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SUMS OF QUADRATIC HALF INTEGER

HARMONIC NUMBERS OF ALTERNATING TYPE

ANTHONY SOFO

Abstract. Half integer values of quadratic harmonic numbers and reciprocal binomial coeffi-
cients sums are investigated in this paper. Closed form representations of double integral expres-
sions are developed in terms of special functions.

1. Introduction and preliminaries

We express, amongst other results, the double integral representation

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎜⎜⎝

Φ(−1,1,1+ r)−√
x Φ(−x,1,1+ r)

+
√

y Φ(−y,1,1+ r)+
√

xy
1+r 2

F1

[
1,1+ r

2+ r

∣∣∣∣∣− xy

]
⎞
⎟⎟⎠dxdy

in terms of special functions and a connection with alternating quadratic half integer
harmonic numbers of the form

M (k, p) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

np

(
n+ k

k

) (1)

where k is a positive integer and p = {0,1} . Here Φ(z,t,a) = ∑∞
m=0

zm

(m+a)t
is the

Lerch transcendent defined for |z| < 1 and R(a) > 0 and satisfies the recurrence

Φ(z,t,a) = z Φ(z,t,a+1)+a−t.

The Lerch transcendent generalizes the Hurwitz zeta function at z = 1,

Φ(1,t,a) =
∞

∑
m=0

1

(m+a)t

and the Polylogarithm, or de Jonquière’s function, when a = 1,

Lit (z) :=
∞

∑
m=1

zm

mt , t ∈ C when |z| < 1; R(t) > 1 when |z| = 1.
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Also, H2
n− 1

2
is a quadratic half integer harmonic number and 2F1

[ ·, ·
·

∣∣∣∣∣z
]

is the clas-

sical Gauss hypergeometric function. It is known that the harmonic number Hn has the
usual definition

Hn =
n

∑
r=1

1
r

=
∞

∑
j=1

n
j ( j +n)

=
∫ 1

0

1− xn

1− x
dx (H0 := 0) (2)

for n ∈ N where N := {1,2,3, · · ·} is the set of positive integers, and N0 := N∪{0} .
An unusual, but intriguing representation has recently been given by Ciaurri et. al. [6],
as

Hn = π
∫ 1

0

(
x− 1

2

)⎛⎝cos
(

(4n+1)πx
2

)
− cos

(πx
2

)
sin
(πx

2

)
⎞
⎠ dx.

Choi [2] has also given the definition, in terms of log-sine functions

Hn = −4n
∫ π

2

0
ln(sinx)sinx(cosx)2n−1 dx

= −4n
∫ π

2

0
ln(cosx)cosx(sinx)2n−1 dx.

Let R and C denote, respectively the sets of real and complex numbers. We define
harmonic numbers at half integer values as Hn− 1

2
, which may be expressed in terms

of the digamma (or Psi) function ψ(z),z ∈ R and the Euler-Mascheroni constant, γ as
Hn− 1

2
= γ + ψ

(
n+ 1

2

)
. The digamma function is defined by

ψ(z) :=
d
dz

{logΓ(z)} =
Γ′(z)
Γ(z)

or logΓ(z) =
∫ z

1
ψ(t) dt,

where z ∈ C such that R(z) > 0. A generalized binomial coefficient
(λ

μ
)

(λ ,μ ∈ C)
is defined, in terms of the familiar (Euler’s) gamma function, by(

λ
μ

)
:=

Γ(λ +1)
Γ(μ +1)Γ(λ − μ +1)

, (λ ,μ ∈ C),

which, in the special case when μ = n, n ∈ N0, yields(
λ
0

)
:= 1 and

(
λ
n

)
:=

λ (λ −1) · · ·(λ −n+1)
n!

