedforward back-propagation method, GRNN simulations 

performance is less sensitive to randomly assigned initial weight value. Further, the 

local minima problem was not faced in GRNN simulations (Özgür, 2006). Despite 

these advantaged no previous studies have applied GRNN machine-learning to 

estimate MTC_Height from inertial sensor signals. In the present study, GRNN 

consisting of a radial basis layer and a special linear layer (Specht, 1991) was used to 

learn the underlying relationship between IMU data and the target, i.e. MTC_Height. 
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The estimated MTC_Height ŷi is obtained using the following equation where σ is 

the width of the radial basis function: 
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The distance between the training sample and point of prediction (x - xi) 

measures how well each training sample represents the predicted position. If this 

distance is small, the exponential component becomes large such that a particular 

training sample best predicts the new value. The distance between the other training 

samples and the point of prediction is large, thus the exponential component becomes 

small and contributes less to the prediction. With a very small σ parameter, the 

model over-fits the training data and reduces the generalizability of the model; on the 

other hand, with larger σ, the estimation becomes smoother (generalization 

increases), but may be less accurate. 

GRNN implementation to gait analysis is an iterative process of fine tuning 

the model parameters and selecting optimum features as input. The block diagram in 

Figure 2-17 shows the stages for adapting the GRNN technique to the present study 

for estimating MTC_Height using IMU features. 
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Figure 2-17 Customized machine-learning process in the present study for 

MTC_Height estimation using inertial sensor signals. In first stage gait cycle was 

identification in inertial sensor signals and features with possible association with 

MTC_Height were extraction. In Stage A, more relevant features were identified 

using iterative feature-selection algorithms with leave-one-subject-out (LOSO) cross 

validation. In stage B, age-specific GRNN models were built and in the final stage 

(C) the model performances were tested. 

 

Gait cycle identification using inertial sensor data 

In gait biomechanics a walking cycle is usually defined from a heel contact to 

consecutive heel contact of the same foot (Begg et al., 2007; Nagano et al., 2011). 

Alternatively in some studies toe-off (Winter et al., 1991) is used to define the 

initiation and termination of a gait cycle. In a present study, the gait cycle was 

defined as the interval between a toe-off and the consecutive toe-off of the same foot, 

as the IMU sensor was mounted on the distal end of the foot (toe). Detection of toe-
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off requires knowledge of inertial kinematics when the foot breaks contact with the 

ground. Sabatini et al. (2005) proposed minimum anti-clockwise medio-lateral toe 

angular velocity was detected as the toe-off event (Figure 2-18). 

 

Figure 2-18 Toe-off [▫] and heel-strike (˚) marked in IMU medio-lateral angular 

velocity, adapted from Sabatini (2005). 

 

Feature extraction  

To perform machine-learning tasks, it was necessary to extract features from 

IMU kinematics associated with MTC_Height. Input features were extracted from 

three acceleration and angular velocity raw inertial signals. Inertial sensor signals 

were further exploited by extracting features from single- and double- integrated 

inertial signals to determine whether those features would improve estimation 
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accuracy. These procedures are described further in the research methods section 

(page 76).  

Stage A: Feature-Selection 

When the dimension of a feature space is high, learning the relationship 

between input parameters and the target is difficult. In addition, irrelevant and/or 

redundant features in the learning data degrade generalization performance of the 

learned model. The feature-selection approach consists of detecting and discarding 

features that are demonstrated to minimally contribute to accurate prediction. In 

short, feature-selection is a process of finding the minimum number of features to 

maximize model performance. Figure 2-19 illustrates that in machine-learning the 

complete data set goes through feature evaluation and cross validation in order to 

determine an appropriate dimensionality reduction in training data.  

 

Figure 2-19 Wrapper feature-selection with iterative cross validation (CV) process 

used in machine-learning (ML), adapted from Hall (1999). 
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Begg et al. (2005) employed the hill-climbing sequential wrapper feature-

selection technique to choose optimum MTC event features to classify young and 

older adults and the same approach was used in the present study. Hill-climbing is an 

iterative procedure that adds a feature at each step, while assessing the effects of 

these modifications according to pre-defined quantitative criteria. Minimum features 

would be useful when implementing the algorithm in embedded systems to perform 

online calculations rather than offline computations. The forward hill-climbing 

feature-selection was preferred as it starts from zero dimensions and obtains the 

minimum feature-set, whereas in backward feature-selection, step-wise elimination 

of features does not guarantee the minimum number of features (Aha & Bankert, 

1996).  

A leave-one-subject-out (LOSO) cross-validation is used to evaluate the 

performance of the features across testing subjects. Feature-selection and cross 

validation employed in the present study is explained as follows using a simplified 

example with three participants (say A, B and C) and 4 IMU features (say F1, F2, F3, 

and F4).  Reference MTC_Height series from a particular trial for participant A is 

denoted as ya1, ya2, ya3, …, yan and the GRNN-model estimated MTC_Height time 

series corresponding to the reference MTC_Heights for A is given as ya1’, ya2’, ya3’, 

…, yan’, where n is total number of MTC gait cycles for participants A and m and p 

are the total number of MTC gait cycles for B and C respectively.  

The first step in the LOSO cross validation is explained in Figure 2-20 using 

only one feature, F1. LOSO cross validation begins with leaving out the participant 

A from the training set. The reference MTC_Heights and the corresponding IMU 
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feature F1 of B and C are used to build the A’GRNN model with a fixed model 

parameter s. The model parameter s determines the ‘spread’ of the kernel; small 

values of kernel produce overfitting whereas larger widths of kernel produce more 

smoothing of estimation. When testing data set A is fed into the A’GRNN model, the 

model generates a series of MTC_Height estimates. This LOSO based model 

building and MTC_Height estimation is then performed for participants B and C as 

shown in rows 2 and 3 in Figure 2-20. Once LOSO is completed for all three 

participants, as shown in Table 2-2 the root-mean-square-error (RMSE) (Lai et al., 

2009b) corresponding to F1 is calculated using both reference MTC_Heights and 

GRNN-model estimated MTC_Heights for A, B and C. The entire process shown in 

Figure 2-20 is then repeated for all 4 features. 

The feature producing lowest RMSE, in the present example, F2 (as shown in 

Figure 2-21, 2
nd

 row), would then be combined with the remaining features (F1, F3, 

F4) in sequence and the LOSO validation executed for these feature pairs. The 

feature pair producing the lowest RMSE (F3, F2 = 11.4 mm) would be combined 

with the remaining features and the LOSO scheme repeated (as in Figure 2-21 3
rd

 

row). In this example, note that when 3 features were combined, the lowest RMSE 

(13.3 mm) was greater than when only 2 features were considered (11.4 mm). Thus, 

a feature combination comprising F3 and F2 is considered optimum for this 

particular fixed model parameter s. The complete process is repeated by changing s 

to obtain the optimum model parameter for the optimum feature-set.    
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Figure 2-20 Leave-one-subject-out (LOSO) cross validation illustrated with 3 

participants (A, B, and C) and only one inertial feature, F1 (see text for explanation). 
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Table 2-2 RMSE calculation for feature F1 using reference and model estimated 

MTC_Height for participants A, B and C.  

Participant Reference 

MTC_Height 

(mm) 

GRNN-model 

estimated 

MTC_Height 

(mm) 

A ya1 ya1’ 

 ya2 ya2’ 

 ya3 ya3’ 

 . . 

 . . 

 . . 

 yan yan’ 

B yb1 yb1’ 

 yb2 yb2’ 

 yb3 yb3’ 

 . . 

 . . 

 . . 

 ybm ybm’ 

C yc1 yc1’ 

 yc2 yc2’ 

 yc3 yc3’ 

 . . 

 . . 

 . . 

 ycp ycp’ 

 
2

1

1
ˆ 

N

i i

i

RMSE y y
N 

 
, 

where N =  n +m+ p 
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Figure 2-21 Hill-climbing feature-selection demonstrated with 3 participants (A, B, 

and C) and inertial features F1, F2, F3 and F4. The process within the red block is as 

illustrated in Figure 2-20. The optimum feature-set obtaining combining F3, F2 is 

denoted by **.  

 

Stages B and C: Building and validating age-specific models 

The optimum inertial-signal feature-set for each group identified in Stage A 

corresponding to reference MTC_Heights were used to build the age-specific GRNN 

models for young (Model_Y) and older adults (Model_O) separately. These age-

specific GRNN models were tested for the same age group’s dual task and slower 

walking data and for the other age group across three walking conditions.  
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2.6 Evaluating the GRNN model performance in estimating MTC_Height 

The goal of the machine-learning in the present project was to minimize 

RMSE between reference MTC_Height and estimation MTC_Height and, in so 

doing, outperform previous studies demonstrating RMSE in the range 17.34 mm to 

21.7 mm. A further criterion for evaluating the models’ prediction accuracy was to 

consider the modeling successful if there was no statistical difference between the 

model-estimated MTC_Height and reference MTC_Height characterised by central 

tendency and dispersion. For this comparison, mean and SD of estimated and 

reference MTC_Height were considered in line with previous MTC_Height 

estimation studies (Mariani et al., 2012). This criterion was set as the previous 

biomechanical gait research to evaluate the age and condition effects on 

MTC_Height were performed based on the statistical tests (Barrett et al., 2010; Mills 

et al., 2008). Bland and Altman (2010) proposed a “graphical representation” for 

comparing two measurements systems for accuracy. They argued that in measuring a 

biological phenomenon, the criterion for replacing an established practice is a 

difference in measurement of ±1.96 SD (standard-deviation) between the new and 

the existing system. It was important to consider the “clinical significance” of the 

research findings, despite the applied requirements of MTC_Height estimation 

accuracy as yet to be determined.  
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2.7 Aims and hypothesis 

The following aims were addressed in order to answer the Research 

Questions presented in the Introduction.  

Research Question 1: “What are the effects of ageing and walking condition on 

MTC_Height, MTC_Time and non-MTC gait cycle frequency measures obtained 

from 3D motion-capture?” 

To determine ageing, and condition effects on MTC variables and non-MTC 

frequency derived from 3D motion-capture, the following Aims were addressed:  

I. To determine ageing (Young vs. Older) and walking condition (preferred 

vs. slow and preferred vs. dual task) effects on central tendency and 

dispersion of MTC_Height and MTC_Time distributions.  

II. To determine ageing and walking condition effects on the frequency of 

non-MTC gait cycles. 

III. To validate toe-height at mean MTC_Time as an indicative MTC_Height 

to used in the non-MTC gait cycles. 

 

Research Question 2: “Would machine-learning (GRNN) using inertial sensor 

signals provide appropriate estimates of MTC_Height?” 

To answer Research Question 2 the following Aims were formulated: 

I. To create age-specific GRNN models to estimate MTC_Height using 

experimental inertial sensor signals and reference 3D position-time data 

from preferred-speed walking. 
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II. To evaluate the estimation accuracy between GRNN modelled 

MTC_Height and MTC_Height from 3D position-time data for both 

groups across walking conditions. 

 

Following hypotheses were developed to address the Aims formulated to 

answer the Research Questions. 

Hypotheses related to Research Question 1 

 

Hypothesised ageing effects during preferred-speed walking: 

a. MTC_Height and MTC_Time central tendency would show no difference 

between old and young.  

b. MTC_Height variability, MTC_Time variability and the proportion of non-

MTC gait cycles would be greater for older. 

 

Hypothesised walking condition effects (slow vs. preferred and dual task vs. 

preferred) on MTC variables and the proportions of non-MTC gait cycles: 

c. In slow walking both groups would maintain MTC_Height central tendency 

but reduce MTC_Time central tendency. 

d. In slow walking both would increase variability of MTC_Height and 

MTC_Time and display greater proportions of non-MTC gait cycles  

e. In dual task walking both groups would maintain MTC_Height central 

tendency but reduce MTC_Time central tendency. 
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f. In dual task walking both would reduce variability of MTC_Height and 

MTC_Time and display greater proportions of non-MTC gait cycles  

 

Hypothesis regarding reference and indicative MTC_Height: 

g. Toe-height extracted at mean MTC_Time (indicative MTC_Height) would be 

no different to reference MTC_Height in gait cycles which show well-defined 

MTC.  

 

Hypothesis regarding the indicative MTC_Height in non-MTC gait cycles: 

h. Indicative MTC_Height in non-MTC gait cycles would be greater than 

reference MTC_Height in gait cycles which show well-defined MTC. 

 

 

Hypotheses related to Research Question 2 

i. For both groups, in preferred-speed walking, RMSE between GRNN-model 

estimated MTC_Height and reference MTC_Height would be lower than 

previously reported.  
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3 TECHNICAL PREPARATION 

In designing the sensor module to estimate MTC_Height, the IMU placement 

landmark and the choice of IMU with respect to range and number of axes were 

important. In the current work, the sensor was designed to be foot-mounted, because 

McGrath et al. (2011) showed that an IMU attached to the foot (RMSE = 17.34 mm) 

estimated MTC_Height with better accuracy than when shank-mounted (RMSE = 

21.58 mm). 

In the design stage, when using an accelerometer with 4g measurement range, 

the sagittal plane vertical acceleration saturated at 41 m/s
2
. As shown in Figure 3-1, a 

4g IMU was inadequate for measuring complete acceleration kinematics, because 

most of the signal information around the maximum peak was not captured. An 

ADXL 345 with a ±16g full range capacity accelerometer was used in constructing 

the foot-mounted sensor for this project. With respect to measurement axes (DOF) a 

tri-axial accelerometer and a tri-axial gyroscope were used. 
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Figure 3-1 Vertical sagittal acceleration signal saturated when using a ±4g (top) and 

captured complete kinematics when using ±16g (bottom) 

 

3.1 Sensor hardware development 

A wireless foot-worn sensor module was built utilizing a Sparkfun IMU 

digital “Combo Board” with 6 degrees of freedom (DOF) consisting of an 

accelerometer - ADXL345 and a gyroscope- ITG3200 to measure the distal foot 

linear accelerations and angular velocities (Figure 3-2). The ultra low-powered tri-

axis accelerometer had a ±16g (g represents gravitational acceleration, 1g = 9.8 m/s
2
) 

capacity in full-scale and a maximum 3200 Hz bandwidth. The ITG3200 16 bit 

digital gyroscope had a sensitivity of 14.375 LSBs/sec and a full-scale range of 

±2000 ˚/s. The sensing unit was powered by a Sony Ericsson BST-41 Li-Polymer 
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rechargeable Battery with an energy capacity of 1500 mAh that could transmit 100 

Hz data wirelessly for approximately 11 hours. The completely assembled sensor 

system weighed 78.7 g including a battery.  

 

 

Figure 3-2 A 6 degrees of freedom Sparkfun IMU digital “combo board” consisting 

of an accelerometer - ADXL345 and a gyroscope- ITG3200 

 

The embedded onboard system was implemented on a Freescale 

Semiconductor MCU (8-bit MC9S08SH8) and Bluetooth 2.0/EDR communications 

were used to (Sena ESD200/210) transfer the sensor data to a computer. The sensor 

module was built with a microcontroller, an IMU (accelerometer and gyroscope), 

radio transmission to control system (Bluetooth device), indicators and a battery unit 

(Figure 3-3). The accelerometers and gyroscopes in digital IMU sensor communicate 

over I2C (Inter-Integrated Circuit) and one INT output pin from each sensor. The 

SDA (Serial Data Line) port transmits data where as SCL (Serial Clock Line) port 

acts as a clock to synchronize both sensors. The SDA pin was connected to port A20 

of the microcontroller and the SCL was connected to port A19. External crystal clock 

was connected to the processor. Front and rare view of the printed circuit board 
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figures are shown in appendix A. The circuit board was milled in the Electronics 

Laboratory of Victoria University with the assistance of Rhett Stephens.  

 

Figure 3-3 Integration of IMU, Bluetooth, external Oscillator and LED lights to 

microcontroller 

 

A Bluetooth dongle was used to establish a connection between a receiving 

computer and the transmitting sensor module (Figure 3-4). Graphical user interface 

(GUI) was written by associate supervisor Daniel Lai in Matlab v7.0 (see Figure 3-5) 



Page 56 

 

to visualize the acceleration and angular velocity captured by the IMUs and to log 

them into a text file. The script first opens a serial port to receive Bluetooth 

transmitted IMU data. Once the port is open and connection established the script 

used a ‘fread’ command to read the data once available to the port. The label ‘D2C’ 

in received data is used as the delimiter to identify the packets transmitted. The 

computer displays tri-axial linear accelerations and tri-axial angular velocities in the 

two windows (Figure 3-5) created using MATLAB.  

 

 

Figure 3-4 IMU data is acquired and transmitted to laptop via Bluetooth. 
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Figure 3-5 MATLAB GUI to view and log IMU sensor data 

 

3.2 3-D Rigid body marker construction 

The rigid body on which the infra-red emitting active markers (diodes) were 

attached was custom made using a rigid plastic shoe-shaper such that it could be 

attached to the distal end of the shoe with minimal motion artifacts (Figure 3-6). The 

active markers were attached to an ‘L’ shaped aluminum metal bracket which was 

screwed to the shoe-shaper to ensure a clear line-of-sight to the motion capture 

towers. To track the position of any point with respect to the rigid body in sampling 

3D volume, minimum 3 infra-red active markers were required. Published 

recommendations for creating a rigid body are that markers should be placed at least 
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2.5 cm apart to avoid possible overlap in motion tracking (Taylor, 2012). The rigid 

body was then connected to the NDI (Northern Digital Inc) control box and the 

markers’ 3D alignment with respect to each another was registered using NDI 

Architect software. This one-off process is called creating ‘.rig’ files. This .rig file 

was used later in data collection to indicate to the tracking unit that the three markers 

belong to this particular .rig file to track the position of other points with respect to 

each other. 

