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Physical inactivity, excess energy consumption, and obesity are associated with ele-
vated systemic oxidative stress and the sustained activation of redox-sensitive stress- 
activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. 
Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, 
and the development and progression of cardiometabolic disease. Paradoxically, acute 
exercise transiently increases oxidative stress and SAPK signaling, yet postexercise gly-
cemic control and skeletal muscle function are enhanced. Furthermore, regular exercise 
leads to the upregulation of antioxidant defense, which likely assists in the mitigation 
of chronic oxidative stress-associated disease. In this review, we explore the complex 
spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and 
highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling 
as important regulators of glucose homeostasis.
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iNTRODUCTiON

Physical inactivity and excess adipose tissue are associated with the development of insulin resist-
ance and type 2 diabetes mellitus (T2DM), which has reached epidemic proportions (1). Regular 
exercise can assist in the prevention and management of metabolic disease (2). Even a single session 
of exercise can improve glycemic control for up to 48  h postexercise (3–5). Improved glycemic 
control following acute and regular exercise occurs in part through improved insulin action and 
substrate metabolism in skeletal muscle (6, 7) by mechanisms that remain largely unknown. One 
potential mechanism may involve reactive oxygen species (ROS) and their paradoxical dual role 
in the pathophysiology of glucose homeostasis (8, 9). Considering that acute and chronic exercise 
training lead to alterations in oxidation–reduction (redox) homeostasis (10, 11), it is not surprising 
that redox biology has been proposed as a possible modulator of glycemic control and skeletal 
muscle adaptation to exercise (12–14). This review explores current evidence supporting exercise-
induced ROS and skeletal muscle redox-sensitive protein signaling as important regulators of 
glucose homeostasis.

eXeRCiSe AND GLYCeMiC CONTROL

insulin-Stimulated Glucose Uptake
Glucose homeostasis is vital for organism survival and involves the complex interaction between 
intestinal glucose absorption, liver gluconeogenesis and glycogenolysis, and tissue glucose uptake 
(15). During conditions of elevated substrate availability, for example, a glucose load from a meal, 
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elevated blood glucose is sensed by pancreatic β-cells resulting 
in the secretion of insulin to maintain glucose homeostasis 
(15). Under normal physiological conditions, insulin binds 
to the extracellular α-subunit of the insulin receptor promot-
ing autophosphorylation of the transmembrane β-subunit on 
tyrosine residues 1158, 1162, and 1163 (16). Scaffolding proteins 
including Shc adapter protein isoforms, signal-regulatory protein 
family members, Gab-1, Cbl, adapter protein with a PH and SH2 
domain, and insulin receptor substrates (IRS) are bound, and 
tyrosine residues phosphorylated to promote subsequent bind-
ing to phosphatidylinositol-3 kinase (PI3K) (17, 18). Activation 
of PI3K generates phosphatidylinositol (3,4,5)-trisphosphate 
(PIP3) that docks to and subsequently induces membrane trans-
location of the serine/threonine kinase Akt. PIP3 activation of 
phosphoinositide-dependent kinase-1 (PDK1) and the Rictor/
mTOR complex 2 lead to dual phosphorylation of Akt on serine 
473 and threonine residue 308 promoting subsequent activation 
of Akt kinase (19, 20). Increased Akt activity elicits phosphoryla-
tion of Akt substrate of 160 kDa (AS160; also known as TBC1D4) 
and TBC1D1 (21), promoting GTP loading and activation of 
Rab proteins releasing glucose transporter 4 (GLUT4) vesicles 
from intracellular compartments and promoting GLUT4 plasma 
membrane docking to facilitate glucose uptake (22–24).

Akt phosphorylation not only promotes GLUT4 translocation 
but also facilitates glycogen synthesis via inhibitory phospho-
rylation of glycogen synthase kinase 3 (GSK3) on Ser23 (GSK3α) 
and Ser9 (GSK3β) (25–27). PIP3 and PDK1 also activate atypical 
protein kinase C (PKC) isoforms ζ and λ, which are reported to 
facilitate GLUT4 vesicle trafficking and glucose uptake (28, 29). A 
summary of the canonical insulin signaling pathway is presented 
in Figure 1.

