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Abstract. In this paper we extend the Hermite-Hadamard inequality to the class of symmetrized
convex functions. The corresponding version for h -convex functions is also investigated. Some
examples of interest are provided as well.

1. Introduction

The following inequality holds for any convex function f defined on R

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
, a,b ∈ R, a �= b. (1.1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [43]). But
this result was nowhere mentioned in the mathematical literature and was not widely
known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex func-
tions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In 1974,
D. S. Mitrinović found Hermite’s note in Mathesis [43]. Since (1.1) was known as
Hadamard’s inequality, the inequality is now commonly referred as the Hermite-Hada-
mard inequality.

For related results, see [10]–[19], [21]–[24], [31]–[34] and [46].
In this paper we show that the Hermite-Hadamard inequality can be extended to

a larger class of functions containing the convex functions. The corresponding version
for h -convex functions is also investigated. Some examples of interest are provided as
well.

Mathematics subject classification (2010): 26D15, 25D10.
Keywords and phrases: Convex functions, Hermite-Hadamard inequality, integral inequalities, h -

convex functions.

c© � � , Zagreb
Paper JMI-10-74

901

http://dx.doi.org/10.7153/jmi-10-74


902 S. S. DRAGOMIR

2. Symmetrized convexity

For a function f : [a,b] → C we consider the symmetrical transform of f on the
interval [a,b] , denoted by f̆[a,b] or simply f̆ , when the interval [a,b] is implicit, which
is defined by

f̆ (t) :=
1
2

[ f (t)+ f (a+b− t)] , t ∈ [a,b] .

The anti-symmetrical transform of f on the interval [a,b] is denoted by f̃[a,b], or sim-
ply f̃ and is defined by

f̃ (t) :=
1
2

[ f (t)− f (a+b− t)] , t ∈ [a,b] .

It is obvious that for any function f we have f̆ + f̃ = f .
If f is convex on [a,b] , then for any t1, t2 ∈ [a,b] and α,β � 0 with α + β = 1

we have

f̆ (αt1 + β t2) =
1
2

[ f (αt1 + β t2)+ f (a+b−αt1−β t2)]

=
1
2

[ f (αt1 + β t2)+ f (α (a+b− t1)+ β (a+b− t2))]

� 1
2

[α f (t1)+ β f (t2)+ α f (a+b− t1)+ β f (a+b− t2)]

=
1
2

α [ f (t1)+ f (a+b− t1)]+
1
2

β [ f (t2)+ f (a+b− t2)]

= α f̆ (t1)+ β f̆ (t2) ,

which shows that f̆ is convex on [a,b] .
Consider the real numbers a< b and define the function f0 : [a,b]→R , f0(t) = t3.

We have

f̆0(t) :=
1
2

[
t3 +(a+b− t)3

]
=

3
2

(a+b)t2− 3
2

(a+b)2 t +
1
2

(a+b)3

for any t ∈ R .

Since the second derivative
(
f̆0

)′′ (t) = 3(a+b), t ∈R , then f̆0 is strictly convex
on [a,b] if a+b

2 > 0 and strictly concave on [a,b] if a+b
2 < 0. Therefore if a < 0 < b

with a+b
2 > 0, then we can conclude that f0 is not convex on [a,b] while f̆0 is convex

on [a,b] .
We can introduce the following concept of convexity.

DEFINITION 1. We say that the function f : [a,b] → R is symmetrized convex
(concave) on the interval [a,b] if the symmetrical transform f̆ is convex (concave) on
[a,b] .
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Now, if we denote by Con [a,b] the closed convex cone of convex functions de-
fined on [a,b] and by SCon [a,b] the class of symmetrized convex functions, then from
the above remarks we can conclude that

Con [a,b]� SCon [a,b] . (2.1)

Also, if [c,d] ⊂ [a,b] and f ∈ SCon [a,b] , then this does not imply in general that
f ∈ SCon [c,d] .