 
 

Figure 3-6 The rigid-body with infra-red diodes 
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4 EXPERIMENTAL RESEARCH METHODS 

4.1 Participants 

The experiment was conducted in the Victoria University Biomechanics 

Laboratory, Melbourne, Australia. Fifteen young healthy adults were randomly 

recruited through advertisements placed on University notice boards and through 

personal contacts. For the older group, adults aged 65+ were considered as 

approximately 28-35% of people aged of 65 and over fall each year increasing to 32-

42% for those over 70 years of age (World Health Organization, 2007). Fifteen older 

adults were recruited through the paper advertisement appeared in a local newspaper 

(Appendix B) and through personal contacts.  Interested volunteers made contact by 

phone or email and went through the initial screening based on a health questionnaire 

(Appendix C). Older individuals with the ability to perform everyday walking for 30 

minutes without a walking aid and having no orthopaedic, respiratory and cardiac 

conditions were recruited. Selected participants were then sent out a copy of 

information to participant document (Appendix D) prior to their visit to the 

laboratory for testing.  On the testing day, Older participants also underwent 

following screening tests: (i) timed up and go (< 13.5 secs (Iersel et al., 2008)), (ii) 

visual acuity (> 6/12) and (iii) contrast sensitivity (Melbourne edge test > 6/15 (Lord 

& Dayhew, 2001)).   
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Table 4-1 Physical characteristics, preferred walking speed and dual task walking 

speed of Young and Older. F = Female, M= Male, * = p < .05.  

Variable 

 

Young (n = 15) 

Mean (SD) 

Old ( n = 15) 

Mean (SD) 

p value 

 

Age (years) 26.1 (3.8) 73.1 (5.6) < 0.05* 

Body mass (kg) 72.4 (7.6) 71.5 (15.2) 0.848 

Stature (m) 175.1 (7.9) 167.9 (9.2) 0.014* 

Preferred walking speed (m/s) 1.06 (0.14) 0.94 (0.42) 0.067 

Slower walking speed (m/s) 0.53 (0.09) 0.42 (0.08) < 0.05* 

Gender 4 F, 11 M 7 F, 8 M - 

 

4.2 Experimental protocol 

All participants completed informed consent procedures approved by the 

Victoria University Research Ethics Committee (Appendix E). Participants’ height, 

mass, age and gender were recorded at the beginning of the experiment. A safety 

harness was worn while walking on the motorized treadmill. A rigid body of infra-

red emitting diodes and the inertial sensor were attached to the distal end of the right 

shoe (Figure 4-1). A rigid body comprising 3 infra-red emitting diodes was attached 

to the distal end of the right shoe to record three dimensional (3D) position-time 

coordinates using an Optotrak (NDI, Canada) motion tracking system. An imaginary 

marker was digitized at the lowest distal extremity of the shoe to represent the toe 

with respect to the rigid body. The inertial sensor was fixed to the extreme proximity 

of the right shoe with one sensitivity axis orientated approximately medio-lateral and 

the other axis approximately anterior-posterior. Both the 3D motion capture system 

and the inertial sensor sampled the toe trajectory at 100 Hz (Santhiranayagam et al., 

2011b). 
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Figure 4-1 Rigid body marker set up and the IMU sensor attached to the distal end of 

a shoe. The axes of the IMU sensor unit are marked in yellow. The battery pack and 

the data transmission unit were attached to the shank. 

 

The three-dimensional coordinates of the markers were tracked relative to a 

three dimensional LAB-based reference system, which will be referred as the “global 

reference” system here onwards. The horizontal plane of the global coordinate 

system was the treadmill deck surface, with the anterior-posterior axis directed in 

line with the treadmill belt motion (Figure 4-2). The tracking units have been 

reported to have a maximum RMS accuracy of 0.15 mm for 3D motion capture at 

2.25 m distance from camera (Taylor, 2012). The camera towers and the marker set 

were connected to the NDI control box which was connected to a computer to collect 

data. The custom built foot-mounted sensor unit was also attached to the distal end of 

the right shoe and a laptop was used to collect wirelessly transferred IMU data.  
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Figure 4-2 Laboratory setup for collecting data from 3D-motion capture while a 

participant walking on a treadmill wearing a safety harness.  

 

4.2.1 Experiment conditions 

Participant’s preferred walking speed (PWS) on a treadmill was determined 

by first increasing the treadmill speed until the participant reported the speed to be 

uncomfortably fast (fast limit). It was then decreased until reported to be 

uncomfortably slow (slow limit). The mean of three fast and three slow limits was 

taken as PWS (Nagano et al., 2011). When required, participants were given 10-15 

minutes familiarization before determining PWS. Participants’ comfortable walking 

speed while carrying a glass of water was also determined as above. Then they 

performed the following walking conditions for 5 minutes each (i) preferred-speed 

walking (PW), (ii) walking while carrying a glass of water at  a comfortable walking 

speed (dual task walking- DW), and (iii) speed-matched at DW speed without the 

glass of water (slower walking- SW) as outlined in Santhiranayagam et al. (2015b). 

In first and last 30 s of the trial, participants did not walk, and the standing duration 
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was used to sync Optotrak and foot-mounted sensor data. Participants were 

instructed to walk without spilling water while performing the dual task walking. All 

participants undertook the preferred-speed walking first and presentation order of the 

other two conditions was partially counterbalanced, such that 8 participants 

performed control walking followed by dual task condition, with the order reversed 

for 7 participants in each age group.  

4.3 3D-motion capture data processing 

Position-time data from the Optotrak 3D motion capture system was exported 

to Visual3D (C-motion, Canada) analysis software and the raw data were first 

interpolated to compensate any occluded signals using a window of up to 10 frames, 

i.e. 0.1s (Taylor, 2012). A 4th order zero-lag Butterworth filter with a cut-off 

frequency of 12 Hz was then applied to toe displacement data. As the marker cluster 

for the 3D capture system was attached to the foot segment which goes through a 

rapid motion compared to the other segments of the body a higher cut-off frequency 

was considered to not over-smooth the toe trajectory signal (Nagano et al., 2011). 

Conditioned data were saved as text files for further processing using in-house 

developed MATLAB v7.2 scripts (The Mathworks, Natick, MA, USA).  

4.3.1 MTC extraction 

MTC is found in the characteristic vertical displacement “trough” between 

Toe-off (TO) and mx2 (refer Figure 1-1). To approximate toe-off, the sample frame 

at which anterior-posterior toe-displacement was minimum was initially detected 

(Figure 4-3). An eleven sample window (5 frames pre and 5 post) around this 

minimum frame was then established. Toe-off was defined as the minimum vertical 
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toe-displacement within this window. The maximum vertical displacement between 

two successive Toe-off events was used to detect mx2. The algorithm was further 

devised to identify the “MTC trough” by detecting changes in the signs of the 

tangents of a 5-point data series comprising vertical displacement values at samples 

n-2, n-1, n, n+1 and n+2 (Santhiranayagam et al., 2015b). 

 

 

Figure 4-3 Time aligned anterior-posterior toe displacement and vertical toe 

displacement to show the Toe-off events. 

 

Descriptive statistics of these MTC_Height data for each group across 

conditions were calculated. These statistical descriptors were measures of central 

tendency (mean, median), variability (SD, IQR), 1
st
 quartile (Q1), 3

rd
 quartile (Q3), 

range,  symmetry (S) and peakedness (K), maximum, minimum. Further, for each 

individual participant, in each walking condition, mean, median, standard deviation 
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(SD) and inter-quartile range (IQR) for MTC_Height were calculated for inferential 

statistical analysis.  

 

MTC_Time Calculation 

MTC_Time was calculated as a percentage of total number of samples within 

a gait cycle using the formula: 

_ 100%MTC

gaitcycle

n
MTC Time x

n
  

where nMTC  is the number of samples from TO event to MTC, and ngait cycle is 

the number of total samples within that gait cycle, defined from one toe-off to the 

consecutive toe-off event (Figure 4-4). 

 

Figure 4-4 MTC_Time calculation, where nMTC is number of samples from a toe-off 

(TO) event to MTC, and ngait cycles is number of total samples within the gait cycle, 

defined from one TO to the consecutive TO event. 
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Group descriptive statistics of the MTC_Time distribution for young in 

different conditions were calculated. Further, for each individual participant for each 

walking condition mean median, SD and IQR for MTC_Time were calculated.  

To validate the concept of using toe-height at mean MTC_Time as an 

indicative MTC_Height in non-MTC gait cycles, toe-height at mean MTC_Time was 

extracted in gait cycles which showed well-defined MTC (Figure 4-5). These 

indicative MTC_Heights were extracted for each individual participant in each 

walking condition. The difference between reference MTC_Height and indicative 

MTC_Height was calculated as a root-mean-square-error (RMSE) for each subject 

under different walking conditions. Further, Pearson’s correlation values between the 

measured and indicative MTC_Height were calculated for each subject under 

different walking conditions. 

 

Figure 4-5 Toe-height at MTC (+) and indicative MTC (.) within gait cycles which 

demonstrated well defined MTC 
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4.3.2 Non-MTC gait cycles 

Non-MTC gait cycles were defined as those in which a trough was not 

detected using the 5-point data series method (page 63). Raw position-time signals 

(not interpolated and  not filtered) of such non-MTC gait cycles were randomly re-

examined visually to ensure that non-MTC phenomenon was present in the original 

signal and not resulted because of any processing techniques (Figure 4-6).  For both 

Young and Older, for each walking condition, total number of gait cycles, total 

number of MTC gait cycles and total number of non-MTC gait cycles were counted. 

Total number of non-MTC gait cycles within each age group across conditions were 

calculated and reported as a proportion of total number of gait cycles. For each 

condition, number of participants exhibited at-least 3 non-MTC gait cycles was 

counted. Further, for each participant, total gait cycles, non-MTC gait cycles and 

proportions of non-MTC gait cycles were calculated. 

 

Figure 4-6 A series of gait cycles with a well defined MTC and without a MTC 

event, i.e. non-MTC gait cycles within a trial 

 



Page 68 

 

Further, in a non-MTC gait cycle, indicative MTC_Height, i.e., toe height at 

mean MTC_Time (calculated from gait cycles showed defined MTC) was extracted 

and averaged across multiple non-MTC gait cycles for the walking condition (Figure 

4-7).  

 

Figure 4-7 Indicative MTC_Height, i.e. toe-height at mean MTC_Time in non-MTC 

gait cycles 

 

4.4 Statistical tests  

4.4.1 Distributions of MTC characteristics 

Prior to designing the statistical tests on the MTC_Height and MTC_Time, 

the group distributions were plotted across walking conditions for Young and Older. 

The histograms presented in Figure 4-8 show the MTC_Height histograms for Young 

across preferred-speed (PW), slower (SW) and dual task (DW) walking conditions. 

These MTC_Height distributions showed non-zero skewness in preferred walking (S 
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= 0.26) and in slow walking (S = 0.51). MTC_Height distributions were platykurtic 

in both slow walking (Kurtosis, K = -0.42) and dual task walking (K = -0.29).  

Furthermore, a bimodal distribution could be observed in dual task walking. The 

histogram of Older (Figure 4-9) in preferred-speed walking was more skewed 

(S=0.89) compared to Young and in dual task walking the distribution was further 

skewed (S=1.28). Bimodality could be observed in both slower and dual task 

walking but more distinctive in slower walking. 

 MTC_Time distributions for both Young (Figure 4-10) and Older (Figure 

4-11) in both dual task and speed matched slow walking were shifted left reducing 

the central tendency compared to preferred-speed walking (median MTC_Time PW: 

Young = 18.02%; Older = 18.68%; SW: Young=14.72%; Older = 16.48% and DW: 

Young = 13.89%; Older = 14.28%;). The left shift of the MTC_Time distributions 

was reflected in mean, median, Q1 and Q3 reductions. For both Young and Older, 

MTC_Time distributions became more platykurtic in slow and dual task conditions. 

Bimodality was also observed in Young in slower walking and Older in the glass 

carrying task. 
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Figure 4-8 MTC_Height histograms for Young across conditions PW = preferred-

speed walking, SW= slow walking and DW = dual task walking  
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Figure 4-9 MTC_Height histograms for Older across conditions PW = preferred-

speed walking, SW= slow walking and DW = dual task walking 
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Figure 4-10 MTC_Time histograms for Young across conditions PW = preferred-

speed walking, SW= slow walking and DW = dual task walking. 
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Figure 4-11 MTC_Time histograms for Older across conditions PW = preferred-

speed walking, SW= slow walking and DW = dual task walking 
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4.4.2 Statistical test design 

Visual examination and statistical descriptors of MTC_Height group 

distributions for both Young and Older revealed that MTC_Heights were not 

normally distributed, consistent with previous reports (Begg et al., 2007; Dell’oro, 

2008). Shapiro Wilks normality tests confirmed that the distributions were non-

normal (W = 0.9372, p < 2.2e-16). In the present study MTC_Time distributions 

were also observed to be non-normally distributed for both age groups across 

conditions (W = 0.7172, p < 2.2e-3). Since the group data were determined to be 

non-normal, two non-parametric tests, Kruskal-Wallis and Friedman’s were applied 

to evaluate the hypothesised (page 50) age, walking condition and measurement 

method effects on MTC variables. The Kruskal-Wallis test is the non-parametric 

equivalent of one-way ANOVA and the Friedman’s test is the non-parametric 

equivalent of a one-way ANOVA with repeated measures. Significant effects from 

Friedman’s procedure with more than two independent variables were followed-up 

with multiple pair-wise comparisons using multcompare() command in MATLAB. 

Pair-wise z-tests were performed to test the proportions of non-MTC gait cycles. In 

all the statistical analysis the significance level was α=.05, unless specified. 
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4.5 Inertial sensor signal processing and GRNN modeling 

The three dimensional acceleration measurements obtained from the IMU 

were foot acceleration along the medio-lateral (AccX), anterior-posterior (AccY), 

and longitudinal (AccZ) axes (Figure 4-2). Foot rotation about the medio-lateral axis 

(GyroX), anterior-posterior axis (GyroY) and longitudinal axis (AccZ) were 

measured using the gyroscope. The accelerometers were calibrated by aligning their 

axes parallel and anti-parallel to gravity (Ferraris, 1995); angular velocities measured 

using the gyroscopes were calibrated by subtracting the mean of the gyroscope 

output while stationary prior to walking (Mannini & Sabatini, 2014). IMU data was 

also processed in MATLAB v7.2. One participant from each group was excluded in 

further IMU data processing, as IMU data were not properly logged. Both 

accelerometers and gyroscopes signals were high-pass filtered forward and reverse 

using a 2nd order Butterworth filter (cut-off frequency 1 Hz (Lai et al., 2008b)) to 

ensure zero phase shift and to remove any sensor drift. Voltage outputs (V) of the 

IMU sensor were converted to SI (Standard-International) units using sensitivity 

scaling factor:  

 Accelerometer (acc): 9.812*Vacc*31.2/1000 

 Gyroscope (gyro): Vgyro/14.375 

 

Figure 4-12 shows tri-axial accelerometer and tri-axial gyroscope signals 

obtained for three complete walking cycles. While walking, the foot orientation is 

continuously changing, such that not only the sagittal plane inertial sensor signals but 
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also the transverse and frontal acceleration and angular signals contributed to the 

vertical component of the foot trajectory throughout the swing phase. 

 

Figure 4-12 Tri-axial accelerometers and tri-axial gyroscopes obtained for 3 

complete gait cycles. In addition to the greater range of sagittal planar kinematics 

(AccZ and GyroX), frontal and transverse planar kinematics also show non-

negligible readings when IMU is attached to foot.   

 

Automatic gait cycle identification in inertial sensor signals 

A MATLAB script was developed to automatically find the maximum 

medio-lateral toe angular velocity GyroX as the beginning of a gait cycle, as shown 

in Figure 4-13. The inertial sensor signals at toe-off were time synchronised with the 

corresponding toe-off identified in the 3D position-time data. Positional and IMU 

data of non-MTC gait cycles were separated from the MTC gait cycles in further 

implementation of GRNN models. As explained on page 80, these non-MTC gait 

cycles were included in the final stage of the model validation.  
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Figure 4-13 Gait cycles marked (+) in IMU medio-lateral angular velocity 

 

Feature Extraction 

Raw and integrated signals from both young and older individuals across 

conditions were visually examined to understand the nature of inertial-signals. When 

extracting features, inertial sensor signals which were consistent across individuals, 

age group and conditions were given more importance. In other words, since sagittal 

plane signals were more cyclic throughout, more features were extracted. First 

maximum and minimum were extracted from raw acceleration and gyroscope signals 

from every stride cycle. The raw acceleration and gyroscope signals were then 

integrated with respect to time. Drift and noise accumulation were minimized by 

integrating over every individual gait cycle (90-130 samples). Before integrating 

each gait cycle, all participants’ inertial sensor data were plotted to determine 

whether the foot had entered the swing phase. It was determined that the minimum 
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number of samples prior to maximum medio-lateral angular velocity to ensure zero 

initial velocity was10 samples (0.6 s). Each gait cycle was, therefore, integrated from 

10 samples prior to toe-off. The integrated signals were high-pass filtered forward 

and reverse using a 2nd order Butterworth filter (cut-off frequency 1 Hz (Lai et al., 

2008a)). Visual examination confirmed cyclical events in the sagittal signals - AccZ 

(VelZ) and GyroX (AngDispX). Maximum and minimum of VelZ and three clearly 

identifiable points (one maximum and two minimum) AngDispX were extracted. 

Representations of frontal and transverse movements were the maximum and 

minimum peaks of VelX, VelY, AngDispY, and AngDispZ signals.  

Integration was again applied to velocity signals to obtain linear displacement 

signals. By integrating angular displacement over time a variable was created to 

represent “accumulated angles” (Accum.Ang). For a second time, integrated signals 

were high-pass filtered, forward and reverse, using a 2nd order Butterworth filter 

(cut-off frequency 1 Hz). Sagittal plane superior directional (DispZ) maximum, 

minimum and midpoint, i.e. between maximum and minimum (DispZmid) 

displacements were extracted, as these events were periodically consistent across gait 

cycles. Similarly, one maximum and (two) minima either side of the maximum 

sagittal plane AccumAngX were extracted. In addition, the maximum and minimum 

peaks of DispX, DispY, Accum.AngY and Accum.AngZ were obtained 

(Santhiranayagam et al., 2015a). A total of 40 inertial-signal features (Figure 4-14) 

were extracted and each feature’s correlation with reference MTC_Height was 

examined for both Young and Older in preferred-speed walking. Correlations 

between reference MTC_Height and statistical properties of inertial sensor signals 

(raw, SI and DI) have been presented in Appendix F. 