Glucose Uptake during exercise
Glucose uptake during exercise occurs in an exercise intensity- 
and exercise duration-dependent manner, which depends largely 
on a combination of increased glucose delivery, glucose trans-
port, and glucose metabolism (7). Increased trafficking of GLUT4 
to the plasma membrane during exercise occurs largely through 
mechanisms independent of insulin (7). These include the cel-
lular detection of changes in Ca2+ concentration (30, 31), changes 
in the energy status (ATP) of the cell (32–35), remodeling of the 
actin cytoskeleton via GTPase Rac1 (36), and fiber type-specific 
mediation of nitric oxide (NO) synthase (37). The primary protein 
signaling pathways include contraction-induced activation of 
calcium (Ca2+)/calmodulin-dependent kinase, atypical PKC, cal-
cineurin, 5′ adenosine monophosphate-activated protein kinase 
(AMPK), Akt, and mitogen-activated protein kinases (12, 38).  
Exercise-induced AMPK, and to a lesser extent Ca2+ signaling 
pathways (30, 31), elicits GLUT4 translocation and subsequent 
glucose uptake through phosphorylation and inactivation of the 
convergent glucose uptake signaling proteins AS160 and TBC1D1 
(21, 24, 39–42) (Figure 2).

Postexercise enhancement of insulin 
Sensitivity
Glucose uptake during exercise is maintained in populations 
who are insulin resistant and/or have been diagnosed with type 

2 diabetes (43). In contrast, basal and postexercise insulin-
stimulated glucose uptake appears to be impaired and contribute 
to the development of chronic disease (8, 44, 45). Regular exercise 
in both healthy and clinical populations improves indices of 
glycemic control including glycated hemoglobin (HbA1c) and 
insulin sensitivity in a “dose”-dependent manner (duration and 
intensity) (2, 46). It is generally conceded that training-induced 
improvements in glycemic control lead to improved insulin action 
in part through the upregulation of key skeletal muscle glucose 
homeostasis regulatory proteins such as Akt1/2, AS160, AMPK, 
hexokinase 2, and importantly GLUT4 (6, 7). Improved insulin 
action may also occur through exercise-induced mitochondrial 
biogenesis and improved mitochondrial function in addition to 
the upregulation of antioxidant defenses that lead to improved 
redox homeostasis (6, 13).

In contrast to regular exercise, the transient enhancement of 
insulin sensitivity in the hours after acute exercise appear to occur 
independent of modifications to the insulin receptor, IRS1/2, 
PI3K, Akt, and/or GSK3 α/β proteins (3, 14, 47, 48). It has been 
reported that AS160 and TBC1D1, which converge downstream 
of insulin- and contraction-mediated glucose uptake signaling 
pathways, are associated with the postexercise enhancement 
of insulin sensitivity (14, 42, 49–53). Although decades of 
research have contributed to a greater understanding of exercise 
and glycemic control, the specific exercise-induced signaling 
mechanisms leading to the acute and long-term adaptations 
that favor enhanced glycemic control are less clear (3, 7). One 
potential mechanism may be through exercise-induced ROS and 
their capacity to act as second messengers for skeletal muscle cell 
signaling (13, 14, 54, 55).

ReDOX HOMeOSTASiS

Biological organisms are constantly undergoing oxidation– 
reduction (redox) reactions to maintain a redox environment 
that is optimal for cellular signaling (56). Under certain circum-
stances, excess ROS production can lead to oxidative damage 
and/or modification of lipids, proteins, RNA, and DNA, leading 
to a redox state that is often referred to as oxidative stress (57). 
ROS production in a biological system occurs through numerous 
sources including radiation, environmental pollutants, chemo-
therapeutics, psychological stress (58), normal and abnormal 
cellular substrate metabolism (9, 59), and mechanical and physi-
ological stress induced through exercise (9, 11). ROS considered 
to be of biological importance, which includes hydroxyl radical 
(OH), superoxide anion O2

−( ), NO, peroxyl radical, peroxynitrite, 
hypochlorous acid, hydrogen peroxide (H2O2), singlet oxygen, 
and ozone (57, 60). It should be noted that reactive nitrogen 
species and reactive sulfur species also constitute separate radical 
groups with independent biological functions (61, 62); however, 
their discussion lies beyond the scope of this review.

