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ABSTRACT 

!

This thesis investigated the movement sequences of elite and junior-elite female netball 

athletes using a local positioning system (LPS). Study one determined the indoor 

validity of an LPS, specifically the Wireless ad hoc System for Positioning (WASP), for 

measuring distance, velocity and angular velocity whilst sprinting and walking five non-

linear courses. The criterion measure used to assess WASP validity was Vicon, a 

motion analysis system. During all sprinting and walking drills, WASP had an 

acceptable accuracy for measuring total distance covered (coefficient of variation, CV; 

< 5.2%). Similarly, WASP had an acceptable accuracy across all sprinting and walking 

drills for measuring mean velocity (CV; < 6.5%). During all sprinting drills, WASP had 

acceptable accuracy for measuring mean and peak angular velocity (CV; < 3%). A 

increased bias was observed during all walking drills, compared to sprinting, likely due 

to radio-frequency (RF) interference from the metal-clad indoor stadium where 

validation trials were conducted. Researchers and practitioners may use WASP to 

accurately quantify the non-linear movement of athletes during indoor court-based 

sports although should be aware of the increased bias during walking movement. 

Spatiotemporal data, obtained by WASP, was analysed for the movement sequences 

performed during competitive netball matches in study two. Traditional analysis of 

team-sport athlete match activity typically bins velocities and accelerations into 

different zones. These zones are discretised using threshold values that are usually 

based on other research, determined arbitarily or from proprietary software. In study 

two, k-means clustering was used to identify four velocity, three acceleration and four 

angular velocity clusters from netball athlete spatiotemporal data collected by WASP.  

The frequently recurring latent patterns of athlete movement across a quarter of netball 

were identified with sprinting, acceleration and deceleration a common feature.  
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Study three investigated the movement sequences performed by each of the seven 

netball playing positions, during competitive matches at the elite level. A total of 10 

frequently recurring combinations of movement were discovered with only the wing 

attack (WA), goal attack (GA) and goal defence (GD) closely related. According to the 

frequently recurring latent movement sequences performed, the goal shooter (GS) and 

GD were the least similar netball playing positions at the elite level. Discovering the 

relative frequency of recurring movement sequences calculates a characteristic signature 

that differentiates each of the seven netball playing positions. Rather than structuring 

training around time spent in pre-determined velocity or acceleration zones, the 

developed movement sequencing technique allows practitioners to focus on training the 

specific movement patterns performed by each playing position. 

Study four investigated the movement sequences performed by elite and junior-elite 

female netball athletes during competitive matches. A total of 11 frequently recurring 

combinations of movement were discovered, with the GS and goal keeper (GK) the 

most closely related netball playing positions across both standards. Pairwise 

comparisons revealed large differences across playing standards, suggesting that 

specific physical training may be required for athletes to move up a playing standard. 

The playing positions of netball, at the elite and junior-elite level, may have 

individualised training programs to target the specific movement sequences performed. 

To gain a further understanding of netball athlete movement and to apply the 

methdoology to spatiotemporal data from other team-sports, more matches should be 

incorporated to train and test the technique. 

The findings of this thesis identify that the WASP can accurately quantify the non-

linear movement of athletes indoors. Spatiotemporal data can be analysed for the 

movement sequences performed by athletes, according to playing position and standard. 

Junior-elite netball athletes may require specific conditioning to perform the different 

movement patterns of elite netball athletes. 
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CHAPTER 1 – INTRODUCTION  

The external load of a team-sport athlete can be captured, via tracking technologies, 

during competition or training. An athlete’s displacement, velocity and acceleration 

over time, termed activity profile, can then be calculated. Research on the activity 

profiles of elite team-sport athletes has typically focused on the distance covered or time 

spent at varying velocities. Threshold values are used to bin these velocities into 

different categories, each with a qualitative descriptor. However, conjecture exists 

regarding which thresholds should be used to classify the velocity and acceleration of a 

team-sport athlete. Multiple threshold values exist, even within a single sport, making 

the comparison between studies difficult for researchers and practitioners. Threshold 

values have also been arbitarily determined or as instructed by properitary software 

from manufacturers of tracking systems. Velocity thresholds have been individualised 

(Abt & Lovell, 2009) although linear running during physiological tests to exhausation 

do not account for the energetic cost of accelerated or decelerated running, a feature of 

team-sport activity (Carling, 2013). Alternatively, sophisticated analytical methods such 

as data mining may be a useful approach to examine team-sport athlete external load. 

Data mining, a subfield of computer science, is a problem-solving methodology that 

finds a logical or mathematical description of patterns within a data set (Fayyad, 

Piatetsky-Shapiro, & Smyth, 1996). In elite sport, athletic performance has been 

examined via data mining techniques including clustering (Ofoghi, Zeleznikow, Dwyer, 

& Macmahon, 2013a). Clustering is a data mining technique that detects and organises 

data into groups based on similarity. Clustering was used to group acclerometer derived 

activity profile data from the seven playing positions of netball (Young, Gastin, 

Sanders, Mackey, & Dwyer, 2016). Athletes were classified based on their match 

external load output, which may result in specific training strategies for separate clusters 

or groups. The position of different body parts has been extracted from wearable sensor 
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data via clustering (Ghasemzadeh, Loseu, & Jafari, 2010). Each velocity and 

acceleration movement was represented by a sequence of characters. A distance metric 

was then used to find the similarity between two character sequences (Ghasemzadeh et 

al., 2010). Human movement from wearable sensors was therefore classified and 

compared without the requirement of an arbitrary velocity or acceleration threshold. 

Together, the data mining techniques of clustering and sequence matching present an 

oppportunity to ascertain the movement of team-sport athletes, without the requirement 

of arbitrary or physiologically defined thresholds. Information on the movement 

sequences performed by team-sport athletes, the how part of activity profile, is currently 

missing from the literature. Using data mining techniques, this thesis will develop a 

method to examine the movement sequences performed by elite team-sport athletes 

during matches.  

Research on team-sport match activity profiles has typically focused on field-based 

male athletes (Aughey, 2011a). Female athletes are underrepresented in sport research 

(Costello, Bieuzen, & Bleakley, 2014). There is also limited information on the activity 

profile of court-based team-sports, including netball. At the elite level, netball matches 

and training are held indoors. The lack of research on court-based team-sports, 

including netball, is likely due to limitations in technologies available for this type of 

analysis. Radio-frequency (RF) tracking systems, orignally deployed for use in 

underground mines, may have application for indoor sports (Hedley et al., 2010). To 

date, no study has examined the accuracy of this system, against a criterion, for 

measuring movement representative of court-based team-sports. This thesis will 

therefore investigate the accuracy of an RF tracking system for indoor court-based 

team-sport use. This technology will be used to collect the external load of elite female 

netball athletes during competitive matches. Using data mining techniques, the 

frequently recurring movement sequences of netball athletes will be uncovered. These 

sequences will then be examined according to similarities between the seven netball 
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playing positions and two playing standards, elite versus junior elite. This method 

derives the latent movement patterns of elite and junior-elite netball athletes. Future 

application of this methodology, including generalisation to all elite and junior-elite 

netball athletes, requires testing on a much larger dataset.  
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CHAPTER 2 - REVIEW OF LITERATURE 

2.1  Athlete Tracking Technologies  

The movement of a team-sport athlete can be captured during training or matches via 

athlete tracking technologies including global positioning systems (GPS), local 

positioning systems (LPS) or optical player tracking systems. These technologies 

estimate an athlete’s position relative to the local coordinates of a playing area. Athlete 

displacement, velocity and acceleration are then calculated over a specified time epoch. 

The analysis of these variables is termed activity profile (Aughey, 2011a). Measuring an 

athlete’s activity profile allows for the design of specific training drills (Boyd, Ball, & 

Aughey, 2013). Activity profiles can also be used to monitor change during a season or 

tournament (Bradley et al., 2009; Jennings, Cormack, Coutts, & Aughey, 2012a). 

Whilst extensive research exists on those competing in field-based team-sports 

(Aughey, 2011a; Jennings et al., 2012a; Mooney et al., 2011), the activity profile of 

court-based athletes remains largely unknown. This is likely due to limitations in 

tracking technologies to capture external load in these environments.  

Large datasets are collected from athlete tracking technologies, resulting in a multitude 

of external load analysis techniques (Aughey, 2011a). Due to the variety of technologies 

and techniques within the literature, the comparison of activity profiles is difficult. A 

detailed review of the various activity profile analysis techniques is discussed in 

Chapter Three. An added limitation is the differing validity and reliability of athlete 

tracking systems used to collect activity profiles. Tracking technologies, and their 

commercially developed software, are often released with limited information on 

accuracy and precision (Edgecomb & Norton, 2006). Researchers are therefore required 

to quantify the validity and reliability of tracking systems before they are used in 

specific sports. Commercial tracking systems should be independently and scientifically 

validated before release for use in a practical setting. Quantifying the accuracy and 
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precision of an athlete tracking system allows for meaningful change in activity profile 

to be measured. 

2.1.1  Validity and Reliability of Athlete Tracking Systems 

Validity is the ability of equipment to reflect what it is designed to measure (Atkinson 

& Nevill, 1998). Tracking technologies should accurately quantify an athlete’s position 

plus the resulting displacement, velocity and acceleration when compared to a criterion 

measure. A variety of criterion measures are used when validating athlete tracking 

technologies, including pre-defined courses (Coutts & Duffield, 2010; Gray, Jenkins, 

Andrews, Taaffe, & Glover, 2010). The distance of a pre-defined course is quantified 

with a measuring tape (Coutts & Duffield, 2010; Frencken, Lemmink, & Delleman, 

2010). Cones are typically used to indicate the start, turning point and end of each 

course although the exact path travelled by an athlete is unable to be quantified. Small 

but critical deviations in an athlete’s position may therefore go undetected. Speed, 

calculated by the total distance of the pre-measured course divided by the time taken to 

complete, is used as a comparison measure. Fluctuations in speed are therefore unable 

to be quantified using this approach. Accurately measuring the fluctuation or range of 

speeds performed by a team-sport athlete is critical for the analysis of activity profile 

(Aughey, 2011a). As this cannot be quantified, pre-defined courses are therefore an 

inadequate criterion measure for validating athlete tracking systems. Criterion measures 

that can accurately quantify position, displacement and speed should instead be utilised. 

Infra-red timing gates, together with pre-defined courses, are often used as a criterion 

when validating athlete tracking systems (Castellano, Casamichana, Calleja-González, 

San Román, & Ostojic, 2011; Di Salvo, Collins, McNeill, & Cardinale, 2006; Frencken 

et al., 2010; Jennings, Cormack, Coutts, Boyd, & Aughey, 2010a). Timing gates are 

placed at the start, end and evenly distributed throughout a pre-defined course to obtain 

split times. Although easy to setup, average speed is partly dependent upon the number 

of timing gates in use. A continuous measure of speed is also unable to be quantified via 
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timing gates. Instead, a system that can accurately quantify instantaneous speed should 

be used as a criterion measure when validating athlete-tracking systems. 

An alternate criterion to timing gates is laser devices. During validity trials, a laser is 

typically positioned on a tripod and aligned with the centre of a participant’s back 

(Varley, Fairweather, & Aughey, 2012). A narrow beacon of light is omitted and then 

reflected off the participant, allowing for a nonintrusive continuous measurement of 

distance and velocity (Harrison, Jensen, & Donoghue, 2005). Compared to video-based 

systems, laser devices produce valid and reliable estimates of distance and velocity 

(Harrison et al., 2005). Laser devices also possess a high sample rate, typically > 50 Hz, 

allowing for the collection of instantaneous velocity (Harrison et al., 2005). Laser was 

used as a criterion measure to determine the validity and reliability of GPS devices 

during linear accelerated running (Varley et al., 2012). However, the validity and 

reliability of laser during non-linear running is currently unknown. If an athlete tracking 

system is to be valid and reliable at measuring non-linear activity, the criterion should 

accurately quantify such movements. Laser is therefore extremely limited as a criterion 

measure for assessing distance covered and instantaneous velocity during non-linear 

movements. 

The current accepted criterion for assessing human movement during linear and non-

linear trials is three-dimensional (3D) motion analysis systems, including Vicon 

(Richards, 1999). These systems consist of multiple, high-resolution cameras that 

operate at a high sampling rate, usually > 100 Hz (Duffield, Reid, Baker, & Spratford, 

2010; Stevens et al., 2014). These high-definition cameras capture a visual record of 

light-reflective markers that are positioned on anatomical landmarks (Richards, 1999). 

Multiple frames of these markers are then digitised to calculate position, displacement 

and velocity. Vicon, a brand of 3D motion analysis systems, has an error range of 

within one millimeter dependent upon the number plus configuration of cameras, the 

calibration procedure, marker properties and sampling rate (Windolf, Götzen, & 
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Morlock, 2008). Vicon was utilised as a criterion for validating athlete tracking systems 

including GPS (Duffield et al., 2010) and radio-frequency (RF) based LPS (Ogris et al., 

2012; Stevens et al., 2014). Whilst LPS measures have been compared with Vicon 

during soccer-specific courses (Ogris et al., 2012; Stevens et al., 2014), an LPS has not 

been validated during court-based sport movement. The only criterion to accurately 

detect non-linear movement, Vicon must be utilised when validating a LPS for court-

based sport use. 

The statistical analysis used to determine the precision of an athlete tracking system also 

varies. The standard error of the estimate (SEE), standard error of the measurement 

(SEM), the correlation coefficient (r) and the Bland-Altman plot are commonly utilised. 

Pearson’s correlation coefficient measures a linear relationship between two variables. 

Two measures may be highly (r > 0.80) correlated however, substantial differences may 

be present across a range of values (Hopkins, 2004). The Bland-Altman plot was 

developed to highlight such dissimilarities between measures (Y axis) over their range 

(X axis) of values. Systematic bias and random error can be observed by the direction 

and magnitude of scatter around the zero line (Atkinson & Nevill, 1998). The 95% 

limits of agreement are formed on the plot by bias and random error lines. If a new 

individual from the proposed population were to be investigated, the difference between 

any two tests should be within the limits of agreement (Atkinson & Nevill, 1998). 

However, the plot incorrectly portrays that there are systematic differences or bias in the 

relationship between two measures (Hopkins, 2004). An alternate approach is linear 

regression. If bias is present, linear regression contains an equation to correct the raw 

values (Hopkins, 2004). A transformation for the re-calibration of instrumentation is 

also provided (Hopkins, 2004). Linear regression should be used to understand the error 

associated with an athlete tracking technology, when compared to a criterion. 

Reliability is the capacity of a measurement tool to provide consistent values (Atkinson 

& Nevill, 1998). Athlete tracking technologies must be reliable so changes in the 
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external load of individual athletes can be monitored over time. Reliability is calculated 

over repeated trials and reported as a correlation or the typical error (TE) expressed as a 

coefficient of variation (CV). Systems that involve the subjective tracking of athletes 

must report intra- or inter-observer reliability. Intra-observer reliability is the within 

reproducibility of results for tracking a single match (Carling, Bloomfield, Nelsen, & 

Reilly, 2008). Inter-observer reliability is the variability of independently measured 

results as recorded by two or more individuals (Drust, Atkinson, & Reilly, 2007). The 

following sections will critique the validity and reliability (where applicable) of 

different tracking systems used to collect the external load of team-sport athletes. 

2.1.1.1  Notational Analysis  

Notational analysis was the first method of athlete tracking. Human observers 

subjectively determined individual athlete or team activity during a live match 

(Knowles & Brooke, 1974). Estimates of distance covered in pre-defined categories, 

including standing, walking, jogging or sprinting, were recorded by pen and paper. Each 

activity was recorded in one minute epochs that referred to 4.6 m of distance travelled 

(Knowles & Brooke, 1974). The frequency, total and relative distance for each coded 

activity was then calculated (Knowles & Brooke, 1974). Inter-observer reliability for 

total distance travelled per minute and the number of sprints performed had coefficients 

of 0.61 and 0.98, respectively (Knowles & Brooke, 1974). Although minimal equipment 

is required, the displacement plus speed of an athlete is subjectively recorded. Due to 

this subjective interpretation, the validity of notational analysis has not been reported. 

For validity to occur, values from notional analysis must be close to the true 

measurement. Since validity has not been examined, notational analysis is inappropriate 

for the activity profiling of elite team-sport athletes. A tracking system that can 

accurately quantify the position plus displacement and speed of team-sport athletes 

should instead be used. 
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2.1.1.2  Manual Video Analysis 

Filming a match or training allows for footage to be replayed and paused, overcoming 

the live recall method of notational analysis. Filming or manual video analysis is an 

inexpensive method of estimating athlete activity (Barris & Button, 2008). Athlete 

movement during rugby (Duthie, Pyne, & Hooper, 2003), Australian Rules football 

(Dawson, Hopkinson, Appleby, Stewart, & Roberts, 2004), soccer (Mohr, Krustrup, & 

Bangsbo, 2003) and netball (Davidson & Trewartha, 2008; Fox, Spittle, Otago, & 

Saunders, 2013; Otago, 1983) matches have been estimated via manual video analysis. 

In netball, broadcast footage was used to estimate elite athlete activity during matches 

(Otago, 1983). However, only a small number of athletes involved with the ball were 

analysed, with athletes in a different court area to the broadcast footage excluded. These 

athletes were assumed to be inactive, due to not being directly involved with the play 

(Otago, 1983). Despite not being in camera view, team-sport athletes may still perform 

preliminary movements to create position, move towards the ball or away from 

opponents (Faude, Koch, & Meyer, 2012). These movements must be captured to 

ensure the entire external load is analysed. Broadcast footage is therefore extremely 

limited in capturing the global external load of team-sport athletes and should not be 

used. A tracking system that can accurately capture the entire external load of all 

athletes should instead be utilised.  

Recognising the limitations of broadcast footage for estimating athlete activity, a team-

sport match or training session can be directly filmed by a camera operator. A single 

camera is used to track and zoom in on individual players (Davidson & Trewartha, 

2008). The duration and frequency of athlete activity is then recorded (Barris & Button, 

2008). Since multiple cameras and human operators are required, only a limited number 

of players can be tracked, resulting in a small sample size. Tracking a small number of 

players during a match does not account for individual variation in playing position or 

style, important when analysing athlete movement (Carling et al., 2008). As multiple 
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players are unable to be monitored, the use of a single camera to capture the external 

load of team-sport athletes is ineffective. Single cameras should therefore not be used 

due to the limitations in capturing an entire team or positional group of players. 

An alternative to tracking individual athletes via a single camera is the use of multiple 

cameras. Each camera is positioned so the entire playing area can be viewed, allowing 

for a greater number of athletes to be monitored (Spencer et al., 2004). An important 

consideration is camera positioning since zoom quality, lighting, distance from the 

playing area and capture angle may impact footage quality (Carling et al., 2008). When 

a large number of players are clustered together, it may be difficult to determine an 

individual’s identity and position (Barris & Button, 2008). This subsequently impacts 

upon the quantity and quality of analysis. These limitations are further amplified when 

matches are held at different venues, resulting in a different camera setup. Although 

non-intrusive, manual video tracking requires substantial human input for setup and 

capture, which may introduce error and impact analysis. 

The activity of team-sport athletes, obtained via manual video tracking, have been 

analysed via numerous techniques. The activity of elite soccer players during seven 

competitive matches was classified into eight locomotor categories (Mohr et al., 2003). 

Across each match, the frequency, distance covered and time spent in each locomotor 

activity was estimated by one experienced observer (Mohr et al., 2003). Similar 

approaches have been conducted in Australian Rules football (Dawson et al., 2004), 

basketball (Klusemann, Pyne, Hopkins, & Drinkwater, 2013) and netball (Davidson & 

Trewartha, 2008; Fox et al., 2013). However, there are inconsistencies in the definition 

and classification of athlete activity, throughout the literature, when using this 

methodology. This issue is examined further in Chapter Three. Tracking team-sport 

athletes via manual video analysis requires substantial human input to capture plus 

categorise movements. Consequently, human error may be introduced at any processing 
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stage. The capacity of a human user to consistently reproduce results is also a major 

limitation of manual video analysis (Duthie et al., 2003).  

Inter- and intra-observer reliability are commonly reported when using manual video 

analysis. Elite rugby union athletes were individually tracked by a single researcher on 

two occasions, separated by a one month period (Duthie et al., 2003). The mean 

duration of time spent in varying locomotor categories was considered moderate (7.1% 

to 9.3% TEM), concluding that manual video analysis was a reasonably reliable tool. In 

the repeated analysis of elite netball athlete footage, a substantial agreement was noted 

within (k = 0.908) and between (k = 0.857) observers (Fox et al., 2013). However, only 

one playing position across a single quarter was analysed. Human observers have 

difficulty in classifying high-intensity, short-duration activity (Withers, Maricic, 

Wasilewski, & Kelly, 1982), movement that is representative of court-based team-sports 

(Póvoas et al., 2012). Manual video analysis is therefore considerably limited in 

quantifying the external load of court-based team-sport athletes. Although portable and 

inexpensive, there is a substantial time demand to setup, collect and post-process data. 

An added limitation is that validity is rarely established and no criterion exists for the 

subjective classification of athlete activity. Athlete tracking systems should be validated 

against a criterion to understand the error of measurement. Considering the substantial 

limitations in classifying short, high-intensity activity and non-reporting of validity, 

manual video analysis is a poor method which should not be used to capture team-sport 

athlete external load. 

2.1.1.3  Semi-automated Vision-based Tracking Systems 

Semi-automated vision tracking systems were designed to monitor athlete activity 

without a human needing to manually film. Consequently, the laborious coding 

associated with manual video analysis is removed. Semi-automatic tracking systems 

comprise of multiple, fixed cameras positioned around a playing area. Each area is 

covered by at least two cameras to ensure overlap and improve accuracy. Post 
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collection, all cameras are synchronised before each video is automatically tracked. The 

post-processing phase comprises of image detection and filtering (Barris & Button, 

2008). Athlete position is then predicted relative to the playing area and the continuous 

trajectories of each athlete are subsequently determined (Di Salvo et al., 2006). 

Trajectory data is presented in X and Y coordinates relative to a survey point (Di Salvo 

et al., 2006) or the line markings of a playing area (Wei et al., 2015). Athlete velocity 

and acceleration can then be calculated. 

A range of commercially available semi-automated systems, including ProZone™ (Di 

Salvo et al., 2006) and Amisco™ (Castellano, Alvarez-Pastor, & Bradley, 2014) can 

capture and detect the position of multiple team-sport athletes. The validity of 

Prozone™ for measuring athlete speed was assessed during sprinting and change of 

direction movement at two outdoor stadiums (Di Salvo et al., 2006). Six recreationally 

active individuals performed four different courses, including 60 m straight, 50 m 

angled, 15 m straight and 20 m straight with a 90° turn. Prozone™ speed was compared 

with infra-red timing gates (Di Salvo et al., 2006). The average speed obtained during 

60 m and 50 m sprints was correlated (r = 0.999) with timing gate data (Di Salvo et al., 

2006). Similarly, maximal sprinting over a 15 m course had a strong (r = 0.970) 

correlation (Di Salvo et al., 2006). However, the criterion measure, infra-red timing 

gates, produced an average and not a continuous change in speed. As team-sport 

athletes perform many changes in speed during a match (Varley & Aughey, 2013), a 

tracking system must be able to accurately detect instantaneous speed. To obtain a true 

known error, athlete tracking systems must therefore be compared with a criterion 

measure that provides instantaneous data on displacement and velocity.  

Semi-automated tracking systems have been used during indoor, court-based team-

sports. Throughout a competitive match, the trajectories of handball athletes were 

collected by two fixed, overlapping cameras positioned on top of the court (Perš & 

Kovačič, 2000). Three different algorithms, including motion detection, template and 
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colour tracking, were used to obtain athlete trajectories (Perš & Kovačič, 2000). The 

motion detection tracking had less noise but involved a substantial input from the 

human operator, resulting in a slower processing time (Perš & Kovačič, 2000). 

Combining colour and motion detection tracking resulted in less noise and input from 

the human supervisor (Perš & Kovačič, 2000). Relying on colour detection algorithms 

may be problematic if athlete uniforms and the court surface are similar in colour. 