Page 79 

 

 

Figure 4-14 Complete feature-set obtained from raw and integrated versions of 

inertial signals. Twelve features from raw inertial sensor signals and fourteen each 

from single- and double-integrated inertial sensor signals were formed. 

 

Stage A: Feature-Selection 

Feature-selection was carried out for Young and Older separately using their 

preferred-speed walking data. To identify age-specific optimum feature-sets leave-

one-subject-out (LOSO) cross validation was incorporated. For the LOSO validation, 

multiple GRNN models were created for different combinations of feature using hill-

climbing feature-selection. The feature-set producing the overall lowest RMSE for 

the group was considered optimum. In the present project, the feature-selection 

process explained in Figure 2-20 and Figure 2-21 was initiated by computing the 

LOSO validation RMSE for an individual feature using following model parameters: 

0.0001, 0.01, 0.1, 1, 10, 50, 100, 500, and 1000 (Santhiranayagam et al., 2011a). 

Age-specific hill-climbing feature-selection with LOSO cross validation was first 
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applied to raw IMU signal features. Single-integrated IMU signal features were then 

combined with the raw features prior to feature-selection and LOSO cross validation 

to determine whether RMSE reduced by including single-integrated IMU signals. 

Finally, feature-selection with LOSO cross validation was undertaken with all three 

inputs, i.e., the features of both double-integrated and single-integrated IMU signals 

combined with the raw inertial features. In all cases, each inertial sensor feature was 

scaled by calculating its z-score (i.e.,(x-μ)/σ, where μ is the mean and σ is the SD for 

the training gait feature) before applying them to the regressor. 

Once the optimum feature-set was obtained, the model parameter was 

narrowed to a 0.5-1.5 window and tested in 0.1 increments for fine-tuning. The 

parameter which produced lowest LOSO mean RMSE across 14 subjects for both 

groups separately was considered in age-specific model development in Stage B 

(refer Figure 2-17). The RMSE obtained for LOSO cross validation with the 

optimized feature-set and model parameter were reported for same group preferred-

speed walking data. Further, Bland and Altman plots were investigated to estimate 

the limit of agreement between the GRNN-model estimated and reference 

MTC_Height. 

Stages B and C: Age-specific model building validation  

Age-specific optimum GRNN model was built using the identified age-

specific optimum inertial-signal features and the corresponding reference 

MTC_Height for Young and Older separately. The model parameter was fixed at the 

model parameter value which produced lowest RMSE in age-specific feature-

selection Stage B. The age-specific optimum GRNN model for the Young would be 
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referred as “Model_Y” and the optimum model for Older as “Model_O”. Age-

specific GRNN models Model_Y and Model_O were tested on the same group in 

dual task and slower walking conditions and for the counter group across three 

walking conditions. The RMSE between reference MTC_Height and model-

estimated MTC_Height across walking conditions were calculated for both age 

groups. Further, to complete the modeling validation, each age-specific model was 

tested incorporating non-MTC gait cycles for Young and Older separately with the 

three experimental walking conditions data. 

GRNN model validation 

To further evaluate the estimation accuracy, GRNN-model estimated 

MTC_Height was statistically compared with reference MTC_Height for individual 

subjects across the different experimental conditions using Wilcoxon signed-rank test 

which is a nonparametric test for repeated measurements from a single sample. This 

comparison was made for both of the age-specific GRNN models, i.e. Model_Y and 

Model_O. A finding of no statistical difference between reference and estimated 

MTC_Height was considered the criterion for successful MTC_Height estimation. 
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5 EXPERIMENTAL RESULTS 

The Experimental Results chapter first presents individual subject 

characteristics including walking speed. Individual participant’s MTC_Height and 

MTC_Time characteristics are then described using median, mean, IQR and SD. The 

statistical analysis to test the hypotheses (page 50) formulated to address the effects 

of ageing and walking condition on central tendency and dispersion of MTC_Height 

and MTC_Time are then presented in section 5.2. Evaluation results of toe-height at 

mean MTC_Time as indicative MTC_Height in non-MTC gait cycles are described 

in Section 5.3. Section 5.4 reports the analysis of non-MTC gait cycles for both 

groups across walking conditions. Comparisons between measured MTC_Height and 

indicative MTC_Height extracted at mean MTC_Time in non-MTC gait cycles are 

also outlined. The findings of the machine-learning approach to estimating 

MTC_Height using inertial sensor data, i.e. inertial signal pre-conditioning, hill-

climbing feature-selection and leave-one-subject-out (LOSO) cross validation are 

documented in Section 5.6. This section also illustrates age-specific models ModelY 

and ModelO building and validation of these models for both groups in other 

walking conditions. Final section of this chapter summarizes the results of the 

present study.  

5.1 Subject characteristics 

Individual subject characteristics; gender, age, stature and mass, are presented 

in Table 5-1. Mean ages for young and elderly were 26.1 years (SD = 3.8 years) and 

73.1 years (SD = 5.6 years) respectively. Young subjects were on average 7 cm taller 

than their older counterparts with mean stature for young and elderly of 1.75 m (SD 
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= 0.08m) and 1.68m (SD = 0.09m) respectively. No significant difference observed 

between Young and Older group mass.  

Table 5-1 also presents individual participant’s preferred walking speed and 

walking speed while dual task. Older walked slower than the Young in preferred-

speed walking, however, the difference was not statistically significant (Young = 

1.06 m/s, SD = 0.14 m/s; Older = 0.94 m/s, SD = 0.26 m/s). In the dual task walking 

condition both reduced their walking speed compared to preferred-speed walking 

(p<0.05) and Older walked significantly slower than the Young in the dual tasking 

(p<0.05).  
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Table 5-1 Individual Young and Older participant's physical characteristics, preferred 

walking speed (PW) and dual task walking (DW) and speed matched slower walking 

speed (SW). Group mean of age, height, mass and walking speeds are in blue. 

 

Participant 

 

 

 

Gender 

(F=female,  

M=male) 

 

 

Age 

(years) 

 

 

Stature 

(m) 

 

 

Mass 

(kg) 

 

 

Walking 

speed 

PW 

(m/s) 

Walking 

speed 

DW & 

SW 

(m/s) 

YP01 F 21 1.58 61.6 0.81 0.61 

YP02 M 28 1.76 75.6 1.14 0.50 

YP03  M 32 1.70 71.5 1.14 0.47 

YP04  M 29 1.73 72.4 1.19 0.47 

YP05 M 29 1.82 73.5 1.06 0.47 

YP06 F 21 1.68 64.6 1.17 0.56 

YP07 M 32 1.66 69.2 0.83 0.47 

YP08 F 27 1.70 67.2 1.11 0.61 

YP09 M 22 1.88 76.2 1.17 0.47 

YP10 F 28 1.76 61.0 0.81 0.53 

YP11 M 27 1.81 75.5 1.11 0.47 

YP12 M 22 1.80 73.4 1.17 0.64 

YP13 M 28 1.76 72.6 1.00 0.42 

YP14 M 22 1.85 92.0 1.11 0.47 

YP15 M 24 1.78 79.2 1.03 0.75 

OP01 F 80 1.56 67.0 0.50 0.28 

OP02 F 76 1.61 47.6 1.08 0.44 

OP03 F 71 1.53 59.5 0.94 0.53 

OP04 F 71 1.66 82.5 1.11 0.47 

OP05 M 66 1.80 109.4 1.06 0.58 

OP06 F 73 1.54 63.3 0.67 0.42 

OP07 M 73 1.84 87.7 0.56 0.39 

OP08 M 72 1.73 79.6 0.92 0.47 

OP09 M 89 1.75 69.9 0.58 0.28 

OP10 M 71 1.69 56.9 0.97 0.39 

OP11 M 66 1.76 84.4 0.86 0.42 

OP12 M 74 1.73 71.3 1.25 0.44 

OP13 F 72 1.65 62.0 1.31 0.36 

OP14 M 72 1.65 61.6 1.31 0.44 

OP15 M 70 1.69 70.1 0.94 0.33 
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5.2 Ageing and walking condition effects  

Figure 5-1 presents Kruskal Wallis tests to examine the hypothesised ageing 

effects on MTC_Height and MTC_Time median and IQR in preferred-speed walking 

(page 50). 

 
Figure 5-1 MTC characteristics between Young and Older at preferred walking for 

median MTC_Height, MTC_Height IQR median MTC_Time, and MTC_Time. * 

denotes significant ageing effects. Median error bars are denoted by Q1 (1
st
 quartile) 

and Q3 (3
rd

 quartile) and IQR error bars present standard error (IQR/√n, where n was 

sample size) 

 

As hypothesised, there was no difference observed in MTC_Height central 

tendency, represented by median, between Young (25.5 mm) and Older (24.6 mm) in 
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preferred walking. It was also confirmed that MTC_Height variability was 

significantly greater (H=6.72, 1 df, p=.0095) in Older (18.2 mm) than Young (13.4 

mm). Non-parametric statistical test on median MTC_Time (Young = 18.02%; Older 

= 18.68%) confirmed no ageing effect. As anticipated, Older adults’ MTC_Time 

variability (4.35 %; Young = 3.44%) was greater in preferred-speed walking 

(H=7.77, 1 df, p=.0053).  

Walking condition effects on Young adults across three walking trials are 

shown in Figure 5-2. As expected, Young maintained median MTC_Height while 

walking slowly (SW = 22.6 mm; PW = 25.5 mm) but showed no significant 

differences in MTC_Height variability across walking conditions (PW = 13.4 mm; 

SW = 14.6 mm). Further, Young reduced (H=10.38, 2 df, p=.0056) median 

MTC_Time in slower walking (SW = 14.72%, PW = 18.02%) but did not show any 

speed effect on MTC_Time IQR (PW = 3.44%, 5.43%). In dual task walking, as 

anticipated, Young maintained the MTC_Height similar to preferred-walking (DW = 

23.9 mm; PW = 25.5 mm). In contrary, Young also showed no difference in 

MTC_Height IQR in more attention demanding glass carrying task (12.2 mm; PW = 

13. 4mm). Young also maintained MTC_Time central tendency (PW = 18.02%; DW 

= 15.13%) and dispersion (PW = 3.44%; DW = 4.59%) in dual task despite of the 

reduction in walking speed and task difficulty. 
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Figure 5-2 Young MTC characteristics across preferred (PW), slower (SW) and dual 

task (DW) walking conditions for median MTC_Height, MTC_Height IQR, median 

MTC_Time, and MTC_Time. * denotes significant walking condition effects. 

Median error bars are denoted by Q1 (1
st
 quartile) and Q3 (3

rd
 quartile) and IQR error 

bars present standard error (IQR/√n, where n was sample size) 

 

Figure 5-3 depicts the walking condition effects on Older. Slower walking 

did not show any significant effect on all four MTC characteristics compared to 

preferred-waling in Older. In dual task walking, however, MTC_Height IQR (PW = 

18.2 mm; DW = 10.2 mm) was significantly reduced (H= 14.27, 2 df, p=.0008). 

Median MTC_Time (PW = 18.68%; DW = 13.89%) was shortened in the glass 

carrying task (H= 20.37, 2 df, p<10
-5

). MTC_Time IQR, however, showed no dual 

task effects in Older. Median MTC_Height (H= 9.8, 2 df, p=.0075) and median 
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MTC_Time (H= 20.37, 2 df, p<10
-5

) were significantly reduced in DW compared to 

same speed normal walking (SW).  

 
Figure 5-3 Older MTC characteristics across preferred (PW), slower (SW) and dual 

task (DW) walking trials for median MTC_Height, MTC_Height IQR, median 

MTC_Time, and MTC_Time. * denotes significant walking condition effects. 

Median error bars are denoted by Q1 (1
st
 quartile) and Q3 (3

rd
 quartile) and IQR error 

bars presented standard error (IQR/√n, where n was sample size) 
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Individual participant’s MTC_Height median, mean, IQR and SD are 

presented in Table 5-2 and Table 5-3. In preferred-speed walking, YP07 (41.0 mm) 

and OP09 (58.4 mm) showed the greatest MTC_Height within their age groups. The 

MTC_Height IQR of YP07 (9.9 mm) was also the greatest (group IQR mean: Young 

= 4.6 mm). OP09 continued to maintain the elevated MTC_Height in slow and dual 

task walking, whereas YP07 reduced it in both slower (34.1 mm) and dual task (28.4 

mm). OP01 exhibited the greatest MTC_Height IQR (12.2 mm) in preferred-speed 

walking but it was reduced in slower (5.9 mm) and dual task (4.5 mm) walking 

conditions. Similar trends could be also seen in individual participant’s MTC_Height 

mean and SD given in Table 5-3. 

In slow walking, 7 out of 15 Young participants reduced median 

MTC_Height and 8 increased MTC_Height (Table 5-2). Older individual median 

MTC_Height was similar to Young individuals in preferred-speed walking. Ten out 

of 15 young participants increased their MTC_Height while walking slowly 

compared to preferred-speed walking. Thirteen of 15 older participants reduced their 

MTC_Height while dual task walking compared to speed matched walking trial. One 

participant’s (OP07) median MTC_Height did not change and just one participant 

increased his or her MTC_Height. When variability was analysed 11/15 participants 

reduced their IQR in dual task compared to slow walking.  
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Table 5-2 Individual participant’s median and IQR of MTC_Height across conditions 

PW = preferred-speed walking, SW= slow walking and DW = dual task walking, YP 

= young participant and OP = older participant.  

 

PW SW DW 

Participant 

 

 

MTC_ 

Height 

MTC_ 

Height 

IQR 

(mm) 

MTC_ 

Height 

MTC_ 

Height 

IQR 

(mm) 

MTC_ 

Height 

MTC_ 

Height 

IQR 

(mm) 
median 

(mm) 

median 

(mm) 

median 

(mm) 

YP01 35.3 5.1 34.4 3.3 34.3 3.1 

YP02 31.8 3.6 44.1 4.4 39.3 4.5 

YP03 16.1 3.1 20.0 2.2 21.8 3.2 

YP04 10.3 2.8 19.2 4.3 15.7 3.3 

YP05 29.0 4.2 35.1 5.0 34.1 10.1 

YP06 20.0 3.0 20.9 2.5 22.2 2.4 

YP07 41.0 9.9 34.1 9.7 28.4 6.1 

YP08 12.6 3.5 11.1 5.6 8.8 4.4 

YP09 26.6 4.0 25.0 2.9 25.4 3.2 

YP10 19.5 6.2 17.5 3.7 20.2 4.7 

YP11 30.1 5.4 33.4 5.3 33.9 6.3 

YP12 31.4 3.3 33.6 4.9 34.1 2.9 

YP13 25.8 3.4 24.6 4.1 25.2 2.3 

YP14 22.1 2.7 27.5 3.9 27.3 3.2 

YP15 21.6 8.4 19.7 6.4 20.4 6.4 

OP01 28.0 13.5 31.8 5.9 29.1 4.5 

OP02 23.0 2.9 19.7 5.0 18.4 2.6 

OP03 18.3 4.1 20.0 3.8 18.8 2.5 

OP04 21.7 3.0 26.5 4.1 20.6 3.3 

OP05 27.5 9.0 38.2 8.2 18.2 5.3 

OP06 20.4 10.8 38.9 8.4 12.9 2.1 

OP07 23.4 11.6 16.4 5.7 23.3 6.4 

OP08 43.1 7.0 45.0 5.3 29 3.9 

OP09 58.4 9.2 51.7 7.4 47.9 7.9 

OP10 32.9 7.3 45.1 6.1 37.6 6.2 

OP11 49.2 8.2 41.6 3.9 41.6 3.9 

OP12 36.2 11.8 19.2 5.9 16.3 5.0 

OP13 12.4 5.2 12.7 5.7 10.9 3.2 

OP14 17.9 5.1 23.4 5.4 20.5 3.4 

OP15 26.9 7.4 29.9 4.1 27.1 3.2 
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Table 5-3 Individual participant’s mean and SD of MTC_Height across conditions 

PW = preferred-speed walking, SW= slow walking and DW = dual task walking, YP 

= young participant and OP = older participant. Mean of MTC_Height mean and SD 

were shown in blue. 

 

PW SW DW 

Participant 

 

 

MTC_ 

Height 

MTC_ 

Height SD 

(mm) 

MTC_ 

Height 

MTC_ 

Height SD 

(mm) 

MTC_ 

Height 

MTC_ 

Height 

SD 

(mm) 
mean 

(mm) 

mean 

(mm) 

mean 

(mm) 

YP01 35.3 3.8 34.4 2.8 34.1 2.8 

YP02 31.8 2.7 44.3 3.7 39.6 3.4 

YP03 16.4 3.1 20.2 1.8 21.8 2.3 

YP04 10.4 2.2 19.1 3.2 15.9 2.6 

YP05 29.9 4.4 34.3 5.1 34.1 7.7 

YP06 20.3 2.4 20.9 2.0 22.2 1.9 

YP07 42.0 6.8 34.4 6.5 28.7 4.3 

YP08 12.6 3.0 11.7 4.8 8.9 3.8 

YP09 26.8 3.1 25.1 2.6 25.7 3.1 

YP10 20.1 4.7 18.1 3.6 20.3 3.3 

YP11 30.8 4.8 33.0 5.5 34.1 5.7 

YP12 31.6 2.6 33.9 2.9 34.1 2.0 

YP13 25.8 2.7 25.0 2.8 25.3 1.8 

YP14 22.0 2.8 26.5 3.1 27.0 2.8 

YP15 22.6 6.9 20.8 5.5 20.9 4.9 

OP01 29.4 6.7 31.1 4.8 28.7 3.3 

OP02 23.2 2.3 20.0 3.2 18.2 1.9 

OP03 18.8 3.3 20.2 2.6 18.7 2.0 

OP04 21.8 2.3 26.6 3.2 21.0 2.3 

OP05 27.4 6.4 38.7 7.0 19.1 5.1 

OP06 25.5 12.2 38.7 5.9 12.9 2.0 

OP07 23.9 6.6 16.9 4.2 23.9 4.6 

OP08 43.9 5.5 45.1 4.3 29.4 3.3 

OP09 59.5 7.4 52.1 6.2 48.2 5.6 

OP10 33.2 5.7 44.8 5.1 38.0 6.4 

OP11 49.3 6.5 42.1 3.4 42.1 3.4 

OP12 36.6 8.6 19.5 4.4 16.6 3.7 

OP13 12.2 3.7 13.4 4.0 11.0 2.4 

OP14 18.5 4.5 23.5 4.0 20.5 2.8 

OP15 27.5 5.7 30.2 3.0 27.8 3.0 
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Individual MTC_Time characteristics presented in Table 5-4 and Table 5-5 

revealed that central tendency of MTC_Time of both young and older individuals 

varied within a wide range in preferred-speed walking (Young: 7.8% - 22.0%; Older: 

8.9% - 23.7%). Older individuals exhibited greater variability compared to Young in 

preferred-speed walking. Twelve of 15 Young and Older reduced MTC_Time in 

slower walking. All older participants shortened their MTC_Time median in dual 

task walking. Findings presented here suggested that MTC timing calculated as a 

percentage of samples between toe-off to consecutive toe-off vary within participants 

and walking conditions. Thus while validating the concept of using toe-height at 

mean MTC_Time as an indicative MTC_Height, it was important to obtain condition 

specific mean MTC_Time for individual participants (page 93).  
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Table 5-4 Individual participant’s MTC_Time characteristics across walking 

conditions PW = preferred-speed walking, SW= slow walking and DW = dual task 

walking, YP = young participant and OP = older participant. Mean of individual 

MTC_Time median and IQR were shown in blue. 