=
(−1)n (−λ )n

n!
(n ∈ N),

where (λ )ν (λ ,ν ∈C) is the Pochhammer symbol defined, also in terms of the gamma
function, by

(λ )ν :=
Γ(λ + ν)

Γ(λ )
=

{
1 (ν = 0; λ ∈ C\ {0})
λ (λ +1) · · ·(λ +n−1) (ν = n ∈ N; λ ∈ C),
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it being understood conventionally that (0)0 := 1 and assumed that the Γ-quotient ex-

ists. A generalized harmonic number H(m)
n of order m is defined, for positive integers

n and m , as follows:

H(m)
n :=

n

∑
r=1

1
rm , (m,n ∈ N) and H(m)

0 := 0 (m ∈ N)

and the polygamma function is defined by

ψ(n)(z) :=
dn

dzn {ψ(z)} =
dn+1

dzn+1 {logΓ(z)} (n ∈ N0).

In the case of non integer values of the argument z = r
q , we may write the generalized

harmonic numbers, H(α+1)
z , in terms of polygamma functions

H(α+1)
r
q

= ζ (α +1)+
(−1)α

α!
ψ(α)

(
r
q

+1

)
,

r
q
�= {−1,−2,−3, ...},

where ζ (z) is the zeta function. We also define

Hr
q

= H(1)
r
q

= γ + ψ
(

r
q

+1

)
.

The evaluation of the polygamma function ψ(α) ( r
a

)
at rational values of the argument

can be explicitly done via a formula as given by Kölbig [9], or Choi and Cvijovic [3]
in terms of the polylogarithm or other special functions. Some specific values are given
as

H(1)
− 3

2
= 2−2ln2, H(2)

1
2

= 4−2ζ (2) , H(3)
− 1

2
= −6ζ (3) ,

many others are listed in the books [16], [24] and [25]. In this paper we will develop
identities, closed form representations of alternating quadratic half integer harmonic
numbers and reciprocal binomial coefficients. While there are many results for sums of
harmonic numbers with positive terms, see for example [1], [4], [5], [7], [8], [10], [11],
[12], [13], [14], [15], [17], [19], [20], [21], [26], [27], [28], [29] and references therein.
There are fewer results for sums of the type (1).

The following Lemma will be useful in the proofs of the main Theorems.

LEMMA 1. Let r be a positive integer.
(a) Then for p ∈ N

r

∑
j=1

(−1) j

jp
=

1
2p

(
H(p)

[ r
2 ]

+H(p)
[ r−1

2 ]

)
−H(p)

2[ r+1
2 ]−1

. (3)

For p = 1,
r

∑
j=1

(−1) j

j
= H[ r

2 ]−Hr,
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where [x] is the integer part of x. We also have the known results, for 0 < t � 1

ln2 (1+ t) = 2
∞

∑
n=1

(−t)n+1 Hn

n+1

and when t = 1,

ln2 2 = 2
∞

∑
n=1

(−1)n+1 Hn

n+1
= ζ (2)−2Li2

(
1
2

)
. (4)

Also

t ln(1+ t) =
∞

∑
n=1

(−t)n+1

n
, t ∈ (−1,1]

hence,

ln2 =
∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

1
n2n =

1
2

∞

∑
n=1

Hn

2n . (5)

(b)

U (0) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

n
=

3
4

ζ (2)−2ln2 2,

V (0) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

n2 = 2πG− ln2ζ (2)− 7
2

ζ (3) ,

and

X (0) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n
=

7
4

ζ (3)+4ln3 2−3ln2ζ (2) .

Proof. From part (a) the proof of (3) is given in the paper [18].
Formulae (4) and (5) are standard known results. Next from, part (b) , and the

definition (2),

U (0) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

n
=
∫ 1

0

1
1− x

∞

∑
n=1

(−1)n+1
(
1− xn− 1

2

)
n

dx

=
∫ 1

0

1
1− x

(
ln2− ln(1+ x)√

x

)
dx =

3
4

ζ (2)−2ln2 2.