Variation in colour pixels is required to delineate an athlete and their position on the 

court (Perš & Kovačič, 2000). Semi-automatic methods may have enhanced validity 

when compared to manual video tracking although the required specialised equipment is 

expensive. Tracking is also non-portable as cameras must be installed and calibrated 

prior to each use. Athlete activity is therefore unable to be captured in stadia without the 

elaborate setup. Human input, which may introduce error, is still required and the post-

hoc analysis can be a time consuming process (Barris & Button, 2008). An added 

limitation of vision-based tracking systems is the capture of athlete movement in an 

assumed two-dimensional plane. Changes in position from vertical movement including 

jumping, a feature of court-based team-sports such as netball (Cormack, Smith, 

Mooney, Young, & O'Brien, 2014), are consequently unable to be quantified. Despite 

advances from manual vision tracking, semi-automatic methods are expensive, time-

consuming and may underestimate some athletic movement. Due to the non-portable 

setup, semi-automatic tracking is unable to be used across multiple environments. This 

is extremely unsuitable for teams who may train or compete at numerous venues. The 

time-intensive post-processing phase is also impractical for teams who have a congested 

match fixture or compete in tournaments and require a quick turnaround on analysis. 

Semi-automatic tracking is therefore an extremely limited tool for collecting team-sport 

athlete external load. 

In contrast to video estimates of movement, wearable sensors that directly measure an 

athlete’s external load are portable, less expensive and quick to setup. These devices 
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directly quantify athlete movement, as opposed to estimation from video. Wearable 

devices, including accelerometers, GPS and LPS, are practical tools to quantify team-

sport athlete external load. These systems should be utilised instead of video analysis 

and semi-automatic detection. 

2.1.1.4  Accelerometers 

The frequency and magnitude of athletic movement in three dimensions, including the 

medio-lateral, anterior-posterior and longitudinal planes, can be measured by 

accelerometers (Boyd et al., 2013). Accelerometers typically sample at 100 Hz and 

provide a high-resolution measure of the totality of mechanical stress on an athlete 

(Barrett, Midgley, & Lovell, 2014). Accelerometers are small, often 88 x 50 x 19 mm in 

size (dependent upon brand) and lightweight (~ 67 g), with an internal battery (Boyd, 

Ball, & Aughey, 2011). Accelerometers are usually worn in a custom-built vest and 

located between the athlete’s scapulae (Boyd et al., 2013; Cormack, Money, Morgan, & 

McGuigan, 2012; Walker, McAinch, Sweeting, & Aughey, 2015). The energy 

expenditure during daily living (Bouten, Koekkoek, Verduin, Kodde, & Janssen, 1997) 

and sporting activities (Walker et al., 2015) have been estimated from accelerometers. 

An accelerometer-derived variable of interest to researchers and practitioners is 

PlayerLoad™. This is the square root of the sum of the squared instantaneous rate of 

change of acceleration, derived from three dimensions, divided by 100 (the sample rate) 

and expressed in arbitrary units (AU). The technical reliability of PlayerLoad™ to 

measure activity was investigated in a laboratory and field setting (Boyd et al., 2011). 

The within- (0.91 to 1.05% CV) and between- (1.02 to 1.10% CV) unit laboratory 

reliability was performed in a mechanical shaker, designed to mimic typical 

acceleration ranges of Australian Rules athletes (Boyd et al., 2011). In a field setting, 

between unit reliability (1.90% CV) was assessed by athletes wearing two 

accelerometers fixed together, to ensure axis alignment, across nine matches (Boyd et 

al., 2011). The test-retest reliability of PlayerLoad™ has also been examined during a 
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standardised bout of treadmill running (Barrett et al., 2014). When the accelerometer 

was worn at the scapulae, a moderate to high test-retest reliability (ICC; 0.80 to 0.93, 

5.3 to 14.8% CV) was observed across varying treadmill speeds (Barrett et al., 2014). 

When assessing repeated PlayerLoad™ measures, the same unit should be worn to 

avoid between-unit bias.  

The external load of Australian Rules (Boyd et al., 2013), rugby league (Gabbett, 

2015a) and union (Cunniffe, Proctor, Baker, & Davies, 2009) athletes have been 

captured via accelerometers. Athlete activity during court-based sports, including 

netball (Cormack et al., 2014; Young et al., 2016), basketball (Montgomery, Pyne, & 

Minahan, 2010) and handball (Barbero, Granda-Vera, Calleja-González, & Del Coso, 

2014), have been captured by accelerometers. In netball, accelerometer derived load can 

differentiate between competition standard and provide a breakdown of athlete 

movement in the three planes (Cormack et al., 2014). However, accelerometers do not 

give the position of the athlete with respect to a playing area. Displacement and velocity 

therefore cannot be quantified. Measuring athlete displacement allows for the 

calculation of time spent and distance covered at varying velocities. This information 

can be used to monitor change within training and matches, across a competitive season 

or tournament (Bradley et al., 2009; Jennings et al., 2012a). To account for a global 

profile of external load, displacement and velocity should be examined. For this reason, 

accelerometers have been incorporated into micro-technology positioning sensors, such 

as global positioning systems (GPS).  

2.1.1.5  Global Positioning Systems 

The global positioning system (GPS) comprises a radio signal travelling from a satellite 

to a receiver on Earth. Position is triangulated when a minimum of four satellites are in 

communication with the GPS receiver (Aughey, 2011a). Displacement is calculated 

from changes in GPS position over a specified time epoch. Velocity and acceleration 

can then be quantified from position. To profile this movement during team-sport 
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matches or training, a GPS unit typically measuring 88 x 50 x 19 mm and weighing 67 

g (dependent upon brand and model) is positioned between the scapulae of an athlete 

and housed in a custom built vest (Aughey, 2011a). 

The validity and reliability of GPS during movements representative of team-sport 

activity is well documented. In elite Australian Rules footballers, the validity and 

reliability of 1 and 5 Hz GPS was assessed during linear and non-linear courses at 

varying speeds (Jennings et al., 2010a). Despite the higher sample rate improving 

validity, GPS accuracy decreased as movement speed increased (Jennings et al., 2010a). 

Criterion and GPS distance differed by 9% to 32%, although infrared timing gates, used 

as the criterion measure, could not measure the exact course performed (Jennings et al., 

2010a). As timing gates only report mean speed, their usefulness as a criterion measure 

is severely limited. Instead, criterions that report a continuous measure of speed, such as 

laser, should be utilised when assessing GPS. 

The validity and reliability of instantaneous velocity from 5 and 10 Hz GPS has been 

assessed against laser (Varley et al., 2012). The higher GPS sampling rate was up to 

three times more accurate (3.1% to 11.3% CV) during linear running (Varley et al., 

2012). During decelerated running, GPS overestimated changes in velocity by up to 

19.3% (Varley et al., 2012). Consequently, GPS units are considerably limited in 

assessing short, high-intensity movements, irrespective of sample rate. Caution should 

therefore be used when analysing these movements from GPS data.  

In confined spaces, where court-based sports are played, GPS is poor in detecting 

athlete movement. The accuracy of GPS to quantify movement representative of court-

based sports was assessed against Vicon, the current accepted criterion for measuring 

human movement (Duffield et al., 2010). During five movement drills, GPS distance 

and speed was underestimated by up to 25% (Duffield et al., 2010). For court-based 

sports, GPS is consequently an unsuitable tool. Despite this, GPS has still been used to 

quantify athlete external load during outdoor handball (Barbero et al., 2014; Corvino, 
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Tessitore, Minganti, & Sibila, 2014) and netball (Chee Yong, Wylde, Choong, & Lim-

Prasad, 2016; Higgins, Naughton, & Burgess, 2009) activity. Considering the poor 

accuracy of GPS to quantify short, high-intensity movements in confined outdoor 

spaces (Duffield et al., 2010), these studies should be interpreted with extreme caution. 

Research on netball activity has also utilised 1 Hz GPS units (Higgins et al., 2009), that 

have a large (77.2%) CV when measuring short sprint efforts (Jennings et al., 2010a). 

These units are substantially limited in measuring single sprints or small changes in 

velocity. Studies utilising 1 Hz GPS units to measure sprint or acceleration efforts 

should therefore be interpreted with extreme caution. 

Elite court-based team-sports, including netball, are held indoors where GPS has no 

satellite reception. Since GPS is limited to outdoor use and has poor accuracy in 

quantifying short, high-intensity movements (Duffield et al., 2010), it is a poor tool to 

quantify athlete external load during court-based team-sports. A tracking system that 

can operate indoors and is accurate in quantifying short-high intensity movements 

should instead be utilised.  

2.1.1.6  Local Positioning Systems  

Local positioning systems (LPS) can measure athlete position indoors. Radio-frequency 

(RF) is used to communicate the range between LPS mobile nodes, worn by athletes, 

and anchor nodes that are positioned around a playing area (Hedley et al., 2010). A 

survey is conducted to obtain the distance between each anchor node and a relative 

coordinate, for example, the middle of a court. An athlete’s position, displacement, 

velocity and acceleration can then be quantified. Since LPS utilise a portable setup, 

opposed to the global satellite infrastructure of GPS, athlete tracking can occur outdoors 

and indoors.  
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Comparison of LPS validity and reliability is difficult due to methodological 

differences. A summary of methods used to assess LPS valdity for measuring distance 

covered, speed and acceleration is presented in Table 2-1. 

The accuracy of an LPS, over four soccer-specific courses, was compared to timing 

gates (Frencken et al., 2010). Distance covered during three non-linear courses, 

including 45° turn, 90° turn and combined changes of direction, was underestimated 

(0.6 to 2%) by the LPS (Frencken et al., 2010). An increased course length and turning 

angle resulted in an increased mean difference between LPS and criterion measures of 

distance (Frencken et al., 2010). The CV for walking and sprinting speed ranged from 

1.4 to 3.9% and absolute mean speed differed by more than 0.4 km.h-1 (Frencken et al., 

2010). The three individuals who participated in the 30 trials were not elite athletes. 

Higher velocities and accelerations may be produced by elite athletes during sport-

specific courses. If an LPS is to track the movement of elite athletes during matches, it 

should therefore be validated using a comparable movement profile. Infra-red timing 

gates do not measure continuous speed (Frencken et al., 2010). Timing gates and pre-

defined courses are poor measures to assess the change in speed and position of a 

participant during a validity trial. Instead a high-resolution motion analysis system that 

can consistently quantify position (Richards, 1999) should be used as a criterion. 
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 Table 2-1. Summary of the validation studies assessing local positioning systems and their suitability for team-sports. 

* I = Indoor, O = Outdoor, COD = Change of Direction. 

Study LPS Model 
Sample 

Rate  (Hz) 
Participants Movement Task Repetitions Criterion 

Variable 
Assessed 

Frencken et 
al., (2010) 

Inmotio  
Object 
Tracking 

45 3 males 
Four soccer specific 
courses 

5 walking 

5 sprinting 

Timing 
gates 

 

Distance 

Average 
speed 

Ogris et al., 

(2012) 

LPM,  
Abatec, 
Austria 

45.45 
6 moderately 
trained males 

Straight, 45° and 90° 
courses 

10 small sided games 

6 different speeds 

3 different constraints 
Vicon 

Position 

Speed 

Sathyan et al., 

(2012) 
WASP 10 

6 elite male  
and 4  elite 
female 
athletes  

One linear (I and O) 

One non-linear (I and O) 

1 trial per course  

n = 160 trials 
N/A 

Distance 

Position 

Stevens et al., 

(2014) 

Inmotio, 
version  
05.30R 

45.45 
12 amateur 
male soccer 
players 

8 movements, including  
90° and 180° COD 

3 intensities including jog, 
submaximal and maximal 

Vicon 

Distance 

Average 
speed 

Peak speed 

Acceleration 
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The accuracy of LPS for measuring position during six different speeds was quantified 

over linear and non-linear courses (Ogris et al., 2012). Six moderately trained male 

soccer players performed a total of 276 trials plus 10 small-sided games whilst wearing 

LPS mobile nodes (Ogris et al., 2012). Vicon motion analysis system was the criterion. 

The absolute mean error of LPS position estimates was 23.4 ± 20.7 cm during all trials 

(Ogris et al., 2012). During maximum velocities, there was a mean relative difference of 

up to 10% or 2.71 km.h-1 indicating that the LPS was less accurate in quantifying 

position during dynamic movements (Ogris et al., 2012). The accuracy of an LPS to 

capture changes in velocity was investigated during soccer-specific movements 

(Stevens et al., 2014). Twelve amateur male soccer players performed eight drills, 

including linear running and 90° or 180° turns. Drills were performed at three 

movement intensities; jogging, submaximal and maximal running (Stevens et al., 2014). 

Vicon was the criterion measure for distance, average and peak velocity plus 

acceleration (Stevens et al., 2014). During 180° turn drills, LPS understimated distance 

and velocity by up to 7% (Stevens et al., 2014). In the same drill, average acceleration 

and deceleration were also underestimated by up to 9% (Stevens et al., 2014). During 

90° turns, the LPS overestimated average acceleration and deceleration by up to 16%. 

The greatest difference was during a 90° turn combined with linear running, where peak 

acceleration was overestimated by up to 41% (Stevens et al., 2014). These large 

discrepancies were potentially due to the LPS position delayed relative to the 

participant’s actual position. Due to the Kalman filter used, the detection of a sudden 

acceleration from a standing start is delayed by the LPS. When standing still, the 

Kalman filter receives no input data of a future movement. When there is a sudden 

acceleration, the LPS attempts to draw near the actual position and consequently, a 

higher acceleration is shown than what really occurred (Stevens et al., 2014). The 

Kalman filtering may potentially explain fluctuations during constant running, with 

accelerations below 1.5 m.s-2 unable to be accurately quantified (Stevens et al., 2014). 
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Although LPS have been validated during soccer specific movements (Frencken et al., 

2010; Stevens et al., 2014), to date, the accuracy of a LPS for measuring movements 

representative of court-based team-sports is yet to be quantified.     

The Wireless ad-hoc System for Positioning (WASP) is an LPS originally developed by 

the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for 

tracking vehicles in underground mines (Hedley et al., 2010). For sport purposes, 

CSIRO in conjunction with the Australian Institute of Sport (AIS) developed WASP 

into a suitable hardware for tracking athletes during training and matches. The location 

of each WASP mobile node, worn by an athlete, is measured relative to a survey 

position on the playing area. The resulting displacement and velocity can be quantified 

outdoors and indoors (Sathyan, Shuttleworth, Hedley, & Davids, 2012). Time of arrival 

(TOA) measurement from WASP is used on the entire 125 MHz bandwith available in 

the 5.8 GHz frequency band allocated to industry (Hedley et al., 2010). The exchange of 

transmit and receive time between each node is determined, allowing athletes wearing 

mobile nodes to be located (Hedley et al., 2010). A Kalman filter is then used to predict 

position based on a dynamic weighting of previous measurements in combination with 

the current value (Hedley, Sathyan, & Mackintosh, 2011). 

The validity and reliability of WASP for measuring elite athlete indoor position was 

quantified relative to an outdoor venue (Sathyan et al., 2012). An absolute position error 

of 11.9 cm was obtained during static indoors measures, compared with 12.1 cm 

outdoors (Sathyan et al., 2012). During a 28 m linear and 27.6 m non-linear course, 

WASP had a 2.2% and 2.7% mean distance error, respectively (Sathyan et al., 2012). 

The non-linear course was an agility test used by the Australian Football League (AFL) 

to benchmark field-based athletes. Movements representative of indoor court-based 

team-sports were not examined. The indoor accuracy of WASP should be calculated 

during movements that are representative of elite court-based team-sports, such as 

netball. A criterion system has also not been used to validate WASP. The accuracy of 



!
22 

WASP to quantify distance and velocity during short non-linear movements, 

representative of court-based team-sports, is presented in Chapter Four. 

2.1.1.7  Summary  

The movement of team-sport athletes can be captured via time-motion analysis 

(Knowles & Brooke, 1974). Time-motion analysis is a poor tool as athlete displacement 

plus speed is subjectively recorded. Whilst filming matches or training allows footage 

of athletes to be replayed or paused, overcoming the live recall method, the validity of 

time-motion analysis is not reported. Team-sport athlete activity has been analysed from 

broadcast footage (Otago, 1983), although athletes not in camera view were excluded 

from analysis. Since athletes may be performing preliminary moves to create position, 

sprint towards the ball or away from the opposition (Faude et al., 2012), broadcast 

footage is extremely limited in capturing the global activity of court-based team-sport 

athletes. Directly filming individual athletes allows for the duration and frequency of 

locomotor plus game-related activities to be estimated (Barris & Button, 2008). 

However multiple cameras and human operators are required. Substantial human input 

is also required to capture and categorise movements. Humans have difficulty in 

accurately classifying short-duration high-intensity activity, movement representative of 

court-based team-sports (Barris & Button, 2008). Validity is not established due to the 

lack of a criterion for the subjective classification of athlete activity. Manual video 

analysis is therefore an extremely poor method to capture the external load of team-

sport athletes.  

Semi-automatic tracking was designed to remove the time-intensive coding associated 

with manual video analysis however, these systems are non-portable and expensive. 

Tracking athletes at multiple venues is therefore substantially limited. In contrast, 

wearable sensors are portable, quick to setup and require minimal human input for 

collection. Accelerometers are wearable sensors that directly measure the load of an 
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athlete in three planes (Boyd et al., 2011). Although accelerometer derived load can 

differentiate between netball playing standard (Cormack et al., 2014), an athlete’s 

position on the court cannot be quantified. Meausuring an athlete’s position, 

displacement, velocity and acceleration during matches is important for training design 

and load monitoring (Aughey, 2011a). Athlete position can be quantified during 

training and matches by GPS. There is extensive research on the activity profiles of 

field-based team-sport athletes, collected by GPS (Aughey, 2011a). However, limited 

research exists in court-based sports, likely due to matches and training being held 

indoors where GPS has no satellite reception. Short, high-intensity movements, 

representative of court-based sports, are also unable to be accurately quantified by GPS 

(Duffield et al., 2010). Alternatively, LPS operate indoors and are accurate at measuring 

athlete position (Sathyan et al., 2012). The activity profiles of athletes participating in 

court-based sports, such as netball, should therefore be quantified using LPS. 

2.2  Netball  

Netball is a court-based team-sport with a large participation rate in Commonwealth 

countries (Steele & Chad, 1991a). The aim of netball is to outscore the opposition by 

shooting a ball through a ring atop a 3.05 m high pole. Players must pass or shoot the 

ball within three seconds of catching. Players are only permitted to take one step when 

in possession of the ball. A defending player must also be at least 0.9 m away from a 

player holding the ball (The-All-Australia-Netball-Association, 2012). In Australia, elite 

netball comprises international representation (elite) and state/ territory representation at 

the junior level (junior-elite). 

At the elite and junior-elite level, netball matches consist of 15 minute quarters 

contested on a 30.5 x 15.25 m indoor court dived into thirds. The substitution of players 

is only permitted during quarter and half-time breaks or if an injury time-out is called 

(The-All-Australia-Netball-Association, 2012). Players are assigned one of seven 
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positions, each with a unique role. The main role of the goal shooter (GS) is to score. 

Goal scoring responsibilities are shared with the goal attack (GA), who assists in 

feeding the ball into the goal circle. The wing attack (WA) is primarily responsible for 

delivering the ball to the GS and GA whilst assisting the centre (C). The C must deliver 

the centre pass and contribute in attack plus defence. The wing defence (WD) is 

required to defend the opposition WA and support the C in transitioning the ball to the 

scoring end. The primary task of the goal defence (GD) is to counter the opposition 

GA’s moves and prevent goals from being scored. The GD also assists the goal keeper 

(GK), whose main role is to stop the opposing GS from scoring. 

The court area available for netball athletes to move within is restricted according to 

their playing position (Figure 2-1). A penalty is awarded if an athlete moves into an area 

of the court other than that defined by their playing position (The-All-Australia-Netball-

Association, 2012). To avoid penalty and maximise their team’s ability to score, it is 

critical that netball athletes remain within their designated court area. 
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Figure 2-1. Court availability for each netball playing position. Modified from: 

Association, A. A. N. (2012). Official Rules of Netball. Melbourne, Australia: All 

Australia Netball Association. 

During matches, athlete external load may be influenced by a restriction in playing 

space (Rampinini et al., 2007). This variation in external load must be accounted for 

between playing positions (Carling, Le Gall, & Dupont, 2012). Analysis on the 

differences or similarities between positions allows for the prescription of specific 

training programs for each individual athlete (Boyd et al., 2013). Since playing position 

determines the court space available, the variation in external load between the seven 

netball positions may be greater than other court-based team-sports.  

2.2.1  Movement Analysis in Netball 

The majority of research on the activity profiles of netball athletes utilises television 

footage or video analysis. Research has typically focused on the number of actions 

performed and time spent in different movement categories (Otago, 1983; Steele & 



!
26 

Chad, 1991a). Activity during elite netball matches, captured by television footage, was 

categorised into “sprint”, “shuffle”, “defend” and “jump” movements (Otago, 1983). 

Most activities were less than 10 seconds in duration, interspersed with at least 30 

seconds of recovery (Otago, 1983). Athletes were excluded from analysis if they were 

not in the broadcast footage on the assumption that no activity was performed when out 

of camera view (Otago, 1983). Athletes can still be performing activity despite not 

appearing in ball-centric footage. As highlighted in Chapter 2.1, television footage is an 

extremely limited athlete tracking tool. Caution should therefore be used when 

interpreting the results of this study due to the substantial limitations of broadcast 

footage for assessing athlete movement.  

An alternative to television footage is the live capture of team-sport matches. Netball 

athlete movement was filmed during sub-elite matches and activity was binned into six 

locomotor categories, modified from other classification systems (Docherty, Wenger, & 

Neary, 1988; Mayhew & Wenger, 1985). Thirteen non-locomotor activities, including 

shooting, passing, catching and defending, were also used (Steele & Chad, 1991a). The 

majority of locomotor movements were brief in duration, ranging from 5.4 seconds for 

standing to 0.3 seconds for sprinting (Steele & Chad, 1991a). Sprinting, defined as 

running at maximum speed and full effort, accounted for less than 1% of total match 

time across all positions. Given the subjective coding of athlete movement by a human 

operator and the non-reporting of validity, this total percentage of time is likely to be 

highly innacurate. There was no difference between positions in the number of sprint 

efforts performed yet only four players per position were analysed (Steele & Chad, 

1991a). Each individual athlete should be monitored throughout a match for a complete 

analysis of athlete external load. Considering the limited positions investigated, 

restrictions of notational analysis as an athlete tracking tool and the lack of validity, 

results from this study should be intepreted with caution. Research on the activity 
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profiles of netballers should examine more players per position and not use subjective 

recall to capture athlete movement. 

Video analysis has been used widely in netball research (Davidson & Trewartha, 2008; 

Fox et al., 2013). During three matches, six athletes in the English Superleague were 

filmed by four cameras with footage coded post-hoc via a computerised analysis system 

(Sportscode, Australia). Only three positions, including C, GS and GK, were analysed 

(Davidson & Trewartha, 2008). Activity was classified into six categories including 

standing, walking, jogging, running, sprinting and shuffling (Davidson & Trewartha, 

2008). This study was the first to report the total distances covered by netball athletes in 

each movement category over a match, with distance predicted by a time and speed 

equation (Davidson & Trewartha, 2008). Mean speed was measured via electronic 

timing gates, spread over a 10 m course, during three repetitions of each movement 

activity. Given the constraints on court area according to playing position, it is unlikely 

that netball athletes will cover a linear 10 m course at maximum speed during a match. 

Although a novel approach to estimate distance covered, athlete movement in each 

category was still subjectively classified by a human user and therefore prone to error 

(Barris & Button, 2008). A further limitation of notational analysis is the descriptive 

and arbitrary classifications of movement that vary greatly across studies. For example, 

the movement of elite netball athletes during three international matches was classified 

into 13 skill and activity based categories (Fox et al., 2013). Although each court 

position was examined, the number of categories (13) differed to the 6 used for sub-elite 

athletes (Davidson & Trewartha, 2008) and 19 for those at the state league level (Steele 

& Chad, 1991a). International level athletes were up to four times more active, a 

descriptor based on the combination of all five movement and eight game-based 

classifications, than their sub-elite counterparts (Steele & Chad, 1991a). This variability 

is however very likely due to differences in the descriptive estimation of activity, rather 

than meaningful differences between playing standards. External load should be directly 
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captured by microtechnology sensors to accurately measure external load and remove 

the error associated with estimations from video. 

External load has been quantified in netball via accelerometers (Cormack et al., 2014). 

Compared to other tracking methodologies used in netball (Davidson & Trewartha, 

2008; Otago, 1983; Steele & Chad, 1991a), accelerometers directly quantify movement, 

including jumping and body contacts, in three planes (Boyd et al., 2013). 