Reactive oxygen species are capable of direct and/or indirect 
oxidative modification to proteins (63). Sustained oxidation of 
proteins can result in disruptions in the normal functioning  
of the proteome including protein inactivation (64), modifica-
tion of the protein side chains, fragmentation of peptide bonds 
(65), and structural unfolding and conformational changes (66). 
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FiGURe 1 | Primary signaling pathways involved in insulin-stimulated glucose uptake. Akt, protein kinase B; AS160, Akt substrate of 160 kDa; GLUT4, 
glucose transporter 4; GSK3, glycogen synthase kinase 3; IRS-1/2, insulin receptor substrates 1 and 2; mTORC1/2, mechanistic target of rapamycin complex 1/2; 
PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol-3 kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PP2A, 
protein phosphatase 2; PTEN, phosphatase and tensin homolog; PTP1B, protein tyrosine phosphatase 1B.
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Likewise, ROS are implicated in oxidative damage to DNA, a 
process that ultimately results in strand breakage, DNA–protein 
crosslinks and base alterations, and defective DNA transcription 
and translation leading to the synthesis of less protein and/or 
defective protein (67–69). In addition to DNA, both messenger 
and ribosomal RNA are vulnerable to oxidative damage, which can 
lead to the disturbance of translational process and impairment 
of protein synthesis (69). ROS-induced damage to mRNA occurs 
primarily through the formation of highly reactive free radicals 
such as the OH (70) and appears to be selective and independent 
of the abundance of the mRNA species (69). Although RNA is 
highly susceptible to oxidative damage, considerably more so 
than DNA, protein, and lipids (69), to the authors knowledge, 
research has yet to investigate the effect of exercise-induced 
ROS production on RNA damage and the subsequent effects on 
protein synthesis and exercise adaption.

Lipids, especially polyunsaturated fatty acids, are susceptible 
to oxidative degradation, a process referred to as lipid peroxida-
tion, which can result in a chain reaction leading to subsequent 
formation of peroxyl radicals and hydroperoxides (71). In addi-
tion to the direct cellular damage caused by ROS-induced lipid 
peroxidation, secondary products from lipid peroxidation such 
as malondialdehyde, propanal, hexanal, and the highly toxic 
4-hydroxynonenal (4-HNE) can elicit signaling events that con-
tribute to the development of cardiometabolic disease (72–75).

Disturbances in redox homeostasis can lead to perturbed 
redox signaling and aberrant cellular functioning (56). Therefore, 
organisms have evolved to encompass a complex and intercon-
nected antioxidant defense system, which helps maintain redox 
homeostasis through the reduction of ROS and/or ROS inter-
mediates, subsequent termination of ROS-mediated chain reac-
tions, and/or through ROS-induced damage repair mechanisms 
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FiGURe 2 | Primary signaling pathways involved in contraction-induced glucose uptake. AMPK, 5′ adenosine monophosphate-activated protein kinase; 
AS160, Akt substrate of 160 kDa; CaMK, Ca2+/calmodulin-dependent protein kinase; GLUT4, glucose transporter 4; PKC, protein kinase C; RAC1, ras-related C3 
botulinum toxin substrate 1.

4

Parker et al. Exercise, Redox Homeostasis, and Glycemic Control

Frontiers in Endocrinology | www.frontiersin.org May 2017 | Volume 8 | Article 87

(60, 76). These defenses include a number of redox-buffering 
enzymes, proteins, and scavengers, such as superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase (GPx)/reductase, 
thioredoxin, peroxiredoxin, inducible nitric oxide synthase 
(iNOS), gamma-glutamylcysteine synthetase, redox effector 
factor 1, nuclear factor erythroid 2-related factor 2, antioxidant 
response element, Kelch-like ECH-associated protein 1, uric acid, 
lipoic acid, bilirubin, coenzyme Q10, vitamin C, vitamin E, and 
carotenoids (57, 60, 77–82).

OXiDATive STReSS AND MeTABOLiC 
HeALTH

Chronically elevated systemic oxidative stress is associated with 
over 100 pathological conditions including accelerated aging, car-
diovascular disorders, insulin resistance, and T2DM (9, 57, 83).  
Considerable research has reported attenuated antioxidant defense 
and elevated basal oxidative stress in populations with chronic 
disease, often correlating with classical cardiometabolic risk 
factors such as increased circulating high-sensitivity C-reactive 
protein, greater waist-to-hip ratio, total cholesterol, triglycerides, 
and fasting blood glucose (84–90). As such, the measurement of 
basal systemic oxidative stress has been proposed as a marker 
for predicting the onset of a disease, assessing the progression 

of a disease, and evaluating the effect of pharmacological (e.g., 
antioxidant supplementation) and non-pharmacological (e.g., 
diet and exercise) therapies targeting oxidative stress-associated 
disease (81, 87, 91).

eXeRCiSe-iNDUCeD OXiDATive STReSS

Acute exercise elicits a transient state of elevated ROS, which 
depending on the type of exercise, duration and intensity, and 
antioxidant capacity of the individual, can result in oxidative 
stress (11, 87, 92). In contrast to chronic oxidative stress, the 
transient increase in ROS and oxidative stress elicited by most 
types of exercise (i.e., non-extreme muscle damaging exercise) are 
reported to be beneficial and a necessary requirement for optimal 
cellular functioning and adaptation to physiological stress (79).