Participant 

PW SW DW 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

median 

(%) 

IQR 

(%) 

median 

(%) 

IQR 

(%) 

median 

(%) 

IQR 

(%) 

YP01 12.8 2.2 11.5 2.3 12.1 2.5 

YP02 16.3 1.2 16.6 1.3 16.6 1.2 

YP03 19.3 1.1 13.9 1.2 14.3 1.0 

YP04 21.1 1.3 13.9 1.4 15.5 1.3 

YP05 18.9 1.7 13.2 2.7 12.6 7.6 

YP06 17.6 1.6 11.9 1.1 12.2 1.1 

YP07 16.0 3.2 14.7 1.6 13.4 4.0 

YP08 22.0 1.5 20.5 1.2 20.7 1.3 

YP09 17.9 1.6 9.3 1.5 9.5 1.4 

YP10 19.2 1.9 15.6 1.2 15.9 1.5 

YP11 17.4 1.6 13.3 3.4 14 3.0 

YP12 16.5 3.8 20.5 3.4 18.1 3.9 

YP13 17.3 1.3 7.8 1.5 8.1 1.1 

YP14 15.7 1.3 7.8 1.3 9.0 1.3 

YP15 19.8 2.3 20.3 1.6 19.8 1.5 

OP01 11.6 3.7 10.0 1.1 9.8 1.1 

OP02 14.3 2.3 8.9 2.4 9.1 2.1 

OP03 15.0 2.4 11.6 2.1 11.7 2.1 

OP04 19.4 2.2 13.0 2.1 12.8 1.1 

OP05 17.5 2.3 20.0 2.9 13.7 2.3 

OP06 14.4 3.9 20.0 4.4 10.2 1.4 

OP07 14.9 1.7 13.6 1.6 12.9 1.8 

OP08 21.6 3.5 18.2 2.8 14.1 2.3 

OP09 20.9 4.8 18.6 3.5 18.4 2.9 

OP10 20.2 2.7 23.1 3.0 19.8 3.2 

OP11 20.7 1.7 17.2 1.9 17.2 1.9 

OP12 23.7 2.4 18.1 2.6 17.3 2.3 

OP13 18.2 1.8 17.8 1.9 17.4 1.2 

OP14 19.8 1.7 13.4 2.2 13.2 1.8 

OP15 17.8 1.6 10.4 1.8 9.7 2.2 
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Table 5-5 Individual participant’s MTC_Time characteristics across conditions PW = 

preferred-speed walking, SW= slow walking and DW = dual task walking, YP = 

young participant and OP = older participant. Mean of MTC_Time mean and SD 

were shown in blue across conditions for young and older individuals. 

Participant 

PW SW DW 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

MTC_ 

Time 

mean 

(%) 

SD 

(%) 

mean 

(%) 

SD 

(%) 

mean 

(%) 

SD 

(%) 

YP01 13.0 1.5 11.6 1.4 12.0 1.6 

YP02 16.4 0.9 16.9 1.8 16.5 1.1 

YP03 19.4 0.8 13.9 0.9 14.2 0.8 

YP04 21.0 0.9 13.7 1.2 15.6 0.9 

YP05 18.8 1.5 13.3 3.4 13.5 4.3 

YP06 17.7 0.8 11.9 0.8 12.2 0.7 

YP07 16.4 2.1 14.7 1.5 12.7 2.2 

YP08 21.8 1.1 20.5 1.0 20.6 1.1 

YP09 17.9 1.1 9.3 1.3 9.4 1.3 

YP10 19.2 1.3 15.7 1.0 15.8 1.0 

YP11 17.4 1.8 13.3 2.4 14.1 1.9 

YP12 17.2 2.6 20.5 1.7 17.4 2.8 

YP13 17.2 1.1 7.9 1.3 8.1 1.0 

YP14 15.3 1.5 7.9 1.1 8.9 1.0 

YP15 19.9 1.7 20.3 1.2 19.8 1.3 

OP01 11.1 2.2 10.0 1.0 9.7 0.8 

OP02 14.1 1.5 9.0 1.5 9.0 1.5 

OP03 15.1 1.8 11.5 1.7 11.5 1.5 

OP04 20.0 2.5 13.0 1.4 12.8 0.9 

OP05 17.5 1.9 20.0 2.1 13.6 1.8 

OP06 15.0 3.1 20.1 2.6 10.1 0.9 

OP07 14.9 1.1 13.5 1.3 13.0 2.1 

OP08 21.8 2.7 18.3 2.0 14.2 1.5 

OP09 21.0 3.1 18.9 2.5 18.5 2.3 

OP10 20.0 2.0 22.7 2.5 19.5 2.5 

OP11 20.8 2.0 17.3 1.6 17.3 1.6 

OP12 23.6 1.8 18.1 1.9 17.2 1.6 

OP13 18.1 1.5 17.8 1.4 17.5 1.3 

OP14 19.8 1.2 18.1 3.4 13.0 1.6 

OP15 17.9 1.2 10.2 1.3 9.9 1.4 
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5.3 Indicative MTC_Height validation  

This section presents the evaluation of toe-height at mean MTC_Time as an 

indicative MTC_Height in gait cycles which showed a well defined MTC event. As 

illustrated for a typical young and an older participant in Figure 5-4, at preferred-

speed walking indicative MTC_Height extracted at mean MTC_Time in gait cycles 

which showed MTC closely followed reference MTC_Height. Wilcoxon signed-rank 

test revealed no difference between indicative MTC_Height and reference 

MTC_Height for both groups, across walking conditions.  
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Figure 5-4 Typical series of reference MTC_Height and indicative MTC_Height 

were plotted in primary axis (left) and mean MTC_Time and stride specific 

MTC_Time were plotted in secondary axis (right) for a young adult (MTC_Time SD 

= 0.9%) and an older participant (MTC_Time SD 3.1%) in preferred-speed walking. 
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RMSE between reference MTC_Height and indicative MTC_Height across 

trials for individual participants were given in Table 5-6.  For all participants except 

one (YP05 in SW and DW) the difference between indicative and reference 

MTC_Height was less than 2.8 mm in all three experimental conditions.  

Table 5-6 RMSE between measured and indicative MTC_Height across trials PW = 

preferred-speed walking, SW = slow walking and DW = dual task walking for 

individuals, YP = young participant and OP = older participant. 

Young 

RMSE (mm) 

Older 

RMSE (mm) 

Participant PW SW DW Participant PW SW DW 

YP01 1.0 0.9 1.2 OP01 1.0 2.0 0.6 

YP02 0.8 1.7 1.7 OP02 1.4 1.0 1.1 

YP03 1.5 0.9 0.9 OP03 1.7 1.4 0.8 

YP04 1.0 1.4 0.9 OP04 2.8 1.2 0.6 

YP05 1.2 4.4 7.1 OP05 1.6 2.8 1.5 

YP06 1.0 0.6 0.5 OP06 2.0 2.8 0.4 

YP07 1.7 1.3 1.1 OP07 0.9 1.0 1.5 

YP08 2.2 1.6 1.7 OP08 1.7 1.3 0.8 

YP09 1.3 0.8 1.2 OP09 2.5 2.8 1.6 

YP10 2.8 1.4 1.5 OP10 1.9 1.5 1.1 

YP11 2.5 2.0 2.0 OP11 1.1 0.9 0.9 

YP12 2.1 1.0 1.7 OP12 2.1 1.8 1.2 

YP13 1.8 0.8 0.7 OP13 0.9 2.1 1.5 

YP14 1.4 1.2 0.6 OP14 2.2 1.5 1.1 

YP15 2.8 2.1 2.0 OP15 1.9 1.1 1.1 

 

Table 5-7 shows the correlation (r) between reference and indicative 

MTC_Height for young and older individuals across walking conditions.  
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Table 5-7 Correlation (r) between measured and indicative MTC_Height across trials 

PW = preferred-speed walking, SW = slow walking and DW = dual task walking for 

individuals, YP = young participant and OP = Older participant. 

Young 

RMSE (mm) 

Older 

RMSE (mm) 

Participant PW SW DW Participant PW SW DW 

YP01 1.0 1.0 0.9 OP01 1.0 1.0 0.9 

YP02 1.0 0.9 0.9 OP02 0.9 0.9 1.0 

YP03 0.9 0.9 1.0 OP03 0.9 0.9 0.9 

YP04 0.9 0.9 1.0 OP04 0.7 1.0 0.9 

YP05 1.0 0.6 0.4 OP05 1.0 1.0 0.9 

YP06 1.0 1.0 1.0 OP06 1.0 1.0 0.9 

YP07 1.0 1.0 1.0 OP07 1.0 1.0 1.0 

YP08 0.9 1.0 0.9 OP08 1.0 1.0 1.0 

YP09 0.9 1.0 0.9 OP09 1.0 1.0 0.9 

YP10 0.9 1.0 0.9 OP10 1.0 1.0 1.0 

YP11 0.9 1.0 1.0 OP11 1.0 1.0 1.0 

YP12 0.8 1.0 0.7 OP12 1.0 1.0 1.0 

YP13 0.8 1.0 0.9 OP13 1.0 0.9 0.9 

YP14 0.9 1.0 1.0 OP14 0.9 0.9 1.0 

YP15 1.0 1.0 0.9 OP15 1.0 1.0 1.0 

 

The r values of YP05 in slower (r=0.6) and dual task walking (r=0.4) were 

comparatively lower than the remaining participants’ correlation values (r=~0.9). In 

dual task walking, YP05 (Table 5-9) had relatively lower number of MTC gait cycles 

(38) compared to total number of individual gait cycles (147) and as shown in 

individual MTC timing characteristics in Table 5-4, YP05’s MTC_Time variability 

in dual task condition was relatively higher (7.6%) compared to average group 

MTC_Time IQR (2.2%). As shown in Figure 5-5, YP05 had only 38 gait cycles with 

MTC event and 12 of them showed greater difference between indicative and 

reference MTC_Height. Above presented results, in summary suggested that toe-

height at mean MTC_Time (indicative MTC_Height) is an acceptable representation 

of reference MTC_Height. 
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Figure 5-5 Typical series of reference MTC_Height and indicative MTC_Height 

were plotted in primary axis (left) and mean MTC_Time and stride specific 

MTC_Time were plotted in secondary axis (right) for a YP05 (MTC_Time SD 4.3%) 

in dual task walking 

 

5.4 Non-MTC gait cycles 

Table 5-8 summarizes the group data of total numbers of gait cycles, MTC 

gait cycles and non-MTC gait cycles for Young and Older across walking conditions. 

Older adults demonstrated higher number of non-MTC gait cycles in preferred-speed 

walking compared to Young in the same walking condition. Both groups, however, 

increased number of non-MTC gait cycles in slower and dual task walking 

conditions. As the total number of gait cycles for different walking conditions were 

not the same, the frequency of non-MTC gait cycles was examined as a percentage of 

total number of gait cycles.  
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Table 5-8 Total numbers of gait cycles, MTC gait cycles and non-MTC gait cycles 

across walking conditions PW = preferred-speed walking, SW = slow walking and 

DW = dual task walking for Young and Older. 

  Young Older 

  PW SW DW PW SW DW 

 

Total no. of gait cycles 3759 2713 2744 4178 3261 3056 

Total no. of gait cycles with MTC 

event 3651 1989 2119 3395 2134 1903 

 

Total no. of non-MTC gait cycles 108 724 625 783 1127 1153 

 

In Figure 5-6 proportions of non-MTC gait cycles were expressed as a 

percentage of total number of gait cycles for a particular walking condition of a 

group. In preferred-speed walking, only 2.9% of total gait cycles were non-MTC gait 

cycles. These finding were consistent with Schulz et al. (2010) who found 2% of 

MTC unidentifiable gait cycles in overground walking in young adults. In the present 

study the non-MTC gait cycles proportion were, however, 6 folds in Older in 

preferred-speed walking. Statistical test performed on proportions of non-MTC gait 

cycles confirmed that in preferred waling Older had greater proportion of non-MTC 

gait cycles (z = -22.36, p < 10
-3

). As expected both groups significantly increased the 

proportion of non-MTC gait cycles in both slow and dual task walking trials 

compared to preferred-walking (refer Appendix G for z-test results). Young showed 

the greatest proportion of non-MTC gait cycles in slower walking but Older in dual 

task walking. In both slower and dual tasking, however Older exhibited greater 

proportions of non-MTC gait cycles than the Young.  
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Figure 5-6 Proportions of non-MTC gait cycles for Young and Older across walking 

conditions PW = preferred-speed walking, SW = slow walking and DW = dual task 

walking (afg:
 
p< .05 for group differences, bcde: p< .05 for condition differences). 

 

Number of individual participants demonstrated at least 3 non-MTC gait 

cycles were considered. Only four of 15 Young participants demonstrated at least 3 

non-MTC gait cycles in preferred-speed walking. In slower and dual task walking 

trials, 8 Young adults demonstrated non-MTC gait. Number of Older exhibited at 

least 3 non-MTC gait cycles in preferred-speed walking were 9 and across walking 

conditions more Older showed non-MTC phenomenon than Young. As shown in 

Figure 5-7, statistical test on number of participants showed non-MTC gait cycles, 

demonstrated that more participants from Older than Young in preferred-speed 

walking exhibited this non-MTC phenomenon (p<0.05). Compared to preferred-

speed walking in slower and dual task conditions, more participants in Young group 

demonstrated non-MTC gait cycles (p<0.05). Although in preferred-speed walking 
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more participants from the Older group demonstrated non-MTC gait cycles than 

Young, the increase in Older in slower and dual task walking were not significant.  

 

Figure 5-7 Number of participants demonstrated at least 3 non-MTC gait cycles for 

Young and Older across trials PW = preferred-speed walking, SW = slow walking, 

and DW = dual task walking (a: p<.05 for group differences, bc
 
p<.05, for walking 

condition differences) 

 

To illustrate how each participant contributed to the entire group Non-MTC 

frequency, the total number of gait cycles, non-MTC gait cycles and proportion of 

non-MTC gait cycles as a percentage of total gait cycles are presented in Table 5-9. 

In preferred-speed walking although non-MTC group frequency for Young was 

2.9%, three young participants (YP01, YP12 and YP14) exhibited more than 10% of 

non-MTC gait cycles. In slower and dual task walking trials a greater proportion of 

non-MTC gait cycles were observed; YP01, for example, who had 18.2% of non-

MTC gait cycles in preferred-speed walking, increased her frequency to 80.3% in 

dual task walking. The maximum non-MTC gait cycle proportion for Young across 

walking condition was as high as 96.5%.  
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From Table 5-9, it can also be seen that across walking conditions non-MTC 

gait cycles were more pronounced in older people, for example, OP01 and OP06 had 

more than 90% non-MTC gait cycles. Similar to young people, more older 

participants demonstrated greater frequency of non-MTC gait cycles in slower and 

dual task walking. The proportion of non-MTC gait cycles was as high as 97.8% 

(OP10) for an older individual in slower walking. Participants OP04, OP12 and 

OP13, however, did not have more than 2 non-MTC gait cycles in any of the walking 

condition. In summary, the data in Table 5-9, show that more of the older individuals 

showed a high proportion of non-MTC gait cycles and the more challenging walking 

condition also increased proportions of non-MTC gait cycles. 
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Table 5-9 Number gait cycles, number of non-MTC gait cycles and proportion of 

non-MTC gait cycles for individuals across trials PW = preferred-speed walking, SW 

= slow walking and DW = dual task walking. YP = young participant and OP = older 

participant. Mean values were shown in blue. 

  PW SW DW 

Participant 

 

Total 

gait 

cycle 

Non-

MTC 

gait 

cycle 

% of 

Non-

MTC 

Total 

gait 

cycle 

Non-

MTC 

gait 

cycle 

% of 

Non-

MTC 

Total 

gait 

cycle 

Non-

MTC 

gait 

cycle 

% of 

Non-

MTC 

YP01 236 43 18.2 218 175 80.3 206 101 49.0 

YP02 243 1 0.4 183 0 0.0 187 0 0.0 

YP03 266 0 0.0 174 0 0.0 174 0 0.0 

YP04 265 0 0.0 179 0 0.0 165 0 0.0 

YP05 245 1 0.4 144 108 75.0 147 110 74.8 

YP06 274 0 0.0 197 2 1.0 187 4 2.1 

YP07 242 8 3.3 179 3 1.7 181 2 1.1 

YP08 261 0 0.0 220 0 0.0 216 0 0.0 

YP09 244 0 0.0 136 14 10.3 141 19 13.5 

YP10 224 0 0.0 188 0 0.0 186 0 0.0 

YP11 235 0 0.0 174 93 53.4 163 84 51.5 

YP12 263 29 11.0 214 90 42.1 201 194 96.5 

YP13 245 0 0.0 159 23 14.5 172 97 56.4 

YP14 247 28 11.3 153 120 78.4 144 115 79.9 

YP15 251 0 0.0 227 0 0.0 233 0 0.0 

OP01 197 182 92.4 156 127 81.4 154 143 92.9 

OP02 289 18 6.2 175 124 70.9 179 122 68.2 

OP03 276 0 0.0 208 19 9.1 201 12 6.0 

OP04 274 0 0.0 194 0 0.0 189 2 1.1 

OP05 297 15 5.1 232 32 13.8 273 24 8.8 

OP06 267 247 92.5 215 159 74.0 256 209 81.6 

OP07 190 6 3.2 172 57 33.1 160 7 4.4 

OP08 298 10 3.4 182 1 0.5 252 68 27.0 

OP09 263 93 35.4 171 77 45.0 176 45 25.6 

OP10 304 22 7.2 274 268 97.8 282 264 93.6 

OP11 300 190 63.3 259 148 57.1 259 148 57.1 

OP12 311 2 0.6 211 0 0.0 216 2 0.9 

OP13 330 0 0.0 249 0 0.0 305 2 0.7 

OP14 298 0 0.0 190 23 12.1 199 5 2.5 

OP15 284 0 0.0 169 120 71.0 160 80 50.0 
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Figure 5-8 shows a typical time series of MTC_Height and extracted toe 

height at mean MTC_Time (indicative MTC_Height) for non-MTC gait cycles for a 

young and an older participant during preferred-speed walking. Indicative 

MTC_Height was characteristically greater than reference MTC_Height and Older 

more frequently demonstrated multiple consecutive non-MTC gait cycles 

(Santhiranayagam et al., 2015b).  