Accelerometers are also reliable in measuring the external load of team-sport athletes 

(Boyd et al., 2011). During five matches, accelerometer profile or Load™·min-1 (AU), 

was on average 31% greater in state level compared to recreational level athletes 

(Cormack et al., 2014). Differences also extended to positions, with a 90% likely 

practical difference between individual positions across playing standards (Cormack et 

al., 2014). Centres had an 82% likely greater match Load™·min-1 than defenders at the 

lower standard of play (Cormack et al., 2014). In contrast, there were no clear 

differences when comparing other positions within playing standards (Cormack et al., 

2014). When transitioning from a lower to higher standard of netball, athletes may need 

to develop specific physical capacities in order to sustain the increased activity profile 

associated with a higher standard of play. 

The accelerometer load of netball athletes during training and matches has recently been 

examined in an elite cohort competing within the trans-tasman netball competition or 

TTNC (Young et al., 2016). There were clear differences in PlayerLoad™ across all 

seven playing positions. The C, WD, WA and GA positions had the highest playing 

intensity and the lowest proportion of match time in the low intensity zone (Young et 

al., 2016). In contrast, the GS, GK and GD spent the highest proprotion of match time 

in the low intensity zone (Young et al., 2016). A unique feature of this study was the 

use of k-means clustering to uncover similarities in PlayerLoad™ between each playing 

position (Young et al., 2016). Unknown patterns and classifications within a dataset can 

be discovered using k-means clustering, a data mining technique. Unfortunately, only 
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one playing group was investigated with little generalisation to other standards of play. 

Whilst accelerometers provide detail on the global load of an athlete, including 

movement in all three planes, the position of a player relative to a court and team-

members or opposing players is unknown. Information on an athlete’s position with 

respect to their direct opponent may provide coaching staff a unique opportunity to 

further explore the influence of match tactics on athlete output. Athlete positional data, 

obtained from an LPS, may allow for displacement, velocity and acceleration to be 

calculated in netball.  

Limited research exists on the activity profile of elite netball athletes, with no 

information on the external load of junior-elite players. It is difficult to compare studies 

on netball athlete activity profiles due to differences in match duration, with research on 

games comprising 20 minute halves (Steele & Chad, 1991a) compared to 15 minute 

quarters (Fox et al., 2013). Only three standards of play have been investigated and a 

variety of techology utilised including broadcast television footage (Otago, 1983), video 

analysis (Davidson & Trewartha, 2008; Fox et al., 2013) and accelerometers (Cormack 

et al., 2014). The categories of movement used to analyse activity also make for a 

complex comparison. No information exists on how to approporiately classify athlete 

external load in court-based team-sports, including netball. The subsequent analysis of 

activity profile is therefore difficult. 

There are a range of velocity and accelerations thresholds, even within a single sport, by 

which to categorise athlete movement. Thresholds have been determined from 

physiological tests, examined in Chapter Three, although it is currently unclear if these 

tests reflect the accelerations within team-sport activity. No research has examined the 

external load of court-based athletes using a physiologically defined threshold. 

Alternatively, data mining and knowledge discovery is an approach to derive patterns 

from large datasets without the use of thresholds. Data mining could gain further insight 

into team-sport athlete activity profiles. Consequently, athlete external load could be 
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analysed without the requirement of an arbitrary or physiologically defined threshold. 

Data mining techniques will therefore be used in this thesis to examine netball athlete 

load across playing position and standard, without the requirement of velocity and 

acceleration thresholds. 
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CHAPTER 3 – A REVIEW OF THE ANALYSIS OF TEAM-SPORT  

ATHLETE ACTIVITY PROFILE 

3.1 Introduction 

Team-sport athlete external load can be quantified using accelerometers, global 

positioning systems (GPS), local positioning systems (LPS) and optical tracking 

systems. Except for accelerometers, these systems calculate displacement, velocity and 

acceleration over time. The analysis of external load over a match or training session is 

termed activity profile (Aughey, 2011a). Information from the activity profile is used to 

monitor change across a competitive season or tournament (Bradley et al., 2009; 

Jennings et al., 2012a) and allow for the design of specific training drills (Boyd et al., 

2013). 

The activity profile of field-based team-sport athletes is well-documented (Aughey, 

2011a; Bradley et al., 2013; Jennings, Cormack, Coutts, & Aughey, 2012b; Mooney et 

al., 2011). Activity profile analysis typically includes time spent in velocity or 

acceleration zones. These zones are defined according to threshold values and 

determined arbitarily, by the properitary software of tracking systems or expressed 

relative to a physiological test. Currently, there is no consensus on how to determine a 

velocity or acceleration threshold. Large discrepancies exist in the classification of a 

sprint effort. The comparison of activity profiles across and within team-sports is 

consequently difficult.  

This chapter describes the velocity and acceleration thresholds used to analyse team-

sport athlete external load. Applying a global velocity or acceleration threshold may 

allow for the examination of positional and individual differences over time. Whilst 

thresholds can be individualised, physiological tests comprising continuous or linear 

movement do not reflect changes of direction and acceleration. The current techniques 

used to analyse external load are therefore inappropriate. Alternate methods, including 
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unsupervised data mining techniques, are considered. These techniques find trends 

within external data and may be useful in informing thresholds. 

3.2 Distance Covered 

A common athlete activity profile measure is the total distance covered. English 

Premier League athletes cover an average of 10,714 m during matches (Bradley et al., 

2009), less than One Day International (ODI) cricketers at 15,903 m per match 

(Petersen, Pyne, Portus, Karppinen, & Dawson, 2009). Elite Australian footballers may 

record total distances of up to 12,939 m (Coutts, Quinn, Hocking, Castagna, & 

Rampinini, 2010). The total distance covered during matches varies across athlete age 

(Buchheit, Mendez-Villanueva, Simpson, & Bourdon, 2010a), position and competition 

level (Jennings et al., 2012b). When total distance covered is expressed per minute of 

match duration, soccer athletes may cover 104 m·min-1 (Varley, Gabbett, & Aughey, 

2013b) and up to 130 m·min-1 (Carling, Espié, Le Gall, Bloomfield, & Jullien, 2010). In 

soccer, the metres per minute of match duration varies across athlete age and playing 

position (Buchheit et al., 2010a). Australian footballers may average between 127 

m·min-1 (Kempton, Sullivan, Bilsborough, Cordy, & Coutts, 2015b) and 157 m·min-1 

(Aughey, 2011b), whilst elite rugby league players may cover 97 m·min-1 (Varley et al., 

2013b) and up to 120 m·min-1 (Austin & Kelly, 2013). Sport-specific constraints, 

including positional or tactical roles, may contribute to these differences. The higher 

total distance in Australian football may be attributed to the unlimited interchange 

policy (removed in 2015), and the smaller field size available to soccer and rugby 

league athletes (Varley et al., 2013b). The total distance covered should be presented 

per minute of match duration or time spent on field/ in a training drill (Aughey, 2011a). 

Court-based athletes have a smaller playing area compared to their field-based 

counterparts, yet cover similar metres per minute. There is limited activity profile 

research on court-based athletes. State-level female basketballers cover 127 to 136 

m·min-1 during matches (Scanlan, Dascombe, Reaburn, & Dalbo, 2012), higher than 
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junior males (115 m·min-1) and similar to state- (126 to 132 m·min-1) and national (130 

to 133 m·min-1) male basketballers (Scanlan, Dascombe, & Reaburn, 2011). In semi-

elite netball, centre (C) athletes cover up to 133 m·min-1 compared to goal keepers (GK) 

and goal shooters (GS), who average 71 m·min-1 and 70 m·min-1, respectively 

(Davidson & Trewartha, 2008). These differences could be due to the spatial restrictions 

imposed by each playing position although manually estimating distance covered from 

video may also provide unreliable estimates (Barris & Button, 2008).  

In court-based sports, the ball may frequently and chaotically change direction. Court-

based athletes must be responsive to movement of the ball, their team-mates and 

opposition in a small area. Athletes may change direction and complete short, high-

intensity movements to cover or create space. Although there are more spatial 

limitations compared to field-based sports, the high frequency of these actions 

performed by court-based athletes may result in a comparable metres per minute profile. 

Whilst reporting metres per minute gives an understanding of intensity, granular periods 

of activity at different velocities are lost by aggregating to the total distance covered. 

Quantifying the time spent and distance covered at varying velocities may be useful in 

programming training and monitoring load.  

3.3 Velocity Thresholds 

During matches or training, the instantaenous velocity of an athlete is binned into 

different zones via threshold values. Velocity thresholds are defined by proprietary 

software providers (Cunniffe et al., 2009), modified from published research (Jennings 

et al., 2012a) or determined arbitrarily (Mohr et al., 2003). There is no consensus on 

how to determine a velocity threshold and large discrepancies exist, even within a single 

team-sport (Table 3-1). The comparison of activity profile research is consequently 

difficult. 
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Table 3-1. Classification of athlete movement, according to speed zones, in a variety of field-based team-sports. 

 

Reference Cohort Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

Speed 
(m·s-1) 

Descriptor Speed 
(m·s-1) 

Descriptor Speed 
(m·s-1) 

Descriptor Speed 
(m·s-1) 

Descriptor Speed 
(m·s-1) 

Descriptor Speed 
(m·s-1) 

Descriptor 

Rugby Union 

Clarke et al. 
(2014) 

Elite 
females 

< 2 Low > 3.5 Moderate     > 5 High-
intensity 

  

Suárez- 
Arrones et al. 
(2012) 

Elite 
males 

0.03 to 
1.64 

Standing 
and 
walking 

1.66 to 
3.31 

Jogging 3.33 to 
3.86 

Cruising 3.89 to 
4.98 

Striding 5 to 
5.53 

High-
intensity 

> 
5.56 

Sprinting 

Combined – Soccer, rugby league and Australian football 

Varley et al. 
(2013b) 

Elite 
males 

0 to 
5.4 

Low-
intensity 

      ≥  5.5 
to 10 

High-
velocity 

≥ 7 
to 10 

Sprinting 

Australian Rules football 

Sullivan et al. 
(2013) 

Elite 
males 

        > 4 High-speed  

Aughey et al. 
(2010) 

Elite 
males 

0.10 to 
4.17 

Low-
intensity 

      4.17 to 
10 

High-
intensity 
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Table 3-1 (continued). Classification of athlete movement, according to speed zones, in a variety of field-based team-sports. 

Reference Cohort 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

Speed 
(m·s-1) 

Descriptor 
Speed 
(m·s-1) 

Descriptor 
Speed 
(m·s-1) 

Descriptor 
Speed 
(m·s-1) 

Descriptor 
Speed 
(m·s-1) 

Descriptor 
Speed 
(m·s-1) 

Descriptor 

Hockey 

Jennings et al. 
(2012a) 

Elite 
males 

0.10 to 
4.17 

Low-speed       > 4.17 High-speed   

Macutkiewicz 
et al. (2011) 

Elite 
females 

0 to 
0.17 

Standing 
0.19 to 
1.67 

Walking 
1.69 to 
3.06 

Jogging 
3.08 to 
4.17 

Running 
4.19 to 
5.28 

Fast-
running 

> 5.28 Sprinting 

Rugby League 

Johnston et al. 
(2013) 

Sub-
elite 
males 

0 to 
4.72 

Low-speed       > 4.75 High-speed 

Kempton et al. 
(2015a)  

Elite 
males 

      > 4 High-speed > 5.03 
Very high-
speed 

> 6.67 Sprinting 

Soccer 

Buchheit et al. 
(2010a)  

Youth 
males 

< 3.61 
Low-
intensity 

   
3.64 to 
4.44 

High-
intensity 

4.47 to 
5.28 

Very high > 5.31 Sprinting 

Carling et al. 
(2012) 

Elite 
males 

< 0.17 Standing 
1.94 to 
1.97 

Walking 
2 to 
3.97 

Jogging 
4 to 
5.47 

Running > 5.5 
High-
intensity 
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The inconsistency between velocity thresholds extends to qualitative descriptors. For 

example, activity may be labeled as low-velocity or low-intensity movement. Low-

velocity movement, including walking and jogging, could be activity between 0 and up 

to 5.40 m·s-1 (Varley et al., 2013b). Yet in the same sport, activity > 4.00 m·s-1 was 

classed as high-speed running (Sullivan et al., 2013). The classification of high-velocity 

or high-intensity movement is also without consistent definition. The varying 

definitions make for a difficult comparison between studies. In Australian football, 

sprint efforts have been defined as activity > 4.00 m·s-1 (Sullivan et al., 2013) while a 

threshold of > 4.17 m·s-1 has also been utilised (Aughey, 2010; Mooney et al., 2011). 

The presentation of thresholds as a single > or < value, with ambiguous descriptors, is 

confusing when velocity data falls between two thresholds. For example, running by 

professional soccer athletes is described as velocities between 4.00 to 5.47 m·s-1 whilst 

activity > 5.50 m·s-1 was considered high-intensity movement (Carling et al., 2012). It is 

unclear if velocities within the 0.03 m·s-1 upper and lower ranges of the two 

classifications were removed from analysis. Deletion of these values may influence the 

frequencies and durations reported. Research describing thresholds in this manner 

should detail how instantaenous velocities are binned into different zones. If researchers 

use discrete values, it is recommended that thresholds be presented as ≥ or ≤ values.  

The confusion in velocity thresholds also extends to the duration of a sprint. In elite 

female rugby union (Clarke et al., 2014), hockey (Vescovi, 2014) and professional male 

soccer (Carling et al., 2012) matches, sprinting must occur for a minimum of one 

second. However, in other studies (Buchheit et al., 2010a; Jennings et al., 2012a; 

Kempton et al., 2015b; Varley et al., 2013b), the minimum duration is not stated. It is 

unclear what effect these inconsistent minimum threshold durations have on the activity 

profile. Researchers should state the minimum duration required to record a sprint 

effort. The inconsistency of sprint thresholds in the literature is likely due to values 

being arbitrarily determined or taken from proprietary software.  
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3.4 Acceleration Thresholds 

Acceleration is a metabolically demanding activity, requiring more energy than constant 

running (Osgnach, Poser, Bernardini, Rinaldo, & Di Prampero, 2010). During team-

sport matches, a large number of high intensity efforts are short in duration and 

commence from a low velocity. In elite soccer matches, more than 85% of maximal 

accelerations did not exceed the high-speed (4.17 m·s-1) threshold (Varley & Aughey, 

2013). Maximal accelerations (> 2.78 m·s-2) occurred eight times more than sprinting, 

classified as > 6.94 m·s-1 but < 10.00 m·s-1 (Varley & Aughey, 2013). The starting 

velocity is critical when measuring accelerations or decelerations, although 

quantification of these variables is dependent upon the validity and reliability of athlete 

tracking systems.  

Large variations exist in GPS estimates of accelerations and decelerations, between 

models and units from the same manufacturer (Buchheit et al., 2014). During 

simultaneous capture of a sled dragging exercise, small to very large between-model 

and unit differences were observed in 15 Hz GPS units (Buchheit et al., 2014). These 

units were manufactured with a 10 Hz GPS but upsampled to 15 Hz (Aughey, 2011a). 

In 10 Hz GPS, acceleration and deceleration movements have a large between-unit 

coefficient of variation (CV) of 31% to 56% (Varley et al., 2012). A variety of factors 

may influence GPS measures of acceleration and velocity. The accuracy of GPS to 

measure instantaneous velocity is limited by unit processing speed, location, antenna 

volume and chipset capacity. Quantification of instantaneous velocity is up to three 

times more accurate in 10 Hz GPS units compared to 5 Hz (Varley et al., 2012). When 

measuring acceleration and deceleration, 10 Hz units still differ by ~10% when 

compared to a laser device (Varley et al., 2012). However, laser devices are limited to 

quantifying instantaneous velocity during linear movement only. In contrast, high-

resolution motion analysis systems including Vicon, can accurately detect instantaneous 

velocity during non-linear activity (Richards, 1999). Local position systems (LPS) 
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sample at up to 1000 Hz with generally superior accuracy compared to GPS (Stevens et 

al., 2014). During varying speed and change of direction movement, the average 

acceleration and deceleration derived from LPS was within 2% of Vicon (Stevens et al., 

2014). Although accuracy for peak acceleration and deceleration is limited, LPS can 

measure average change in velocity or time spent in various acceleration thresholds. 

There are large inconsistencies between acceleration thresholds used throughout the 

literature. In field-based team-sports, accelerations have been classified as > 1.11 m·s-2 

(Wisbey, Montgomery, Pyne, & Rattray, 2010), 2.78 m·s-2 (Varley, Gabbett, & Aughey, 

2013a), 3.00 m·s-2 (Hodgson, Akenhead, & Thomas, 2014) and 4.00 m·s-2 (Farrow, 

Pyne, & Gabbett, 2008). Accelerations have also been categorised into moderate (2.00 

to 4.00 m·s-2) or high (> 4.00 m·s-2) zones, with a minimum duration of 0.40 s (Higham, 

Pyne, Anson, & Eddy, 2012). The rationale used to select these zones is unknown. The 

2.78 m·s-2 threshold used in soccer (Varley & Aughey, 2013) and Australian Football 

(Aughey, 2010) originated from a standing start maximal acceleration of between 2.50 

and 2.70 m·s-2, performed by non-athletes (Varley et al., 2012). Since elite Australian 

Football athletes often maximally accelerate from a moving start during matches 

(Aughey & Falloon, 2008), a 4.00 m·s-2 threshold was considered too high and 1.11 m·s-

2 too low (Aughey, 2010). It appears the threshold of 2.78 m·s-2 was determined 

arbitrarily (Aughey, 2010). Acceleration thresholds of 1.50 m·s-2, 3.00 m·s-2 and 4.00 

m·s-2 have been used in a single study (Buchheit et al., 2014). Specifying thresholds in 

this manner has implications for quantifying activity profile and monitoring change 

over time, particularly when large variations in the measurement of acceleration are 

common between GPS models from the same manufacturer (Buchheit et al., 2014).  

The velocity distribution of elite field-based team-sport athletes was used to create 

sport-specific threshold values (Dwyer & Gabbett, 2012). Match data from five elite 

female and male soccer, hockey and professional male Australian Football athletes were 

collected from GPS sampling at 1 Hz (Dwyer & Gabbett, 2012). A frequency 
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distribution of speed (0 to 7 m·s-1) in 0.1 m·s-1 increments was computed from the 25 

data sets and an average distribution calculated (Dwyer & Gabbett, 2012). Four 

normally distributed Gaussian curves were then fitted to the averaged velocity 

distribution curves and the intersecting points used to determine thresholds for each 

sport (Dwyer & Gabbett, 2012). A frequency distribution of acceleration from each data 

set was calculated and a threshold was based on the highest 5% of accelerations 

performed (Dwyer & Gabbett, 2012). This threshold was then calculated for each pre-

determined velocity range and used to identify sprints (Dwyer & Gabbett, 2012). The 

average velocity distribution for all field-based team-sports was similar. Differences 

between sexes from the same sport were larger than differences across sports (Dwyer & 

Gabbett, 2012). Six additional sprints, of a short duration, would not have been 

recorded using the traditional threshold (Dwyer & Gabbett, 2012). While the decision to 

include five movement categories comprising standing, walking, jogging, running and 

sprinting, appear to have been arbitrarily determined, this is a novel idea compared to 

the traditional analysis of athlete velocity. This approach was utilised to profile the 

activity of national level lacrosse (Polley, Cormack, Gabbett, & Polglaze, 2015) and 

youth female field hockey (Vescovi, 2014) athletes. However, the 1 Hz GPS units used 

have a very large (77.2%) CV when measuring short sprint efforts (Jennings et al., 

2010a). Consequently, data obtained from 1 Hz GPS during these movements, and the 

results presented, should be interpreted with extreme caution. The small sample size is 

also limited in detecting meaningful change across and between sports. Decelerations or 

negative changes in velocity were also removed from the analysis, likely due to the poor 

capacity of GPS to accurately quantify these movements (Buchheit et al., 2014). 

The ability to reduce velocity is termed deceleration. An athlete’s capacity to efficiently 

decelerate is important for changing direction (Kovacs, Roetert, & Ellenbecker, 2008). 

The major components of deceleration include dynamic balance, power, reactive and 

eccentric strength (Kovacs et al., 2008). In elite team-sport athletes, the substantial 
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eccentric loading during repeated decelerations is likely to have a detrimental effect on 

subsequent 40 m sprint test performance (Lakomy & Haydon, 2004). In collegiate team-

sport athletes, muscle damage was induced post 15 x 30 m repeated sprints with a rapid 

deceleration, interspersed with 60 seconds of passive recovery (Howatson & Milak, 

2009). Increased muscle soreness, swelling, creatine kinase efflux and decreased 

maximum isometric contract was also observed 48 to 72 hours post (Howatson & 

Milak, 2009). Collectively, these results demonstrate the magnitude of muscle and 

performance damage when team-sport athletes perform repeated deceleration efforts. 

Investigation into the decelerations of team-sport athletes during matches is limited. In 

elite male rugby sevens matches, decelerations were classified as moderate (-4.00 to -

2.00 m·s-2) or high (> -4.00 m·s-2) and occurred for a minimum of 0.40 s (Higham et al., 

2012). It is unclear why these zones were chosen. A 35% and 25% difference in 

moderate and high decelerations, respectively, existed between standards of play 

(Higham et al., 2012). The large error of 5 Hz GPS to accurately quantify these 

movements may account for the difference between playing levels. The deceleration of 

professional rugby league athletes were investigated during two competitive seasons 

(Delaney et al., 2015). Differences in the maximum value recorded over a rolling 

average, from one to ten minutes in duration, was compared across playing positions 

(Delaney et al., 2015). Compared with a 10 minute rolling average, a large effect was 

observed for acceleration and decelerations of one to two minutes. A moderate to small 

effect for three to seven minute duration was also recorded (Delaney et al., 2015). While 

this approach presents the maximum load of an athlete over varying durations, all 

acceleration and deceleration measures were modified to estimate the total number of 

accelerations performed (Delaney et al., 2015). This approach could be misleading as 

energetically, the ability to accelerate and decelerate is different. Using this approach, 

the specific training prescription of deceleration is consequently limited. 
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The deceleration output of court-based team-sport athletes remains largely unknown. 

Decelerations, and their distribution over varying epochs, should be included in the 

activity profiles of court-based team-sport athletes. The inconsistency previously 

described in defining velocity thresholds is also evident in research on decelerations. 

There is currently no consensus on how to define acceleration or deceleration 

thresholds. While presenting the acceleration frequency of team-sport athletes provides 

a global representation of high-intensity movements, limited research exists on the 

individualisation of acceleration thresholds. The classification of accelerations is also 

dependent upon the sampling epoch utilised, which may alter the magnitude of 

frequencies reported. 

3.5  Filtering of Data 

Athlete tracking data may be filtered during the post-processing phase. Filtering 

involves the smoothing of position and reduction of noise using various mathematical 

algorithms (Carling et al., 2008). Noise can be removed by numerous techniques, each 

with different results. Curve fitting involves a low-order polynomial curve fitted to raw 

trajectory data. Although this technique is best for repetitive movements including 

jumping, error may be introduced through poor selection of specific points that the 

curve is fitted to (Winter, 2009). These points are determined from the raw data and 

consequently, are influenced by the very noise the filter is trying to eliminate (Winter, 

2009). Bandpass filtering converts raw data from the spatial to the time domain, 

typically using a Fast Fourier Transform (FFT). High-frequency signal, uncharacterise 

of normal human movement, is eliminated before data is converted back into the spatial 

domain through an inverse FFT (Wundersitz, Gastin, Robertson, Davey, & Netto, 

2015a). However, the threshold used as the optimal cut-off frequency is arbitrary and 

typically chosen via visual inspection (Wundersitz et al., 2015a). Digital filtering 

analyses the frequency spectrum of both signal and noise. The signal typically occupies 

the lower end of a frequency spectrum and overlaps with the noise, which is typically 
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observed at a higher frequency (Winter, 2009). A low-pass filter permits the lower 

frequency signals while consequently reducing the higher frequency noise. Low-pass 

filtering can be used when analysing trajectory data (Winter, 2009). 

The filtering of athlete external load data is dependent upon the tracking system utilised. 

Filtering may occur on raw positional data at the instruction of the tracking system 

manufacturer (Stevens et al., 2014). Derived measures, including metabolic power from 

GPS (Di Prampero et al., 2005; Osgnach et al., 2010) are also filtered at unspecified 

frequencies during the post-processing stage. Butterworth (Stevens et al., 2014) and 

Kalman (Sathyan et al., 2012) filters are typically used for LPS data. There is limited 

information on how filters are used in optical player tracking systems and GPS. 