THEOREM 1. Assume that f : [a,b] → R is symmetrized convex on the interval
[a,b] . Then we have the Hermite-Hadamard inequalities

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
. (2.2)

Proof. Since f : [a,b] → R is symmetrized convex on the interval [a,b] , then by
writing the Hermite-Hadamard inequality for the function f̆ we have

f̆

(
a+b

2

)
� 1

b−a

∫ b

a
f̆ (t)dt � f̆ (a)+ f̆ (b)

2
. (2.3)

However

f̆

(
a+b

2

)
= f

(
a+b

2

)
,

f̆ (a)+ f̆ (b)
2

=
f (a)+ f (b)

2
,

and ∫ b

a
f̆ (t)dt =

1
2

∫ b

a
[ f (t)+ f (a+b− t)]dt =

∫ b

a
f (t)dt.

Then by (2.3) we get (2.2). �
For similar results see [36].
The following result holds:

THEOREM 2. Assume that f : [a,b] → R is symmetrized convex on the interval
[a,b] . Then for any x ∈ [a,b] we have the bounds

f

(
a+b

2

)
� 1

2
[ f (x)+ f (a+b− x)] � f (a)+ f (b)

2
. (2.4)

Proof. Since f̆ is convex on [a,b] then for any x ∈ [a,b] we have

f̆ (x)+ f̆ (a+b− x)
2

� f̆

(
a+b

2

)

and since
f̆ (x)+ f̆ (a+b− x)

2
=

1
2

[ f (x)+ f (a+b− x)]
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while

f̆

(
a+b

2

)
= f

(
a+b

2

)
,

we get the first inequality in (2.4).
Also, by the convexity of f̆ we have for any x ∈ [a,b] that

f̆ (x) � x−a
b−a

· f̆ (b)+
b− x
b−a

· f̆ (a)

=
x−a
b−a

· f (a)+ f (b)
2

+
b− x
b−a

· f (a)+ f (b)
2

=
f (a)+ f (b)

2
,

which proves the second part of (2.4). �

REMARK 1. If f : [a,b] → R is symmetrized convex on the interval [a,b] , then
we have the bounds

inf
x∈[a,b]

f̆ (x) = f̆

(
a+b

2

)
= f

(
a+b

2

)

and

sup
x∈[a,b]

f̆ (x) = f̆ (a) = f̆ (b) =
f (a)+ f (b)

2
.

COROLLARY 1. If f : [a,b]→R is symmetrized convex on the interval [a,b] and
w : [a,b] → [0,∞) is integrable on [a,b] , then

f

(
a+b

2

)∫ b

a
w(t)dt � 1

2

∫ b

a
w(t) [ f (t)+ f (a+b− t)]dt (2.5)

� f (a)+ f (b)
2

∫ b

a
w(t)dt.

Moreover, if w is symmetric almost everywhere on [a,b] , i.e. w(t) = w(a+b− t)
for almost every t ∈ [a,b] , then

f

(
a+b

2

)∫ b

a
w(t)dt �

∫ b

a
w(t) f (t)dt � f (a)+ f (b)

2

∫ b

a
w(t)dt. (2.6)

Proof. The inequality (2.5) follows by (2.4) written for x = t, multiplying by
w(t) � 0 and integrating over t on [a,b] .

By changing the variable, we have

∫ b

a
w(t) f (a+b− t)dt =

∫ b

a
w(a+b− t) f (t)dt.
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Since w is symmetric almost everywhere on [a,b] , then

∫ b

a
w(a+b− t) f (t)dt =

∫ b

a
w(t) f (t)dt.

Therefore

1
2

∫ b

a
w(t) [ f (t)+ f (a+b− t)]dt

=
1
2

[∫ b

a
w(t) f (t)dt +

∫ b

a
w(t) f (a+b− t)dt

]

=
1
2

[∫ b

a
w(t) f (t)dt +

∫ b

a
w(t) f (t)dt

]
=

∫ b

a
w(t) f (t)dt

and by (2.5) we get (2.6). �

REMARK 2. The inequality (2.6) was obtained by L. Fejér in 1906 for convex
functions f and symmetric weights w. It has been shown now that this inequality re-
mains valid for the larger class of symmetrized convex functions f on the interval
[a,b] .

The following result also holds.

THEOREM 3. Assume that f : [a,b] → R is symmetrized convex on the interval
[a,b] . Then for any x,y∈ [a,b] with x �= y we have the Hermite-Hadamard inequalities

1
2

[
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]
(2.7)

� 1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]

� 1
4

[ f (x)+ f (a+b− x)+ f (y)+ f (a+b− y)] .