Mechanisms for exercise-induced 
Oxidative Stress
The mechanisms of intracellular and extracellular ROS gen-
eration in skeletal muscle during exercise are reviewed in detail 
elsewhere (93–95). In brief, the primary mechanisms are sug-
gested to include NADPH oxidase (96, 97), xanthine oxidase 
(98), NO synthase (99), and arachidonic acid release from cell 
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FiGURe 3 | Sources of ROS in skeletal muscle. ETC, electron transport chain; eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase; 
NO, nitric oxide; ONOO−, peroxynitrite; OH, hydroxyl radical; O2

−, superoxide; H2O2, hydrogen peroxide; H2O, water; EcSOD, extracellular superoxide dismutase; 
MnSOD, manganese superoxide dismutase; CuZuSOD, copper–zinc superoxide dismutase; GPx, glutathione peroxidase; CAT, catalase; PLA2, phospholipase A2; 
Fe, iron; ROS, reactive oxygen species. Adapted from the study by Powers and Jackson (93) with permission.
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membranes by phospholipase A2 (100), whereas mitochondrial 
electron leak is suggested to contribute only marginally during 
muscular contraction (101) (Figure 3). Other mechanisms that 
may contribute to elevated skeletal muscle and/or plasma oxida-
tive stress include the oxidation of catecholamine (102), lactate 
accumulation (103, 104), elevated core body temperature (105), 
hemoglobin and myoglobin-mediated autooxidation (106–108), 
and postexercise inflammatory and phagocytic responses includ-
ing ischemic reperfusion, cytokine secretion, and respiratory 
burst (109–111).

Although plasma oxidative stress is commonly measured 
as an indicator of exercise-induced oxidative stress, the exact 
sources of systemic oxidative stress following skeletal muscle 
contraction are not well understood. Nevertheless, due to the 
large proportion of body mass that is constituted by skeletal 
muscle, it is proposed that skeletal muscle fibers, vascular cells, 
endothelial cells, and/or blood cells residing within skeletal tis-
sue are the main contributors of both the exercise-induced local 
and systemic oxidative stress (95). Ex vivo skeletal muscle con-
traction studies have established the potential for skeletal muscle 
to elicit systemic oxidative stress (95, 112, 113). The specific cell 
types that contribute to skeletal muscle ROS production likely 
include vascular smooth muscle cells, endothelial cells, fibro-
blasts, erythrocytes, and white blood cells, with skeletal muscle 
fibers suggested to play the biggest role in the generation of 
extracellular ROS during and after exercise (95, 114, 115). Other 
tissues such as the heart, liver, and lungs may also contribute to 
the systemic increase in oxidative stress following acute exercise, 
but likely to a lesser degree (95).

exercise-induced Oxidative Stress  
and Metabolic Health
To date, the literature is equivocal in regards to the effect of 
acute exercise on biomarkers of oxidative stress and antioxidant 
activity (11). Inconsistencies in the literature likely result from 
variations in dietary intake, training status, exercise intensity  
(5, 11, 92, 116, 117), exercise duration (11, 118, 119), exercise 
mode (11, 119), tissues sampled (119), sampling time points 
(119, 120), as well as the variety and volatility of the biochemical 
assays used (121). Nevertheless, the general consensus is that 
acute exercise elicits a transient increase in systemic and local-
ized oxidative stress and antioxidant defense, which, depending 
on the intensity and mode of exercise, can be detected for up to 
4 days after exercise (11, 116, 122).

Excessive ROS production and/or oxidative stress induced 
through severe or extreme exercise regimes (e.g., ultraendur-
ance events) in humans is associated with cellular disturbances 
promoting muscular fatigue (94, 123), aberrant upregulation 
of endogenous antioxidant defenses (124, 125), and impaired 
cognitive function (126). Similarly, impaired exercise tolerance 
and physiological responses have been documented in murine 
animal models (127). For example, Aoi et al. (128) reported that 
muscle damaging exercise in mice induced through downhill 
running increased skeletal muscle oxidative stress [thiobar bituric  
acid reactive substances (TBARS)] and resulted in 4-HNE-
mediated impairment of the canonical insulin protein signaling 
pathway and decreased insulin-stimulated glucose uptake 24 h 
after exercise. Thus, under certain conditions, exercise-induced 
oxidative stress has the potential to elicit a deleterious redox 
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FiGURe 4 | The influence of oxidative stress in health and disease. p38, p38 mitogen-activated protein kinases; JNK, c-Jun N-terminal kinases;  
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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environment conducive to impaired exercise capacity and 
health (Figure 4).