 

Figure 5-8 Toe heights at MTC for MTC gait cycles non-MTC gait cycles during 

preferred-speed walking for a young (A) and an older (B) participant. The number of 

gait cycles for the two participants differed due to self selected walking speed, 

cadence and stride length. 

 

When all three walking conditions were combined for each group, median toe 

height extracted at mean MTC_Time was significantly greater than MTC_Height 

median (Wilcoxon signed-rank test - Young: p<10
-4

; Older: p<10
-7

). Figure 5-9 

presents the median MTC_Height and median toe-height extracted at mean 

MTC_Time in the gait cycles which did not demonstrate an MTC event in different 
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walking conditions for both young and older groups. For both young and older, 

median toe height extracted at mean MTC_Time was greater than median 

MTC_Height in all the conditions. 

 

Figure 5-9 Median MTC_Height and median extracted toe height at the mean 

MTC_Time for non-MTC gait cycles for preferred-speed walking (PW), matched at 

DW speed without a glass for Young and Older (SW) and dual task walking: while 

holding a glass of water (DW). 

 

In summary, MTC characteristics and non-MTC gait cycle results presented 

above answered the first Research Question and the hypotheses (page 49) concerning 

the ageing and walking condition effects on MTC. MTC_Height characteristics of 

Older and Young in preferred-speed walking were different, confirming the 

requirement for the later development of different models for young and older. The 

identified walking condition effects on MTC characteristics confirmed that the 

additional experimental conditions, slower and dual task walking, were suitable for 
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testing the GRNN models’ generalizability to different conditions. An important 

result of the non-MTC gait cycle analysis was that although younger people 

demonstrated only 2.9% non-MTC gait cycles in preferred-speed walking, when 

individual non-MTC characteristics were analyzed one younger person revealed 18% 

non-MTC gait cycles. Furthermore, non-MTC gait cycles increased with ageing and 

walking condition constraints. For some Young and Older participant’s non-MTC 

gait cycles were as high as 90% making it necessary to develop a technique to utilize 

the non-MTC gait cycles when using modeling to estimate MTC_Height. Toe-height 

at mean MTC_Time in gait cycles which had an MTC event was shown to provide a 

valid “indicative” MTC_Height when clearly defined MTC event is not present.     

 

5.5 Inertial sensor signals and GRNN machine-learning for MTC_Height 

estimation 

This section of the Results chapter presents inertial sensor signal processing, 

GRNN machine-learning approach, feature-selection and GRNN model validation 

for Young and Older. Figure 5-10 shows IMU obtained kinematic signals of few 

typical gait cycles from a participant. Even when there was no motion in foot (stance 

phase), AccZ had an approximate reading of 9.8 m/s
2
 as it was reading gravitational 

acceleration. Acceleration signal (top) readings were prominent in Y and Z direction 

as they correspond to progression and vertical accelerations in sagittal plane 

respectively. Similarly gyroscope angular velocity signal had greater reading about 

medio-lateral axis.  
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Figure 5-10 IMU obtained typical accelerometer (top) and gyroscope (bottom) 

signals of seven complete gait cycles. AccX, AccY, AccZ represent medio-lateral, 

anterior-posterior and sagittal vertical accelerations respectively. AngVelX, 

AngVelY, AngVelZ denotes angular velocities measured about medio-lateral, 

anterior-posterior and sagittal vertical axis respectively. TO: Toe-off, TCL Toe-

contact. 

 

As shown in Figure 5-11, toe-off event in inertial sensor signals, identified 

using maximum medio-lateral angular velocities were time synchronised with the 

corresponding toe-off event in 3D-measured positional data. 
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Figure 5-11 Time synchronized 3D-measured toe-trajectory (blue) and IMU obtained 

angular velocity about medio-lateral axis (red). Toe-off event detected in 3D-

measured positional data and IMU obtained kinematics were synced using toe-off 

events.  

 

Table 5-10 summarizes the correlations between reference MTC_Height and 

extracted IMU features for Young and Older in preferred-speed walking with 

absolute correlation (r) values greater than 0.3 in bold. For both groups sagittal plane 

IMU features usually showed greater correlations with MTC_Height than IMU 

features in the frontal and transverse planes, for example, maximum r values were 

observed for Older was the midway displacement between minimum and maximum 

vertical sagittal plane (r=0.79, p=0.001) and for Young was the minimum vertical 

velocity approximately at the end of the toe-contact (r=0.61, p=0.001). As 

anticipated inertial-signal features’ association with MTC_Height were not the same 

for both groups. For example, the correlation between IMU measured minimum 
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medio-lateral angular displacement (AngDispX) showed 0.61 correlation with group 

MTC_Height for Older, but it was only 0.38 for Young.  

 

Table 5-10 Correlations (r) between IMU features and reference MTC_Height for 

Young and Older in preferred-speed walking. Absolute r values greater than 0.3 have 

been marked in blue. Acc = acceleration, Vel = velocity, Disp = displacement, 

AngVel = angular velocity, AngDisp = angular displacement and AngAccum = 

accumulation of angle over time. X, Y, Z represent medio-lateral, anterior-posterior 

and sagittal vertical directions. 

 

Accelerometer Features Gyroscope Features 

   

Young 

( r) 

Older 

( r) 

 

 

 

Young 

( r) 

Older 

( r) 

Raw 

AccX 

 

Max 0.08 0.05 AngVel

X 
Max -0.39 -0.47 

Min 0.01 -0.05 Min 0.37 0.43 

AccY 

 

Max -0.37 -0.04 AngVel

Y 
Max 0.06 0.00 

Min 0.17 0.29 Min -0.16 -0.11 

AccZ 

 

Max -0.40 -0.42 AngVelZ Max 0.16 -0.16 

Min 0.39 -0.05 Min -0.10 0.10 

Single

-

Integr

ation 

VelX 

 

Max 0.09 0.18 AngDisp

X 
Max -0.20 -0.55 

Min < 0.00 0.22 Min 0.38 0.61 

VelY 

 

Max -0.45 -0.28 AngDisp

Y 
Max 0.13 0.00 

Min 0.18 0.16 Min -0.13 -0.18 

VelZ 

 

 

Max -0.04 -0.05 

   Min1 0.43 0.48 AngDisp

Z 
Max 0.13 -0.11 

Min2 0.61 0.29 Min -0.02 0.21 

Doubl

e-

Integr

ation 

DispX 

 

Max 0.05 -0.04 AngAcc

umX 
Max -0.31 -0.58 

Min 0.11 0.20 Min1 0.32 0.44 

DispY 

 

 

Max 0.18 0.18 Min2 -0.07 0.59 

Min -0.37 -0.38 AngAcc

umY 
Max 0.16 0.04 

Min2 0.46 0.50 Min -0.15 -0.08 

DispZ 

 

 

Max -0.60 -0.61 AngAcc

umZ 
Max 0.18 -0.23 

Min 0.36 0.28 Min -0.02 0.28 

Mid 0.40 0.79  
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Stage A: Feature-Selection 

LOSO cross validation average RMSE between GRNN-model estimated and 

reference MTC_Height across fourteen participants for each group was used to test 

the appropriateness of features, as they were combined in sequence using hill-

climbing by generating multiple GRNN models. As shown in Figure 5-12, RMSE 

decreased as the selected features were combined in sequence using hill-climbing but 

as additional features were included RMSE began to increase. In Figure 5-12, those 

features up to the point of increase (marked by an arrow) were, therefore, considered 

optimum for age-specific model. When only raw signals were used to train the 

GRNN model using hill-climbing, the lowest average RMSE produced by LOSO 

GRNN models with optimum feature-set was 9.2 mm for Young and 12.8 mm for 

Older. As illustrated in Figure 5-13, when features from single- and double-

integrated signals were combined with raw inertial signals, RMSE reduced by up to 

45% . The outcome of the feature-selection process was 9 and 5 features of the 40 

original features identified as optimum for Young and Older respectively. 
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Figure 5-12 RMSE for MTC_Height estimation when the hill-climbing feature-

selection was applied to the raw and integrated IMU features of (a) Young and (b) 

Older. Arrows denote the end of the optimum feature-set; Y_BF and O_BF represent 

features of Young and Older respectively. 
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Figure 5-13 LOSO GRNN models produced average RMSE for different 

combinations of feature-set obtained by hill-climbing. Raw = raw IMU features, SI = 

single-integrated, DI = double-integrated (see text). 

 

Table 5-11 describes the optimum GRNN model features and their 

correlation with MTC_Height. The first feature selected by the GRNN model 

showed the highest correlation with MTC_Height; i.e. minimum vertical velocity 

(AccZ) for Young (r=0.61) and DispZmid, (midway between minimum and maximum 

displacement) for Older (r=0.79). Optimum feature-set also consisted of IMU 

kinematics which did not show a good correlation (< 0.3), confirming the non-linear 

relationship between IMU kinematics and toe-trajectory control. 
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Table 5-11 Individual optimum features obtained using hill-climbing for (a) Young 

and (b) Older and their correlations (r) with reference MTC_Height. 

Young Older 

Feature 

ID 

Feature Description r Feature 

ID 

Feature Description r 

Y_BF1 Minimum VelZ  0.61 O_BF1 DispZmid 0.79 

Y_BF2 2
nd

 Minimum 

AccumAngX  

-0.07 O_BF2 Maximum AngDispX -0.55 

Y_BF3 DispZmid 0.40 O_BF3 Maximum VelX 0.18 

Y_BF4 Maximum GyroX -0.61 O_BF4 Maximum VelY -0.28 

Y_BF5 Minimum VelX 0.00 O_BF5 2
nd

 Minimum 

AngAccumX  

0.59 

Y_BF6 Minimum AccZ  0.40    

Y_BF7 Minimum GyroZ  -0.10    

Y_BF8 Minimum DispX 0.11    

Y_BF9 Maximum AccZ -0.40    

 

Figure 5-14 shows inertial signals with the age groups clearly differentiated 

with respect to optimum feature-sets for a typical gait cycle. The optimum features 

for accelerometer data were predominantly vertical (z); and for the gyroscope medio-

lateral (x), showing that sagittal plane motion contributed most to MTC_Height 

estimation. The features common to both groups, were sagittal plane motion as 

reflected in DispZmid, midway between minimum and maximum displacements and 

medio-lateral angular accumulation over time at the end of the swing phase.  
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Figure 5-14 Optimum features for Young and Older within a typical gait cycle signal 

recorded via IMU. The top three rows are raw acceleration (acc), single-integrated 

velocity (vel) and double-integrated displacement (disp); medio-lateral (X), 

progression/ anterior-posterior (Y) and vertical (Z). Rows 4-6 are gyroscope signals 

and single- and double-integrated waveforms in each axis.  

 



Page 116 

 

Leave-one-subject-out (LOSO) cross validated GRNN models with the 

optimum features (including raw, SI and DI) produced average RMSE of 6.6 mm for 

Young and 7.1 mm Older. Figure 5-15 shows scatter plots, linear regression lines of 

model-estimated and reference MTC_Heights. The LOSO GRNN model results for 

preferred-speed walking were considered to evaluate the modeling technique in 

preferred-speed walking for the same age group. For both age groups, lowest RMSE 

was obtained using the same s parameter (0.8). Both RMSE were within one standard 

deviation (Young: 9.4 mm; Older: 13.5 mm) of their mean MTC_Height (Young: 

25.0 mm; Older: 28.6 mm). Further, estimated MTC_Height using the GRNN model 

and hill-climbing feature-selection was highly positively correlated with 

MTC_Height for both groups (Young: r=0.71; Older: r=0.85). Furthermore, for both 

groups no difference was found between GRNN-model estimated MTC_Height and 

motion captured reference MTC_Height in their respective median (Young: p=1.000; 

Older: p= .7609) and IQR (Young: p=.5016; Older: p=.1040). In Figure 5-15, it was 

interesting to observe a series of data points in both the Young and Older subjects’ 

scatter plots parallel to the horizontal axis, reflecting the same estimated 

MTC_Height across a range of measured MTC_Height. The horizontal data points 

were primarily associated with a single subject in each group.  
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Figure 5-15 Scatter plot and linear regression line for model-estimated MTC_Height 

vs. reference MTC_Height for (a) Young and (b) Older with LOSO 

 

Table 5-12 summarizes the measured and estimated MTC_Height mean and 

SD for individual participants. For both Young and Older estimated MTC_Heights 
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closely approximate the measured values but prediction performance was notably 

reduced for three participants, YPS07, OP09 and OP13. These participants’ 

measured MTC_Heights were in two cases (YP07, OP09) atypically high and in one 

participant (OP13) low.  

Table 5-12 Measured and estimated MTC_Height mean and SD for young (YP) and 

older (OP) individuals 

Participant 

 

Mean MTC_Height 

(mm) 

MTC_Height SD 

(mm) 

Measured Estimated Measured Estimated 

YP01 35.3 34.1 3.8 3.1 

YP02 31.8 31.3 2.7 2.0 

YP03 16.3 19.8 3.1 3.6 

YP04 10.4 15.5 2.2 2.4 

YP05 29.9 29.3 4.4 5.3 

YP06 20.3 23.8 2.4 1.9 

YP07 42.0 29.4 6.8 2.7 

YP08 12.6 13.4 3.0 2.8 

YP09 26.8 25.3 3.1 5.4 

YP10 20.1 21.1 4.7 2.8 

YP11 30.9 27.4 4.6 1.5 

YP12 31.6 27.6 2.6 1.7 

YP13 25.8 21.4 2.7 4.3 

YP14 22.0 25.7 2.8 4.7 

OP01 29.2 28.7 6.9 3.9 

OP02 23.2 21.3 2.3 2.3 

OP03 18.8 21.6 3.3 3.9 

OP04 21.8 23.6 2.3 2.0 

OP05 27.4 30.0 6.4 4.3 

OP06 24.8 24.9 12.0 5.7 

OP07 23.9 30.1 6.6 3.1 

OP08 43.9 46.5 5.5 5.4 

OP09 59.5 43.6 7.4 3.3 

OP10 33.2 31.9 5.7 6.3 

OP11 49.2 47.8 6.4 5.2 

OP12 36.6 31.2 8.6 12.3 

OP13 12.2 20.1 3.7 1.6 

OP14 18.4 16.1 4.4 4.6 
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Further, Figure 5-16 shows the Bland–Altman plot for mean MTC_Height 

obtained from GRNN model against the reference MTC_Height reference and the 

limit of the 95% confidence interval (±1.96 SD). GRNN model performances were 

within the confidence level for all the participants except YP07 and OP09. It is 

important to note that YP07 and OP09 had the highest individual MTC_Height 

within their respective age groups. It was important to note that Bland-Altman, 

however, failed to capture the considerable RMSE produced by OP13 (Table 5-12). 

 

 

Figure 5-16 Bland and Altman plots of the mean (dotted line) ± 1.96 SD limit of 

agreement (dashed line) of the difference between the LOSO GRNN models and 

reference MTC_Height. Participants YP07 and OP09 were beyond the agreement 

limit (circled in red).  
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Stages B and C: Building and validating age-specific GRNN model 

This section presents validation of age-specific GRNN models, Model_Y and 

Model_O, on the opposite age groups and walking conditions excluding and 

including non-MTC gait cycles.  

Table 5-13 lists the RMSE obtained with Model_Y when tested on the same 

group in slower and dual task walking and Older group in all three walking 

conditions. RMSE obtained with Model_Y when tested on the same group in slower 

(13.0 mm) and dual task (13.8 mm) walking produced greater RMSE than the 

average RMSE produced by LOSO GRNN modeling in preferred-speed walking (6.6 

mm). The statistical test revealed that Model_Y under estimated MTC_Height mean 

and SD compared to reference MTC_Height mean and SD. For Older in preferred-

speed walking, however, Model_Y-estimated MTC_Height mean and SD were not 

significantly different, as indicated by ‘TRUE’ in Table 5-13 but in slower and dual 

task walking, Model_Y underperformed (‘FALSE’). Overall results suggested that 

Model_Y did not demonstrate an acceptable generalizability in different walking 

conditions. 
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Table 5-13 RMSE produced by Model_Y across group and walking conditions. Non-

significant differences between model-estimated MTC_Height and reference 

MTC_Height were highlighted in blue. 

Group 

 

 

Condition 

 

 

RMSE 

(mm) 

 

No significant 

difference in 

mean 

MTC_Height 

No significant 

difference in 

MTC_Height 

SD 

Young SW 13.0 FALSE FALSE 

p<10
-4

 p<10
-4

 

 DW 13.8 FALSE FALSE 

P= .0017 p=.0017 

Older PW 11.7 TRUE TRUE 

p=.8077 p=.3910 

 SW 16.1 FALSE FALSE 

p=.0107 p=.0052 

 DW 17.3 FALSE FALSE 

p=.0023 p<10
-4

 

 

Table 5-14 shows the RMSE produced by Older-specific GRNN model. 