Proof. Since f̆[a,b] is convex on [a,b] , then f̆[a,b] is also convex on any subinterval
[x,y] (or [y,x] ) where x,y ∈ [a,b] .

By Hermite-Hadamard inequalities for convex functions we have

f̆[a,b]

(
x+ y

2

)
� 1

y− x

∫ y

x
f̆[a,b](t)dt �

f̆[a,b] (x)+ f̆[a,b] (y)
2

(2.8)

for any x,y ∈ [a,b] with x �= y.
We have

f̆[a,b]

(
x+ y

2

)
=

1
2

[
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]
,
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∫ y

x
f̆[a,b](t)dt =

1
2

∫ y

x
[ f (t)+ f (a+b− t)]dt

=
1
2

∫ y

x
f (t)dt +

1
2

∫ y

x
f (a+b− t)dt

=
1
2

∫ y

x
f (t)dt +

1
2

∫ a+b−x

a+b−y
f (t)dt

and
f̆[a,b] (x)+ f̆[a,b] (y)

2
=

1
4

[ f (x)+ f (a+b− x)+ f (y)+ f (a+b− y)] .

Then by (2.8) we deduce the desired result (2.7). �

REMARK 3. If we take x = a and y = b in (2.7), then we get (2.2).
If, for a given x ∈ [a,b] , we take y = a+b− x, then from (2.7) we get

f

(
a+b

2

)
� 1

2
(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt � 1

2
[ f (x)+ f (a+b− x)] , (2.9)

where x �= a+b
2 , provided that f : [a,b] → R is symmetrized convex on the interval

[a,b] .
Integrating this inequality over x we get the following refinement of the first part

of (2.2)

f

(
a+b

2

)
� 1

2(b−a)

∫ b

a

[
1(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt

]
dx (2.10)

� 1
b−a

∫ b

a
f (t)dt,

provided that f : [a,b]→ R is symmetrized convex on the interval [a,b] .

When the function is convex, we have the following inequalities as well:

REMARK 4. If f : [a,b]→ R is convex, then from (2.7) we have the inequalities

f

(
a+b

2

)
� 1

2

[
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]
(2.11)

� 1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]

� 1
4

[ f (x)+ f (a+b− x)+ f (y)+ f (a+b− y)]

for any x,y ∈ [a,b] , x �= y.
If we integrate (2.11) over (x,y) on the square [a,b]2 and divide by (b−a)2 , then

we get the following refinement of the first Hermite-Hadamard inequality for convex
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functions

f

(
a+b

2

)
(2.12)

� 1

2(b−a)2

[∫ b

a

∫ b

a
f

(
x+ y

2

)
dxdy+

∫ b

a

∫ b

a
f

(
a+b− x+ y

2

)
dxdy

]

� 1

2(b−a)2

∫ b

a

∫ b

a

1
y− x

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]
dxdy

� 1
b−a

∫ b

a
f (t)dt.

We notice that, the second and the third inequalities also hold for the more general case
of symmetrized convex functions on the interval [a,b] .

A concept of weaker symmetrized convexity can be introduced as follows:

DEFINITION 2. We say that the function f : [a,b]→R is weak symmetrized con-
vex (concave) on the interval [a,b] if the symmetrical transform f̆ is convex (concave)
on the interval

[
a, a+b

2

]
.

We denote this class by WSCon [a,b] .
It is clear that any symmetrized convex function on [a,b] is weak symmetrized

convex on that interval. Also, there are weak symmetrized convex functions on [a,b]
that are not symmetrized convex on [a,b] .

If we consider the function f0 : [a,b] →R defined by

f0(t) =

⎧⎨
⎩

t2, t ∈ [
a, a+b

2

]
,

(a+b− t)2 , t ∈ (
a+b
2 ,b

]
,

then we observe that f0 is convex on
[
a, a+b

2

]
and

[
a+b
2 ,b

]
but not convex on the

whole interval [a,b] . We also observe that f0 is a symmetrical function on [a,b] and
then f̆0 = f0. Therefore f0 is weak symmetrized convex function on [a,b] but not
symmetrized convex on that interval.