The pathological effects of exercise-induced oxidative stress 
likely stem from secondary muscle damage leading to phagocytic 
infiltration into skeletal muscle (129) and subsequent generation 
of ROS (130, 131). In support, Nikolaidis et  al. (122) reported 
that muscle damaging exercise (75 lengthening knee flexions) 
significantly increased serum oxidative stress (TBARS, oxidized 
GSH, and protein carbonyls) and serum antioxidant defense 
(CAT activity, uric acid, bilirubin, and total antioxidant capac-
ity), which lasted for up to 4 days after exercise. When a second 
identical bout of exercise was performed 3 weeks later, indices 
of muscle damage were lower, including improved isometric 
torque, which coincided with attenuation of the postexercise 
systemic redox response (122). Thus, the acute exercise-induced 
oxidative stress impairment of exercise performance, recovery, 
and metabolic health appears to occur independently from the 
transient and immediate increase in oxidative stress measured 
during and after exercise and is likely attenuated with subsequent 
exercise-induced oxidative stress insults (e.g., exercise training).

The majority of literature supports the idea that transient ROS 
production and/or oxidative stress elicited through regular exercise 
regimes (e.g., accustomed and/or non-extreme muscle damaging 
exercise) is beneficial and a necessary requirement for optimal 
physiological functioning and adaptation to physiological stress 
(79). Samjoo et  al. (132) reported that 12  weeks of endurance 
training (2–3 sessions per week of 30–60 min cycling at 50–70% 
VO2peak) in obese and sedentary men decreased basal skeletal muscle 
and urinary markers of oxidative stress (4-HNE, protein carbonyls, 
and 8-isoprostane), increased basal skeletal muscle MnSOD protein 

abundance, and improved indices of glycemic control. Thus, repeti-
tive sessions of exercise-induced ROS (i.e., exercise training) can 
improve metabolic health through the upregulation of endogenous 
antioxidant defense and attenuation of basal chronic oxidative 
stress. Further support for the beneficial effect of exercise-induced 
ROS can be found in human and animal studies that have reported 
antioxidant compounds to impair exercise capacity (133, 134), 
adaptive gene expression and protein synthesis (133, 135–138), 
upregulation of antioxidant defense (10, 13, 133, 136, 139, 140), 
cardiovascular health (141, 142), skeletal muscle inflammatory 
response and repair capabilities (134, 139), and insulin sensitivity 
(13, 55, 143, 144). Not all studies have reported the blunting of the 
aforementioned exercise-mediated adaptations (145–149), with 
some reports indicating enhanced exercise-induced adaptation with 
antioxidant supplementation (150, 151). An overview of the diverse 
role of oxidative stress in metabolic health is presented in Figure 4.

STReSS-ACTivATeD PROTeiN KiNASe 
(SAPK) AND MiTOGeN-ACTivATeD 
PROTeiN KiNASe (MAPK) SiGNALiNG

Stress-activated protein kinase and MAPK signaling pathways 
include, but are not limited to, p38 MAPK (p38 MAPK), c-Jun 
N-terminal kinases (JNK), nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), and PKC (152, 153). For 
the purpose of this review, both MAPK and SAPK are collectively 
referred to as SAPK.

Stress-activated protein kinase signaling pathways are associ-
ated with cellular proliferation, differentiation, survival, and cell 
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death. Uncontrolled or sustained activation of SAPK signaling 
pathways are associated with the development and progression 
of cancer, neurodegenerative, and cardiometabolic disease (8, 57, 
154). In contrast, controlled and/or transient SAPK activation is 
required for normal physiological functioning and reported to 
mediate many of the adaptations and health benefits received 
from regular exercise (12, 152).

Stress-activated protein kinase pathways are activated through 
numerous stimuli involving hormones, growth factors, cytokines, 
agents acting through G protein-coupled receptors, transforming 
growth factors, pathogens and danger-associated molecular pat-
terns, and physical and chemical stresses (153, 155, 156). Relevant 
to the current review, however, is the inherent capacity of ROS to 
both directly and indirectly activate SAPK signaling pathways in 
skeletal muscle (157–161).