Filtering may account for the 24% difference in sprint distance between real-time and 

post-match Australian football GPS data (Aughey & Falloon, 2010) although no detail 

was presented on how the manufacturer explains these discrepancies. It is important to 

know how the manufacturer of an athlete tracking system filters raw data, particularly 

when inferences from external load are used to make decisions on programming 

training (Borresen & Lambert, 2009; Rogalski, Dawson, Heasman, & Gabbett, 2013). 

The filtering of accelerometer data has recently been examined (Boyd et al., 2011). 

Only one of the 13 filters was strongly related (mean bias; -0.01 ± 0.27 g; CV 5.5%) to 

the criterion measure, Vicon (Wundersitz et al., 2015a). Information on filtering is 

rarely presented from GPS or LPS data when time spent or distance covered in velocity 

bands are reported. The filtering of raw data from an athlete tracking system has a 

substantial impact on the frequencies and distances covered in velocity or acceleration 

zones. Prior to reporting team-sport athlete activity profiles, researchers should detail 

the type of filtering applied to raw data. 

3.6 Individualised Thresholds 

Activity profile data reported as an average across a team (Aughey, 2011b) or position 

(Mooney et al., 2011; Varley & Aughey, 2013) does not account for differences in 
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individual physical capacity. The use of a single sprinting or high-velocity threshold, for 

all athletes within a team, also does not consider the differences between individual 

athletes. Although team-sport matches are contested at an absolute level, the same 

external load calculated by a high-velocity or sprinting threshold, for two athletes could 

represent a different internal load based on individual characteristics (Impellizzeri, 

Rampinini, Coutts, Sassi, & Marcora, 2004). Athlete movement may be expressed 

relative to a physiologically defined variable. High-intensity activity can be classified as 

greater than the second ventilatory threshold (VT2), obtained during a maximal aerobic 

capacity (V̇O2max) test. The VT2 is the point where CO2 production exceeds O2 

consumption during exercise (Davis, 1985). It is assumed that activity beyond this point 

cannot be sustained for prolonged periods due to the athlete no longer being in a steady 

state (Davis, 1985). During team-sport matches, activity below the VT2 can likely be 

continued for a prolonged duration. In male soccer athletes, distance covered at or 

greater than vVT2 was 167% higher or a very large effect when compared to a threshold 

of 5.50 m·s-1 (Abt & Lovell, 2009). A 44% variation in athlete rank, calculated by 

distance covered at high-speed, was observed between the two thresholds (Abt & 

Lovell, 2009). Individual VT2 has also been measured in professional soccer athletes 

(Lovell & Abt, 2012). The resulting vVT2 was compared to an arbitrary velocity (4.00 

m·s-1) threshold (Lovell & Abt, 2012). High-speed running distance was overestimated 

by 9% when arbitrary thresholds were used (Lovell & Abt, 2012). For individual 

athletes, this range could be between 22% lower and 33% higher (Lovell & Abt, 2012). 

In elite female rugby sevens athletes, a physiologically-defined threshold corresponding 

to treadmill speed at VT2 was compared to a cohort average (3.50 m·s-1) value (Clarke 

et al., 2014). When individualised thresholds were used, high-intensity running was up 

to 14% over or under-estimated compared to the cohort mean VT2 derived threshold 

(Clarke et al., 2014). Distance covered at high-speed may therefore be underestimated 

by traditional thresholds.  
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While the individualisation of velocity thresholds is a well-reasoned approach to assess 

external load, conjecture exists on the implementation of an incremental treadmill 

protocol, conducted within a laboratory, and its application to team-sports. The 

individualisation of velocity thresholds, derived from a continuous running protocol, 

does not consider the change of direction and acceleration movements, frequent in 

team-sports (Lovell & Abt, 2012). Whilst speed thresholds have been individualised in 

field-based team-sports (Abt & Lovell, 2009; Clarke et al., 2014; Lovell & Abt, 2012), 

limited research exists on court-based team-sports. 

Athlete thresholds for external load can be expressed relative to maximum speed 

attained during sprint testing. The external load of junior-elite male soccer athletes was 

compared using absolute (> 5.27 m·s-1) or individual thresholds by obtaining the peak 

running velocity during the fastest 10 m split of a 40 m sprint (Buchheit, Mendez-

villanueva, Simpson, & Bourdon, 2010b). Athletes in the highest playing standard (U18 

years of age) performed more repeated-sprint efforts when activity was assessed using 

absolute thresholds (Buchheit et al., 2010b). Younger players (U13 and U14 years of 

age) recorded more sprinting activity with individualised thresholds (Buchheit et al., 

2010b). In junior male rugby league athletes, when an individualised threshold of peak 

velocity obtained during the final 20 m of a 40 m sprint test was compared with 

absolute speed (> 5.00 m·s-1) thresholds, younger athletes (U13) performed likely 

(effect size = 0.43 to 0.58) greater high-speed running compared to their older (U14 and 

U15 years of age) counterparts (Gabbett, 2015b). The total high-intensity running 

performed by junior athletes may be altered when expressed relative to a movement 

threshold obtained during maximal sprinting (Buchheit et al., 2010b; Gabbett, 2015b). 

Inconsistencies therefore exist in the recorded sprinting distance according to the 

velocity threshold used.  

Expressing a team-sport athlete’s data relative to a physiologically defined threshold is 

an individualised approach that may benefit the training prescription for players. 
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Although an advancement on the use of arbitrarily derived velocity thresholds, limited 

research exists on how to individualise accelerations. Accelerations require more energy 

than constant velocity. Without information on how to classify accelerations, 

individualised thresholds are therefore limited in their use for team-sport athletes, 

including those who participate in court-based sports. 

3.7 Relationship of High-Intensity Activity to Match Performance 

The capacity to accelerate and sprint is important for team-sport match performance. In 

junior-elite Australian Football, athletes faster over a 5 m and 20 m split acquired the 

most kicks and disposals during matches, compared with their slower counterparts 

(Young & Pryor, 2007). During elite matches, a relationship exists between athlete 

physical capacity and the number of disposals. This relationship is mediated by the 

amount of high intensity-running (HIR) m·min-1 or distance travelled at > 4.17 m·s-1 

(Mooney et al., 2011). Sophisticated modelling techniques may therefore be able 

examine the effect of contextual and match-related factors on team-sport athlete running 

intensity. 

The relationship between physical capacity and match performance in professional 

soccer was examined across three top English leagues (Bradley et al., 2013). Total 

distance covered and HIR > 5.50 m·s-1 was captured via semi-automatic tracking 

(Bradley et al., 2013). Less total and HIR distance occurred at a higher than a lower 

playing standard. Physical capacity, defined as score on the Yo-Yo intermittent 

recovery two (IR2) test, was correlated with HIR distance (Bradley et al., 2013). In 

junior-elite male soccer athletes, the relationship between external load, defined as 

movement > 4.47 m·s-1 and physical capacity, quantified as score on the Yo-Yo IR1, 

was position dependent. Poor correlations were observed between match running 

performance and athlete physical capacity in all positions except strikers. However, the 

1 Hz GPS units used have poor validity (CV% of 11 to 30%) for assessing HIR (Coutts 

& Duffield, 2010). To truly quantify the relationship between athlete match external 
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load and physical capacity, tracking technologies that are accurate at detecting 

movement within a range of intensities should also be used. Although the relationship 

between match outcomes, athlete performance and external load have been examined, 

research has applied a mean velocity threshold to all athletes within a team. The 

justification for these thresholds is typically based on other literature or arbitarily 

determined. Individualising velocity thresholds may allow for a detailed analysis of the 

relationship between athlete external load and match outcome, although physiologically 

defined thresholds are limited in their application for defining accelerations. The 

majority of research on the relationship between athlete performance and external load 

has focused on males competing in team-sports, with limited information on female 

athletes. 

3.8 Thresholds for Male and Female Team-Sport Athletes 

Men and women compete in team-sports at an elite level. Tracking technologies, 

including GPS, are used to collect the activity profiles of male and female team-sport 

athletes (Dwyer & Gabbett, 2012; Gabbett & Mulvey, 2008; Vescovi, 2014). There are 

differences in physiological capacities between sexes, including aerobic fitness and 

absolute sprinting ability (Mujika, Santisteban, Impellizzeri, & Castagna, 2009). 

Consequently, the physiological cost of high-speed running may be substantially 

different for male and female team-sport athletes. Although lower speed thresholds are 

suggested for female team-sport athletes (Dwyer & Gabbett, 2012), limited research 

exists on the application of these thresholds. An under- or over-estimation of external 

load may occur if female athletes use thresholds initially developed for male athletes.  

Thresholds developed for male team-sport athletes have been applied to female external 

load data. During international female hockey matches, the average number (17) of 

sprints completed was lower than the mean number (30) performed by male athletes 

(Macutkiewicz & Sunderland, 2011). However a sprinting threshold of 5.2 m·s-1, 

adapted from research on male soccer athletes (Bangsbo, 1992), was applied to female 
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match data. Since there are sex differences in sprinting speed (Mujika et al., 2009), the 

reduction in mean sprints observed during international female hockey could be due to 

the inappropriate use of a velocity threshold designed for males. In soccer, male 

velocity thresholds have also been applied to female external load data (Krustrup, Mohr, 

Ellingsgaard, & Bangsbo, 2005; Mohr, Krustrup, Andersson, Kirkendal, & Bangsbo, 

2008). However, the sprinting speed of female soccer athletes varies across age 

(Vescovi, Rupf, Brown, & Marques, 2011) and differs compared to males (Mujika et 

al., 2009). To develop female specific values, varying velocity thresholds have been 

used in soccer (Vescovi, 2012). During competitive matches, sprinting by professional 

female soccer athletes accounts for 5.3% of total distance covered when categorised as 

activity > 5.0 m·s-1 (Vescovi, 2012). However, if the threshold is increased to > 6.9 

m·s-1, similar to thresholds used for male team-sport athletes (Varley et al., 2013b), little 

to no sprinting is recorded (Vescovi, 2012). A ceiling effect may therefore be present 

when using thresholds originally developed for male team-sport athletes. Although the 

use of varying velocity thresholds is a guide in the development of sprinting values for 

female soccer, this approach does not consider the individual physiological differences 

between athletes. 

The individualisation of velocity thresholds for female athletes has recently been 

examined. In elite female rugby sevens athletes, a male velocity threshold (5.0 m·s-1), 

individual and cohort mean vVT2 speed, was used to determine distance covered at 

high-intensity (Clarke et al., 2014). The absolute amount of match high-intensity 

running was understimated by up to 30% when using a velocity threshold designed for 

male athletes (Clarke et al., 2014). The individualised threshold under- or over-

estimated high-intensity running by up to 14% when compared to the cohort mean 

vVT2 speed threshold of 3.5 m·s-1 (Clarke et al., 2014). Individualising the high-

intensity running threshold, assessed via a linear physiological test, of female team-

sport athletes may allow for customised training prescription. However, 
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individualisation requires a time-consuming and expensive laboratory-based V̇O2max 

test, which can be difficult to implement with a large number of athletes in a team-sport 

setting. Alternatively, the maximal aerobic speed (MAS) of an athlete is highly-

correlated with maximal oxygen uptake (Uger & Boucher, 1980) and reflects running 

economy (Di Prampero, Atchou, Brückner, & Moia, 1986). Assessment of MAS can 

occur on a large number of athletes during an incremental field running test (Buchheit, 

Simpson, & Mendez-Villanueva, 2013). The relationship between MAS and high-

intensity running has been assessed in youth male soccer athletes (Buchheit et al., 2013) 

although, to date, no research exists on individualising the velocity thresholds of female 

team-sport athletes using MAS testing results. For female team-sport athletes who 

cannot complete individualised physiological or field testing, a threshold of 3.5 m·s-1 

could be used as guide for high-intensity running, although differences between playing 

position and standard are not accounted for with this fixed threshold.  

The development and implementation of female-specific thresholds, according to 

playing standard and position, should be investigated. Although thresholds have been 

developed for female athletes competing in field-based sports (Clarke et al., 2014; 

Dwyer & Gabbett, 2012), there are no thresholds specifically for court-based sports. 

Netball, for example, is a court-based team-sport played indoors by elite female 

athletes. Due to the lack of research on female court-based sports, there is limited 

information on how to quantify velocity and acceleration thresholds for netball athletes.  

3.9 Alternate Approaches to Classify Athlete Activity 

Data mining is a research area that aims to discover regularity from within large 

datasets and yield insights that are not possible using conventional statistics (Chen, Han, 

& Yu, 1996). Large databases, such as the external load obtained from tracking 

technologies, can therefore be investigated. Knowledge may be extracted through data 

mining techniques including classification, where data are sorted into predefined classes 

based on some common features (Chen et al., 1996). These methods are alternative 
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approaches to the individualisation of team-sport athlete external load. For example, the 

latent properties of external load from a single athlete can be found using data mining 

approaches. Velocity or acceleration thresholds are therefore derived directly from the 

sampled data and can be examined across age, sex, playing standard or position.  

Relationships between latent properties in data that may impact athletic performance 

can be uncovered using data mining (Ofoghi, Zeleznikow, MacMahon, & Raab, 2013b). 

Machine learning, a data mining technique, has been used to discover the physiological 

capacities required to medal in sprint cycling (Ofoghi, Zeleznikow, MacMahon, & 

Dwyer, 2010). A recent review (Ofoghi et al., 2013b) highlighted the lack of a 

contemporary framework for analysing the match performance data of elite athletes. For 

example, a traditional statistical analysis on the performance of a team-sport athlete 

during passing chains may consider a direct relationship with a dependent variable. 

However, this type of analysis ignores the context of data collection (Ofoghi et al., 

2013b). Using data mining techniques, the hidden features that may impact upon 

passing quality could be examined, going beyond a superficial analysis (Ofoghi et al., 

2013b).  

An alternative approach is mediation analysis, a statistical technique that examines the 

relationship between the dependent variable and independent variables to identify plus 

explain process. Mediation analysis has been applied in elite Australian Football to 

examine inter-relationships between athlete capacity, match intensity and performance 

(Mooney et al., 2011). Playing position and experience influence the relationship 

between an athlete’s capacity, match activity profile and possession output (Mooney et 

al., 2011). Linear techniques including discriminant analysis (Castellano, Casamichana, 

& Lago, 2012) and generalised linear modelling have also been used to examine team-

sport performance. However, linear techniques may not be an optimum method to 

analyse the match performance of dynamic and chaotic team-sports. 
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In contrast, non-linear data mining techniques are not constrained to a single linear 

variable. Decision trees, a non-linear technique, have been used to explain match 

outcome in Australian football (Robertson, Back, & Bartlett, 2016), classify team-sport 

activities from a wearable sensor (Wundersitz et al., 2015b) and explore the attacker and 

defender interaction during invasion sports (Morgan, Williams, & Barnes, 2013). 

Decision trees involve the repeated partitioning of data, based on input fields that create 

branches which can be further split to differentiate the dependent variable. Decision 

trees can handle missing data and provide an intuitive analysis of a dataset (Morgan et 

al., 2013). Unlike clustering, decision tree induction is not dependent on the selection of 

a prior distribution. 

Clustering is a data mining technique that could be used to find unknown patterns in 

large datasets by classification, whereby data is grouped based on similarity (Chen et 

al., 1996). A large dataset can be meaningfully divided into smaller components or 

categories using clustering (Punj & Stewart, 1983). These categories may be mutually 

exclusive (Fayyad et al., 1996). Categories can also be sorted in a hierarchical or 

overlapping manner. Gaussian mixture models, a cluster method that contains a prior 

belief about group assignment, have been used to classify shot making in tennis (Wei, 

Lucey, Morgan, & Sridharan, 2013). These clustering methods represent sub-

populations within a dataset and express the uncertainity about cluster assignment. The 

k-means clustering algorithm divides a dataset into a user-specified number of k clusters 

(Wu et al., 2008). The k-means algorithm starts with k centroids, selected at random. 

Each data point within the wider dataset is assigned to its nearest centroid, based on 

similarity. The centroids are updated each time a data point is assigned (Wu et al., 

2008). The centroid mean is then calculated from the data points allocated to that cluster 

(Wu et al., 2008). The size of the dataset determines the number of repetitions required 

for the k-means algorithm to reach completion (Wu et al., 2008). Clustering, via the k-
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means algorithm, could be used in a variety of sport settings, including grouping the 

external load of an athlete.  

Complex statistical or data mining techniques, including clustering, may uncover 

unknown patterns or counter prior beliefs. These approaches could be used to guide the 

development of athlete velocity and acceleration thresholds. Self-organising maps 

(SOM) and clustering have been utilised in elite rugby union to uncover playing styles 

related to team success (Croft, Lamb, & Middlemas, 2015). The coordination patterns 

during three different basketball shots from varying distances have also been classified 

using SOM (Lamb, Bartlett, & Robins, 2010). The lowest variability was recorded in 

the three-point and hook shots. The SOM displayed a movement output that differed 

unexpectedly from traditional analysis, including visual inspection and time series data 

(Lamb et al., 2010). A movement analyst with experience and prior knowledge or bias 

may have been distracted by other information compared to a SOM, that has a more 

objective methodology (Lamb et al., 2010). These approaches could also be used to 

group athlete velocity data, without the requirement of a human input threshold based 

on a physiologically defined or arbitrary value. These groups could be formed 

irrespective of an athlete’s age, sex, position or playing standard. Patterns within athlete 

movement, including velocities and accelerations performed, could be derived by 

applying clustering techniques to external load data. 

The accelerometer derived PlayerLoad™ data of elite female netball athletes was 

grouped by k-means clustering (Young et al., 2016). Optimal clustering was the greatest 

Euclidean distance obtained from two to five clusters (Young et al., 2016). The seven 

netball playing positions were divided into two groups according to playing intensity 

and relative time spent in a low-intensity zone (Young et al., 2016). The PlayerLoad™ 

for the goal based positions was lower than the attacking and wing positions, likely due 

to the time spent performing low intensity activity (Young et al., 2016). This study was 

the first to use data mining techniques, including k-means clustering, to examine athlete 
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load data. However, only accelerometer data was investigated and not the position of an 

athlete, from GPS or LPS. Capturing the position of an athlete allows for the calculation 

of displacement, velocity and acceleration. With the large volume of data obtained from 

athlete tracking systems, data mining represents an technique to gain further insight into 

athlete activity profiles. Consequently, athlete external load could be analysed without 

the requirement of an arbitrary or software-implemented threshold. 

3.10 Conclusion 

Athlete position, velocity and acceleration can be measured during matches or training 

via optical tracking, GPS and LPS. The analysis of distance, velocity and acceleration 

over a specified time epoch is termed athlete activity profile. It is difficult to compare 

literature on field-based sports due to inconsistencies in velocity and acceleration 

thresholds, even within a single sport. Velocity and acceleration thresholds have been 

determined from physiological and physical capacity tests. Limited research also exists 

on female team-sport athletes and how to classify their velocity plus acceleration. 

Alternatively, data mining can derive patterns from large datasets. With the large 

volume of data obtained from athlete tracking systems and advancements in classifying 

movement patterns during skill or endurance performance, data mining is a technique to 

gain further insight into athlete activity profiles. Consequently, athlete external load 

could be analysed without velocity or acceleration thresholds. Future work should focus 

on using data mining techniques to analyse the movement performed by team-sport 

athletes, particularly elite females and those participating in court-based sports. 
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AIMS OF THE THESIS 

The aim of this thesis was to measure the movement sequences of elite and junior elite 

female netball athletes during competitive matches using an accurate tracking system. 

Specifically: 

• To assess the indoor accuracy of distance, mean velocity and angular velocity of 

the Wireless ad Hoc System for Positioning (WASP) during movements, common 

to court-based team-sports, compared to a criteron (Study One). 

• To develop a method, using data mining techniques, to uncover the combination of 

velocity, acceleration and angular velocity movement sequences performed during 

a netball match (Study Two). 

• To discover the frequently recurring movement sequences of elite female netball 

athletes, according to individual playing position (Study Three). 

• To compare the movement sequences of junior-elite female netball athletes, 

according to playing postion, with elite athletes and assess the similarities between 

positions of differing playing standards (Study Four). 
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CHAPTER 4. STUDY 1 – THE ACCURACY OF A RADIO-

FREQUENCY TRACKING SYSTEM FOR INDOOR SPORTS 

4.1 Introduction 

Accurately measuring the movement of team-sport athletes during training and matches 

is important for the design of specific conditioning activities and training load 

management. Athlete movement can be collected via global positioning systems or GPS 

(Aughey, 2011a), semi-automated optical tracking systems including Prozone® (Di 

Salvo et al., 2006) and local positioning systems (LPS). These technologies estimate an 

athlete’s position with respect to the coordinates of a playing area, allowing for the 

calculation of displacement over a specified time epoch (Aughey, 2011a). The 

examination of athlete movement as quantified by the time spent or distance covered at 

particular velocities, termed activity profile, can then be calculated. To date, the angle 

of attack or angular velocities performed by team-sport athletes during matches have 

not been examined. This is likely due to the inability of current athlete tracking systems 

to accurately detect short-duration, non-linear movement. 

The analysis of athlete activity profile requires an accurate and precise tracking system. 

Tracking systems must be able to quantify small changes of practical importance 

within- and between- athlete match activity profile (Jennings, Cormack, Coutts, Boyd, 

& Aughey, 2010b). The accuracy of GPS has been quantified for team sport use over 

linear and non-linear courses at a range of velocities (Coutts & Duffield, 2010; Jennings 

et al., 2010a; Varley et al., 2012). During linear sprinting over a 10 m course, 1 Hz GPS 

units recorded a coefficient of variation (CV) of 77.2% for measuring total distance 

covered (Jennings et al., 2010a). During short high-intensity movements representative 

of court-based sports, GPS can underestimate distance covered, mean and peak speed 

by up to 30% (Duffield et al., 2010). The inability of GPS to accurately quantify such 

movements has severe implications for capturing external load during court-based 
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sports. Elite court-based team-sports, such as netball, are contested indoors where GPS 

is inoperable due to no satellite reception.!

An alternate athlete tracking technology for indoor sports is local positioning systems 

(LPS). Anchor nodes are dispersed around the playing court, with the distance between 

each anchor node and calibration point measured. Radio-frequency (RF) is then used to 

transmit the range between LPS mobile nodes worn by athletes and anchor nodes. The 

accuracy of an LPS has been quantified during soccer-specific (Frencken et al., 2010) 

and change of direction (Stevens et al., 2014) courses. Only two changes of direction, 

90º and 180º turns, were investigated (Stevens et al., 2014), limiting the ecological 

validity of these studies. Frequent, varying changes of direction should be included 

when validating a LPS to allow each mobile node to sight different anchor nodes. The 

LPS mobile nodes used in the aforementioned validation studies (Frencken et al., 2010; 

Stevens et al., 2014) were located on each participant’s shoulders and are therefore 

impractical for use in elite competition. A different LPS comprising small mobile 

nodes, worn between an athlete’s shoulder blades, is the Wireless ad hoc System for 

Positioning or WASP (Hedley et al., 2010). The WASP has a relative position error of 

18 and 28 cm for outdoor and indoor use, respectively (Sathyan et al., 2012). Indoors, 

WASP has a mean total distance error of 2.2% in linear running whilst during non-

linear movement, a mean error of 2.7% was recorded (Sathyan et al., 2012). The non-

linear course used is a test designed to benchmark Australian Football athletes, who are 

field-based team-sport athletes. Distance and velocity measures from WASP have not 

been examined during a variety of non-linear movements that are representative of 

court-based team-sports, including netball. To date, no study has examined measures of 

angular velocity from an athlete tracking system, including WASP. The accuracy of 

WASP has also not been examined against a high-resolution criterion measure, such as 

Vicon (Richards, 1999). Therefore, the aim of this study was to quantify the accuracy of 
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WASP measures, particularly changes in angular velocity, compared with Vicon during 

movements that are representative of court-based team-sports.  

4.2 Methods 

Two International level female netball athletes, a goaler (age; 28 years, height; 183 cm 

and mass; 70 kg) and mid-courter (age; 22 years, height; 180 cm and mass; 72 kg), 

provided written informed consent to participate. The study was approved by the 

University Human Research Ethics Committee. Participants completed a total of 74 

trials at two different intensities, sprinting (n = 44) and walking (n = 30). Five 

movement drills that replicated netball match-play movement were examined (Figure 4-

1). Drill one involved a straight 5 m movement then a 90º turn before another straight 5 

m; drill two was the same length as drill one yet consisted of a 45º turn; drill three 

comprised a straight 5 m movement, 180º turn and straight 5 m movement. Drill four 

consisted of a straight 5 m, 90º turn, straight 5 m movement, 45º turn and a final 2.5 m 

movement. Drill five comprised a straight 5m, 180º turn, straight 2.5 m movement, 90º 

turn, straight 2.5 m movement, 45º turn and a final 2.5 m movement. Participants 

completed a standardised netball warm-up prior to testing. The warm-up included linear 

and non-linear movement at various speeds plus dynamic stretching of lower body 

musculature. At least three trials of each movement drill were practiced prior to testing. 