We have the following strict inclusion

SCon [a,b]�WSCon [a,b] . (2.13)

We also notice that f is weak symmetrized convex function on [a,b] if and only
if f̆ is convex on the second half of the interval [a,b] , namely

[
a+b
2 ,b

]
.

THEOREM 4. Assume that f : [a,b] → R is weak symmetrized convex on the in-
terval [a,b] . Then for any x,y ∈ [

a, a+b
2

]
x �= y we have the Hermite-Hadamard in-

equalities (2.7).
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In particular, we have

1
2

[
f

(
3a+b

4

)
+ f

(
a+3b

4

)]
� 1

b−a

∫ b

a
f (t)dt (2.14)

� 1
2

[
f

(
a+b

2

)
+

f (a)+ f (b)
2

]
.

Proof. The first part follows from the proof of Theorem 3 for x,y ∈ [
a, a+b

2

]
.

The second part follows from the inequality (2.7) by taking x = a and y = a+b
2 . �

REMARK 5. We observe that if f : [a,b]→R is weak symmetrized convex on the
interval [a,b] , then the inequality (2.9) holds for any x ∈ [

a, a+b
2

)
and integrating on[

a, a+b
2

]
we also have

f

(
a+b

2

)
� 1

2(b−a)

∫ a+b
2

a

[
1(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt

]
dx (2.15)

� 1
b−a

∫ b

a
f (t)dt.

We can state in general the following result for symmetrized convex functions.

PROPOSITION 1. Any inequality that holds for convex functions f defined on the
interval [a,b] will hold for symmetrized convex functions by replacing f with f̆[a,b] and
performing the required calculations.

We can illustrate this fact with two simple examples.
It is known that, see [19], if f : [a,b]→R is differentiable convex on (a,b) , then

for any x,y ∈ (a,b) with x �= y we have

0 � 1
y− x

∫ y

x
f (t)− f

(
x+ y

2

)
� 1

8

(
f ′ (y)− f ′ (x)

)
(y− x) . (2.16)

Now, if f : [a,b]→R is differentiable and symmetrized convex on (a,b) , then by
writing (2.16) for f̆[a,b] we have

0 � 1
y− x

∫ y

x
f̆[a,b] (t)− f̆[a,b]

(
x+ y

2

)
(2.17)

� 1
8

((
f̆[a,b]

)′ (y)− (
f̆[a,b]

)′ (x))(y− x) .

However

1
y− x

∫ y

x
f̆[a,b](t) =

1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]
,

f̆[a,b]

(
x+ y

2

)
=

1
2

[
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]
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and (
f̆[a,b]

)′ (y)− (
f̆[a,b]

)′ (x) =
1
2

(
f ′ (y)− f ′ (a+b− y)− f ′ (x)+ f ′ (a+b− x)

)
.

Then by (2.17) we get

0 � 1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]
(2.18)

− 1
2

[
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]

� 1
16

[
f ′ (y)− f ′ (a+b− y)− f ′ (x)+ f ′ (a+b− x)

]
(y− x)

that holds for any x,y ∈ (a,b) with x �= y.
From this inequality, by taking y = a+b− x, we get

0 � 1

2
(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt− f

(
a+b

2

)
(2.19)

� 1
4

[
f ′ (a+b− x)− f ′ (x)

](
a+b

2
− x

)

for any x ∈ (a,b) with x �= a+b
2 .

If f : [a,b] → R is differentiable convex on (a,b) , then for any x,y ∈ (a,b) with
x �= y we also have [20]

0 � f (x)+ f (y)
2

− 1
y− x

∫ y

x
f (t) � 1

8

(
f ′ (y)− f ′ (x)

)
(y− x) . (2.20)

Now, if f : [a,b] → R is differentiable and symmetrized convex on (a,b) , then by a
similar argument as above we have

0 � 1
4

[ f (x)+ f (a+b− x)+ f (y)+ f (a+b− y)] (2.21)

− 1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]

� 1
16

[
f ′ (y)− f ′ (a+b− y)− f ′ (x)+ f ′ (a+b− x)

]
(y− x)

for any x,y ∈ (a,b) with x �= y .
In particular, we have

0 � 1
2

[ f (x)+ f (a+b− x)]− 1

2
(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt (2.22)

� 1
4

[
f ′ (a+b− x)− f ′ (x)

](
a+b

2
− x

)

for any x ∈ (a,b) with x �= a+b
2 .
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3. Symmetrized h -convexity

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R .