Similarly

V (0) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

n2 =
∫ 1

0

1
1− x

∞

∑
n=1

(−1)n+1
(
1− xn− 1

2

)
n2 dx

=
∫ 1

0

1
1− x

(
ζ (2)

2
+

Li2 (−x)√
x

)
dx = 2πG− ln2ζ (2)− 7

2
ζ (3) ,

where G := ∑∞
n=0

(−1)n

(2n+1)2
= .91596... is Catalan’s constant. �
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LEMMA 2. Let r be a positive integer.
(a) Then we have the recurrence relation

U (r) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

n+ r
= −U (r−1)+

π
2r−1

+2ln2

(
(−1)r

2r−1
− 1

r

)

+
2(−1)r

2r−1

(
H[ r−1

2 ]−Hr−1

)
, (6)

with solution

U (r) = (−1)rU (0)+ (−1)r
(

2Hr −2H
[ r
2 ]

+Hr− 1
2
+2ln2

)
ln2

+(−1)r π
r

∑
j=1

(−1) j

2 j−1
+2(−1)r

r

∑
j=1

H[ j−1
2

]−Hj−1

2 j−1
(7)

and

U (0) :=
∞

∑
n=1

(−1)n+1 Hn− 1
2

n
=

3
4

ζ (2)−2ln2 2.

(b) Similarly,

V (r) =
∞

∑
n=1

(−1)n+1 Hn− 1
2

(n+ r)2
= −V (r−1)+

2π
(2r−1)2

+2ln2

(
2(−1)r

(2r−1)2
− 1

r2

)

+
4(−1)r

(2r−1)2
(
H[ r−1

2 ]−Hr−1

)
+

(−1)r

2(2r−1)

(
H(2)

[ r−1
2 ]−H(2)

[ r
2 ]− 1

2

)
, (8)

with solution

V (r) = (−1)rV (0)+2(−1)r π
r

∑
j=1

(−1) j

(2 j−1)2
+4(−1)r

r

∑
j=1

H[ j−1
2

]−Hj−1

(2 j−1)2

+(−1)r
(

3ζ (2)+H(2)
r− 1

2
− 1

2

(
H(2)

[ r
2 ]
−H(2)

[ r+1
2 ]− 1

2

))
ln2

+
(−1)r

2

r

∑
j=1

1
2 j−1

(
H(2)[

j−1
2

]−H(2)[
j
2

]
− 1

2

)
, (9)

and

V (0) = 2πG− ln2ζ (2)− 7
2

ζ (3) .

(c) Finally,

X (r) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+ r
= −X (r−1)− 2π ln2

2r−1
− 4U (r−1)

2r−1

+
4(−1)r

(2r−1)2
(
ln2+H[ r−1

2 ]−Hr−1

)
+

2π
(2r−1)2

+
4ln2 2

r
, (10)
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with solution

X (r) = (−1)r X (0)+2(−1)r π
r

∑
j=1

(−1) j

(2 j−1)2
+4(−1)r

r

∑
j=1

ln2+H[ j−1
2

]−Hj−1

(2 j−1)2

+2(−1)r π ln2
r

∑
j=1

(−1) j

2 j−1
−4(−1)r

r

∑
j=1

(−1) jU ( j−1)
2 j−1

+4(−1)r ln2 2
(
H[ r−1

2 ]−Hr−1

)
(11)

and

X (0) =
7
4

ζ (3)+4ln3 2−3ln2ζ (2) .

Proof. The proof of (7) is presented in [22] and the proof of (9) is given in [23].
From part (c) we consider X (r) and by changing the index of summation

X (r) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+ r
=

∞

∑
n=2

(−1)n H2
n− 3

2

n+ r−1

=
∞

∑
n=2

(−1)n

n+ r−1

(
Hn− 1

2
− 2

2n−1

)2

= −
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+ r−1
+4

∞

∑
n=1

(−1)n+1 Hn− 1
2

(2n−1)(n+ r−1)

−4
∞

∑
n=1

(−1)n+1

(2n−1)2 (n+ r−1)
+

(
H 1

2
−2
)2

r

= −X (r−1)+
4

2r−1

∞

∑
n=1

(−1)n+1 Hn− 1
2

(
2

2n−1
− 1

n+ r−1

)

−4
∞

∑
n=1

(−1)n+1

(2r−1)2

(
1

n+ r−1
− 2

2n−1
+

2(2r−1)
(2n−1)2

)
+

4ln2 2
r

.