Drills were performed on a fully sprung indoor netball court. Before commencing each 

trial, participants started with one foot on and both shoulders behind a start line. The 

same investigator gave a starting signal and participants were instructed to either “walk” 

or “sprint.” The speed of both movement intensities was self-selected however 

participants were encouraged to be consistent in their movements across all drills and 

trials. Participants were also instructed to sprint at 100% intensity. A three minute rest 

period was provided between each trial.!
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Figure 4-1. A schematic representation of netball-specific movements divided into 

five drills: D1 = 90º turn, D2 = 45º turn, D3 = 180º turn, D4 = 90º turn followed by 

45º turn, D5 = 180º turn, 90º turn followed by 45º turn. 

 

During each drill, LPS data was collected by twelve WASP (Australian Institute of 

Sport, Canberra, Australia; Commonwealth Scientific and Industrial Research 

Organisation, Sydney, Australia) anchor nodes that were fixed around the testing space 

(see Figure 4-2). The height of each anchor node and their distance to the nearest line 

marking of the calibrated netball court is displayed in Table 4-1.  
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Figure 4-2. The location of each WASP anchor node, open numbered circles 

denote anchor number, as calibrated within an indoor stadium. Width of the 

indoor stadium is given by X (m; metres) and length given by Y (m; metres). 
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Anchor Station 
X-axis Distance 

(m) 
Y-axis Distance 

(m) 
Height (m) 

Distance to 
nearest line 

marking (m) 

1 -18.2 26.7 4.0 3.0 

2 -18.3 7.6 3.6 11.9 

3 -18.3 -2.0 3.6 21.3 

4 -8.0 -61.4 2.8 80.5 

5 8.1 -61.4 2.8 80.5 

6 18.2 -2.1 3.6 21.4 

7 18.2 17.1 4.3 3.6 

8 18.3 26.7 4.2 3.0 

9 18.0 42.2 4.4 8.3 

10 7.2 42.2 4.4 7.9 

11 -7.1 42.3 4.4 7.9 

12 -18.0 42.3 4.2 8.4 

 

Table 4-1.  Location and height (m; metres) of each WASP anchor node, relative to 

a survey point and the nearest line marking of a calibrated netball court within an 

indoor netball stadium. The width of the indoor stadium is given by the X axis (m; 

metres) and length is given by the Y axis (m; metres).  
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Each participant wore a lightweight (~ 100 g) WASP mobile node, measuring 90 x 50 x 

25 mm, positioned between the shoulder blades and housed in a custom-built crop-top. 

The range between each WASP mobile and anchor node is updated at 10 Hz. Using 

customised software (WheresBruce, Australian Institute of Sport, Canberra, Australia), 

the location of each mobile node is obtained via multi-lateration and a tracking filter is 

applied, resulting in a 100 Hz file with positional (x, y) data (Hedley et al., 2011).  

A 22 camera Vicon motion-analysis system (Vicon Nexus, Oxford Metrics, United 

Kingdom), capturing at 200 Hz, was the criterion measure. A reflective marker of 14 

mm in diameter was mounted on the mobile node’s centre of mass to obtain three-

dimensional (3D) position. Markers were also placed on each participant’s left wrist, 

sternum, clavicle, C7, T10 plus the left and right acromion process to obtain trunk 

kinematics (Dempsey et al., 2007). The capture volume was 7 x 12.5 m and all testing 

was performed within a third of an indoor netball court. Vicon was calibrated preceding 

the testing session and image error (RMS in camera pixels) was below 0.20 for all 

Vicon cameras. 

Vicon data was time aligned with WASP to match the duration of each drill. The 

participant’s stationary pose behind the starting line was used to determine the 

commencement of each drill and sync point between systems. The WASP data was 

trimmed to reflect the recorded Vicon drill length. Prior to statistical analysis, Vicon 

signals (x-y direction) were filtered using a low-pass, fourth-order 6 Hz Butterworth 

filter, determined from a residual analysis (Winter, 2009). Positional (X and Y 

coordinate) data from WASP and Vicon were differentiated to obtain velocity (Stevens 

et al., 2014). Angular velocity, the rate of change of angular displacement, was obtained 

from angular displacement. All data were log-transformed to reduce bias due to non-

uniformity of error (Varley et al., 2012). Validity was calculated by the standard error of 

the estimate and expressed as a standard deviation (± 90% confidence limits, CL) of the 

percentage difference between criterion (Vicon) total distance, mean and peak velocity 
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and angular velocity for all sprinting drills and all walking drills. The process was then 

repeated for each individual movement drill, split by sprinting and walking. Bias was 

reported as the percentage difference between criterion and WASP measures. A Pearson 

product-moment correlation was also calculated between criterion and WASP. All 

statistical analysis was performed using the R statistical environment (Team, 2013). 

4.3 Results 

The Vicon and WASP mean angular velocities were very strongly correlated during 

walking and sprinting, across all movement drills (Table 4-2). Very strong correlations 

were also associated with walking and sprinting movement for WASP measurement of 

peak angular velocity. The CV was < 12% for mean and peak angular velocity during 

walking drills (Table 4-2). The CV was < 3% for mean and peak angular velocity 

during sprinting drills (Table 4-2). 

The WASP accuracy for measuring total distance across all drills was greater during 

walking movement compared to sprinting (Table 4-2). Similarly, WASP was more 

accurate during walking compared to sprinting when measuring mean velocity across all 

movement drills (Table 4-2). In contrast, the CV for walking was higher compared to 

sprinting for measuring peak velocity (Table 4-2). However, WASP bias was higher 

during all walking movement drills compared to sprinting. Total distance and mean 

velocity was underestimated by WASP during sprinting drills. In contrast, total 

distance, mean and peak velocity was overestimated by WASP during all walking drills 

(Table 4-2). 

The Vicon and WASP total distances were strongly correlated during walking and 

sprinting across all movement drills (Table 4-2). Weaker correlations were associated 

with walking and sprinting movement for WASP measurement of peak velocity. Whilst 

Vicon and WASP were highly correlated for measuring mean velocity during sprinting, 

walking was associated with a weaker correlation (Table 4-2).  
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The CV was < 5% for measuring total distance during all drills, for sprinting and 

walking, with the exception of drill one (Table 4-3). Bias was higher (14.4% to 18.63%) 

during drills three, four and five (Table 4-3). The total distance during sprinting in drill 

one was underestimated by WASP yet overestimated during drill two. 
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Table 4-2. Comparison of WASP data with criterion (Vicon) across sprinting (n = 44) and walking (n = 30) intensities, irrespective 

of movement drill. Data are expressed as a coefficient of variation (CV), percent bias and a correlation statistic.  

 
WASP  

(Mean ± SD) 
Vicon  

(Mean ± SD) 
CV as % 

(± 90% CL) 
Bias as % 

(± 90% CL) 

Pearson 
correlation 
(± 90% CL) 

Total Distance (m) 

Walking 13.9 ± 4.1 12.5 ± 3.4 4.6 ± 1.3 11.8 ± 1.8 0.99 ± 0.01 

Sprinting 11.4 ± 3.2 11.5 ± 2.9 6.7 ± 1.2 -1.0 ± 1.8 0.96 ± 0.02 

Mean Velocity (m.s-1) 

Walking 1.5 ± 0.1 1.4 ± 0.1 4.8 ± 1.3 11.8 ± 1.8 0.48 ± 0.25 

Sprinting 3.3 ± 0.4 3.3 ± 0.4 6.5 ± 1.2 -0.5 ± 1.7 0.83 ± 0.08 

Peak Velocity (m.s-1) 

Walking 2.8 ± 0.4 1.8 ± 0.2 12.3 ± 1.3 60.7 ± 9.1 -0.21 ± 0.30 

Sprinting 5.1 ± 0.5 5.0 ± 0.6 11.7 ± 1.2 2.3 ± 3.2 0.31 ± 0.23 

Mean Angular Velocity (deg.s-1) 

Walking 25.4 ± 6.5 29.3 ± 5.9 9.2 ± 1.3 18.2 ± 3.8 0.94 ± 0.04 

Sprinting 80.5 ± 27.1 78.7 ± 28.8 2.8 ± 1.2 -3.2 ± 1.3 0.99 ± 0.01 

Peak Angular Velocity (deg.s-1) 

Walking 110.3 ± 33.3 115.0 ± 34.5 11.3 ± 1.3 4.4 ± 3.7 0.94 ± 0.04 

Sprinting 133.3 ± 45.3 131.1 ± 46.6 2.6 ± 1.2 -2.3 ± 1.0 0.99 ± 0.01 
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Table 4-3. Comparison of WASP data with criterion (Vicon) across sprinting (n = 44) and walking (n = 30) intensities, for each 

movement drill. Data are expressed as a coefficient of variation (CV) and percent bias.  

 Walking Sprinting Walking Sprinting Walking Sprinting 
WASP  

(Mean ± SD) 
Vicon  

(Mean ± SD) 
WASP  

(Mean ± SD) 
Vicon  

(Mean ± SD) 
CV as % 

(± 90% CL) 
CV as % 

(± 90% CL) 
Bias as % 

(± 90% CL) 
Bias as % 

(± 90% CL) 

Total Distance (m) 

Drill One 11.1 ± 0.9 10.5 ± 0.3 9.4 ± 0.6 9.9 ± 0.5 1.7 ± 2.2 5.2 ± 1.8 5.2 ± 5.9 -4.9 ± 4.4 

Drill Two 8.8 ± 0.4 8.3 ± 0.2 8.3 ± 0.6 8.1 ± 0.1 2.9 ± 2.8 0.5 ± 1.9 6.4 ± 4.6 3.0 ± 5.5 

Drill Three 12.7 ± 0.9 10.9 ± 0.5 10.8 ± 1.1 10.9 ± 0.5 3.9 ± 2.2 2.2 ± 1.2 18.6 ± 6.2 -1.0 ± 4.1 

Drill Four 13.0 ± 1.2 11.6 ± 0.7 10.3 ± 0.7 10.6 ± 0.2 1.2 ± 1.7 2.1 ± 1.6 12.4 ± 2.3 2.9 ± 4.2 

Drill Five 20.1 ± 0.7 17.8 ± 0.6 16.8 ± 1.2 16.4 ± 0.3 1.9 ± 1.7 1.5 ± 1.6 14.4 ± 1.4 1.9 ± 3.7 

Mean Velocity (m.s-1) 

Drill One 1.5 ± 0.1 1.4 ± 0.01 3.3 ± 0.3 3.5 ± 0.2 3.4 ± 2.2 3.9 ± 1.8 5.3 ± 6.0 -4.6 ± 4.4 

Drill Two 1.6 ± 0.0 1.5 ± 0.0 3.9 ± 0.2 3.9 ± 0.2 2.7 ± 2.8 4.7 ± 1.8 6.6 ± 4.6 2.5 ± 4.9 

Drill Three 1.5 ± 0.1 1.3 ± 0.0 2.9 ± 0.1 3.0 ± 0.3 2.1 ± 2.8 7.6 ± 1.6 16.8 ± 6.9 -0.7 ± 4.1 

Drill Four 1.5 ± 0.1 1.4 ± 0.1 3.2 ± 0.3 3.2 ± 0.1 3.3 ± 1.7 3.4 ± 1.6 12.6 ± 2.3 -2.1 ± 3.9 

Drill Five 1.6 ± 0.0 1.4 ± 0.0 3.0 ± 0.2 2.9 ± 0.1 1.8 ± 1.7 3.6 ± 1.6 15.5 ± 1.6 2.2 ± 3.7 

Peak Velocity (m.s-1) 

Drill One 3.1 ± 0.5 1.8 ± 0.1 4.9 ± 0.6 5.3 ± 0.4 3.8 ± 2.2 9.8 ± 1.8 106.1 ± 29.5 -7.8 ± 8.9 

Drill Two 2.4 ± 0.2 1.9 ± 0.1 5.6 ± 0.3 5.6 ± 0.3 3.4 ± 2.9 5.2 ± 1.9 27.4 ± 9.7 0.6 ± 7.8 

Drill Three 2.4 ± 0.1 1.7 ± 0.1 4.9 ± 0.4 4.4 ± 0.3 4.9 ± 2.9 6.6 ± 1.6 52.2 ± 12.3 11.8 ± 5.9 

Drill Four 2.7 ± 0.4 1.8 ± 0.2 4.8 ± 0.4 4.8 ± 0.8 10.3 ± 2.9 16.2 ± 1.6 71.5 ± 21.9 1.1 ± 9.9 

Drill Five 2.7 ± 0.2 1.9 ± 0.4 5.3 ± 0.5 5.1 ± 0.3 20.3 ± 1.8 2.9 ± 1.6 52.6 ± 20.3 2.9 ± 2.5 
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The CV was < 4% for measuring mean velocity during all walking drills (Table 4-3). 

During all sprinting drills, the CV was < 10%. The mean velocity recorded by WASP 

was overestimated for all walking drills yet underestimated during sprinting, with the 

exception of drills two and five (Table 4-3). During drill one, two and three, the CV for 

WASP measurement of peak velocity was < 10% for sprinting and walking movement. 

However, the CV increased for the remaining drills with the exception of sprinting 

during drill five (Table 4-3). During walking, WASP overestimated peak velocity for all 

movement drills. Peak velocity was overestimated by WASP during all sprinting drills, 

with the exception of drill one.!

4.4 Discussion 

This study investigated the accuracy of angular velocities obtained from an athlete 

tracking system against 3D motion analysis during short, non-linear movements 

performed by elite court-based team-sport athletes. The CV for mean and peak angular 

velocity during sprinting movements was < 3% across all movement drills, 

demonstrating the acceptable accuracy for this measure from WASP. During walking 

movements, the CV for mean and peak angular velocity was < 11.3%. The discrepancy 

in CV between sprinting and walking angular velocity may be partly due to variation in 

the geometric dilution of precision, a measure of position accuracy deviation due to 

geometry of the anchor and mobile nodes (Zhu, 1992). All movement drills commenced 

and finished at the edge of a netball court, resulting in a lower geometric dilution of 

precision. Since mobile WASP nodes were located between the scapulae of each 

participant, the anchor nodes in front of the participant were blocked by the body. When 

walking, this body blockage is experienced for a longer time duration due to the slower 

velocity delayed in sighting multiple anchor nodes. This is confirmed by the 

substantially higher bias for walking drills when compared with sprinting (Table 4-3). 

Other studies (Frencken et al., 2010; Ogris et al., 2012; Stevens et al., 2014) on LPS 

accuracy conduct drills in the middle of a court or soccer pitch, allowing for mobile 
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nodes to enjoy a better geometry with anchor nodes. Whilst this research design could 

have been utilised in the present study, indoor court-based sports are typically contested 

in stadia with playing areas enclosed by metal walls.  

In netball, athletes are confined to playing areas according to their position (The-All-

Australia-Netball-Association, 2012). Athletes may also need to throw the ball back into 

play from the court sideline (The-All-Australia-Netball-Association, 2012). Court-based 

team-sport athletes are therefore not always in the middle of a playing area, where the 

geometry of an LPS is increased. To ensure a robust test of the WASP for use in court-

based team-sports, drills were designed to commence plus finish at the edge of the 

court. Whilst this may influence the CV and bias reported, the robust methodology 

employed allows researchers and practitioners to understand the error of WASP during 

a “worst-case” situation.  

To date, an athlete’s angle of attack has not been quantified during training and 

matches, likely due to limitations in the accuracy of tracking technologies for this type 

of analysis. Knowledge of an athlete’s angular velocities performed during a match may 

assist coaches and practitioners in designing training drills to target specific angles of 

attack. In combination with an athlete’s position relative to the playing area and their 

team-mates, angular velocity data could be used for tactical analysis purposes such as 

understanding the movements performed in the lead up to a shot for goal or intercept.  

The accuracy of WASP for quantifying distance covered during short, non-linear drills 

was acceptable. During all walking drills, the CV was less than 4% for measuring 

distance travelled. This is similar, at the lower range, to GPS estimates (CV, 3.5 to 

17.8%) for measuring distance covered during tennis specific drills in a confined space 

(Duffield et al., 2010) and similar to that of other RF based LPS (Frencken et al., 2010; 

Ogris et al., 2012). Research on quantifying the accuracy of LPS has typically been 

conducted with linear trials (Frencken et al., 2010; Sathyan et al., 2012) or outdoor 
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field-based sport-specific movements performed over distances > 10 m (Frencken et al., 

2010; Sathyan et al., 2012). Relative estimations of distance and pre-defined courses 

plus timing gates have been used as the criterion measure (Frencken et al., 2010; 

Sathyan et al., 2012). These methodologies cannot quantify the exact course undertaken 

by each participant during trials, potentially understimating distance covered and 

therefore are severely limited as a criterion measure during validation trials.  

The accuracy of a LPS for use in field-based team-sports has been assessed with 3D 

motion analysis capture (Ogris et al., 2012; Stevens et al., 2014). The study in this thesis 

contains a slightly higher CV for total distance covered when compared to other LPS 

accuracy research (Ogris et al., 2012; Stevens et al., 2014). This may be due to the 

shorter length plus variation in turning angles of the non-linear courses employed here. 

One study assessed the distance accuracy of an LPS over three soccer-specific courses, 

26.5 m in length with two changes of direction, compared to a 3D motion analysis 

system (Ogris et al., 2012). The outdoor accuracy of a LPS was quantified over a 25 m 

course with three changes of direction (Frencken et al., 2010). The indoor LPS accuracy 

was quantified over eight soccer-specific courses with only 90° and 180° single turns  

(Stevens et al., 2014), yet this design is not representative of the many changes of 

direction performed in elite soccer (Faude et al., 2012). In contrast, the present study 

employed multiple changes of direction including 45°, 90°, 180° plus combined turns, 

over a course < 15 m. Drill four and five, in particular, are complex movement patterns 

comprising up to three, short-duration changes in direction over small distances. With 

the exception of the present study, no athlete tracking technology has been robustly 

validated against a high-resolution criterion during high-intensity, short-duration 

movement. The results of the present study therefore cannot be directly compared with 

other LPS accuracy research. Court-based team-sports are also contested in confined 

spaces, where tracking systems considered acceptable for use in field-based sports 

cannot accurately quantify short high-intensity movement (Duffield et al., 2010).  
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Only amateur (Ogris et al., 2012; Stevens et al., 2014) and moderately trained (Frencken 

et al., 2010) individuals have participated in research on the accuracy of LPS. In 

comparison, the present study had elite athletes participating in all drills. The present 

study consequently has strong external validity as the variety of velocities and angular 

velocities performed are representative of elite court-based athletes. The athletes who 

participated in the present study are world-class athletes who represent their country 

during international test matches. These athletes are consequently more co-ordinated 

and skilled at performing frequent changes of direction over short-durations when 

compared to amateur individuals. To ensure ecological validity, since elite athletes 

likely have a higher peak velocity than untrained individuals, the accuracy of an LPS for 

tracking athletes should be assessed with elite athletes as participants. 

The bias observed in the WASP during trials may be due to RF intereference from the 

metal-clad indoor venue where testing was conducted. At the elite level, court-based 

team-sports including basketball, handball, volleyball and netball are held indoors. It is 

therefore important to measure the accuracy of WASP in metal-clad indoor venues 

where athlete tracking of court-based sports will occur. Two LPS validation studies 

(Frencken et al., 2010; Ogris et al., 2012) were conducted on an outdoor soccer pitch, 

limiting any RF intereference due to multipath from overhead steel structures. An air 

dome has also been utilised as a testing space for assessing the accuracy of a LPS 

(Stevens et al., 2014), which may limit RF interference from steel infrastructure. Bias 

may be introduced to LPS when used indoors due to the strong multipath and RF signal 

bounce from metal cladding in these venues (Sathyan et al., 2012). When used indoors, 

the WASP signal contains the direct plus reflected signal from concrete and steel 

materials. In agreement with the results presented, WASP has a higher relative 

positional error, during linear and non-linear movements when used indoors compared 

to outdoor venues, likely due to multipath interference (Sathyan et al., 2012). 
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Based on results of the current study, researchers should therefore be cautious with low 

speed WASP data than movement at high speeds. The positioning of the WASP anchor 

nodes surrounding the court may influence the calculation of athlete position and 

subsequent displacement plus velocity. The anchor node positioning in the present study 

was suggested by a developer of the LPS, with nodes mounted as high as possible on 

the walls of the court. Optimum positioning of the acnhor nodes may improve WASP 

accuracy (Hedley et al., 2010). The close proximity of a court edge to the walls of a 

stadium, where anchor nodes are required to be mounted, may restrict the accuracy of 

LPS. If anchor nodes are located too close to the edge of a court, the mobile nodes may 

be undetected. It is unknown if displacement and velocity outputs would be altered if 

these nodes were moved. Future LPS research for indoor sport use should examine the 

influence of a change in anchor positioning on the calculation of athlete position, 

displacement plus velocity. Future research on validating the position of athlete tracking 

systems over time should also use a method that takes into account time dependent data, 

such time series analysis. Using Pearson correlations allows identification of two events 

that occur simultaneously, yet does not consider time dependent data. 

4.5 Conclusion 

Angular velocity can be accurately measured by WASP during short, non-linear 

movements indoors. Researchers and practitioners can therefore use angular velocity 

measures from WASP to analyse team-sport athlete angle of attack during training and 

matches, a measure that until now has not been examined. This may have application 

for designing specific coaching and conditioning drills. The WASP provides sufficient 

indoor accuracy to quantify the total distance and velocities performed by elite athletes 

over short, non-linear courses. A higher CV of WASP compared to other LPS research 

during sprinting and walking movements is likely due to the shorter course length and 

enhanced criterion, a 22 camera Vicon motion analysis system. The increased bias for 

walking mean and peak velocities, compared with sprinting, may be due to the 
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multipath RF interference from steel cladding, a feature of indoor sports stadia. The 

WASP accuracy may be increased when court-based team-sport athletes are in the 

centre of the playing area, as opposed to the sidelines, due to less body blockage and a 

higher geometric precision. Researchers and practitioners may use WASP to quantify 

the external load of athletes indoors. The WASP has potential application for collecting 

athlete movement during elite court-based team-sports, including netball, basketball, 

volleyball and handball. Caution should be used when analysing low speed data from 

WASP. To enhance geometric precision, nodes should be placed high and as far back 

from the edges of a court as stadia infrastructure will allow. 
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CHAPTER 5. STUDY 2 – A MOVEMENT SEQUENCING 

ANALYSIS OF TEAM-SPORT ATHLETE  

MATCH ACTIVITY PROFILE 

5.1 Introduction 

Netball is a predominantly female team sport with a large participation base within 

Commonwealth countries (Steele & Chad, 1991a). Matches consist of 15 minute 

quarters and are contested on a 30.5 m by 15.25 m court divided into equal thirds. 

Players are assigned one of seven positions which restrict movement to specific on-

court areas (Woolford & Angove, 1992). The substitution of players is only permitted 

during quarter and half-time breaks or if an injury time-out is called. The objective of 

the game is to score a goal through a ring that is 3.05 m above the ground. Netball 

athletes are not permitted to move more than one step with the ball and when in 

possession, must pass to a teammate within three seconds. 

Quantification of athlete physical movement, or activity profile, during matches is 

critical in understanding performance. Investigation into athlete match activity profiles 

can assist with sport-specific preparation and conditioning (Di Salvo et al., 2007; 

Mendez-Villanueva, Buchheit, Simpson, & Bourdon, 2013). Examination of netball 

match-play reveals a combination of short, high intensity movement interspersed with 

periods of low intensity activity, including walking and jogging (Steele & Chad, 

1991a). Early studies on netball activity profile investigated sub-elite athletes (Davidson 

& Trewartha, 2008; Loughran & O'Donoghue, 1999; Steele & Chad, 1991a; Steele & 

Chad, 1991b) and were conducted before rule changes to the current length of a match, 

currently 15 minute quarters (Otago, 1983). Positions were either grouped (Steele & 

Chad, 1991a) into defender, midcourter or goaler, or combined entirely (Davidson & 

Trewartha, 2008) in the analysis. Only two studies (Fox et al., 2013; Otago, 1983) have 



!
72 

examined elite netball match activity profile according to individual playing position, 

using video analysis.  