DEFINITION 3. ([38]) We say that f : I → R is a Godunova-Levin function or
that f belongs to the class Q(I) if f is non-negative and for all x,y ∈ I and t ∈ (0,1)
we have

f (tx+(1− t)y) � 1
t

f (x)+
1

1− t
f (y) . (3.1)

Some further properties of this class of functions can be found in [27], [28], [30],
[44], [47] and [48]. Among others, its has been noted that non-negative monotone and
non-negative convex functions belong to this class of functions.

DEFINITION 4. ([30]) We say that a function f : I →R belongs to the class P(I)
if it is nonnegative and for all x,y ∈ I and t ∈ [0,1] we have

f (tx+(1− t)y) � f (x)+ f (y) . (3.2)

Obviously Q(I) contains P(I) and for applications it is important to note that
also P(I) contain all nonnegative monotone, convex and quasi convex functions, i. e.
nonnegative functions satisfying

f (tx+(1− t)y) � max{ f (x) , f (y)} (3.3)

for all x,y ∈ I and t ∈ [0,1] .
For some results on P-functions see [30] and [45] while for quasi convex func-

tions, the reader can consult [29].

DEFINITION 5. ([7]) Let s be a real number, s ∈ (0,1]. A function f : [0,∞) →
[0,∞) is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+(1− t)y) � ts f (x)+ (1− t)s f (y)

for all x,y ∈ [0,∞) and t ∈ [0,1] .

For some properties of this class of functions see [1], [2], [7], [8], [25], [26], [39],
[41] and [50].

In order to unify the above concepts for functions of real variable, S. Varošanec
introduced the concept of h -convex functions as follows.

Assume that I and J are intervals in R,(0,1) ⊆ J and functions h and f are real
non-negative functions defined in J and I, respectively.

DEFINITION 6. ([53]) Let h : J → [0,∞) with h not identical to 0. We say that
f : I → [0,∞) is an h -convex function if for all x,y ∈ I we have

f (tx+(1− t)y) � h(t) f (x)+h(1− t) f (y) (3.4)

for all t ∈ (0,1) .
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For some results concerning this class of functions see [53], [6], [42], [51], [49]
and [52].

We can introduce now another class of functions.

DEFINITION 7. We say that the function f : I → [0,∞) is of s-Godunova-Levin
type, with s ∈ [0,1] , if

f (tx+(1− t)y) � 1
ts

f (x)+
1

(1− t)s
f (y) , (3.5)

for all t ∈ (0,1) and x,y ∈ I.

We observe that for s = 0 we obtain the class of P-functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I , then we obviously have

P(I) = Q0 (I) ⊆ Qs1 (I) ⊆ Qs2 (I) ⊆ Q1 (I) = Q(I)

for 0 � s1 � s2 � 1.
The following inequality of Hermite-Hadamard type holds [49].

THEOREM 5. Assume that the function f : I → [0,∞) is an h-convex function
with h ∈ L [0,1] . Let y,x ∈ I with y �= x and assume that the mapping [0,1] � t 	→
f [(1− t)x+ ty] is Lebesgue integrable on [0,1] . Then

1

2h
(1

2

) f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � [ f (x)+ f (y)]

∫ 1

0
h(t)dt. (3.6)

If we write (3.6) for h(t) = t, then we get the classical Hermite-Hadamard in-
equality for convex functions

f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
. (3.7)

If we write (3.6) for the case of P-type functions f : I → [0,∞) , i.e., h(t) = 1,t ∈
[0,1] , then we get the inequality

1
2

f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � f (x)+ f (y) , (3.8)

that has been obtained for functions of real variable in [30].
If f is Breckner s-convex on I, for s ∈ (0,1) , then by taking h(t) = ts in (3.6)

we get

2s−1 f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � f (x)+ f (y)

s+1
, (3.9)

that was obtained for functions of a real variable in [25].
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If f : I → [0,∞) is of s-Godunova-Levin type, with s ∈ [0,1) , then

1
2s+1 f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � f (x)+ f (y)

1− s
. (3.10)

We notice that for s = 1 the first inequality in (3.10) still holds [30], i.e.