Model_O estimated MTC_Height mean and SD were not different to reference 

MTC_Height for Older adults in other walking conditions. It was interesting to note 

that the GRNN built using Older adults’ preferred-speed walking was able to 

produce lower RMSE for Young slower and dual task walking compared to the 

model built using only Young data. Model_O estimated MTC_Height mean for both 

Older and Young were not different to reference MTC_Height mean. Variability in 

Older adults in slower and dual task walking was also captured well by Model_O, 

represented by no significant difference between reference and estimated 

MTC_Height SD. For Young, however the Model_O-estimated MTC_Height SD 



Page 122 

 

values were significantly different to reference MTC_Height SD across conditions. 

Overall, Model_O demonstrated a good generalizability for Older across walking 

conditions. 

 

Table 5-14 RMSE produced by Model_O across group and walking conditions. Non-

significant differences between model-estimated MTC_Height and reference 

MTC_Height were highlighted in blue. 

Group 

 

 

Condition 

 

 

RMSE 

(mm) 

 

No 

significant 

difference in 

mean 

MTC_Height 

No 

significant 

difference in 

MTC_Height 

SD 

Young PW 10.2 TRUE FALSE 

p=.0676 p<10
-5

 

 SW 9.0 TRUE FALSE 

p=.0906 p=.0166 

 DW 10.0 TRUE FALSE 

p=.0785 p=.0134 

Older SW 11.3 TRUE TRUE 

p=.1353 p=.2958 

 DW 11.6 TRUE TRUE 

0.1419 0.3910 

 

 

Table 5-15 shows the RMSE produced by Model_Y when the non-MTC gait 

cycles were included in the testing data set. Model_Y-estimated MTC_Height mean 

was not different to reference MTC_Height for Older adults in preferred-speed 

walking and slower walking. Model_Y, however, still failed to produce satisfactory 

RMSE in other tasks for both Young and Older.  
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Table 5-15 RMSE produced by Model_Y across group and walking conditions 

including non-MTC gait cycles. Non-significant differences between model-

estimated MTC_Height and reference MTC_Height were highlighted in blue. 

Group 

 

 

Condition 

 

 

RMSE 

(mm) 

 

No 

significant 

difference in 

mean 

MTC_Height 

No 

significant 

difference in 

MTC_Height 

SD 

Young SW 12.4 FALSE FALSE 

p=.0245 p<10-4 

 DW 12.3 FALSE FALSE 

p=.0052 p<10
-4

 

Older PW 12.8 TRUE TRUE 

p=1.000 p= .5416 

 SW 14.4 TRUE FALSE 

p=.0676 p= .0017 

 DW 15.3 FALSE FALSE 

p=.0040 p<10
-4

 

 

 

Table 5-16 shows the RMSE produced by Model_O when testing data 

included non-MTC gait cycles. Model_O held the generalizability for Older across 

walking conditions with no difference in mean and SD of model-estimated and 

reference MTC_Height. 
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Table 5-16 RMSE produced by Model_O across group and walking conditions 

including non-MTC gait cycles. Non-significant differences between model-

estimated MTC_Height and reference MTC_Height were highlighted in blue. 

Group 

 

 

Condition 

 

 

RMSE 

(mm) 

 

No 

significant 

difference in 

mean 

MTC_Height 

No 

significant 

difference in 

MTC_Height 

SD 

Young PW 10.4 TRUE FALSE 

p=.0676 p<10
-4

 

 SW 12.6 TRUE FALSE 

p= .0619 p=.0085 

 DW 10.5 TRUE FALSE 

p=.0676 p=.0134 

Older SW 10.7 TRUE TRUE 

p=.2676 p=.3258 

 DW 10.6 TRUE TRUE 

p=.1040 p=.3575 

 

In summary, for Older, the leave-one-subject-out (LOSO) cross validation 

based MTC_Height RMSE with the optimum feature and parameter was low (7.1 

mm) compared with previous error estimates for young participants using quadratic 

regression (RMSE = 17.34 (McGrath et al., 2011)) and strap-down techniques 

(RMSE = 21.7 mm (Mariani et al., 2012)). The GRNN modeling approach reported 

here was also demonstrated to perform well as reflected in no significant difference 

between model-estimated MTC_Height and reference MTC_Height mean and SD in 

preferred-speed walking. Furthermore, in slower and dual task walking the Older-

specific GRNN model, Model_O was capable of estimating MTC_Height for both 

Young and Older with no statistical difference from reference MTC_Height mean. In 
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contrast, although the LOSO GRNN RMSE was as low as 6.6 mm for their 

preferred-speed data, Model_Y failed to estimate MTC_Height which is not 

statistically different to reference MTC_Height even for the same group in slower 

and dual task walking trials.  

 

5.6 Results summary 

The first aim related to Research Question 1 was to determine ageing (Young 

vs. Older), speed (preferred vs. slow) and task (preferred vs. dual task) effects on 

median and IQR of MTC_Height and MTC_Time distributions. Median and IQR of 

MTC_Height and median and IQR of MTC_Time were compared between young 

and older in preferred-speed and for Young and Older separately across walking 

conditions. Table 5-17 presents the summary of the statistical test on MTC_Height 

and MTC_Time. In preferred walking no ageing effects were found on median 

MTC_Height and median MTC_Time. Variability measured by IQR, however, was 

significantly greater in Older in preferred-speed walking. Neither young nor older 

adults revealed speed effects on median and IQR of MTC_Height and MTC_Time. 

In dual task walking, however, Older reduced MTC_Height variability significantly 

compared to preferred walking. It was interesting to note that Older MTC_Height 

IQR in the glass carrying task was even less than Young in dual task.  Young adults’ 

median MTC_Time was significantly shortened in slower walking compared to 

preferred-speed walking. In contrast, Older adults demonstrated significantly shorter 

MTC_Time in dual task compared to preferred walking. Neither group’s MTC_Time 

IQR revealed any walking condition effects.    
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Table 5-17 Results summary on MTC_Height and MTC_Time statistical descriptive 

Hypothesis Findings 
Support 

No age effect on median 

MTC_Height in PW 

(PW) Young = 25.5 mm; Older = 24.6 mm; 

no age effect Yes 

Greater MTC_Height 

IQR for older than young 

in PW 

(PW) Young = 13.4 mm: Older = 18.2 mm; 

Greater MTC_Height IQR for older  Yes 

No age effect on median 

MTC_Time in PW 

(PW) Young = 18.02%; Older = 18.68%; 

no age effect Yes 

Greater MTC_Time IQR 

for older than young in 

PW  

(PW) Young = 4.35%; Older = 3.44%; 

Greater MTC_Time IQR for older  Yes 

No speed effect in 

median MTC_Height for 

both group 

(SW) Young = 22.6 mm; Older = 25.5 mm; 

no speed effect Yes 

Greater MTC_Height 

variability in SW 

compared to PW for both 

groups 

(SW) Young = 14.6 mm; Older = 21.9 mm; 

no speed effect 
No 

Shorter MTC_Time in 

SW compared to PW for 

both groups 

(SW) Young = 14.72%; Older = 16.48%; 

Shorter MTC_Time in SW compared to 

PW only for the Young 

Yes 

only 

for 

Young 

Greater MTC_Time 

variability in SW 

compared to PW for both 

groups 

(SW) Young = 5.43% Older = 5.77%; no 

speed effect 
No 

No difference in 

MTC_Height in DW 

compared to PW for both 

group 

(DW) Young = 23.9 mm; Older = 19.7 

mm; no age effect 
Yes 

Reduced MTC_Height 

IQR in DW compared to 

PW for both groups 

(DW) Young = 12.2 mm; Older = 10.2 

mm; Reduced MTC_Height IQR in DW 

compared to PW only for Older 

Yes 

only 

for 

Older 

Shorten MTC_Time in 

DW compared to PW for 

both groups 

(DW) Young = 15.13%; Older = 13.89%; 

Shorten MTC_Time in DW compared to 

PW only for Older 

Yes 

only 

for 

Older 

Reduced MTC_Time 

IQR in DW compared to 

PW for both groups 

(DW) Young = 4.59% Older = 4.66%; no 

task effect 
No 
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The second aim related to Research Question was 1 to establish ageing 

(Young vs. Older), speed (preferred vs. slow) and dual task (preferred vs. dual task) 

effects on the frequency of non-MTC gait cycles. Non-MTC gait cycles were 

quantified as proportions of total gait cycles from a walking trial. In preferred-speed 

walking, the non-MTC gait cycles were infrequent for Young. Compared to Young, 

in preferred-speed walking, Older showed greater proportions of non-MTC gait 

cycles. In slower and dual task walking both Young and Older exhibited greater 

proportions of non-MTC gait cycles. Older showed the greatest proportion of non-

MTC gait cycles in dual task walking but Young in slower walking. 

The third aim of Research Question 1 was to validate toe-height at mean 

MTC_Time as an indicative MTC_Height to use in non-MTC gait cycles. In gait 

cycles which showed an MTC event, actual MTC_Height and toe-height at mean 

MTC_Time were compared across walking conditions for both young and older but 

no significant differences was detected. RMSE between actual MTC_Height and toe-

height at mean MTC_Time was less than 2.8 mm for both young and older 

individuals across walking conditions except for YP05. High correlation between 

actual MTC_Height and toe-height at mean MTC_Time also suggested that toe-

height at mean MTC_Time was an appropriate indicative MTC_Height in non-MTC 

gait cycles. 

The first aim of Research Question 2 was to create age-specific GRNN 

models to estimate MTC_Height using experimental inertial sensor signals from 

preferred-speed walking. IMU data was collected from an in-house built foot-

mounted sensor system comprising a tri-axial accelerometer and tri-axial gyroscope. 
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Gait cycles were identified in the inertial sensor data using maximum medio-lateral 

rotation of the toe. GRNN input features were extracted from raw, single- and 

double-integrated inertial signals. Using hill-climbing feature selections by 

employing a leave-one-subject-out (LOSO) cross validation, age-specific optimum 

features were identified for both young and older using the lowest group root-mean-

square-error (RMSE). To evaluate the estimation accuracy between GRNN estimated 

MTC_Height and MTC_Height from 3D system position-time data the lowest RMSE 

of LOSO cross validation was considered, as the RMSE produced was with a blind 

data set. The RMSE was 6.6 mm with 9 optimum inertial sensor features for the 

young adults and 7.1 mm with 5 features for the older. GRNN modeling also 

performed well as reflected in no significant difference between model-estimated 

MTC_Height and 3D measured MTC_Height. Nine of forty features for young and 

five for older were found to be optimum to estimate MTC_Height. These optimum 

features of all 14 participants from each group were used to create optimum age-

specific GRNN models, Young: Model_Y, Older: Model_O were built to estimate 

MTC_Height. 

The Young-specific GRNN-model, Model_Y, was sensitive to walking 

conditions and its generalizability was limited to Older in preferred-speed walking. 

Model_O, however, showed good generalizability when applied to data from slower 

walking and dual task walking. Statistical tests revealed that the mean and SD of 

Model_O estimated MTC_Height were not different to the mean and SD of reference 

MTC_Height for Older in slower and dual task walking. When the non-MTC gait 

cycles were included, Model_O was still able to produce MTC_Height estimates 

which were not different to the reference MTC_Height.  
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6 GENERAL DISCUSSION 

The first section of the General Discussion summarizes the effects of ageing 

and walking condition on MTC characteristics in light of previous research findings. 

In section 6.2 the effects of the independent variables on the frequency of non-MTC 

gait cycles is presented. Section 6.3 presents the findings from the GRNN modeling 

approach and model validation for generalizability. The final section 6.4 reviews the 

project’s contribution to gait monitoring using body mounted IMUs and provides the 

project summary, including suggestions for future research and further developments 

in gait monitoring using sensor technology.  

6.1 Ageing and walking condition effects on MTC characteristics  

MTC_Height measurements obtained from 3D motion capture were 

positively skewed in line with the previous reports (Begg et al., 2007; Dell’oro, 

2008). Inferential statistical analysis were, therefore, performed on median and IQR 

as the measures for central tendency and dispersion respectively. MTC_Heights 

medians in the present study for Young and Older were 25.5 mm (IQR = 13.4 mm) 

and 24.6 mm (IQR = 18.2 mm) respectively but these values were greater than 

MTC_Heights previously reported in similar treadmill walking experiments (Barrett 

et al., 2010; Begg et al., 2007). Begg et al. (2007), for example, reported group 

median MTC_Heights of 12.9 mm (IQR = 9.6 mm) for Young and 14.0 mm (IQR 

=11.3 mm) for Older. Begg et al. (2007) referenced MTC_Height from the toe 

vertical displacement at toe-off but in the present study MTC_Height was measured 

from the treadmill belt, a lower reference (Figure 2-8). Taking into account the 

higher reference such as stance phase and toe-off clearances used by other 
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researchers (Begg et al., 2007)for MTC_Height calculations, MTC_Heights reported 

here were comparable to previous studies with similarly aged healthy young adults 

and older adults walking at preferred-speed (Dell’oro, 2008). 

Consistent with previous studies, there was no difference in MTC_Height 

between Older and Young in preferred-speed walking (Barrett et al., 2010; Begg et 

al., 2007; Mills et al., 2008). The ability of the locomotor system to maintain 

adequate toe-clearance near to mid-swing was unaffected in the Older group 

examined here during their preferred-speed walking. As expected,  MTC_Height 

variability was higher in Older participants in preferred-speed walking and this intra-

individual variability for older individuals has been interpreted as indicating 

diminished gait control (Begg et al., 2007; Mills et al., 2008). Greater variability in 

MTC_Height suggests reduced precision in low-limb trajectory control. Older adults 

are therefore, at higher risk of tripping not due to reduced mean MTC_Height but as 

a consequence of greater stride-to-stride variability in toe-trajectory control. Begg et 

al. (2007) suggested that healthy older adults compensate the tripping risk due to 

greater stride-to-stride variability by reducing the spread of MTC_Height in the 

lower quartile range and increasing it in the upper quartile, in other words by 

exhibiting more positively skewed MTC_Height distribution. The MTC_Height 

distributions’ skewness in the present study (Young = 0.26; Older = 0.89) support 

Begg at al. (2007) in suggesting that older adults increase the frequency of higher 

MTC_Heights to compensate the lack of precise control of toe-trajectory. 

Inclusion of dual task and speed-matched slower (than preferred) walking 

facilitated further exploration of MTC variables’ central tendency and variability. In 
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dual task walking both young and older groups have been reported to reduce their 

walking speed (Sparrow et al., 2008). In the present experiment, as in previous 

studies, both groups reduced walking speed relative to preferred in the dual task trial, 

furthermore, in dual tasking Older (0.42 m/s) walked significantly (p < 0.05) slower 

than Young (0.53 m/s). Schulz et al. (2010) found that MTC_Height may depend on 

the nature of the secondary task, for example in their study young participants 

increased MTC_Height while carrying a laundry basket but lowered MTC_Height 

when answering questions while walking. In the present study although the 

individual participants’ MTC_Height characteristics presented in Table 5-2 showed 

that 11 of 15 older adults reduced MTC_Height in the glass carrying task, the 

difference between glass carrying and slower walking was not statistically significant 

for either age group. This result of no walking condition effect on median 

MTC_Height is consistent with Schulz et al. (2010) for younger individuals but there 

are no previous reports of similar gait task effects on MTC for older adults. In 

response to the challenge posed by dual task walking, older pedestrians may have 

remained safe not by increasing MTC_Height, but, as with their younger 

counterparts, by preserving their habitual (preferred-speed) toe-ground clearance.  

In the dual task manipulation, relative to preferred walking, both groups 

reduced MTC_Height variability but only significantly (p = 0.095) for older adults. 

In the speed-matched slower walking condition, however, MTC_Height IQR was not 

different from preferred-speed walking. This combination of results is interesting in 

revealing that reduced MTC_Height variability in the divided attention condition was 

not due to reduced walking speed. Furthermore, the Older MTC_Height IQR in dual 

task walking was lower than the Young’s dual task MTC_Height IQR which was 
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also the lowest of the three walking conditions. The histograms in Figure 4-9 showed 

that in dual task walking older group increased MTC_Height skewness (1.28) 

compared to their preferred-speed walking (0.89). Individual participants’ 

MTC_Height characteristics presented in Table 5-2 showed that 11 of 15 Older 

reduced MTC_Height and 13 reduced MTC_Height IQR. This reduction in 

MTC_Height and variability suggested that observed increase in skewness in Older 

in dual task walking was not due to all participants increasing the frequency of 

MTC_Height in the higher region of the distribution; rather it was due to the majority 

increasing their frequency of lower clearance cycles.  Nordin et al. (2012) reported 

that individuals aged 75 years and above who demonstrated change in step-width, 

step-time and step-length variability relative to preferred conditions while carrying a 

cup and saucer were less falls prone. It could, therefore, be suggested that in a more 

challenging gait task, such as dividing attention, older adults reduce MTC_Height 

variability to compensate the increased frequency of lower clearances. It would be 

interesting to examine older adults with a falls history and individuals with gait 

pathology in dual task walking to confirm whether MTC_Height control reduces in a 

more challenging task.  

The experimental results also uncovered lower limb control characteristics 

reflected in MTC timing, i.e. MTC_Time. Research on MTC timing is scarce but it 

has been concluded that MTC_Time is approximately 50% of the swing phase (Begg 

et al., 2007; Levinger et al., 2012; Mills et al., 2008). The measurement procedures 

employed in this earlier work defined MTC_Time relative to heel-contact, such that 

the present findings cannot be directly compared with previous work. In preferred-

speed walking the groups had essentially the same MTC timing (Young = 18.02%; 
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Older = 18.68%). Young mean MTC_Time was comparable with Dell’oro (2008) 

who also calculated MTC_Time from toe-off for one young participant (17.2%) 

while preferred-speed walking. When walking more slowly without glass carrying 

Young reduced MTC_Time, suggesting a speed effect of on MTC timing. In 

contrary, the Older did not show significantly (p < 10
-5

) shorten MTC_Time in 

slower walking but their dual task MTC_Time was significantly shorter than both 

preferred-speed and slower walking conditions. Reduced MTC_Time could be due to 

either a shorter swing phase or attaining MTC more quickly with constant swing 

time. To resolve this question an additional work including heel contact time at the 

end of swing would be required.  