Video analysis is commonly utilised in netball (Davidson & Trewartha, 2008; Fox et al., 

2013; Otago, 1983) however, estimating short, high-intensity movement using 

inferences from visible movement types is error-prone. Micro-technology, including 

accelerometers (Boyd et al., 2011) and global positioning systems or GPS (Jennings et 

al., 2010a), allow quantification of athlete activity profiles according to physical 

capacity (Buchheit et al., 2010a), chronological age (Mendez-Villanueva et al., 2013), 

playing standard (Jennings et al., 2012b) and position (Mendez-Villanueva et al., 2013). 

Accelerometer load, as a measure of activity profile, can differentiate between netball 

playing standard at the sub-elite level (Cormack, Smith, Mooney, Young, & O'Brien, 

2013) but remains to be investigated in an elite cohort. The validity and reliability of 

GPS to measure short high-intensity movements in confined spaces (Duffield et al., 

2010) is likely insufficient for netball use (Duffield et al., 2010). Elite netball matches 

also take place indoors, where GPS is rendered inoperable. The lack of research on 

netball match activity profile in contemporary athletes, according to position and 

playing standard, may be attributed to the types of technologies previously available for 

this analysis.  

Recognising the limitations of GPS and video-analysis, radio-frequency (RF) tracking 

has been developed to monitor athlete activity both indoors and outdoors. The validity 

and reliability of the method considered, the Wireless ad-hoc System for Positioning or 

WASP (Hedley et al., 2010), has been established indoors (Sathyan et al., 2012). At 

present, RF technology is yet to be deployed in competitive netball matches to quantify 

match activity profile. 

Athlete activity profile is typically analysed using movement thresholds, including 

velocity bands (Aughey, 2010; Gabbett, Jenkins, & Abernethy, 2012) or arbitrary 
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classifications (Fox et al., 2013). However, comparison between studies is difficult due 

to the multitude of inconsistent analysis techniques and movement definitions employed 

(Carling, 2013). Physical output expressed per minute of game time (Varley & Aughey, 

2013) or as a function of physiological capacity (Lovell & Abt, 2012) requires pre-

determined parameters to be fitted to data. Using pre-defined thresholds to compare 

across and between groups is problematic given athlete mass (Gabbett, 2002), playing 

standard (Jennings et al., 2012b), position (Macutkiewicz & Sunderland, 2011) and 

chronological age (Gastin, Fahrner, Meyer, Robinson, & Cook, 2013) may influence 

physical output. 

Data mining is a problem-solving methodology that sources a logical or mathematical 

description of patterns and regularities in a data set (Fayyad et al., 1996). Whilst data 

mining techniques can determine the tactical patterns of play during elite volleyball 

matches (Jäger & Schöllhorn, 2007), determine weight transfer during the golf swing 

(Ball & Best, 2007) and examine basketball match score outcome (Sampaio & Janeira, 

2003), the analysis of athlete match activity profile, using data mining techniques, 

remains to be explored.  

Clustering mines data according to similarity/ dissimilarity and groups items regarding 

these criteria. Cluster analysis discriminated between high and low inter-personal 

coordination between soccer players (Morgan & Williams, 2012). Utilised in analysing 

the performance qualities of elite track cycling athletes to ascertain riders best suited to 

the omnium event (Ofoghi et al., 2013a), clustering may assist with informing athlete 

selection, training and strategic planning. Clustering, via self-organising maps (SOM), 

can provide an objective method to explain movement patterning during basketball 

shooting (Lamb et al., 2010). However, applying a clustering approach to athlete match 

activity profile, remains to be explored. The aim of this study was to develop a 

movement sequencing technique that exploits the emergent movement characteristics of 

team-sport athletes. Specifically, to discover the most frequently recurring sequences 
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and create insight into the temporal sequence of movement elements that are 

representative of netball athlete match activity profile.               

5.2 Methods 

Activity profiles were collected from six female elite-junior netball athletes via RF 

tracking (Hedley et al., 2010) during a competitive international match. All seven 

netball playing positions were represented, with one athlete playing in the WA and C 

position. The clustering model was first implemented on five athletes, chosen at 

random, before the developed clustering model was run on the sixth athete’s data. Only 

the first quarter was analysed, as the focus of this study was to develop the technique 

rather than implement across an entire match. The sampling rate of the RF system is 

100 Hz. Raw athlete position data were downloaded post-match via custom-built 

software (WhereIsBruce?, Australian Institute of Sport, Canberra, ACT, Australia) and 

exported into the R environment (R: A language and environment for statistical 

computing, Vienna, Austria). The elemental movement characteristics for each 

individual athlete over the first quarter (15 minutes in duration) were calculated in the 

following equations from 1 to 4, respectively. Velocity for each player were derived 

from the position data: 

!! =
∆!! + !∆!!

∆!  

Acceleration was derived from velocity: 

!! =
!! − !!!!

∆!  

The angular displacement (!!) was calculated from the dot product of consecutive 

movement vectors, a and b: 

!! = cos!! ! ∙ !
! ∙ !  
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Next, angular velocity (rate of change in angular displacement) was calculated as 

follows: 

!! =
!! − !!!!

∆!  

In each case, (for Equations 1, 2 and 4), t was equal to a time epoch that was varied 

between separate experimental trials where t = 0.5, 0.75, 1.0, 1.25 and 1.50 seconds 

respectively. The observations for each of these movement characteristics were 

classified into groups of arbitrary n-size using a one-dimensional k-means clustering 

algorithm (Wang & Song, 2011). Four velocity clusters (notionally Walk, Jog, Run, 

Sprint), three acceleration clusters (Accelerate, Neutral, Decelerate) and four angular 

velocity clusters (U-Turn, 90° turn, 45° turn, and Straight) were declared. Figure 5-1 

illustrates the bandwidths represented by each cluster described above. Figure 5-2 

illustrates the relative frequency of each representation in movement classification. 
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Figure 5-1. Classification bands representing movement clusters with exemplar 

data for A) Angular Velocity, B) Velocity, and C) Acceleration. The distribution of 

raw data points within each cluster is presented.  Figure 5-1A: purple; U-Turn, 

green; 90° turn, salmon; 45° turn and aqua; straight. Figure 5-1B: purple; sprint, 

salmon; run; aqua; jog and green; walk. Figure 5-1C; green; accelerate, salmon; 

neutral and blue; decelerate. 
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Figure 5-2. Relative frequency of clustered observations for A) Velocity, B) 

Acceleration and C) Angular Velocity.  
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This approach produced 48 permutations (4 x 4 x 3), each of which was described as a 

unique combination of velocity, acceleration and angular velocity. A permuted 

identification code (upper and lower case alphabet letters) was assigned to each unique 

combination of velocity, acceleration and angular velocity. Table 5-1 lists the specific 

alphabetic character assigned to each permutation of velocity, acceleration and angular 

velocity.  These assignments are referred to as movement subunits. A frequency 

distribution of these movement subunits is displayed in Figure 5-3. 

 

Character Movement Subunit Character Movement Subunit 

a Run Neutral 45° m Run Neutral 90° 
A Run Decelerate Straight M Run Decelerate U-Turn 
b Run Accelerate 45° n Run Accelerate 90° 
B Walk Neutral Straight N Walk Neutral U-Turn 
c Run Decelerate 45° o Run Decelerate 90° 
C Walk Accelerate Straight O Walk Accelerate U-Turn 
d Walk Neutral 45° p Walk Neutral 90° 
D Walk Decelerate Straight P Walk Decelerate U-Turn 
e Walk Accelerate 45° q Walk Accelerate 90° 
E Jog Neutral Straight Q Jog Neutral U-Turn 
f Walk Decelerate 45° r Walk Decelerate 90° 
F Jog Accelerate Straight R Jog Accelerate U-Turn 
g Jog Neutral 45° s Jog Neutral 90° 
G Jog Decelerate Straight S Jog Decelerate U-Turn 
h Jog Accelerate 45° t Jog Accelerate 90° 
H Sprint Neutral Straight T Sprint Neutral U-Turn 
i Jog Decelerate 45° u Jog Decelerate 90° 
I Sprint Accelerate Straight U Sprint Accelerate U-Turn 
j Sprint Neutral 45° V Sprint Decelerate U-Turn 
J Sprint Decelerate Straight w Sprint Accelerate 90° 
k Sprint Accelerate 45° x Sprint Decelerate 90° 
K Run Neutral U-Turn y Run Neutral Straight 
l Sprint Decelerate 45° z Run Accelerate Straight 
L Run Accelerate U-Turn   
 

Table 5-1. Alphabetical characters for permuted movement subunits. 
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Figure 5-3. Frequency distribution of movement subunits. 



!
80 

The characteristics of any continuous movement are then represented by a temporal 

sequence of movement subunits. Any sequence of movement subunits is further 

described as a discrete movement sequence. Any movement sequence is declared 

different from other movement sequences where the athlete does not move for the 

duration, equal to the time epoch t.  In practice it is difficult to identify moments where 

athletes are motionless in competition, so a movement threshold of 0.5 m·s-1 was 

applied to differentiate movement sequences. Additionally, any movement sequence 

must exceed the movement threshold for at least 1 second (note that this will occur by 

default where t�≥ 1.0 seconds). 

Any period of player movement is now described as a set of movement sequences, 

where each subunit is characterised by an alphabetic character. Movement sequences 

were therefore represented by character strings of k length, where k is the number of 

composite subunits. It is also possible to quantify the similarity of movement sequences 

by comparing character strings using the Levenshtein distance (Levenshtein, 1966), 

which is a function of the minimum number of single-character edits (including 

insertions, deletions or substitutions) required to change one sequence into another. 

5.3 Results 

The means of each of the four velocity clusters, for combined epochs, were 1.1 m.s-1, 

0.7 m.s-1, 0.3 m.s-1 and 1.8 m·s-¹, notionally referred to as running, jogging, walking and 

sprinting respectively. It is important to note that these labels are arbitrary, and in 

practice it might be better to simply refer to them in such a manner as slow, slow-

moderate, moderate, and fast. The means of the three acceleration clusters were 1.4 m·s-

2, 0.1 m·s-2 and -1.3 m·s-2. These values are more clearly defined as accelerating, 

neutral, and decelerating. The means of the three angular velocity clusters were 149.7 

deg.s-¹, 11.2 deg.s-¹, 42.7 deg.s-¹ and 88.9 deg.s-¹.  
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Movement sequences were generated using strings of character values. A cluster 

analysis was conducted using the Ward method (Ward Jr, 1963). All movement strings 

in the present dataset are therefore grouped proximally according to the Levenshtein 

distance.  A sequence analysis, using hierarchical clustering, revealed the most common 

clusters. Using this method, 18 clusters were identified and an algorithm to find the 

longest common substring or LCS (Kuo & Cross, 1989) was utilised to find the longest 

string that is a substring of two or more strings, within each cluster.  The two most 

common clusters include EEEEE and FEEEE, only one permuted subunit apart. Each 

cluster was iterated through to find the longest common substring, for each time epoch. 

The support value for each movement sequence was measured as the percentage of all 

movements represented by each example. These values were calculated for each of the 

epoch size. This data is presented in Table 5-2. 
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Table 5-2. The most frequently reoccurring movements, per cluster, as a function of epoch stamp and support. 

Cluster 
Number 

0.5 s 0.75 s 1 s 1.25 s 1.5 s 
String % String % String % String % String % 

1 AzAy 2 zIycAy 1 yyA 11 IJJIJ 5 IIJJIJ 10 

2 FJzyHAE 1 yyyy 19 yyy 28 IHHHJ 10 HHH 40 

3 EEE 25 yy 50 HHJ 17 HHHJ 19 IJJ 40 

4 EEE 25 yIJ 8 IJJIJy 2 HHHHH 14 

 

5 Yyy 30 IJIJ 3 yyyyyyy 4 IJIJJJ 5 

6 yyIJy 1 yyyyyy 6 JHH 9 

 

7 hzlycAy 1 HJHH 3 IHHHJ 4 

8 IIJ 3 HHH 15 zAyy 4 

9 ggEE 2 zHA 3 HHA 11 

10 yyyJ 1 E 28 HHHH 11 

11 yyy 30 A 61 IJy 2 

12 EEE 25 zIHHHIIHHJ 1 HAyy 2 

13 zIHHH 1 HAyyy 1 IJIJJJ 2 

14 zIHHHIIHHJg 1 AyyyyyA 1 

 
15 zyyyyyyyyG 1 

 16 aHHHHAz 1 

17 yyyyHHyHH 1 

18 AEEE 3 
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5.4 Discussion 

This study contributes to the problem of robust athlete activity-profiling that is 

independent of age, gender, sport-related constraints, and other features of physical 

capacity. The development of this movement sequencing technique may create insight 

into the temporal sequence of movement elements in sport. Traditional analyses focus 

on quantifying athlete movement as a function of arbitrary or commercially developed 

thresholds.  

Using a one-dimensional k-means clustering algorithm, four velocity clusters, three 

acceleration clusters and four angular velocity clusters were identified. By permuting 

elemental features of movement and characterising continuous athlete movement in the 

form of strings, the LCS sequence analysis approach revealed discrete and recurring 

combinations of athletic movement, representative of athlete activity typical in netball. 

In the 0.5 s epoch, running at a straight or 45° angle with neutral and acceleration 

components was a common feature for cluster 1. In contrast, the 1.5 s epoch showed 

sprinting and accelerating in a straight direction immediately followed by a sprint with 

deceleration was a common feature for cluster 1.  

Obtaining the most frequently recurring movements of an athlete or a number of 

athletes grouped according to position or playing standard, may have application for 

coaching and conditioning purposes. Knowledge of the movements performed, angle of 

attack and acceleration qualities may assist with planning sport-specific training and 

conditioning practices. Sprinting, accelerating and decelerating components were a 

common feature across a 1.5 s epoch for the athlete tested. This data may be used to 

target specific training qualities within a program. Further analysis could focus on 

movements performed before a successful or unsuccessful attempt at goal, which may 

assist with tactical planning. A movement sequencing analysis of athletes according to 
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chronological age, playing standard and position should be investigated in future 

analyses.    

Eighteen clusters were obtained over a 0.5 s epoch in comparison to three clusters over 

a 1.5 s movement threshold, highlighting the importance of under-fitting versus over-

fitting a model. The number of clusters to trim, or focus on, within a dendrogram is an 

important consideration when analysing athlete movement. For the purpose of this 

investigation (and the sport examined), clusters were trimmed at 25. Further 

investigation into epoch and trimming selection, dependent upon the sport considered, 

is warranted.  

5.5 Conclusion 

A movement sequencing technique was developed to analyse athlete activity profile. 

Using a one-dimensional k-means clustering algorithm, four velocity clusters, three 

acceleration clusters and four angular velocity clusters were identified. The LCS 

sequence analysis approach revealed discrete and recurring combinations of athletic 

movement, representative of athlete activity typical in netball. Eighteen clusters were 

obtained over a 0.5 s epoch, in contrast to three clusters over 1.5 s, highlighting the 

importance of under-fitting versus over-fitting a model. The three clusters over 1.5 s 

reveal a combination of sprinting, acceleration and deceleration qualities in a straight 

direction. Examining athlete activity profile using this movement sequencing technique, 

in contrast to traditional analyses, may assist with position specific training and 

conditioning practices.    
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CHAPTER 6. STUDY 3 – DISCOVERING FREQUENTLY 

RECURRING MOVEMENT SEQUENCES IN  

TEAM-SPORT ATHLETE  

SPATIOTEMPORAL DATA 

6.1 Introduction 

Profiling the external load of team-sport athletes during matches is useful information 

for training design and load management (Carling et al., 2008). External load is 

captured by tracking systems, including global positioning systems (GPS), that estimate 

an athlete’s position with respect to the coordinates of a playing area and allow for the 

calculation of displacement over a specified time epoch (Aughey, 2011a). Once the 

trajectory data of an athlete’s position is captured, the resulting velocities and 

accelerations can be calculated. The match activity profile of field-based team-sport 

athletes has been documented (Aughey, 2011a) however, limited research exists on the 

external load of athletes participating in court-based sports. This is likely due to elite 

level matches being played indoors, where GPS is inoperable. The recent development 

of radio-frequency (RF) based athlete tracking systems (Sathyan et al., 2012) may allow 

for external load to be captured during elite court-based team-sports.  

Athlete external load is typically presented according to the distribution of time spent or 

distance covered in dissimilar velocity and acceleration bands (Jennings et al., 2012a; 

Varley et al., 2013b). These predetermined thresholds are established according to the 

manufacturer of the tracking technology, a body of research (Varley et al., 2013b) or as 

a function of a physiological capacity (Lovell & Abt, 2012). In female team-sport 

athletes, up to a 30% difference in match high-speed running was recorded between 

industry (5 m·s-1) and physiological capacity based velocity thresholds (Clarke et al., 

2014). Although expressing external load relative to a physiological threshold can 
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identify athletes who are working at or near capacity, it is currently unclear which 

physiological tests are best representative or related to the intermittent nature of team 

sport (Carling, 2013). There is also limited research on the relationship between such 

physiological tests and the movement of athletes during court-based team-sports, 

including netball. 

A popular sport in Commonwealth countries, netball matches are contested over 15 

minutes quarters between two teams of seven players. Each of the seven players has a 

unique positional role that restricts their movement to specific regions of the court. 

Research on the match movement output of netballers, according to playing position, is 

largely confined to estimates from video analysis (Fox et al., 2013) or examined in a 

sub-elite cohort (Cormack et al., 2014). Recently, the load of elite netball athletes was 

examined during training and matches according to playing position (Young et al., 

2016). Although athlete displacement and velocity was not measured, the accelerometer 

derived player load from each playing position was clustered into groups using a data 

mining technique (Young et al., 2016). 

Data mining is a branch of computer science that sources a logical or mathematical 

description of patterns and regularities in a data set (Fayyad et al., 1996). Data mining 

methods can extract previously unknown information from raw data and have useful 

application in elite sport, including the modeling and extraction of athlete performance 

patterns (Ofoghi et al., 2013b). Clustering is a data mining method that detects and 

organises data into a number of groups. The data within each of these groups or cluster 

are similar to one another, based on some criteria, and dissimilar to data within other 

groups (Ofoghi et al., 2013b). In sport, clustering has been utilised to assess the tactical 

patterns of play during elite volleyball matches (Jäger & Schöllhorn, 2007) and classify 

movement patterns performed during different basketball shots (Lamb et al., 2010). 

Deemed an semi-supervised data mining technique, clustering has been used to extract 

movement activity data, including the position, velocity and acceleration of different 
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body parts, from wearable sensors (Ghasemzadeh et al., 2010). Each movement variable 

was represented by a sequence of characters, with a metric used to find the difference 

between two character strings (Ghasemzadeh et al., 2010). 

Together, the data mining techniques of clustering and string matching present an 

opportunity to ascertain the movements performed by team-sport athletes, without the 

requirement of arbitrary or physiologically defined thresholds. Using data mining 

techniques, the sequences of velocity, acceleration and angular velocity!performed by a 

junior-elite female netball athlete were examined in Chapter Five. Spatiotemporal data, 

or the real-time position of an athlete relative to a playing area, was collected by a local 

positioning system (LPS). Four velocity, three acceleration and four angular velocity 

clusters were obtained by k-means clustering, an unsupervised data mining approach 

that assigns data points to a cluster based on the closest centroid. Each combination of 

continuous velocity, acceleration and angular velocity movement was assigned a 

character, with athlete movement represented by strings of characters or sequences. 

Eighteen movement sequences were obtained and running in a straight or 45° direction 

with neutral acceleration was a common feature. However, spatiotemporal data was 

only collected during a quarter of netball and there was no investigation into the 

differences or similarities in movement sequences performed by the remaining six 

netball playing positions. Further, only a junior-elite athlete participated and not elite, 

international level athletes. Therefore, the aim of this chapter was to further develop this 

methodology to uncover the movement sequences performed by court-based team-sport 

athletes, according to playing position and independent of industry based, commercially 

developed or physiologically defined thresholds. 

6.2 Methods 

The activity profile of 12 elite, international level female netball athletes (age 24.8 ± 2.7 

years; height 179.5 ± 6.9 cm, mean ± Standard Deviation (SD), at commencement of 
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study) was collected during four competitive national-level matches. These competitive 

matches between international level athletes were contested at the Australian Institute of 

Sport (AIS) in Canberra and formed part of the selection process for the 2016 

Commonwealth Games. The elite level athletes who participated in this study represent 

their country in a limited number of international netball matches that are held annually. 

Therefore, only a small number of matches were sampled.  

The number of individual athletes sampled per netball playing position was five for the 

centre (C), three for wing defence (WD), five for wing attack (WA), three for goal 

attack (GA), two for goal defence (GD), three for goal shooter (GS) and two for goal 

keeper (GK). All participants provided written informed consent. The study was 

approved by the University Human Research Ethics Committee (HRE14-068) and 

conformed to the Declaration of Helsinki.  

Spatiotemporal data was collected via a RF tracking system, specifically, the Wireless 

ad hoc System for Positioning (WASP). Indoors, WASP has a relative positional 

accuracy of 28 cm and a mean distance error of 2.7% (Sathyan et al., 2012). When 

compared to Vicon, the WASP coefficient of variation (CV) is < 6% for measuring 

distance covered during five short (< 15 m) non-linear courses performed indoors by 

elite netball athletes (see Chapter Four). Over these five separate non-linear courses, the 

CV for WASP derived mean velocity is < 8%. For mean angular velocity, the CV is < 

3% and for acceleration, the CV ranges from 2.3% to 18.5%. 

Each participant wore a WASP mobile node, measuring 90 x 50 x 25 mm, positioned 

between the shoulder blades. The range between each mobile and the twelve anchor 

nodes surrounding the netball court was computed at an update rate of 10 Hz and 

calculated into a 100 Hz file via customised software (WheresBruce, Australian 

Institute of Sport, Canberra, Australia). This process involves resampling the RF signal 

via a Kalman filter as described in Sathyan et al., (2012) and is very similar process to 
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the RF tracking system used by Stevens et al., (2014). Further details of the Kalman 

filter and positioning algorithm used can be found elsewhere (Hedley et al., 2011). Each 

athlete’s positional data (X and Y coordinates) was exported into the R statistical 

software (R: A language and environment for statistical computing, Vienna, Austria) for 

further analysis. 

Velocity was calculated from each athlete’s positional data and acceleration derived 

from velocity, as per Chapter Five. Angular displacement was calculated via the dot 

product of consecutive movement vectors. Angular velocity, the rate of change of 

angular displacement, was obtained from angular displacement. Individual velocity, 

acceleration and angular velocity movements were clustered using a one-dimensional k-

means clustering algorithm (Wang & Song, 2011) seeded with 4, 3 and 4 clusters, 

respectively. The cluster analysis simply assigns a data point to the nearest centroid and 

doesn’t assert statistical difference, therefore, no statistical analysis was performed on 

these clusters. A qualitative label was assigned to each cluster, which may not align 

precisely with the mean values but are intended to represent arbitrary descriptors rather 

than specific quantities. From these clusters, each unique combination of velocity, 

acceleration and angular velocity movement, termed movement subunits, was assigned 

an identification code consisting of an upper or lower case alphabetic letter. In short, 

athlete movement during a match was represented by continuous movement subunits.  

To isolate discrete athlete movement sequences, any period during which the athlete 

moved at a rate lower than 0.5 m·s-1 was judged to be moments of inactivity and thus 

delineated continuous movement subunits to form sequences. The similarity between 

each movement sequence was quantified using the Levenshtein distance implementation 

in the R stringdist package (Van der Loo, 2014). The Levenshtein distance represents 

the minimum number of movement subunits required to change, including insertions, 

deletions or substitutions, one movement sequence into another. Similar movement 
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sequences were then grouped into 25 clusters using a hierarchical cluster analysis (Ward 

Jr, 1963).  

The longest common subsequence (LCS) algorithm, using the R qualV package 

(Jachner, Van den Boogaart, & Petzoldt, 2007), was used to discover the most common 

athlete movement sequence within each of the 25 clusters. A key feature of the LCS 

algorithm is to discover all of the common elements or movement subunits, within 

movement sequences whilst retaining the sequential order. Therefore, the LCS or 

frequently recurring patterns of athlete movement performed across matches could be 

located. 

To uncover the frequently recurring movement sequences performed by individual 

playing position, a frequency distribution was conducted using two methods. The 

relative frequency of individual movement subunits was compiled for each playing 

position. The relative frequency of the LCS-derived movement sequences for each 

playing position was also calculated. These distributions can be considered a movement 

signature for each netball playing position. Further, the Minkowski distance 

implemented in the R HistogramTools package (Stokely, 2014), was used to quantify 

the distance between playing positions using the LCS results. Briefly, the Minkowski 

distance was calculated by obtaining the relative percentage contribution of each LCS 

movement to the wider dataset, for each playing position. A matrix was then 

constructed, with the similarity between each playing position calculated via the 

Minkowski distance. A network graph was used to display this similarity between 

playing positions. 