1
4

f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du. (3.11)

We can introduce the following concept generalizing the notion of h -convexity.

DEFINITION 8. Assume that h is as in Definition 6. We say that the function
f : [a,b] → [0,∞) is h -symmetrized convex (concave) on the interval [a,b] if the sym-
metrical transform f̆ is h -convex (concave) on [a,b] .

Now, if we denote by Conh [a,b] the closed convex cone of h -convex functions
defined on [a,b] and by SConh [a,b] the class of h -symmetrized convex, then, as in the
previous section, we can conclude in general that

Conh [a,b]� SConh [a,b] . (3.12)

DEFINITION 9. Assume that h is as in Definition 6. We say that the function
f : [a,b] → R is h -weak symmetrized convex (concave) on the interval [a,b] if the
symmetrical transform f̆ is h -convex (concave) on the interval

[
a, a+b

2

]
.

We denote this class by WSConh [a,b] . As in the previous section, we can con-
clude in general that

SConh [a,b]�WSConh [a,b] . (3.13)

Utilising Theorem 5 and a similar proof to that of Theorem 3, we can state the
following result as well:

THEOREM 6. Assume that the function f : [a,b] → [0,∞) is h-symmetrized con-
vex on the interval [a,b] with h integrable on [0,1] and f integrable on [a,b] .Then
for any x,y ∈ [a,b] we have the Hermite-Hadamard inequalities

1

4h
(

1
2

) [
f

(
x+ y

2

)
+ f

(
a+b− x+ y

2

)]
(3.14)

� 1
2(y− x)

[∫ y

x
f (t)dt +

∫ a+b−x

a+b−y
f (t)dt

]

� 1
2

[ f (x)+ f (a+b− x)+ f (y)+ f (a+b− y)]
∫ 1

0
h(t)dt.

In particular, we have

1

2h
(

1
2

) f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � [ f (a)+ f (b)]

∫ 1

0
h(t)dt. (3.15)
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REMARK 6. If, for a given x ∈ [a,b] , we take y = a+b− x, then from (3.14) we
get

1

2h
(

1
2

) f

(
a+b

2

)
� 1

2
(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt (3.16)

� [ f (x)+ f (a+b− x)]
∫ 1

0
h(t)dt,

where x �= a+b
2 , provided that f : [a,b] → R is h -symmetrized convex and integrable

on the interval [a,b] .
Integrating on [a,b] over x we get

1

4h
(

1
2

) f

(
a+b

2

)
(3.17)

� 1
4(b−a)

∫ b

a

[
1(

a+b
2 − x

) ∫ a+b−x

x
f (t)dt

]
dx

� 1
b−a

∫ b

a
f (x)dx

∫ 1

0
h(t)dt.

We have the following result as well:

THEOREM 7. Assume that h is as in Definition 6. If the function f : [a,b]→ [0,∞)
is h-symmetrized convex on the interval [a,b] , then we have the bounds

1

2h
(

1
2

) f

(
a+b

2

)
� f (x)+ f (a+b− x)

2
(3.18)

�
[
h

(
b− x
b−a

)
+h

(
x−a
b−a

)]
f (a)+ f (b)

2

for any x ∈ [a,b] .

Proof. Since f̆ is h -convex on [a,b] then for any x ∈ [a,b] we have

h

(
1
2

)[
f̆ (x)+ f̆ (a+b− x)

]
� f̆

(
a+b

2

)

and since
f̆ (x)+ f̆ (a+b− x)

2
=

1
2

[ f (x)+ f (a+b− x)]

while

f̆

(
a+b

2

)
= f

(
a+b

2

)
,

we get the first inequality in (2.4).
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Also, by the convexity of f̆ we have for any x ∈ [a,b] that

f̆ (x) � h

(
x−a
b−a

)
· f̆ (b)+h

(
b− x
b−a

)
· f̆ (a)

= h

(
x−a
b−a

)
· f (a)+ f (b)

2
+h

(
b− x
b−a

)
· f (a)+ f (b)