ROS-induced SAPK Signaling
The direct oxidation of proteins on cysteine residues by ROS 
act as biological “switches” turning on the catalytic properties 
of numerous proteins and enzymes (162). Cysteine thiol oxida-
tion produces sulfenic acids, which form irreversible oxidation 
products or, in many cases, react to form reversible disulfide 
and sulfenamide bonds. These bonds can later be reduced via 
enzymes or compounds such as thioredoxin and glutathione, 
acting as an “off switch” and inhibiting protein function and enzy-
matic activity (163, 164). ROS-induced SAPK signaling can occur 
through reversible oxidative modification processes that involve 
MAPK kinase kinases (MAP3K/MAP2Ks) (165) and oxidative 
inactivation of thioredoxin (166, 167) and MAPK phosphatases 
(168–171). In addition, SAPK activation can occur through ROS-
induced inactivation of glutathione S-transferases (172), tyrosine 
phosphorylation of protein kinase D (173), tyrosine, and serine 
phosphorylation of upstream targets such as the nuclear factor 
of kappa light polypeptide gene enhancer in β-cells inhibitor 
alpha (174) and the interaction with growth factor and cytokine 
receptors (163, 175). Crosstalk also exists between SAPK signal-
ing pathways, with activation of one pathway (e.g., JNK and p38 
MAPK) often interacting with and activating other pathways 
(e.g., NF-κB) (176). Irrespective of the mechanisms, considerable 
research has reported increased SAPK signaling under conditions 
of elevated ROS production (135, 157–160).

exercise-induced SAPK Signaling
The mechanical and physiological stresses elicited by acute 
exercise are potent stimuli for the transient activation of SAPK 
signaling in human skeletal muscle in part through increased 
ROS production (12). Exercise-induced SAPK signaling activate 
important skeletal muscle transcription factors and coactivators, 
which include peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α), activating transcription factor 2, 
myocyte-enhancing factor 2, c-jun, c-fos, p53, and Elk-1 (12, 135, 
177–185). Exercise-induced SAPK signaling is also associated 
with increased gene expression and the upregulation of anti-
oxidant defenses such as SOD, iNOS, gamma-glutamylcysteine 
synthetase, GPx, and CAT (12, 135, 137, 161, 185–187).

Evidence supporting a role for exercise-induced ROS and 
SAPK signaling in exercise adaptation is primarily derived 

from research manipulating the redox environment to attenu-
ate or enhance the exercise-induced ROS and protein signaling 
response. Henriquez-Olguin et al. (161) reported that inhibition 
of the ROS-producing enzyme complex NADPH oxidase 2 in rats 
attenuates the exercise-induced skeletal muscle phosphorylation 
of p38 MAPK and NF-κB p65 and gene expression of MnSOD, 
GPx, citrate synthase (CS), and mitochondrial transcription  
factor A (mtTFA). Similar findings have also been published 
using ROS inhibitors (e.g., antioxidant supplementation) in 
animals (10, 135, 188). Strobel et al. (189) reported that increased 
exercise-induced oxidative stress via skeletal muscle glutathione 
depletion in rats resulted in greater PGC-1α gene expression. 
In humans, antioxidant supplementation attenuates exercise-
induced activation of p38 MAPK, NF-κB p65 and JNK protein 
signaling, and gene expression of SOD isoforms in skeletal muscle 
(10, 134, 137). Chronic inhibition of exercise-induced oxidative 
stress also impairs the training-induced upregulation of PGC-1α, 
nuclear respiratory factor (NRF)-1, and mtTFA in rats (135).

It is important to note that not all studies have reported an 
association between increased redox-sensitive protein kinase 
signaling and exercise adaptation. Wadley et al. (190) reported 
similar PGC-1α, NRF-2, and SOD gene expression after exercise 
in rats with allopurinol treatment, a xanthine oxidase inhibitor, 
despite decreased p38 MAPK phosphorylation and mtTFA 
gene expression. In addition, chronic allopurinol treatment was 
reported to have no effect on the training-induced upregulation 
of PGC-1α, mtTFA, cytochrome c, CS, and β-hydroxyacyl-
CoA dehydrogenase (190). In humans, Morrison et  al. (140) 
reported vitamin C and E supplementation to have little effect 
on exercise-induced gene expression of PGC-1α, mtTFA, and 
PGC-related coactivator, or training-induced improvements 
in VO2peak, CS activity, and expression of cytochrome oxidase 
subunit 4. However, SOD activity and protein abundance of SOD 
and mtTFA were attenuated by vitamin C and E supplementation 
(140). A summary of key findings from research investigating 
redox manipulation, exercise, and SAPK signaling are summa-
rized in Table 1.