6.3 Results 

The centroids of the four velocity clusters were 0.6 m.s-1, 1.4 m.s-1, 2.5 m.s-1 and 3.9 m.s-

1 respectively. The centroids of the four angular velocity clusters were 13.5 deg.s-1, 49.9 

deg.s-1, 98.9 deg.s-1 and 153.6 deg.s-1, respectively. Centroids of the three acceleration 
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clusters were -6.8 m.s-2, 0.0 m.s-2 and 6.9 m.s-2, respectively. The within cluster 

variation, as the sum of Euclidean distance between the data points and each centroid, 

was 90.2% for velocity, 71.9% for acceleration and 94.7% for angular clusters. The 

distribution of data points within each velocity, angular velocity and acceleration cluster 

and the relative frequency of these clusters to the total dataset is demonstrated in Figure 

6-1a, b and c, respectively. Qualitative labels were assigned to each cluster, which may 

not align precisely with the mean values but are intended to represent arbitrary 

descriptors rather than specific quantities.  

The most prevalent movement features of netball match activity were walking with 

straight movement and neutral acceleration. Neutral acceleration refers to acceleration 

data assigned to the cluster with a centroid of 0.0 m.s-2, which is the mean of all the data 

points within this cluster. These data points are not necessarily accelerations of 0.0 m.s-

2. Each movement subunit, the qualitative descriptor comprising the relevant 

combination of velocity, acceleration and angular velocity and their relative frequency 

to the wider dataset is presented in Table 6-1. 

The 10 most frequently recurring movement sequences and the relative contribution to 

the wider dataset, according to playing position, is presented in Figure 6-2. These 

substrings are the longest string within each of the 25 clusters. For example, in 1 of the 

25 clusters, “KK” was the LCS within that cluster. In a separate cluster, “NNNNN” was 

the LCS within that cluster. The difference between “Q” and “QQ”, for example, is that 

they are one movement subunit apart and were located separately within the 25 clusters. 

A matrix of the frequently recurring movements across individual playing positions is 

displayed in Table 6-2. The relative proximity of playing position is visualised in Figure 

6-3. The GD, GA and WA are the most closely related netball playing positions. The 

largest Minkowski distance (19.64) was between the GS and GD. The Minkowski 

distance between the GS and C was 19.20. 



!
92 

 

!
!
Figure 6-1. The relative frequency of clustered observations for a) velocity, b) 

angular velocity and c) acceleration movement features. 

!
!
!
!
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Movement Subunit Percentage Contribution Qualitative Descriptor 

a 6.1 Walk Neutral Turn 90 
A 1.6 Walk Accelerate Turn 180 
b 1.4 Walk Decelerate Turn 90 
B 0.2 Run Neutral Turn 180 
c 1.3 Walk Accelerate Turn 90 
C 0.3 Run Decelerate Turn 180 
d 0.7 Run Neutral Turn 90 
D 0.3 Run Accelerate Turn 180 
e 0.4 Run Decelerate Turn 90 
E 1.7 Jog Neutral Turn 180 
f 0.5 Run Accelerate Turn 90 
F 1.0 Jog Decelerate Turn 180 
g 2.5 Jog Neutral Turn 90 
G 1.0 Jog Accelerate Turn 180 
h 1.0 Jog Decelerate Turn 90 
H 0.0 Sprint Neutral Turn 180 
i 1.1 Jog Accelerate Turn 90 
I 0.0 Sprint Decelerate Turn 180 
j 0.1 Sprint Neutral Turn 90 
J 0.0 Sprint Accelerate Turn 180 
k 0.1 Sprint Decelerate Turn 90 
K 8.7 Walk Neutral Straight 
l 0.1 Sprint Accelerate Turn 90 
L 1.5 Walk Decelerate Straight 
m 6.8 Walk Neutral Turn 45 
M 1.3 Walk Accelerate Straight 
n 1.3 Walk Decelerate Turn 45 
N 7.3 Run Neutral Straight 
o 1.2 Walk Accelerate Turn 45 
O 2.4 Run Decelerate Straight 
p 2.4 Run Neutral Turn 45 
P 2.5 Run Accelerate Straight 
q 1.0 Run Decelerate Turn 45 
Q 12.1 Jog Neutral Straight 
r 1.1 Run Accelerate Turn 45 
R 2.7 Jog Decelerate Straight 
s 5.1 Jog Neutral Turn 45 
S 2.6 Jog Accelerate Straight 
t 1.6 Jog Decelerate Turn 45 
T 3.1 Sprint Neutral Straight 
u 1.6 Jog Accelerate Turn 45 
U 1.3 Sprint Decelerate Straight 
v 0.7 Sprint Neutral Turn 45 
V 1.4 Sprint Accelerate Straight 
w 0.3 Sprint Decelerate Turn 45 
x 0.4 Sprint Accelerate Turn 45 
y 6.7 Walk Neutral Turn 180 
z 1.7 Walk Decelerate Turn 180 

 

Table 6-1. Movement subunits, their percentage contribution to the wider dataset 

and qualitative descriptor. 
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Figure 6-2. The relative contribution of frequently recurring LCS sequences by 

netball playing position including centre (C), goal attack (GA), goal defence (GD), 

goal keeper (GK), goal shooter (GS), wing attack (WA) and wing defence (WD). 

The number of iterations of each movement subunit are represented by bN, for 

example K2 refers to KK and N5 refers to NNNNN. 
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Table 6-2. The Minkowski distances for movement sequence distributions between 

netball playing positions including centre (C), goal attack (GA), goal defence (GD), 

goal keeper (GK), goal shooter (GS), wing attack (WA) and wing defence (WD). 
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 C GA GD GK GS WA WD 
C 0.0 7.24 11.37 13.87 19.20 8.42 18.55 

GA 
 
 
 
 

0.0 4.55 10.19 17.23 2.58 11.60 
GD 

 

0.0 12.18 19.64 5.70 9.37 
GK 

 

0.0 7.52 7.71 10.52 
GS 

 
0.0 14.78 16.56 

WA  0.0 10.30 
WD  0.0 
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Figure 6-3. A network analysis of movement sequence similarity between netball 

playing position, including goal shooter (GS), goal keeper (GK), goal attack (GA), 

goal defence (GD), centre (C), wing attack (WA) and wing defence (WD). 

 

!
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6.4 Discussion 

The purpose of this chapter was to describe a new analysis technique of team-sport 

athlete movement data. The combinations of movement performed by team sport 

athletes, collected via radio-frequency (RF) athlete tracking data, were quantified by a 

technique that assessed for similarity or dissimilarity between playing positions. Ten 

frequently recurring movement sequences, across all netball playing positions and 

matches, were discovered (Figure 6-2). Only the WA, GA and GD playing positions are 

closely related (Figure 6-3). Traditional analysis of team sport athlete external load 

quantifies movement as a function of commercially developed or industry used 

thresholds, binning velocities or accelerations into descriptive categories. This approach 

as it does not account for variations in gender, age, position or sport. To address this 

problem, the present technique examines the combinations of movement performed that 

can then be used to underpin traditional analysis of external load, irrespective of 

velocity or acceleration thresholds. 

Four velocity, three acceleration and four angular velocity clusters were identified via 

one-dimensional k-means clustering. The centroids of the velocity clusters, notionally 

referred to as “walking”, “jogging”, “running” and “sprinting”, are lower than the 

thresholds used to report the external load of female team sport athletes during matches. 

For example, high speed running performed during field hockey matches was 

considered as any movement over 4.19 m.s-1 (Macutkiewicz & Sunderland, 2011). The 

amount of high-speed running completed by female rugby athletes was also 

underestimated when analysed according to an industry based (5 m.s-1) compared with a 

physiologically determined (3.5 m.s-1) threshold (Clarke et al., 2014). In the present 

chapter, the centroid of the “sprinting” cluster was 3.9 m.s-1. However, there is no 

intended comparison between the movement clusters described here and industry 

standard thresholds. In practice, it is still difficult to compare movement thresholds 

derived from methods in the current study with other threshold benchmarks, because the 
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number of clusters derived from the raw data are arbitrary. Reducing the number of 

initial velocity clusters would likely result in different cluster means. By establishing a 

standardised approach to the initial clustering stage, it would be possible to make 

internally consistent estimates of time in self-calibrating movement intensity zones. 

Therefore, rather than prescribing workload bins, the thresholds are learned directly 

from the data. It is important to note that these self-calibrating movement intensity 

zones are based on external load measures only and do not provide information relative 

to an athlete’s internal physiological capacity. The proposed methodology is therefore 

appropriate for a court-based team sport, such as netball, due to the unique court space 

restrictions, differing roles and anthropometric characteristics of netball playing 

positions (Steele & Chad, 1991a). The methodology presented could also be applied to 

field-based team-sports including soccer, rugby and Australian football although future 

application, including generalisation to all elite female netball athletes, would require 

testing on a larger dataset. 

The network analysis highlights that the WA, GA and GD positions are the most closely 

related netball positions. The GS role is characterised by movement combinations that 

are highly dissimilar to all the other positions. However, the most dissimilar pairwise 

comparison is between the GS and GD positions, an interesting finding given both 

playing positions are goal based roles. In a recent study on elite netball athlete load, the 

GD position was grouped with the GS and GK based on the proportion of match time 

spent performing low intensity activity (Young et al., 2016). The athletes in the present 

study comprise the national representative team, which may indicate the unique playing 

style of the GD position in this cohort compared with those from a lower-level 

competition.  

Differences in the accelerometer load of netball playing positions have been 

investigated across state representative and recreational playing levels (Cormack et al., 

2014). Higher standard (state league level) athletes performed a greater proportion of 
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accelerometer load in the vertical plane compared to their lower (recreation) level 

counterparts (Cormack et al., 2014). When comparing positions, only centre court 

athletes had a greater load than shooters and there were no clear differences between 

centres and defenders nor between shooters and defenders (Cormack et al., 2014). In the 

present study, the seven netball playing positions were studied at an individual level via 

the combination of velocity, acceleration and angular velocity movements performed by 

elite level athletes. It is difficult to compare these studies in netball, given the 

discrepancies in methodology and tracking systems utilised. Rather than simply 

reporting time spent in different intensity zones, this chapter presents the relative 

frequency of recurring movement sequences as a characteristic signature that 

differentiates athlete movement by playing role.  

Potential applications of this methodology may include a more granular evaluation of 

the movement output for each role than can be learned by using speed thresholds alone. 

This approach may be used to evaluate the developmental progress of young athletes as 

they build the physical attributes required to compete at more senior levels. The 

presented methodology may also reduce the need for the traditional collection, analysis 

and reporting of team-sport athlete external load in arbitrary or ill-defined movement 

categories. Rather than structuring training programs around time or distance spent in 

these categories, practitioners and scientists can focus on training the specific 

movement patterns frequently performed by athletes in each playing position. For 

example, practitioners could dedicate physical training time to prepare athletes for the 

most important or frequently recurring patterns performed according to their playing 

position. Further, athletes who are required to play across multiple roles or positions can 

prepare physically by ensuring the most frequently recurring movement patterns for 

these positions are incorporated into training. Alternatively, athletes could be examined 

on an individual case basis according to the movement sequences they perform during a 

match and the number or variety of movements performed during training. 
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Research conducted in elite female netball has been limited to only three matches 

(Davidson & Trewartha, 2008; Fox et al., 2013). Future work should incorporate more 

matches to calculate test-retest reliability and examine the repeatability or match-to-

match variability of role proximity results in netball. Analysis on the change of 

movement sequences performed over the duration of a match may ascertain if 

movements are a function of game style or an individual athlete playing within that 

position. Although netball was the sport analysed, the methodology presented can be 

extended to discover the frequently recurring movements within other team-sports. 

Utilising the Minkowski distance metric, the discovered movement features and 

distributions by playing role may uncover new relationships between the different 

playing positions in team-sports. The proposed methodology may assist coaches with 

tactical planning, through understanding the movement sequences performed by team-

sport athletes during specific match activities, for example, the movements performed in 

the lead up to a shot for goal. Team-sport athletes could use also information derived 

from the presented methodology for performance analysis purposes, including 

quantitative spatiotemporal data on their angle of attack during set plays as opposed to 

traditional inferences from video analysis. 

6.5 Conclusion 

The sequences of velocity, acceleration and angular velocity movement performed by 

team sport athletes during matches was discovered by a novel data mining technique. 

The combinations of these movement sequences were utilised to measure the strength of 

relationship between the netball playing positions. Using a one-dimensional k-means 

clustering algorithm, four velocity, three acceleration and four angular velocity clusters 

were obtained from netball athlete positional data. A total of 10 frequently recurring 

combinations of movement were discovered. To examine the relationship between 

netball playing positions, the percentage contribution of each frequently recurring 

movement pattern within the wider dataset was calculated. Based on the combination of 



!
101 

velocity, acceleration and angular velocity movements performed, it was discovered 

that only the WA, GA and GD playing positions are closely related. The GD and GS are 

the least similar netball playing positions. Future research should examine if these 

differences are a function of a global position or instead, each individual athlete who 

plays within that position. Analysis should also be extended to analyse the relationship 

between each playing position across playing standards, for example, a junior-elite level 

GA compared to an elite GA.  
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CHAPTER 7. STUDY 4 –THE MOVEMENT SEQUENCES 

PERFORMED BY ELITE AND JUNIOR-ELITE  

FEMALE NETBALL ATHLETES DURING MATCHES 

7.1 Introduction 

Netball is a court-based team-sport popular in Commonwealth countries. A description 

of netball and the relevant playing positions is located in Chapter 2.2. At the elite level, 

netball competition includes major international tournaments such as the 

Commonwealth Games and Netball World Cup. In Australia, junior elite pathways 

including representative 21 and under (21/U) squads that prepare athletes for competing 

at the elite level. The extent to which the activity profiles at the junior elite level prepare 

athletes to make a successful transition to elite competition is currently unknown. 

Quantifying the activity profile of team-sport athletes during matches is useful 

information for the design of position or playing standard specific training (Carling et 

al., 2008). The position of athlete during a match can be captured by tracking systems 

and then analysed according to time spent or distance covered in pre-described 

movement categories. Elite and junior elite level netball matches are held indoors, 

where global positioning systems (GPS) are inoperable due to no satellite reception. The 

development of radio-frequency (RF) based tracking systems (Hedley et al., 2010) 

allows for athletes to be monitored during court-based team-sports, such as netball. 

The physical load of netball athletes, according to playing position, have recently been 

examined at a domestic (Young et al., 2016) and sub-elite level (Cormack et al., 2014). 

Goal based playing positions had the lowest playing load, an accelerometer derived 

movement variable, across matches (Cormack et al., 2014; Young et al., 2016). At the 

domestic level, the load characteristics of the wing and attacking positions were similar 

when grouped via k-means clustering (Young et al., 2016). Differences in player load 

between the seven netball positions are 97% likely higher at the sub-elite level when 
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compared to recreational level athletes (Cormack et al., 2014). The physical output of 

junior elite athletes and potential differences between the seven playing positions is yet 

to be examined. Whilst accelerometer derived load measures the frequency and 

magnitude of body movement in three dimensions (Boyd et al., 2013), no data is 

collected on the location of an athlete relative to the coordinates of a playing area, such 

as a netball court. Displacement and the resulting speed plus acceleration of the athlete 

over time is therefore unable to be calculated.  

The displacement and speed of field-based team-sport athletes competing at differing 

playing standards, including the junior level, and positions is well documented 

(Gabbett, 2002; McLellan & Lovell, 2013; Mendez-Villanueva et al., 2011). In Chapter 

Five, the movement sequences of a junior elite female netball athlete were identified. 

This technique has also been extended to find the movement sequences of elite female 

netball athletes according to playing position (Chapter Six). Whilst similarities in the 

movement sequences performed by the WA, GA and GD playing positions were 

evident, it is currently unknown if these differences extend to the junior elite playing 

standard. Therefore, the purpose of this chapter was the examine the movement 

sequences of netball athletes according to playing position and two playing standards, 

elite and junior elite. 

7.2 Methods 

The activity profiles of 15 junior-elite level female netball athletes (age 19.3 ± 0.9 

years; height 181.9 ± 8.0 cm, mean ± Standard Deviation (SD), at commencement of 

study) were collected during three competitive matches. The junior-elite level athletes 

who participated in this study comprise the national 21 and under squad, who represent 

their country in a limited number of international netball matches held every four years. 

Therefore, only a small number of matches can be sampled. In conjunction, data from 

Chapter Six was included as a comparison and to obtain the most frequently recurring 

movement sequences of netball.  
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The number of individual junior-elite athletes examined per netball playing position was 

five for the centre (C), four for wing attack (WA), three for wing defence (WD), two for 

goal attack (GA), three for goal defence (GD), three for goal shooter (GS) and three for 

goal keeper (GK). All participants provided written informed consent. The study was 

approved by the University Human Research Ethics Committee and conformed to the 

Declaration of Helsinki. 

Spatiotemporal data was collected via the Wireless ad hoc System for Positioning 

(WASP) that is accurate for tracking athlete movement indoors, detailed in Chapter 

Four. The CV (%) of WASP for measuring total distance and mean velocity, during 

walking and sprinting movements, is less than 10% (Chapter Four). Each participant 

wore a WASP mobile node, measuring 90 x 50 x 25 mm, positioned between the 

shoulder blades. The range between each mobile node and the twelve anchor nodes 

surrounding the netball court was computed at an update rate of 10 Hz and calculated 

into a 100 Hz file via customised software (WheresBruce, Australian Institute of Sport, 

Canberra, Australia). Each athlete’s positional data (X and Y coordinates) was exported 

into the R statistical software (R: A language and environment for statistical computing, 

Vienna, Austria) for analysis. 

A movement sequencing technique, described in Chapter Six, was applied to each 

athlete’s X and Y data. Briefly, velocity was calculated from positional data and 

acceleration derived from velocity. Angular displacement was calculated via the dot 

product of consecutive movement vectors. Angular velocity, the rate of change of 

angular displacement, was obtained from angular displacement. Individual velocity, 

acceleration and angular velocity movements were clustered using a one-dimensional k-

means clustering algorithm (Wang & Song, 2011) seeded with 4, 3 and 4 clusters, 

respectively. A qualitative label was assigned to each cluster and from these clusters 

each unique combination of velocity, acceleration and angular velocity movement, 

termed movement subunits, was assigned an identification code consisting of an upper 
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or lower case alphabetic letter. Continous athlete movement subnits were isolated with 

by moments of inactivity, judged to be movement lower than 0.5 m·s-1, to form 

movement sequences. The similarity between each sequence was quantified using the 

Levenshtein distance implementation in the R stringdist package (Van der Loo, 2014). 

Similar movement sequences were then grouped into 25 clusters using a hierarchical 

cluster analysis (Ward Jr, 1963). The longest common subsequence (LCS) algorithm, 

using the R qualV package (Jachner et al., 2007), was used to discover the most 

common athlete movement sequence within each of the 25 clusters.  

The relative frequency of individual movement subunits was compiled for each playing 

position across two playing standards, elite and junior elite. The relative frequency of 

the LCS-derived movement sequences for each playing position and standard were also 

calculated. These distributions can be considered a movement signature for each netball 

playing position. The Minkowski distance implemented in the R HistogramTools 

package (Stokely, 2014), was used to quantify the distance between playing positions of 

differing standards using the LCS results. A network graph, via the igraph package 

(Csardi & Nepusz, 2006) within R was used to display this similarity between playing 

positions of differing standards. A network graph was also used to visualise the 

differences between positions across four matches from the elite athlete dataset.    

The pooled dataset contains three athletes who represented their national side and 

comprised part of the national 21/U squad. Therefore, activity profiles on these three 

athletes were collected during separate elite and junior elite matches. This data 

represents a unique case to examine the movement sequences of these athletes across 

playing standards and matches. The relative frequency of the LCS-derived movement 

sequences, as a global representation of netball, for each athlete’s playing position at 

elite and junior-elite standards was calculated. A distance matrix was also calculated 

and network graph constructed for these three individual athletes, according to playing 

position and standard. 
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7.3 Results 

The centroids of the four velocity clusters were 3.9 m.s-1, 0.6 m.s-1, 1.4 m.s-1 and 2.3 m.s-

1 respectively. The centroids of the four angular velocity clusters were 99.0 deg.s-1, 49.9 

deg.s-1, 153.7 deg.s-1 and 13.6 deg.s-1 respectively. Centroids of the three acceleration 

clusters were 6.7 m.s-2, 0.0 m.s-2 and -6.7 m.s-2 respectively. The within cluster variation, 

as the sum of Euclidean distance between the data points and each centroid, was 90.4% 

for velocity, 71.6% for acceleration and 94.7% for angular clusters. The distribution of 

data points within each velocity, angular velocity and acceleration cluster is 

demonstrated in Figure 7-1a, b and c, respectively. 

The most common movements of netball match activity, comprising elite and junior 

elite playing standards, were walking with straight movement and neutral acceleration. 

Each movement subunit, the qualitative descriptor comprising the relevant combination 

of velocity, acceleration and angular velocity and their relative frequency to the wider 

dataset is presented in Table 7-1. The 11 most frequently recurring movement 

sequences of netball match activity, comprising both the elite and junior elite playing 

standards, and relative contribution of each playing standard to the wider dataset is 

presented in Figure 7-2.  

The relative contribution of each playing standard to the wider dataset is also presented 

in Figure 7-2. A matrix of the frequently recurring movements per netball playing 

position and across playing standards is presented in Table 7-2. The relative proximity 

of these playing positions according to each playing standard is visualised in Figure 7-3. 

The GS and GK are the most closely related netball positions across playing standards. 

The largest pairwise comparison across playing standards was the WA, with a 

Minkowski distance of 12.40 (Table 7-2). 

Three athletes comprised both the elite and junior elite playing squads. The relative 

contribution, by each athlete per playing standard and position, to the wider dataset is 
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presented in Figure 7-4. A matrix for each athlete across playing standard and position 

is displayed in Table 7-3. In the C position, athlete three performed similar movement 

sequences at the elite and junior elite level, with a Minkowski distance of 1.56 (Table 7-

3). The largest pairwise comparison was between athlete two in C and athlete one in 

WD, with a Minkowski distance of 17.77 (Table 7-3). The relative proximity of these 

athletes, per playing position and playing standard, is visualised in Figure 7-5. 

A network analysis of movement sequence similarity between playing positions across 

four elite matches is visualised in Figure 7-6. The WD, GS and GK are consistently the 

most dissimilar netball playing positions across the elite playing standard. This 

highlights the ability of the movement sequencing technique to consistently detect 

differences between the netball playing positions at the highest standard of play. 

 

 



!
108 

 

Figure 7-1. The relative frequency of clustered observations for a) velocity, b) 

angular velocity and c) acceleration movement features across the pooled dataset. 
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Movement Subunit 

Percentage Contribution 
Qualitative Descriptor 

Elite Junior Elite 

a 0.1 0.0 Sprint Accelerate Turn 90 
A 0.0 0.0 Sprint Decelerate Turn 180 
b 0.1 0.1 Sprint Neutral Turn 90  
B 1.6 1.5 Walk Accelerate Turn 180  
c 0.1 0.0 Sprint Decelerate Turn 90  
C 6.5 8.0 Walk Neutral Turn 180 
d 1.3 1.1 Walk Accelerate Turn 90  
D 1.7 1.7 Walk Decelerate Turn 180  
e 5.9 7.3 Walk Neutral Turn 90  
E 1.1 0.8 Jog Accelerate Turn 180  
f 1.4 1.2 Walk Decelerate Turn 90  
F 1.7 1.5 Jog Neutral Turn 180  
g 1.2 0.9 Jog Accelerate Turn 90 
G 1.0 0.8 Jog Decelerate Turn 180  
h 2.6 2.5 Jog Neutral Turn 90  
H 0.3 0.2 Run Accelerate Turn 180  
i 1.1 0.9 Jog Decelerate Turn 90  
I 0.3 0.2 Run Neutral Turn 180 
j 0.5 0.4 Run Accelerate Turn 90  
J 0.3 0.2 Run Decelerate Turn 180  
k 0.7 0.7 Run Neutral Turn 90  
K 1.4 1.0 Sprint Accelerate Neutral 
l 0.4 0.4 Run Decelerate Turn 90  
L 3.2 3.8 Sprint Neutral Neutral 
m 0.4 0.3 Sprint Accelerate Turn 45  
M 1.3 1.0 Sprint Decelerate Neutral 
n 0.7 0.8 Sprint Neutral Turn 45  
N 1.3 1.2 Walk Accelerate Neutral 
o 0.4 0.3 Sprint Decelerate Turn 45  
O 8.3 9.1 Walk Neutral Neutral 
p 1.2 1.1 Walk Accelerate Turn 45  
P 1.5 1.4 Walk Decelerate Neutral 
q 6.6 8.0 Walk Neutral Turn 45  
Q 2.7 2.2 Jog Accelerate Neutral 
r 1.3 1.2 Walk Decelerate Turn 45  
R 12.0 12.8 Jog Neutral Neutral 
s 1.7 1.3 Jog Accelerate Turn 45 
S 2.7 2.2 Jog Decelerate Neutral 
t 5.1 5.4 Jog Neutral Turn 45  
T 2.6 1.8 Run Accelerate Neutral 
u 1.6 1.2 Jog Decelerate Turn 45 
U 7.3 7.4 Run Neutral Neutral 
v 1.1 0.8 Run Accelerate Turn 45  
V 2.5 1.8 Run Decelerate Neutral 
w 2.4 2.7 Run Neutral Turn 45  
x 1.0 0.8 Run Decelerate Turn 45  
y 0.0 0.0 Sprint Accelerate Turn 180  
z 0.0 0.0 Sprint Neutral Turn 180  
!
!
Table 7-1. The percentage contribution of movement subunits, according to elite 

and junior elite playing standards, to the wider dataset and qualitative descriptor. 
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!
!
Figure 7-2. The relative contribution of frequently recurring LCS sequences by 

netball playing position including centre (C), goal attack (GA), goal defence (GD), 

goal keeper (GK), goal shooter (GS), wing attack (WA) and wing defence (WD). 