From Lemma 1 and using the known results

X (r) = −X (r−1)+
8

2r−1

(
G− π

4
ln2
)
− 4

2r−1
U (r−1)

− 4(−1)r

(2r−1)2
(
− ln2−H[ r−1

2 ] +Hr−1

)
+

2π
(2r−1)2

− 8G
2r−1

+
4ln2 2

r

and upon simplification results in the recurrence relation (10). By the subsequent reduc-
tion of the X (r) , X (r−1) , X (r−2) ,...,X (1) terms in (10), we arrive at the identity
(11). �
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EXAMPLE 1. For r = 5, we have from (11)

X (5) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+5
=

637279
297675

+
449018π
99225

− 563
105

ζ (2)− 7
4

ζ (3)

−526π ln2
315

+3ln2ζ (2)+
5491ln2 2

315
−4ln3 2− 1757806ln2

99225
.

It is of some interest to note that X (r) may be expanded in a slightly different way
so that it gives rise to another unexpected harmonic series identity. This is pursued in
the next Lemma.

LEMMA 3. For r ∈ N , we have the identity

ϒ(r) =
∞

∑
n=1

H2n− 1
2

2n+ r−1

(
H2n− 1

2

2n+ r
− 4

4n−1

)
=

4G−3ζ (2)
2r−1

+X (r)+
2

(2r−1)2
(
Hr−1

2
+3ln2− π

2

)
.

For r = 0

ϒ(0) =
∞

∑
n=1

H2
2n− 1

2

2n(2n−1)
=

7
4

ζ (3)−3ln2ζ (2)+ π

+
1
2

ζ (2)−2ln2−π ln2+4ln2 2+4ln3 2. (12)

Proof. We have, by expansion

X (r) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+ r
=

∞

∑
n=1

⎛
⎝ H2

2n− 3
2

2n+ r−1
−

H2
2n− 1

2

2n+ r

⎞
⎠

=
∞

∑
n=1

(
H2n− 1

2

2n+ r−1

(
H2n− 1

2

2n+ r
− 4

4n−1

)
− 4

(4n−1)2 (2n+ r−1)

)
,

and it follows that

∞

∑
n=1

H2n− 1
2

2n+ r−1

(
H2n− 1

2

2n+ r
− 4

4n−1

)

= X (r)+
∞

∑
n=1

4

(4n−1)2 (2n+ r−1)

= X (r)+
2

(2r−1)2
(
Hr−1

2
+3ln2− π

2

)
+

4G−3ζ (2)
2r−1

,
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where X (r) is given by (11). The r = 0 case follows from

∞

∑
n=1

H2n− 1
2

2n−1

(
H2n− 1

2

2n
− 4

4n−1

)
= X (0)+2

(
H− 1

2
+3ln2− π

2

)
−4G+3ζ (2) .

We can evaluate

∞

∑
n=1

4H2n− 1
2

(2n−1)(4n−1)
= 4G+2π − 5

2
ζ (2)−4ln2−π ln2+4ln2 2,

therefore (12) is attained. �

The next few theorems relate the main results of this investigation, namely the
closed form and integral representation of (1).

2. Closed form of harmonic sums and Integral identities

Now we prove the following theorems.

THEOREM 1. Let k be a positive integer, then from (1) with p = 1 we have

M (k,1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n

(
n+ k

k

) =
7
4

ζ (3)−3ln2ζ (2)+4ln3 2 (13)

−
k

∑
r=1

(−1)1+r
(

k
r

)
X (r)

where X (r) is given by (11).