The discrepancy in findings are unclear, but likely include 
interstudy variations in the method and/or compounds used 
to modulate exercise-induced ROS, variations in the dose and 
treatment/supplementation time, and the often non-specific 
and/or ineffective action of antioxidant supplementation/treat-
ment as a model for ROS inhibition (81, 191–195). Nevertheless, 
evidence provided so far supports a likely association between 
redox-sensitive SAPK signaling and skeletal muscle adaptation, 
specifically with that of mitochondrial biogenesis and endog-
enous antioxidant upregulation, which both participate in the 
regulation of glycemic control (6, 9).

POSiTive AND NeGATive ReGULATiON 
OF GLYCeMiC CONTROL BY ROS

Physical inactivity, excess Nutrient intake, 
and Oxidative Stress
Chronic physical inactivity and overnutrition are associated 
with elevated systemic oxidative stress and the development of 
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TABLe 1 | Summary of key findings from research investigating the effect of redox state manipulation on acute exercise-induced protein signaling and molecular markers of skeletal muscle 
adaptation.

Reference Participants exercise Redox manipulation Time point SAPK signalinga Markers of skeletal muscle adaptationa

Gomez-Cabrera et al. (10) 25 adults
Trained
Healthy

Marathon Allopurinol (n = 14)
Placebo (n = 11)

Postex. Placebo only: ↑ lymphocyte NF-κB  
p50 activity

Gomez-Cabrera et al. (188) 15 male Wistar rats Exhaustive treadmill 
exercise

Rest (n = 5)
Exercise (n = 5)
Exercise + allopurinol (n = 5)

Postex. Placebo only: ↑ p-p38 MAPK, NF-κB 
activity

Placebo only: ↑ MnSOD, iNOS, and eNOS 
mRNA

Henriquez-Olguin et al. (161) 20 male BalbC mice Swimming exercise Apocynin (n = 10)

Vehicle (n = 10)

Postex. Apocynin: attenuated p-p38 MAPK 
and p-NF-κB p65

Apocynin: attenuated MnSOD, GPX, CS, 
and mtTFA mRNA

Kang et al. (135) 18 female  
Sprague-Dawley rats

Exhaustive treadmill 
exercise

Allopurinol (n = 9)

Vehicle (n = 9)

Postex. Allopurinol: attenuated p–p38 MAPK, 
p-IκBα, NF-κB DNA binding

Allopurinol: attenuated PGC-1α, p-CREB, 
NRF-1, mtTFA content

Michailidis et al. (134) 10 young males

Active

Healthy

300 unilateral eccentric 
leg repetitions

Crossover: N–acetylcysteine  
and placebo

2 h postex. Both: ↑ p-p38 MAPK Both: ↑ p-AktSer473, p–p70S6KThr389 and 
p-rpS6. NC MyoD. Muscle function 
impaired (mean torque)

NC p-NF-κB p65

2 days postex. NAC: greater p-p38 MAPK

Attenuated p-NF-κB p65

Both: ↑ p-AktSer473. NC MyoD. NAC: 
attenuated mTORSer2448, p-p70S6KThr389 and 
p-rpS6. Muscle function impaired.

8 days postex. Both: NC p-NF-κB p65

NAC: Attenuated p-p38 MAPK

NAC: attenuated p-AktSer473, mTORSer2448, 
p-p70S6KThr389, p-rpS6, and MyoD

Placebo only: muscle function completely 
recovered

Petersen et al. (137) 8 young males

Trained

Healthy

45 min at  
71% VO2peak followed  
by 92% VO2peak to 
fatigue

Crossover: N–acetylcysteine 
and Saline infusion

Postex. (45 min 
at 71% VO2peak)

Both: ↑ p-p38 MAPK, ↓ IκBα. NC 
p-NF-κB p65. NAC: attenuated  
p-JNK

Both: ↑ PGC-1 α mRNA. NAC: attenuated 
MnSOD mRNA

Postex. (fatigue) NAC: attenuated p-JNK, ↓ p-NF-κB 
p65.