2

=
[
h

(
b− x
b−a

)
+h

(
x−a
b−a

)]
f (a)+ f (b)

2
,

which proves the second part of (3.18). �

COROLLARY 2. Assume that the function f : [a,b] → [0,∞) is h-symmetrized
convex on the interval [a,b] with h integrable on [0,1] and f integrable on [a,b] . If
w : [a,b] → [0,∞) is integrable on [a,b] , then

1

2h
(

1
2

) f

(
a+b

2

)∫ b

a
w(t)dt (3.19)

� 1
2

∫ b

a
w(t) [ f (t)+ f (a+b− t)]dt

� f (a)+ f (b)
2

∫ b

a
h

(
t−a
b−a

)
[w(t)+w(a+b− t)]dt.

Moreover, if w is symmetric almost everywhere on [a,b] , then

1

2h
(

1
2

) f

(
a+b

2

)∫ b

a
w(t)dt �

∫ b

a
w(t) f (t)dt (3.20)

� [ f (a)+ f (b)]
∫ b

a
h

(
t−a
b−a

)
w(t)dt.

Proof. From (3.18) we have

1

2h
(

1
2

) f

(
a+b

2

)
� f (t)+ f (a+b− t)

2

�
[
h

(
b− t
b−a

)
+h

(
t−a
b−a

)]
f (a)+ f (b)

2

for any t ∈ [a,b] .
Multiplying with w(t) � 0 and integrating over t ∈ [a,b] we get

1

2h
(

1
2

) f

(
a+b

2

)∫ b

a
w(t)dt (3.21)

� 1
2

∫ b

a
w(t) [ f (t)+ f (a+b− t)]dt

� f (a)+ f (b)
2

∫ b

a

[
h

(
b− t
b−a

)
+h

(
t−a
b−a

)]
w(t)dt.
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Observe that, by changing the variable t = a+b− s, s ∈ [a,b] , we have∫ b

a
h

(
b− t
b−a

)
w(t)dt =

∫ b

a
h

(
s−a
b−a

)
w(a+b− s)ds,

then we get ∫ b

a

[
h

(
b− t
b−a

)
+h

(
t−a
b−a

)]
w(t)dt

=
∫ b

a
h

(
t−a
b−a

)
[w(t)+w(a+b− t)]dt

and by (3.21) we obtain the second part of (3.19). �
Utilising the previous examples of h -convex functions the reader may state various

inequalities of Hermite-Hadamard type.
For instance, if we assume that the functions f : [a,b] → [0,∞) is integrable and

of symmetrized Godunova-Levin type, then for the symmetric weight

w : [a,b] → [0,∞) , w(t) = (t−a)(b− t)

we have from (3.20) that

1
4

f

(
a+b

2

)∫ b

a
(t−a)(b− t)dt �

∫ b

a
(t−a)(b− t) f (t)dt

� [ f (a)+ f (b)] (b−a)
∫ b

a
(b− t)dt

and since ∫ b

a
(t−a)(b− t)dt =

1
6

(b−a)3 ,

∫ b

a
(b− t)dt =

1
2

(b−a)2 ,

then we get the following inequality of interest:

1
24

f

(
a+b

2

)
(b−a)3 �

∫ b

a
(t−a)(b− t) f (t)dt � f (a)+ f (b)

2
(b−a)3 . (3.22)

Moreover, if we assume that the function f : [a,b]→ [0,∞) is integrable and sym-
metrized Breckner s-convex with s ∈ (0,1) , then for the symmetric weight

w : [a,b] → [0,∞) , w(t) = (t−a)(b− t)

we have from (3.20) that

1
21−s f

(
a+b

2

)∫ b

a
(t −a)(b− t)dt

�
∫ b

a
(t−a)(b− t) f (t)dt

� f (a)+ f (b)
(b−a)s

∫ b

a
(t −a)s+1 (b− t)dt
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and since ∫ b

a
(t −a)s+1 (b− t)dt =

(b−a)s+3

(s+2)(s+3)

then we get the following inequality of interest:

1
22−s3

f

(
a+b

2

)
(b−a)3 �

∫ b

a
(t−a)(b− t) f (t)dt (3.23)

� f (a)+ f (b)
(s+2)(s+3)

(b−a)3 .
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