Proof. Consider the expansion

M (k,1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n

(
n+ k

k

) =
∞

∑
n=1

(−1)n+1 k! H2
n− 1

2

n(n+1)k

=
∞

∑
n=1

(−1)n+1 k! H2
n− 1

2

(
k

∑
r=1

Λr

n+ r
+

Ω
n

)

where

Λr = lim
n→−r

⎧⎪⎪⎨
⎪⎪⎩

n+ r

n
k
∏
r=1

n+ r

⎫⎪⎪⎬
⎪⎪⎭= − (−1)r+1

k!

(
k
r

)
, Ω =

1
k!
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hence

M (k,1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

n
−

k

∑
r=1

(−1)r+1
(

k
r

) ∞

∑
n=1

(−1)n+1 H2
n− 1

2

n+ r

= X (0)−
k

∑
r=1

(−1)r+1
(

k
r

)
X (r) . �

The other case of M (k,0) can be evaluated by a similar technique. We list the
result in the next corollary.

COROLLARY 1. Under the assumptions of Theorem 1, we have,

M (k,0) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2(
n+ k

k

) =
k

∑
r=1

(−1)r+1 r

(
k
r

)
X (r) . (14)

Proof. The proof follows directly from Theorem 1 and using the same technique.
�

It is possible to represent the alternating harmonic number sums (13), (14) and
(10) in terms of an integral, which is given in the next Theorem.

THEOREM 2. Let k be a positive integer, then we have:

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎜⎜⎜⎜⎝

√
y 2F1

[
1,1

2+ k

∣∣∣∣∣− y

]
−√

x 2F1

[
1,1

2+ k

∣∣∣∣∣− x

]

+2F1

[
1,1

2+ k

∣∣∣∣∣−1

]
+
√

xy2F1

[
1,1

2+ k

∣∣∣∣∣− xy

]
⎞
⎟⎟⎟⎟⎠dxdy

= (1+ k)
(

7
4

ζ (3)+4ln3 2−3ln2ζ (2)
)
− (1+ k)

k

∑
r=1

(−1)1+r
(

k
r

)
X (r) ,

where X (r) is given by (11).

Proof. From (2) we can write

M (k,1) =
∫ 1

0

∫ 1

0

1
(1− x)(1− y)

∞

∑
n=1

(−1)n+1
(
1− xn− 1

2

)(
1− yn− 1

2

)
n

(
n+ k

k

) dxdy
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therefore

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎜⎜⎜⎜⎝

√
y 2F1

[
1,1

2+ k

∣∣∣∣∣− y

]
−√

x 2F1

[
1,1

2+ k

∣∣∣∣∣− x

]

+2F1

[
1,1

2+ k

∣∣∣∣∣−1

]
+
√

xy2F1

[
1,1

2+ k

∣∣∣∣∣− xy

]
⎞
⎟⎟⎟⎟⎠dxdy

= (1+ k)

(
7
4

ζ (3)+4ln3 2−3ln2ζ (2)−
k

∑
r=1

(−1)1+r
(

k
r

)
X (r)

)
. �

Similar integral representations can be evaluated for M (k,0) and X (r) , the results
are recorded in the next Theorem.

THEOREM 3. Let the conditions of Theorem 2 hold, then we have:

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎜⎜⎜⎜⎝

√
y 2F1

[
1,2

2+ k

∣∣∣∣∣− y

]
−√

x 2F1

[
1,2

2+ k

∣∣∣∣∣− x

]

+2F1

[
1,2

2+ k

∣∣∣∣∣−1

]
+
√

xy2F1

[
1,2

2+ k

∣∣∣∣∣− xy

]
⎞
⎟⎟⎟⎟⎠dxdy

= (1+ k)
k

∑
r=1

(−1)r+1 r

(
k
r

)
X (r)

Also for X (r)

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎜⎜⎝

Φ(−1,1,1+ r)−√
x Φ(−x,1,1+ r)

+
√

y Φ(−y,1,1+ r)+
√

xy
1+r 2

F1

[
1,1+ r

2+ r

∣∣∣∣∣− xy

]
⎞
⎟⎟⎠dxdy

= X (r) .