Elite athletes; dark grey bars. Junior elite athletes; light grey bars. 
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Table 7-2. The Minkowski distances for movement sequence distributions between netball playing positions including centre (C), 

goal attack (GA), goal defence (GD), goal keeper (GK), goal shooter (GS), wing attack (WA) and wing defence (WD) for elite (E) 

and junior elite (JE) playing standards. 

!
!
!
!
!
!

 
CE CJE GAE GAJE GDE GDJE GKE GKJE GSE GSJE WAE WAJE WDE WDJE 

CE 0.0 9.21 6.62 14.09 9.62 13.75 11.47 9.85 11.54 12.14 7.26 17.44 14.17 18.31 
CJE 

 
 
 
 

0.0 12.30 12.44 12.72 13.81 17.60 16.41 18.33 17.88 13.29 17.01 16.96 18.09 
GAE 

 

0.0 10.03 3.83 9.09 7.06 7.24 10.03 10.59 1.49 12.60 8.53 13.10 
GAJE 

 

0.0 6.75 4.46 13.62 14.68 17.43 16.82 10.62 6.57 8.69 6.94 
GDE 

 

0.0 6.00 7.85 9.04 11.90 12.02 4.16 9.23 6.05 9.76 
GDJE 

 

0.0 10.49 11.60 14.18 13.25 9.09 4.10 5.15 4.67 
GKE 

 

0.0 3.24 5.25 5.93 5.60 12.59 6.75 13.16 
GKJE 

 

0.0 3.00 3.79 5.90 14.13 8.87 14.84 
GSE 

 

0.0 2.67 8.72 16.38 11.17 17.21 
GSJE 

 

0.0 9.36 15.36 10.70 16.13 
WAE 

 

0.0 12.40 7.79 12.93 
WAJE 

 
0.0 6.06 2.66 

WDE 
 

0.0 6.72 
WDJE  0.0 
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Figure 7-3. A network analysis of movement sequence similarity between netball 

playing positions, according to playing standard. Elite athletes; dark grey circles. 

Junior elite athletes; light grey circles.  
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Figure 7-4. The relative contribution of frequently recurring LCS sequences by 

netball playing position including centre (C) and wing defence (WD) for three 

athletes across two differing playing standards. Elite level; dark grey bars. Junior 

elite level; light grey bars.  

!
!
!
!
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Table 7-3. The Minkowski distances for movement sequence distributions between 

netball playing positions including centre (C), and wing defence (WD) across elite 

(E) and junior elite (JE) playing standards. Three individual athletes (1, 2, 3) who 

played at both levels were profiled. 

!
!
!
!
!

 CE,1 CJE,1 WDE,1 WDJE,1 CE,2 CJE,2 CE,3 CJE,3 
CE,1 0.0 6.13 2.76 13.29 4.85 6.27 3.39 3.67 
CJE,1 

 
 
 
 

0.0 7.17 12.63 7.84 4.48 6.78 5.62 
WDE,1 

 

0.0 11.01 7.50 7.88 5.95 6.06 
WDJE,1 

 

0.0 17.77 14.94 16.15 15.51 
CE,2 

 
0.0 5.90 1.80 2.72 

CJE,2  0.0 5.09 3.58 
CE,3  0.0 1.56 
CJE,3        0.0 
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!
Figure 7-5. A network analysis of movement sequence similarity between playing 

positions according to elite; dark grey and junior elite standard; light grey. Athlete 

one; circles. Athlete two; squares and athlete three; rectangles. 

!
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!
!
!
!
Figure 7-6. A network analysis of movement sequence similarity between playing 

positions across four elite matches including match one; A, match two; B, match 

three; C and match four; D. 

A B 

DC
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7.4 Discussion 

The purpose of this study was to utilise the analysis technique, developed in Chapter 

Five and extended in Chapter Six, to examine differences in the movement sequences of 

team-sport athletes across playing position and standards. The combinations of 

movement sequences performed by female netball athletes were assessed for similarity 

between the seven playing positions across two standards, elite and junior-elite. The GS 

and GK are the most closely related netball positions across playing standards. The 

largest pairwise positional comparison across playing standards was the WA position, 

suggesting the attacking roles in netball differ greatly between elite and junior elite 

playing standards.  Eleven frequently recurring movement sequences were discovered. 

the present technique uncovers and compares the movement sequences performed by 

playing positions across differing standards, irrespective of traditional analysis using 

arbitrary speed or acceleration thresholds. 

Spatiotemporal data from elite and junior elite female netball athletes was examined to 

discover the global movement sequences performed. The 11 most frequently recurring 

movement sequences are detailed in Figure 7-2. Jogging with neutral acceleration and 

angular velocity was the most frequently performed movement in elite and junior 

netball. At the junior elite level, walking with neutral acceleration and performing a 

180° turn contributed 1.5% more to the wider dataset in comparison to the elite standard 

(Table 7-2). This may be skill related, potentially suggesting a turnover of the ball or 

intercept by an athlete, requiring a 180° turn as the direction of play changes. In elite 

soccer athletes, up to 32% of directional changes were 180° turns, likely due to the 

transition from attack to defence (Ade, Fitzpatrick, & Bradley, 2016). Profiling the 

changes in direction performed by team-sport athletes during matches may assist in 

designing specific conditioning drills to develop individual athlete physical capacities. 

The similarities in match external load, between playing positions and across 

competition standards, has been investigated in field-based team-sports. The high-

A 



!
118 

intensity (≥�5.5 m.s-1) running distance covered by professional soccer athletes was 

greater for all playing positions, except wide midfielders, in a lower league compared 

with Championship and Premier League levels (Bradley et al., 2013). More high-

intesity running distance was covered when athletes moved down a playing standard, 

yet this was not apparent for athletes moving up in competition levels (Bradley et al., 

2013). Although no data on skill performance was presented, athletes at a higher 

playing standard likely possess superior technical capabilites. Athletes at a lower 

standard may therefore utilise more of their physical capacity in an attempt to close 

down the opposition to regain possession or create position (Bradley et al., 2013). 

Athletes at higher standards of play may also be selective in their sprint effort 

distribution, potentially due to a greater match tactical awareness of creating position or 

filling space. The distribution of sprint efforts, according to a velocity threshold, was 

not determined in the present study although sprinting with neutral acceleration and 

neutral angular velocity contributed 3.2% and 3.8% to the total movement subunits for 

elite and junior elite athletes, respectively (Table 7-1). All other sprinting related 

activities were less than 1.4% for both playing standards. In elite female hockey, 

sprinting (activity >�5.3 m.s-1)  accounted for 1.5% of player match-time (Macutkiewicz 

& Sunderland, 2011). Similarily, high-intensity running (activity >�5 m.s-1) performed 

by elite soccer athletes accounted for 4.8% of total match time (Krustrup et al., 2005). 

Irrespective of female team-sports contested on a field or court, the percentage 

contribution of sprinting movement relative to match duration is low. However, 

examining only sprinting movement according to a predetermined velocity threshold 

may underestimate the accelerations performed (Varley & Aughey, 2013). Maximal 

accelerations are frequently performed during matches from low velocities and may be 

underestimated via traditional match analysis, as detailed in Chapter Three. In elite 

soccer, the effort distribution of maximal accelerations is playing position dependent 
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(Varley et al., 2013a). The movements performed by team-sport athletes during matches 

should be examined according to playing position. 

A movement sequence comparison of netball playing positions, according to elite and 

junior elite playing standards, is described in Table 7-2. The GS and GK are the most 

closely related netball positions across playing standards with Minkowski pairwise 

distances of 2.67 and 3.24, respectively (Table 7-2). When comparing an elite GS with a 

junior elite GK, the Minkowski distance is 3.00. Similarily, comparison between an 

elite GK with a junior elite GS results in a Minkowski distances of 5.93. In a study on 

the accelerometer load of netball athletes during matches, there were no clear 

differences between shooters and defenders (Cormack et al., 2014). Together, these 

findings illustrate that the GK and the GS perform similar types of movements at 

different playing standards during netball matches. Future reseach could examine the 

accelerometer load of court-based team-sport athletes, including netballers, in 

combination with positional data from WASP. Examining the movement sequences 

performed and the global athlete load may allow for an enhanced profiling of training, 

particuarly as movement in the plane, including jumping, can be quantified via 

accelerometers. Profiling the number of and load associated with jumping effort in 

court-based team-sports remains to be explored. The combination of accelerometer and 

positional athlete data  may allow practitioners to design training in order to target 

specific movements performed in matches, including jumping efforts.  

The attacking roles in netball differ greatly between elite and junior elite playing 

standards. The largest pairwise positional comparison across playing standards was the 

WA with a Minkowski distance of 12.40 (Table 7-2). During international compared to 

national level competition, the high-speed running by elite field hockey athletes is 

substantitally increased across all positions except for defenders (Jennings et al., 

2012b). The positional differences across playing standards in the present study could 

likely be due to a greater tactical strategy or athlete physical capacity. In sub-elite male 
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rugby league athletes, physiological capacities including muscular power, agility and 

speed were substantially greater (24.0% to 40.3%) at a senior compared to junior level 

(Gabbett, 2002). Similarly, there were large to very large differences in absolute upper-

body strength between elite and junior elite male Australian football athletes 

(Bilsborough et al., 2015). The magnitude of these differences were still large to very 

large when upper-body strength was expressed relative to each individual athlete’s fat-

free soft tissue mass (Bilsborough et al., 2015). Although individual physiological 

capacities were not measured for either playing standard in the present study, junior 

elite athletes may require specific physical conditioning and resistance training before 

progressing to the senior level. 

Three individual athletes comprised both the elite and junior elite squads presenting a 

unique opportunity to investigate the movement sequences of these athletes at differing 

positions across playing standards. The most similar pairwise comparison was between 

athlete three in the C position, with a Minkowski distance of 1.56 between the elite and 

junior elite playing standards (Table 7-3). In contrast, athlete one had a Minkowski 

pairwise distance of 11.01 in the WD position when compared standards. Athlete one 

and three start in the WD and C positions, respectively, when playing with their 

domestic teams in the trans-tasman netball league. Together, these results may highlight 

the differing tactical roles within the same position by the same athlete at different 

playing standards. The contribution of tactical role to netball playing performance 

remains to be examined. In junior elite Australian football, match total and high-speed 

running distance do not predict if athletes are drafted to the senior level (Woods, Joyce, 

& Robertson, 2016). Instead, contested possession and technical skills were associated 

with draft outcome (Woods et al., 2016). Drafted players may therefore strategically 

position themselves to obtain and have an increased use of the ball. Future research 

should examine contribution of tactical role, including the corresponding change in 

movement sequences to elite and junior elite netball performance. 
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7.5 Conclusion 

The sequences of velocity, acceleration and angular velocity movement performed by 

netball athletes during matches was discovered, according to playing position and 

standard. A total of 11 frequently recurring movement sequences, irrespective of 

playing position or standard, were uncovered in the sport of netball. To examine the 

relationship between position and playing standard, the contribution of each frequently 

recurring movement sequence within the wider dataset was calculated. The GS and GK  

are the most closely related netball positions across elite and junior elite playing 

standards. The largest positional difference between playing standards was the WA. Of 

three athletes who comprised both the elite and junior elite squads, the most similar 

pairwise comparison across playing standards was between athlete three in the C 

position. The largest pairwise comparisons were between an elite C and a junior-elite 

WD. In the dataset examined, differences between positions and within playing 

standards appear consistent across matches, although future research should investigate 

the influence of match to match variability on these movement sequences. The 

movement sequencing technique described may distinguish between netball playing 

positions and standards, although more matches should be included in future 

comparisons to consistently detect such differences. Future research should examine the 

tactical contribution of each position to these movement sequences and explore the 

relationship between physical capacity and netball external load. 
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CHAPTER 8: GENERAL DISCUSSION, CONCLUSIONS AND 

FUTURE DIRECTIONS FOR RESEARCH 

8.1 Introduction 

This thesis is the starting point in establishing a new methodology to investigate the 

latent movement sequences of netball. Specifically, this thesis investigated the validity 

of a local positioning system (LPS) to collect, analyse and create a technique to discover 

the most frequently recurring latent movement sequences across the seven playing 

positions within elite and junior-elite female netball. To enable further application of the 

methodology developed within this thesis, training would be required on a larger data 

set before testing on a hold-out data set. This would allow estimation of how the 

presented methodology accurately classifies each of the seven netball playing positions 

based on their unique movement features. Model training and testing is outside the 

scope of this thesis, as the aim was to develop a method to derive representative 

movements of the elite and junior-elite cohorts examined. To assess model accuracy, 

team-sport athlete spatiotemporal data should also be collected using the LPS validated 

in this thesis, since the Wireless ad hoc System for Positioning (WASP) is accurate in 

measuring mean and peak velocity and angular velocity during short non-linear 

movements.   

8.2 Discussion and Future Directions 

The activity-profiles of team-sport athletes can be collected via global positioning 

systems (GPS), accelerometers and video analysis. Video analysis can capture athlete 

activity (Fox et al., 2013; Gabbett & Mulvey, 2008; Póvoas et al., 2012) although these 

may be unreliable estimates of movement (Barris & Button, 2008). Whilst 

accelerometers measure the frequency and magnitude of movement in three dimensions 

(Boyd et al., 2013), athlete displacement and velocity are unable to be calculated. 

Limited research exists on the activity profiles of court-based team-sport athletes, likely 
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due to the inability of GPS to accurately quantify short non-linear movement in 

confined spaces (Duffield et al., 2010). Alternatively, the WASP can accurately 

measure athlete velocity and angular velocity indoors (see Chapter Four). Practitioners 

and researchers can therefore use WASP to collect the activity profiles of team-sport 

athletes indoors.  

An important physical component for team-sport athletes is the ability to change 

direction or angular velocity in response to motion of the ball, opposition or teammates. 

Understanding the angular velocities performed by team-sport athletes allows for 

specific physical capacities to be targeted through conditioning drills. Whilst the 

accuracy of an LPS to detect non-linear movement was investigated during soccer-

specific courses (Ogris et al., 2012; Stevens et al., 2014), only a small number of 

changes in direction were examined. The accurate quantification of short, non-linear 

movement allows for meaningful changes in activity profile to be detected. The WASP 

validated in Chapter Four is accurate, compared to Vicon, at measuring total distance, 

mean and peak velocity and angular velocity during short non-linear movements 

performed indoors. Although other LPS have been validated against Vicon (Ogris et al., 

2012; Stevens et al., 2014), the work completed in this thesis proves that WASP can 

accurately quantify short, non-linear movement representative of court-based sports (see 

Chapter Four). Consequently, the WASP could be deployed for measuring athlete 

activity profiles in court-based sports including tennis, basketball, volleyball, handball 

and wheelchair rugby. The movement sequences performed in these sports could be 

examined according to playing role and standard. Using the technique presented in this 

thesis and positional data from an LPS such as WASP, the distribution of movements 

performed in training and matches may allow for an enhanced physical output profile 

rather than aggregated data of distances covered and velocities performed. The 

movement sequences performed in the lead up to a turnover in basketball, for example, 

could be examined to profile the tactical behaviours associated with this match event.  
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Team-sport athlete performance involves collective behaviours between- and within- 

opposing teams. Tactical behaviour can be calculated by quantifying positional data, 

relative to a playing area, and inter-player coordination from tracking systems. During 

small-sided soccer games, the tactical patterns of play have been assessed using GPS 

(Sampaio & Macas, 2012; Sampaio, Lago, Goncalves, Macas, & Leite, 2013). Limited 

research exists on the tactical behaviours of court-based team-sport athletes. The WASP 

could be a useful tool to measure the collective behaviour of court-based team-sport 

athletes (see Chapter Four). A limitation of Chapter Four is the lack of comparison 

between WASP and Vicon position estimates. Future research should examine 

instantaenous position and the respective displacement, velocity and acceleration 

derivatives from WASP to a high-resolution motion analysis system such as Vicon or 

computer vision. The intra- and inter-unit reliability of WASP should also be quantified 

to allow detection of small but important changes in distance, velocity and angular 

velocity. Changes in team-sport athlete activity-profile can then be detected if the signal 

is greater than the inherent noise.  

Profiling the team-sport athlete activity allows for the design of training to develop 

specific physical capacities. Traditional activity-profile analysis bins velocities and 

accelerations into different zones (see Chapter Three). Thresholds values are typically 

determined arbitrarily (Mohr et al., 2003), from propetiary software (Cunniffe et al., 

2009) or other research (Jennings et al., 2012a). The same threshold is often used for the 

entire playing cohort (Aughey, 2011b; Jennings et al., 2012a; Mooney et al., 2011). In 

contrast, the methodology developed in Chapter Five quantified team-sport athlete 

movement without velocity or acceleration thresholds. This approach using data mining 

techniques, including k-means clustering, may add to the traditional analysis of team-

sport athlete activity profile. Knowledge of the sequences performed during matches, 

including concurrent velocity, acceleration and angular velocity movements, may assist 
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in targeting specific training or conditioning qualities. These movement sequences can 

also be examined according to individual playing position. 

The analysis of athlete activity profile, according to playing position, typically involves 

the time or distance spent in velocity and acceleration zones. Rather than comparing the 

velocity, acceleration and angular velocities performed by individual playing positions, 

Chapter Six analysed the similarities between netball playing positions according to the 

movement sequences performed. The seven netball playing positions are consequently 

differentiated by a characteristic signature or the frequently recurring movements 

performed. A more granular examination of athlete movement, according to playing 

position, can therefore be learned. Practitioners and scientists can subsequently focus on 

training the specific movement sequences frequently performed by athletes in each 

playing position. These sequences can also be examined across different playing 

standards, such as elite and junior-elite levels. Quantifying the movement sequences 

performed across the athlete pathway in a given sport may have use for conditioning 

purposes. 

Profiling the activity profile across playing standards can assist in preparing team-sport 

athletes in the transition from lower to higher levels. Understanding the external load of 

team-sport athletes, according to playing position, across elite and junior-elite levels 

may allow the targeting of specific physical capacities. Athletes who transition from 

junior-elite to an elite level of play may therefore be better prepared to withstand the 

increased match intensity and in turn allow improved on-field performance. Analysis of 

the differences between team-sport playing standards typically examines distances 

covered in velocity zones, according to threshold values (McLellan & Lovell, 2013). In 

Chapter Seven, the movement sequences of elite and junior-elite female netball athletes 

were collected via WASP, validated in Chapter Four and analysed using the technique 

developed in Chapter Six. Eleven frequently recurring movement sequences were 

discovered from elite and junior-elite netball data. Across the two playing levels 
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examined, the GS and GK are the most closely related netball playing positions. The 

movement sequences performed by the WA position are the most dissimliar comparison 

across playing standards. For junior-elite WA athletes to play this position at the elite 

level, specifc physical training may be required to perform specific movement 

sequences. The differences in activity-profile between elite and junior-elite team-sport 

athletes is well-documented (Gabbett, 2002; McLellan & Lovell, 2013; Mendez-

Villanueva et al., 2011) however the movement sequence technique developed in this 

thesis could provide coaches and practitioners with specific information on the 

velocities, accelerations and angular velocities performed, according to playing 

position, across playing standards. Junior-elite athletes may therefore be better trained 

to perform the specific movements at an elite level of competition. 

Future application of the novel movement sequencing technique developed in this thesis 

should incorporate more matches to ascertain the test-retest reliability and match-to-

match variability of the role proximity results presented in Chapter Six. Advancement 

of the technique would also require the collection of a large quantity of athlete 

spatiotemporal data. Since the WASP is the only athlete tracking system currently 

accurate at measuring peak and mean angular velocity during sprinting and walking 

non-linear courses (see Chapter Four), spatiotemporal data should be collected using 

this LPS. For the technique to be applied in team-sports where WASP may not be 

available, researchers and practitioners are required to validate other tracking 

technologies, including GPS, for the accurate detection of angular velocity before this 

variable can be safely used. Future application and development of the movement 

sequence technique developed here may overcome the subjective determination of 

athlete movement from manual video-analysis. For example, the movement sequences 

performed in the lead up to a shot on goal could be learned from athlete spatiotemporal 

data. The inherent error of human users to accurately classify team-sport athlete activity 

could consequently be removed. 
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The interaction between tactical and physical output during team-sport matches is of 

interest to sport scientists. Local positioning systems, including WASP, provide an 

athlete’s position relative to the playing area and their team members. Although the 

tactical and physical output of field-based team-sport athletes has been examined 

(Sampaio et al., 2013), limited research exists on this interaction in court-based athletes. 

Integrating physical and tactical data may assist in understanding the emergent 

behavioural interactions at both an individual athlete and team level. By manipulating 

these variables, adapative behaviour to these environmental conditions can be examined 

during training and matches. 

8.3 Summary 

This thesis examined the accuracy of an LPS, specifically the WASP, for measuring 

elite team-sport athlete movement across short-duration, non-linear courses indoors 

against a high-resolution criterion system (see Chapter Four). Using this LPS, 

spatiotemporal data from a junior-elite female netball athlete was analysed using a 

movement sequencing technique developed in Chapter Five. This technique was 

furthered and applied to an elite cohort in Chapter Six, to examine the movement 

sequences performed by elite female netball athletes. These frequently recurring latent 

movement sequences, according to netball playing position, were then examined at the 

elite and junior-elite level in Chapter Seven. The novel technique developed in this 

thesis is an advancement on the traditional analysis of team-sport athlete activity profile. 

The velocities, accelerations and angular velocities of team-sport athletes can 

consequently be examined irrespective of pre-determined and arbitrary or 

physiologically defined thresholds. As this technique is the starting point on the 

continuum for establishing a new method, future application relies on model training 

and testing with a much larger dataset. Generalisation to other team-sports would 

require substantial data to universally validate the method.  
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8.3 Practical Applications 

The practical applications of this thesis are: 

1. Researchers and practitioners may use WASP to accurately quantify the non-

linear movement of athletes during indoor court-based sports. 

2. Spatiotemporal data collected by athlete tracking technologies should be 

analysed for the movement sequences performed during matches. 

3. Junior elite netball athletes may require specific conditioning to perform the 

different movement patterns of elite netball athletes if advancing to the higher 

level. 

4. The playing positions of netball, at the elite and junior elite level, may have 

individualised training programs to target the movement position-specific 

sequences performed. 

5. To gain a further understanding of netball athlete movement, more matches 

should be incorporated to train and test the movement sequencing technique. 
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8.4 Conclusions 

The specific conclusions of this thesis are: 

1. The WASP provides sufficient indoor accuracy to quantify the total distance and 

velocities performed by elite athletes over short, non-linear courses. 

2. There is a higher bias during walking compared to sprinting during non-linear 

courses. 

3. At the elite level, the WA, GA and GD are the most closely related netball 

playing positions as a function of frequently recurring movement sequences 

performed. 

4. Only the GS and GK playing positions are closely related across elite and 

junior-elite standards of netball play. 

5. The movement sequencing technique developed in this thesis can differentiate 

the netball playing positions although more data is required to train and test this 

methodology. 
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