A further finding was that older showed significantly (p < 10
-5

) higher 

MTC_Time variability (IQR) across the walking conditions compared to young 

adults. Higher variability in MTC timing suggested ageing-related weaker 

MTC_Time control. In dual task walking however MTC_Time variability of Older 

(4.66%) was less than the Young (5.59%), suggesting that it was important for Older 

to precisely control MTC timing in a difficult gait.  

6.2 Ageing and walking condition effects on non-MTC gait cycles 

A limitation in discussing these findings is that previous published reports of 

toe-ground trajectory control during walking had neither documented nor discussed 

non-MTC gait cycles (Barrett et al., 2010; Begg et al., 2007; Best & Begg, 2008; 

Mills et al., 2008; Nagano et al., 2011). An important phenomenon, comprehensively 

documented here for the first time, was that non-MTC gait cycles were relatively 

infrequent in younger participants walking at preferred speed. In the present results 



Page 134 

 

2.9 % of all gait cycles for young participants at preferred walking speed did not 

show a clearly defined MTC event. This result supports Schulz (2011) who reported 

that in overground unconstrained preferred-speed walking 98% of gait cycles 

demonstrated an MTC event for young participants, i.e. only 2% non-MTC gait 

cycles. The only other data on non-MTC gait cycles was in Dell’oro ’s (2008) 

unpublished doctoral thesis. Dell’oro (2008) reported that of a total 75,193 strides 

collected from 24 (12 young and 12 older) subjects treadmill walking, 8,814 gait 

cycles did not demonstrate an MTC (11.7%) and those non-MTC gait cycles were 

deleted to exclude from the analysis. Dell’oro (2008) recorded that the proportions of 

gait cycles deleted because of not showing an MTC event ranged from 0% to 87%. 

In her study, the proportions of non-MTC gait cycles were not presented to reveal 

any age or walking condition related effects but 6 young and 6 older participants’ 

(50% of the sample) were excluded from the analysis as they showed more than 10% 

non-MTC gait cycles.  More of the older participants exhibited a significantly (p < 

10
-3

) greater proportion of non-MTC (18.8%) than Young (2.9%) in preferred-speed 

walking. Furthermore, in both Young and Older the proportions of non-MTC gait 

cycles increased significantly in slower and dual task walking. In all three walking 

conditions, however, Older had a greater proportion of non-MTC gait cycles.  

Individual participant’s non-MTC gait cycle characteristics presented in 

Table 5-9 provided more depth understanding the group mean non-MTC frequency 

data. Participants were categorized as exhibiting non-MTC characteristics if at least 

three non-MTC gait cycles were observed within a walking trial. More Older (9 of 

15) exhibited non-MTC cycles compared to Young (4) in preferred-speed walking 
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and the number of participants increased for both Young and Older in both slower 

and dual task walking trials. 

An important finding from walking condition specific individual non-MTC 

frequency analysis in the current experiment was that even in Young there were 

participants who demonstrated more that 10% of non-MTC gait cycles in preferred-

speed walking, suggesting that while non-MTC gait cycles are infrequent in young 

healthy adults, the MTC event is not manifest in the gait pattern of some individuals. 

With ageing and walking condition manipulation, the proportion of individual non-

MTC gait cycles increased up to 90%. These findings suggest that non-MTC gait 

cycles should be considered in biomechanical studies of lower limb swing phase 

trajectory control. 

Given the prevalence of non-MTC gait cycles, it was necessary to obtain an 

indicative toe-height at the expected MTC timing to compare the model-estimated 

MTC_Height with the reference MTC_Height. Dell’oro (2008), examined mean 

MTC_Time for one young adult and proposed that toe-height at mean MTC_Time 

could be used to reveal non-MTC gait cycle toe-trajectory control characteristics.In 

the present study, it was shown that group MTC_Time was non-normally distributed 

for both Young and Older across walking conditions. Hence, median MTC_Time 

was presumed to be a better representation of central tendency. A non-parametric 

repetitive measures test between mean MTC_Time and median MTC_Time for both 

Young and Older across walking conditions revealed no statistical difference. Toe-

height at mean MTC_Time, therefore, was used as the “indicative” MTC_Height as 

suggested by  Dell’oro (2008). While Dell’oro (2008) did not extend this indicative 
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MTC_Height technique, in the present thesis the indicative MTC_Height technique 

was validated by comparing toe-height at mean MTC_Time with reference 

MTC_Height from gait cycles which demonstrated MTC. Both Young and Older 

showed RMSE between actual and indicative MTC_Height in preferred-speed 

walking of less than 2.8 mm and high correlations (r > 0.8) between actual and 

indicative MTC_Height.  

In slower and dual task walking experiments, it is important to note that 

MTC_Height was not different from preferred-speed walking data but MTC_Time 

was significantly reduced. This finding demonstrates that walking condition effect on 

individual-specific MTC_Time should be considered when analysing toe-height in 

non-MTC gait cycles. The above observation concerning walking condition 

specificity is further supported by the correlation results revealing that in both slower 

and dual task walking, toe-heights at an individual participant’s mean MTC_Time 

were highly correlated with actual MTC_Heights. For both age groups, median 

indicative MTC_Height exceeded the condition specific median MTC_Height, 

suggesting that in non-MTC strides, toe-ground clearance at mid-swing (the usual 

MTC_Time) is maintained higher. MTC is a critical representation of toe-trajectory 

control and requires skilled and fine motor control performance for optimum and 

safe gait. When fine motor control is not possible an adaptive locomotor control 

strategy to reduce the likelihood of toe-ground contact is to increase toe-height by 

eliminating the biomechanically challenging MTC event. In so doing the gait data 

will be characterised by increased frequency of non-MTC gait cycles. As might be 

expected the non-MTC response is, furthermore, prevalent when gait is destabilized, 

either by extrinsic environmental factors or intrinsic causes such as ageing. In non-
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MTC gait cycles the ankle is possibly more dorsiflexed, elevating the toe and 

increasing ground clearance. Measures to increase ankle dorsiflexion in older people 

or gait-impaired populations may be successful in reducing tripping risk by 

eliminating MTC. Immediate future research should investigate the contribution of 

lower limb joint angles in generating non-MTC gait cycles. 

In determining these “adaptive” characteristics of toe height control at MTC, 

it was important to consider that the gait data was obtained from treadmill walking. It 

has been previously reported that in treadmill both young and older adults reduced 

their preferred-speed and MTC_Height compared to overground walking (Nagano et 

al., 2011). The reported ageing and walking condition effects on the central tendency 

and variability of MTC_Height and MTC_Time should be, therefore, confirmed in 

overground walking and the frequency of non-MTC gait cycles may be different in 

overground walking. The reported ageing and condition effects on MTC were on 

median and inter-quartile-range, an interesting dimension to future studies would be 

the characterization of other MTC distribution parameters such as skewness, 

kurtosis, 1
st
 quartile, 3

rd
 quartile and range (Begg et al., 2007). Probability modelling 

(Begg et al., 2007) to specify precisely the “risk” of toe-ground contact across the 

walking conditions would be beneficial in confirming the suggested adaptation 

techniques and their implications towards tripping risk. MTC_Height distribution 

analysis, including skewness, central tendency and variability could be employed to 

determine whether the reported MTC control adaptations to dual task walking 

significantly reduce tripping risk. 
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6.3 GRNN machine-learning modeling 

The GRNN-modeling employing leave-one-subject-out (LOSO) cross 

validation used inertial sensor signals to estimate MTC_Height with RMSE of 

approximately 7 mm (Young = 6.6 mm; Older = 7.1 mm) in preferred-speed 

walking. Lower RMSE observed for Young was consistent with Lai et al. (2009b) 

who also reported reduced RMSE for young controls than for older adults with a falls 

history. The above RMSE were up to 68% lower than in previous studies employing 

quadratic regression (McGrath et al., 2011) and strap-down integration (Mariani et 

al., 2012). Individual participants’ measured and estimated MTC_Height medians 

presented in Table 5-12 showed that the age-specific GRNN models captured the 

inter-subject variability well. The data points observed parallel to the horizontal axis 

in Figure 5-15, reflecting the same estimated MTC_Height across a range of 

measured MTC_Heights, was due to the leave-one-subject-out (LOSO) cross-

validation protocol. In selecting the optimum GRNN model parameter and features 

set to minimize RMS error for the group as whole, a proportion of these individuals’ 

gait cycles were “over-smoothed” with reduced sensitivity to the cycle-to-cycle 

MTC_Height variability. Despite these observations, even the lowest performing 

participants, with the largest difference between measured and estimated 

MTC_Height, demonstrated considerably better MTC_Height estimation than any 

previously reported techniques. 

The GRNN modeling approach developed here estimated MTC_Height for 

every stride whereas previous studies estimated a gait trial mean based on a number 

of strides. A further point of difference is that the LOSO validation results reported 

here were obtained with no prior knowledge of the tested participant’s gait 
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characteristics. The LOSO validation results, therefore, represented a more robust 

modeling technique for estimating MTC_Height across a range of self-selected 

preferred walking speeds.  

The approach to MTC_Height estimation incorporated features of both raw 

and integrated inertial signals to train GRNN models using a hill-climbing feature-

selection method. Based on previous research (Lai et al., 2008c) it was anticipated 

that relatively few of all (in this study forty) gait-related inertial-signal features 

would contribute constructively to MTC_Height estimation. The correlation results 

confirmed a different relationship for young and older participants between 

MTC_Height and IMU measured swing phase kinematics within the same stride. For 

Older IMU measured minimum medio-lateral angular displacement (AngDispX) and 

group MTC_Height, for example, were highly correlated (r=0.61) but less strongly 

correlated for Young (r=0.38). These findings illustrated that to accurately estimate 

MTC_Height it was critical to identify inertial-signal features that would be highly 

predictive for all participants. LOSO validation was used to choose the optimum 

predictive inertial signal kinematics incorporation with hill-climbing feature-

selection. The inertial signals’ feature-set which produced the lowest RMSE was 

considered optimal. Hill climbing is a “greedy” one-way feature-selection, in which 

the optimum determination depends on the features selected and tested sequentially.  

When raw and integrated signals were combined MTC_Height estimation error 

reduced by up to 44.5% relative to using only raw inertial signals. 

For both groups that feature showing the highest linear correlation with 

MTC_Height was returned as the first optimum by the hill-climbing technique. Not 
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all optimum features were, however, highly correlated with MTC_Height, suggesting 

the GRNN technique was successful in accommodating the underlying non-linear 

associations between inertial sensor signals and MTC_Height (McGrath et al., 2011). 

Most optimum features (6/ 9 for the Young and 3/5 for Older) were from the sagittal 

plane; not unexpected, given that gait is more sagittally constrained. Two optimum 

features were common to both age groups, (i) sagittal plane displacement midway 

between minimum and maximum vertical displacement (DispZmid) and (ii) minimum 

medio-lateral angular accumulation over time at the end of the swing phase. 

Biomechanically, DispZmid was the sensor-signal derived displacement in the sensor 

coordinate system that best approximated MTC_Height, as revealed by high 

correlations with reference MTC_Heights (Young: r=0.40, Older: r=0.71). 

Estimation of MTC_Height based only on DispZmid, produced RMSE of 9.2 mm but 

when other features were included RMSE reduced to 7.1 mm in the Older, 

confirming that foot movement in all three sensor coordinates contribute to accurate 

estimation of MTC_Height. Future MTC_Height estimation research using other 

feature selection techniques such as a principal component analysis (Yoshiyuki et al., 

2014) could confirm the present findings or possibly identify more optimal feature 

combinations using a non-sequential approach. 

Lai et al. (2009b) performed a time series analysis of MTC and two other 

end-point foot control parameters mx1 and mx2 (Figure 2-4). They found high 

autocorrelations in a group of older adults with a history of falls indicating cyclic 

patterns in their walking strategies compared to almost random walking patterns in 

healthy young participants. In the present modeling, five optimum features for the 

Older compared to nine for the Young may also represent more long term structure 



Page 141 

 

in the gait parameter time series with ageing. Other authors have also proposed that 

with ageing gait control is associated with reduced biomechanical “complexity” 

(Manor and Lipsitz, 2013). The Young’s first optimum feature, for example, was 

foot vertical velocity at the end of the swing phase, possibly representing ground 

contact velocity at the terminal swing. This feature was absent in Older possibly 

because foot-ground contact is less deliberate and, therefore, did not appear as a 

significant feature to discriminate MTC_Height. 

In the present project inclusion of dual task and speed-matched slower (than 

preferred) walking enabled the examination of the machine-learned models 

generalizability. From the 3D system measured MTC_Height results it is clear that 

ageing and walking conditions influenced the distribution characteristics. The focus 

of our discussion now is the project’s success in modeling a gait parameter that 

reveals considerable change in distribution characteristics as a function of age and 

walking condition. For each age group RMSE between measured and estimated 

MTC_Height increased when their age-specific GRNN models, Model_Y and 

Model_O, were tested across walking conditions. Model_Y estimated MTC_Height 

median and IQR showed a significant difference from the 3D-motion capture 

MTC_Height when applied to two other experimental gait conditions, slower and 

dual task walking. It was important to note that for Young there was no significant 

differences in 3D-motion capture MTC_Height across all three experimental 

conditions. For young people the inertial sensor features obtained using hill-climbing 

were, therefore, specific to preferred-speed walking resulting in a less generalizable 

GRNN model. In contrast, when Model_O, developed using preferred-speed walking 

data, was applied to the other experimental conditions, in both slower and dual task 
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walking, Model_O still produced MTC_Height estimates that were not significantly 

different from the 3D motion captured MTC_Height. An acceptable performance of 

Model_O across walking conditions suggests that older adults’ preferred-speed data 

training data contained sufficiently generalizable information and the feature-

selection delivered appropriate features to represent the inertial sensor kinematics 

and reference MTC_Height. The generalizability of the older adult’s GRNN model 

further supports the “complexity and ageing” hypothesis proposed earlier, because 

even though the older adults’ 3D-motion capture MTC_Height in dual task walking 

was significantly different to preferred-speed ageing-related loss of complexity may 

have allowed the model to maintain good MTC_Height prediction.   

RMSE also increased when Model_Y was tested across walking conditions 

with Older and vice versa. Model_Y built using young adults’ preferred-speed 

walking data, accurately estimated older adults’ preferred-speed MTC_Height but 

was unsuccessful in the other two experimental conditions. Model_O was successful 

in estimating MTC_Height central tendency of Young in all three walking conditions 

suggesting that older gait data used to train the model also had information which is 

common for Young.   

6.4 Sensor technology developments and project summary  

The need for ubiquitous health systems for real-time monitoring and patient 

feedback is increasing rapidly to meet the demand for improved patient care with 

reduced human resources. In this context inertial sensors are useful given their low 

cost, compact design, and low power consumption. Interpreting inertial sensor data, 

however, is a key challenge in employing them in health care applications such as 
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gait monitoring. The adaptive learning models for sensor operation would contribute 

towards more efficient embedded data processing and minimizing the computational 

requirements of portable sensor networks. Model_O built using older adults’ 

preferred-speed walking data in this project improved MTC_Height estimation 

accuracy such that it could now be trialed outside the laboratory.   

One promising application is in using MTC feedback from remote sensors as 

intervention for increasing toe-ground clearance in real-time (Tirosh et al., 2013).  In 

a laboratory setting using 3D motion capture data Begg et al. (2001) used a real-time 

display to present toe-trajectory and MTC_Height.  With visual feedback both young 

and older adults significantly increased MTC_Height within a target band above a 

baseline no-feedback condition. These results clearly demonstrated that MTC 

increased with real-time foot clearance feedback. High risk gait could be identified 

by predicting either low MTC_Heights or greater variability in MTC_Height a 

number of gait cycles prior to the event. Another approach to high risk gait 

identification would be to calculate tripping risk probability by monitoring lower 

limb trajectory parameters in real-time. In implementing a portable device to monitor 

toe-trajectory in overground walking, it is important to note that the present study 

was conducted only in treadmill walking. The model’s performance should now be 

validated in overground walking but given it was successful in slower and dual task 

walking, it is anticipated that it would perform well across a range of overground 

conditions. 

 The main criterion for assessing GRNN-based MTC estimation accuracy in 

this work was Root Mean Square Error (RMSE) which was compared with those 
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reported in the literature using integration method which is extensively used in 

previous relevant work. It will be an interesting research question to directly compare 

the GRNN-based MTC estimation with the integration method on the same dataset as 

a future work. In adapting the inertial sensor based gait monitoring system, another 

important consideration is that the gait event detection algorithm presented in the 

present thesis was based on healthy gait. When applying similar technology in 

pathological gait a different threshold based algorithms (Jasiewicz et al., 2006; Lau 

& Tong, 2008) could be considered for successful gait event detection. Future data 

from over ground walking would also be important with respect to non-MTC gait 

cycles. It would be interesting to perform the statistical tests on the model estimated 

MTC_Height to determine the age and walking condition effects in future. 

This project is the first to employ machine-learning to estimate young and 

older adults’ MTC_Height using inertial data from a foot-mounted sensor. The 

research findings make an important contribution to falls prevention in 

demonstrating the possibilities of remote sensor monitoring. The inertial sensor 

signal processing, for example, may lead to proactive solutions to falls prevention by 

providing biomechanical information allowing pedestrians to modify foot trajectory 

parameters in real time using augmented MTC information. There will also be 

opportunities for applying sensor-based monitoring to other populations with gait 

pathology. A final significant outcome is the project’s contribution to the broader 

scientific agenda of understanding how ageing influences biomechanical gait 

characteristics associated with tripping risk. In this regard, further analysis of higher 

clearance non-MTC gait cycles provides a new avenue for gait biomechanics with 

the potential to reveal important ageing effects on lower limb trajectory control. 
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Appendix A: Printed Circuit Board Layout 

 

 

Foot-mounted sensor printed circuit board layout top and bottom view, designed 

using Protel (98) 
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Appendix B: Advertisement in 60plus newspaper 
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Appendix C:  General Health Survey Questionnaire 

 

General Health Survey Questionnaire 

Please fill out as much as you can. When you are finished, please leave it with the 

investigator. 