Proof. The proof follows the same pattern as that employed in Theorem 2. �

EXAMPLE 2. Some illustrative examples follow.

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎝−1+2ln2+

√
x+

√
y−1√

xy − (1+x) ln(1+x)
x3/2

− (1+y) ln(1+y)
y3/2 + (1+xy) ln(1+xy)

(xy)3/2

⎞
⎠dxdy

= 7ζ (3)+6ζ (2)−12ln2ζ (2)+4π ln2−4π +16ln3 2−24ln2 2+8ln2.

∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎝1− ln2−

√
x+

√
y−1√

xy + ln(1+x)
x3/2

+ ln(1+y)
y3/2 − ln(1+xy)

(xy)3/2

⎞
⎠dxdy

= −7
2

ζ (3)−6ζ (2)+6ln2ζ (2)−4π ln2+4π−8ln3 2+24ln2 2−8ln2.
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∫ 1

0

∫ 1

0

1
(1− x)(1− y)

⎛
⎝ − 1

2 + 2y3/2−xy3/2+2x3/2−2−x3/2y+xy

2(xy)3/2

+ ln2− ln(1+x)
x5/2 − ln(1+y)

y5/2 + ln(1+xy)
(xy)5/2

⎞
⎠dxdy

=
7
4

ζ (3)+4ζ (2)−3ln2ζ (2)+
4
3

π ln2− 28
9

π +4ln3 2− 38
3

ln2 2+
88
9

ln2− 4
9
.

REMARK 1. It appears that, for r ∈ N0,

F (r) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

(n+ r)2

may not have a closed form representation, in terms of some common special functions.
Remarkably, however, the sum of two consecutive terms of F (r) does have a closed
form. This result is pursued in the next Lemma.

LEMMA 4. For r ∈ N,

F (r)+F (r+1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

(
1

(n+ r)2
+

1

(n+ r+1)2

)

=
(

2
2r+1

)3

π −
(

2
2r+1

)2

π ln2+
4ln2 2

(1+ r)2
(15)

−2

(
2

2r+1

)3

(−1)r
(
ln2+H[ r

2 ]−Hr

)

−2

(
2

2r+1

)(
V (r)+

(
2

2r+1

)
U (r)

)

− (−1)r

(2r+1)2
(−1)r

(
H(2)

[ r
2 ]
−H(2)

2[ r+1
2 ]−1

)
,

and for r = 0,

F (0)+F (1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

(
1
n2 +

1

(n+1)2

)

= −8πG+8π−8ζ (2)+14ζ (3)
−4π ln2+4ln2ζ (2)+20ln2 2−16ln2.

Proof. Consider

F (r)+F (r+1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

(
1

(n+ r)2
+

1

(n+ r+1)2

)
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and by changing the index of summation in the second sum we can write

F (r)+F (r+1) =
∞

∑
n=1

(−1)n+1 H2
n− 1

2

(n+ r)2
+

4ln2 2

(r+1)2
−

∞

∑
n=1

(−1)n+1

(n+ r)2

(
Hn− 1

2
− 2

2n−1

)2

=
∞

∑
n=1

4(−1)n+1 Hn− 1
2

(2n−1)(n+ r)2
−

∞

∑
n=1

4(−1)n+1

(2n−1)2 (n+ r)2
+

4ln2 2

(r+1)2

= 4
∞

∑
n=1

(−1)n+1 Hn− 1
2

((
2

2r+1

)2 1
2n−1 − 1

2

(
2

2r+1

)2 1
n+r

−( 1
2r+1

) 1
(n+r)2

)

−4
∞

∑
n=1

(−1)n+1

⎛
⎝−( 2

2r+1

)3 1
2n−1 +

( 2
2r+1

)2 1
(2n−1)2

+ 4
(2r+1)3(n+r)

+ 1
(2r+1)2(n+r)2

⎞
⎠+

4ln2 2

(r+1)2

and a rearrangement leads to (15). The case of r = 0 follows. �
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