 

Statement of Confidentiality 

All information that would permit identification of investigators or their participants 

will be regarded as strictly confidential, will be used only for the purpose of 

operating and evaluating the study, and will not be disclosed or released for any other 

purposes without prior consent, except as required by law. 

 

Please circle the correct answer to the following questions.  Please use the space 

provided to add any additional information you believe is required. 

1. In general, would you say your health is? 

a. Excellent 

b. Very good 

c. Good 

d. Fair 

e. Poor 

 

2. Have you previously fallen, or tripped, in the past 24 months? 

Yes           No 

 (If no please skip to question 4) 

 If yes please provide date/s and description of fall/s and 

__________________________________________________________________ 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________ 

_______________ 

 

3. Did the fall result in physical injury? 

Yes    No 
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If yes please describe injury and length of hospitalization and rehab if required? 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

________________ 

4. Would you say you can walk comfortably without stopping for? 

a. Less than 10 minutes 

b. 10 to 30 minutes  

c. 30 minutes to one hour 

d. Greater than one hour 

 

5. Do you live independently and require no aid for walking? 

Yes    No 

 

6. Have you a history of orthopedic problems? 

Yes    No 

If yes please explain 

______________________________________________________________ 

_________________________________________________________________

_________________________________________________________________

________________________________________________________ 

 

7. Do you suffer from any muscle or skeletal problems that you know of? 

Yes    No 

If yes please explain 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________ 

 

8. Have you ever suffered or do you currently suffer from any heart or respiratory 

problems that you know of? 

Yes    No 
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If yes please explain 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

_________ 

    

9. Would you say your balance while both standing and walking is? 

Good    Poor 

 

10. Do you currently take any psychotropic / antipsychotic medications? 

Yes         No 

 

If yes, how long have you been using that drug for? 

____________________________________________________________________

____________________________________________________________________

__________________________________________________ 

 

11. Do you suffer from any known allergic conditions caused by the adhesive gel 

used to attach the surface electrodes to the skin? 

Yes         No 

 

 

Thank you for filling out this questionnaire. 
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Appendix D: Information to participants 

Information to participants (age group: 65 

years old and above) involved in research 

 

Our Research 

You are invited to participate in a research project entitled “Sensors and Actuators: A 

New Approach to Falls Prevention in Older Adults”. 

Project explanation 

Falls are one of the major causes of injuries and the primary cause of accidents and 

deaths of older adults aged 65 years and above. The medical cost associated with the 

falls in older is already very high and is increasing at an extremely high rate. The 

overall vision of the project is to develop a shoe-mounted sensor system, which could 

continuously monitor the lower limb movement to predict the risk of a potential 

tripping hazard and fall.  

The proposed study aims to explore the human locomotion system and how it is 

controlled. For this purpose the lower limb walking characteristics of 30 healthy 

older (aged 65 years and above) participants will be tested while walking on a 

treadmill under various speed conditions 

Successful completion of this research will reduce the falls related injuries and 

significantly benefit older population of Australia and other countries. New 

mathematical models will find many applications in injury prevention, gait disorder 

diagnostics, sports performance enhancement and movement rehabilitation. 
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What will I be asked to do? 

1 – All participants will be equipped with small markers attached on the important 

joint landmarks to record the motion of the body. They will be also attached with 

inertial sensors (accelerometers and gyroscopes) at the distal end of left/ right 

shoes/feet.  

2 – Participants would be requested to wear safety harness to avoid any possible risk 

while walking on the treadmill. Participants will be first asked to walk naturally on a 

treadmill to estimate their preferred walking speed (PWS). 

3 - Participants will be asked to complete walking on treadmill for 5 min with their 

PWS 

4 - Participants will be asked to walk on a treadmill with a glass of water at preferred 

walking speed for 5 min 

5 - Participants will be asked to walk on a treadmill without the glass at the same 

speed as above for 5 min 

6 – Participants will be asked to complete overground walking for 10mins with a their 

PWS 

During the experiment, all the participants will be provided with adequate rest 

between testing sessions and the participants will be allowed to withdraw from the 

experiment anytime. 

 

What will I gain from participating? 

 Making a contribution to gait research 

 Understanding more about gait biomechanics and risks of falls 

 

How will the information I give be used? 

The information obtained through the experiment will be confidential and used only 

for the purpose of this study, which will include the research paper, thesis, posters, 

presentation, etc. The private information that can identify the individual (such as 

name, address, or contact information) will not be reported.  

What are the potential risks of participating in this project? 

There are no foreseen risks regarding to this experiment because the procedures 

involve only normal everyday healthy activities and there are no invasive 

physiological or medical research techniques. However to avoid any possible loss of 

balance/ miss-steps in treadmill, participants will be requested to wear harness. If a 

participant feels uncomfortable during the test, the test will be stopped immediately 

and the participant will be given the option to withdraw. Telephones are located 

within the facility if medical attention is needed, and the participants will be escorted 

to a convenient hospital. 
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How will this project be conducted? 

Participants will be asked to walk on a flat, unobstructed, lighted, and non-slippery 

treadmill repeatedly. All the participants will have small markers placed on their 

right/left upper/lower limb segments for collecting data allowing gait to be 

characterized. They will be also attached with small sensors (accelerometers and 

gyroscopes) at the distal end of left/ right feet. Participants will be also asked to wear 

safety harness to avoid any possible risks. Walking patterns will be examined by 

measuring foot motion, and ground reaction forces. The participants can take rest any 

time and can also withdraw from the experiment any time.  

Who is conducting the study? 

School of Sports and Exercise Science, Biomechanics Laboratory, Footscray Park 

Campus 

Principal Investigator 

Prof Rezaul Begg 

Phone: 0399191116 

E-mail: rezaul.begg@vu.edu.au  

 

Student Investigator  

Ms Braveena Santhiranayagam 

Phone: 0399199227 

E-mail: braveena.santhiranayagam@live.vu.edu.au  

 

Associate Investigator 

Dr Daniel Lai 

Phone: 0399194425 

E-mail: daniel.lai@vu.edu.au  

Any queries about your participation in this project may be directed to the Principal 

Researcher listed above. If you have any queries or complaints about the way you 

have been treated, you may contact the Secretary, Victoria University Human 

Research Ethics Committee, Victoria University, PO Box 14428, Melbourne, VIC, 

8001 phone (03) 9919 4781. 

  

mailto:rezaul.begg@vu.edu.au
mailto:braveena.santhiranayagam@live.vu.edu.au
mailto:daniel.lai@vu.edu.au


Page 166 

 

Appendix E: Consent form for participants 

Consent form for participants (age group: 65 

years old and above) involved in research 

We would like to invite you to be a part of a study involving gait examination, 

prediction of risk of falls and falls prevention. The overall aim of the project is to 

develop a sensor-based system, which could continuously monitor the foot motion to 

predict the risk of a potential fall. You are asked to participate in the testing 

procedures outlined below.  

 This research has been approved by the Victoria University Human Research 

Ethics Committee. 

 The physical risks associated with the procedures are minimal.  

 The testing area will be kept private with access limited only to the 

researchers.  

 All data will be kept confidential and only the researchers will have access to 

the data files.  

 Please be advised that although you are volunteering for this research, you are 

free to withdraw at anytime. 

 

CERTIFICATION BY PARTICIPANT 

I,              

           

of              

certify that I am above 18 years old and that I am voluntarily giving my consent to 

participate in the research entitled: Sensors and Actuators: A New Approach to 

Falls Prevention in Older Adults, being conducted at Victoria University by: Prof 

Rezaul Begg (supervisor), Dr. Daniel Lai (co-supervisor), and Ms Braveena 

Santhiranayagam (student researcher). 

PROCEDURES: 

 The tester will take your body height and weight measurements 

 The tester will attach small plastic shells to the upper and lower limbs and 

shoes using Velcro straps. These shells have small ‘diode’ markers that are tracked 

by a 3D camera system. The markers are connected to a small control box with wire 

cables. The control box will be attached to a waist belt. The markers are powered by 

low voltage batteries and will be fastened along the outside of the shoe using 

adhesive tape, safety pins and plastic clips.  

 The tester will also attach 2 miniaturized inertial sensors (measures foot 

accelerations and rotations) to the distal end of the right and left shoes which are 

connected to the wireless transmitted attached to the same waist belt as in the 

previous procedure 
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 Preferred walking speed (PWS) of the participant would be estimated while 

the participant is getting familiarized with the treadmill machine. 

 Participants would be requested to walk on treadmill and overground under 

following conditions. The maximum walking time would be 30 min for the older 

participants. Adequate rest would be provided between different conditions. 

 Condition 1 

o Walk on treadmill with PWS for 5 min  

 Condition 2 

o Walk on a treadmill with a glass of water at preferred walking speed 

for 5 min 

o Walk on a treadmill without the glass at the same speed as above for 5 

min 

 Condition 3 

o Overground walking with PWS to get 20 gait cycles 

 

I certify that the objectives of the study, together with any risks and safeguards 

associated with the procedures listed hereunder to be carried out in the research, have 

been fully explained to me by Braveena Santhiranayagam.  I certify that I have had 

the opportunity to have any questions answered and that I understand that I can 

withdraw from this research at any time and that this withdrawal will not jeopardise 

me in any way. 

I have been informed that the information I provide will be kept confidential. 

 

Signed:      

Date:      

 

Any queries about your participation in this project may be directed to the researcher  

Prof Rezaul Begg (ph 9919 1116) or Ms Braveena Santhiranayagam (ph 03 9919 

9227).  If you have any queries or complaints about the way you have been treated, 

you may contact the Secretary, Victoria University Human Research Ethics 

Committee, Victoria University, PO Box 14428, Melbourne, VIC, 8001 phone (03) 

9919 4781. 
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Appendix F: Inertial-signal features correlations with MTC_Height  

Correlations (r) between preferred-speed MTC_Height and statistical properties IMU 

obtained signals 

Inertial 

sensor signal Stat 
Young 

(r) 
Older 

(r) 
Inertial 

sensor signal Stat 
Young 

(r) 
Older 

(r) 
AccX max 0.08 0.05 AngVelX max -0.39 -0.47 

min 0.01 -0.05 min 0.37 0.43 

mean 0.04 -0.15 mean -0.39 -0.54 

SD 0.05 -0.11 SD -0.43 -0.51 

range 0.06 -0.09 range -0.36 -0.49 

S -0.08 0.05 S -0.21 -0.07 

K 0.11 0.01 K -0.14 -0.02 
AccY max -0.37 -0.04 AngVelY max 0.06 0.00 

min 0.17 0.29 min -0.16 -0.11 

mean -0.46 -0.35 mean 0.18 -0.01 

SD -0.36 -0.34 SD 0.16 0.05 

range -0.20 -0.32 range 0.13 0.08 

S 0.25 -0.35 S 0.06 0.03 

K 0.09 0.18 K -0.10 0.18 
AccZ max -0.31 -0.33 AngVelY max 0.16 -0.16 

min 0.50 0.38 min -0.10 0.10 

mean -0.51 -0.43 mean 0.04 -0.29 

SD -0.54 -0.40 SD 0.08 -0.22 

range -0.47 -0.38 range 0.14 -0.14 

S 0.39 0.35 S -0.18 -0.20 

K 0.24 0.40 K 0.18 0.28 
VelX max 0.09 0.18 AngDispX max -0.20 -0.55 

min < 0.00 0.22 min 0.38 0.61 

mean -0.12 -0.19 mean -0.39 -0.53 

SD -0.06 -0.13 SD -0.38 -0.54 

range 0.05 -0.04 range -0.29 -0.59 

S -0.06 0.27 S 0.02 0.39 

K 0.20 0.42 K 0.17 -0.06 
VelY max -0.45 -0.28 AngDispY max 0.13 < 0.00 

min 0.18 0.16 min -0.13 -0.18 

mean -0.47 -0.43 mean 0.14 0.06 

SD -0.41 -0.39 SD 0.15 0.06 

range -0.05 -0.32 range 0.14 0.09 

S -0.03 0.10 S 0.03 -0.40 

K 0.50 0.25 K 0.01 0.05 
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 (continued) 
Inertial 

sensor signal Stat 
Young 

(r) 
Older 

(r) 
Inertial 

sensor signal Stat 
Young 

(r) 
Older 

(r) 
VelZ max -0.04 -0.05 AngDispZ max 0.13 -0.11 

min 0.43 0.48 min -0.02 0.21 

mean -0.50 -0.45 mean 0.09 -0.31 

std -0.55 -0.42 std 0.08 -0.26 

range -0.62 -0.32 range 0.07 -0.19 

std 0.35 0.54 std 0.04 0.12 

K -0.08 0.30 K 0.04 0.31 
DispX max 0.05 -0.04 AngAccumX max -0.31 -0.58 

min 0.11 0.20 min 0.32 0.44 

mean -0.12 -0.16 mean -0.39 -0.54 

std -0.09 -0.15 std -0.37 -0.54 

range -0.05 -0.12 range -0.35 -0.52 

std 0.10 0.16 std -0.15 -0.17 

K 0.11 0.15 K 0.09 0.31 
DispY max 0.18 0.18 AngAccumY max 0.16 0.04 

min -0.37 -0.38 min -0.15 -0.08 

mean -0.34 -0.43 mean 0.11 0.06 

std -0.37 -0.42 std 0.12 0.07 

range -0.40 -0.40 range 0.16 0.07 

std -0.21 0.28 std -0.04 -0.15 

K -0.12 0.53 K -0.06 -0.08 
DispZ max -0.60 -0.61 AngAccumZ max 0.18 -0.23 

min 0.36 0.28 min -0.02 0.28 

mean -0.51 -0.30 mean 0.10 -0.31 

std -0.52 -0.36 std 0.11 -0.29 

range -0.51 -0.45 range 0.12 -0.26 

std -0.46 -0.44 std 0.32 0.16 

K -0.13 -0.10 K 0.10 0.24 
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Appendix G: Statistical Test Results 

Statistical summary tables for ageing effect on median MTC_Height at preferred-

walking 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 45.63 1 45.6333 0.59 0.4429 

Error 2201.87 28 78.6381 

  Total 2247.5 29       
 

Statistical summary tables for ageing effect on MTC_Height IQR at preferred-

walking, * denotes p < 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 520.83 1 520.833 6.72 0.0095* 

Error 1725.67 28 61.631 

  Total 2246.5 29       
 

Statistical summary tables for ageing effect on median MTC_Time at preferred-

walking 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 8.53 1 8.5333 0.11 0.74 

Error 2238.47 28 79.9452 

  Total 2247 29       
 

Statistical summary tables for ageing effect on MTC_Time IQR at preferred-

walking, * denotes p < 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 598.53 1 598.533 7.77 0.0053* 

Error 1633.97 28 58.356 

  Total 2232.5 29       
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Statistical summary tables for task effect on median MTC_Height for Young 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 0.5333 2 0.26667 0.53 0.7659 

Error 29.4667 28 1.05238 

  Total 30 44       

 

Statistical summary tables for task effect on MTC_Height IQR for Young 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 0.1 2 0.05 0.13 0.9355 

Error 22.4 28 0.8 

  Total 22.5 44       

 

Statistical summary tables for task effect on median MTC_Time for Young, * 

denotes p < 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 10.0333 2 5.01667 10.38 0.0056* 

Error 18.9667 28 0.67738 

  Total 29 44       

 

 

Statistical summary tables for task effect on MTC_Time IQR for Young, * denotes p 

< 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 0.2333 2 0.11667 0.26 0.8763 

Error 26.2667 28 0.9381 

  Total 26.5 44       
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Statistical summary tables for task effect on median MTC_Height for Older, * 

denotes p < 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 9.6333 2 4.81667 9.8 0.0075* 

Error 19.8667 28 0.70952 

  Total 29.5 44       

 

Statistical summary tables for task effect on MTC_Height IQR for Older, * denotes p 

< 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 14.0333 2 7.01667 14.27 0.0008* 

Error 15.4667 28 0.55238 

  Total 29.5 44       

 

Statistical summary tables for task effect on median MTC_Time for Older, * denotes 

p < 0.05 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 20.0333 2 10.0167 20.37 3.8E-05* 

Error 9.4667 28 0.3381 

  Total 29.5 44       

 

Statistical summary tables for task effect on MTC_Time IQR for Older 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 3.0333 2 1.51667 3.25 0.1969 

Error 24.9667 28 0.89167 

  Total 28 44       
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Young and Older Z-test results for proportions of non-MTC gait cycles across tasks,* 

= p < 0.05, NA = comparison not applicable, - = comparisons not performed. 

Direction of the significant comparisons can be determined from the proportions 

  

Young Older 

    PW SW DW PW SW DW 

Young 

PW 

(2.9%) NA -22.24* -25.07* -22.36* - - 

SW 

(26.7%) -22.24* NA 3.35* - - - 

DW 

(22.8% -25.07* 3.35* NA - - - 

Older 

PW 

(18.7%) -22.36* - - NA -15.50* -2.62* 

SW 

(34.6%) - - - -15.50* NA -2.62* 

DW 

(37.7%) - - - -2.62* -2.62* NA 
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Appendix H: Optimum feature-set from other combinations 

 

Optimum feature-set obtained with hill-climbing features-selection for (i) raw 

features only and (ii) raw + SI features 

(i) Raw features only 

Young Older 

Minimum longitudinal acceleration 

(AccZ) 

Maximum medio-lateral angular velocity 

(GyroX) 

Maximum medio-lateral angular 

velocity (GyroX) Minimum medio-lateral acceleration (AccX) 

Maximum longitudinal angular 

velocity (GyroZ) Minimum longitudinal acceleration (AccZ) 

Minimum longitudinal angular 

velocity (GyroZ) 

 Minimum anterior-posterior 

acceleration (AccY) 

 (ii) Raw + SI features 

Young Older 

2nd minimum longitudinal velocity 

(VelZ) 

Minimum medio-lateral angular 

displacement 

Minimum longitudinal angular 

velocity (GyroZ) 

Minimum longitudinal angular velocity 

(GyroZ) 

Minimum medio-lateral acceleration 

(AccX) 

Maximum anterior-posterior angular 

displacement (DispY) 

 

Maximum longitudinal angular velocity 

(GyroZ) 

 

Maximum medio-lateral angular 

displacement 

 

Maximum medio-lateral acceleration 

(AccX) 

 

 