Both: NC PGC-1 α mRNA and MnSOD 
mRNA

Strobel et al. (189) Male Wistar rats Exhaustive treadmill 
exercise

DEM and controls Postex. Both ↑ p-p38 MAPK Not measured

4 h postex. Not measured Both: NC NRF-2
DEM: greater ↑ PGC-1α mRNA. Attenuated 
GPx mRNA

Trewin et al. (55) 7 young adults

Active

Healthy

55 min at 65% VO2peak 
followed by 5 min at 
85% VO2peak

Crossover: N–acetylcysteine 
and Saline infusion

Postex. NAC: ↓ p-p38 MAPK Both: ↑ p-p70S6KThr389 and p-rpS6

Wadley et al. (190) Male Sprague-Dawley rats Treadmill exercise Allopurinol or placebo Postex. Allopurinol: attenuated p–p38 MAPK Not measured

4 h postex. Not measured Both: ↑ mtTFA, NRF-2, PGC-1α, GLUT4, 
MnSOD, and EcSOD mRNA
Allopurinol: attenuated mtTFA mRNA

aMolecular response in skeletal muscle unless otherwise noted.
NC, no change compared to baseline or control; ↑, significant increase compared to baseline or control; ↓, significant decrease compared to baseline or control; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide 
synthase; CS, citrate synthase; mtTFA, mitochondrial transcription factor A; NRF-1/2, nuclear respiratory factor-1 and 2; MyoD, myogenic determination factor; PGC-1 α, peroxisome proliferator-activated receptor gamma coactivator 
1 α; young, participants 18–40 years old; middle aged, 40–65 years old; older, >65 years old; active, recreationally active; GPx, glutathione peroxidase; MnSOD, manganese superoxide dismutase; EcSOD, extracellular superoxide 
dismutase; MAPK, mitogen-activated protein kinase; DEM, diethyl maleate; SAPK, stress-activated protein kinase; IκBα, nuclear factor of kappa light polypeptide gene enhancer in β-cells inhibitor alpha.
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lifestyle disease in part through mitochondrial dysfunction (9). 
Metabolism of carbohydrate and lipids initiates the transfer of 
electrons from reducing equivalents (i.e., NADH, FADH2) into 
the mitochondrial electron transport system (ETS) (9). In the 
absence of energy demand, for example, physical inactivity, 
increased energy supply results in increased electron flow through 
the ETS and pumping of protons outside the mitochondrial 
membrane (9). When the membrane potential exceeds mito-
chondrial uncoupling capacity, electrons leak through complexes 
I and III reacting with O2 to form the free radical O2

−, where it 
is catalyzed by MnSOD to H2O2 (196–199). Providing there is 
sufficient antioxidant activity, H2O2 is further reduced to H2O 
by antioxidants such as GSH and/or CAT (200). In pathological 
conditions in which antioxidant defense is insufficient, H2O2 can 
accumulate in the mitochondrial matrix and intermembrane 
space or diffuse outside the permeable mitochondrial outer mem-
brane (201). Excess ROS production results in oxidative stress 
and the signaling events leading to insulin resistance and chronic 
metabolic disease (59). This proposed mechanism for physical 
inactivity and excess nutrient intake-induced chronic disease is 
supported by reports that mitochondrial-specific antioxidants, 
which attenuate mitochondrial ROS production, reverse high-fat 
diet-induced insulin resistance in rodents (198).

Elevated basal and/or postprandial hyperglycemia elicited 
through excess nutrient intake, physical inactivity, and insulin 
resistance also increases oxidative stress through the formation of 
advanced glycation end products (AGEs) (202). Activation of the 
AGE receptor stimulates ROS production through NADPH oxi-
dase (203), opening of the mitochondrial permeability transition 
pore (204), and through suppression of enzymatic antioxidant 
defenses (205–207). Therefore, hyperglycemia has the potential 
to elicit a potentially deleterious redox environment conducive 
to insulin resistance.

Numerous studies have reported increased biomarkers of 
systemic oxidative stress in humans for up to 4 h after the inges-
tion of pure carbohydrate (208, 209), fat, and protein meals (210); 
mixed macronutrient meals high in fat (211–214) and high in 
carbohydrate (215); and high-fat liquid meals (216, 217). Larger 
meals and meals higher in lipid content elicit greater postpran-
dial oxidative stress (218, 219). This has led to many studies 
researching the effects of high-fat meal ingestion on postprandial 
oxidative stress (211–214, 220); however, meals adhering to 
national recommended dietary guidelines also induce systemic 
postprandial oxidative stress (5).

A single bout of low to moderate-intensity exercise in healthy 
males can attenuate the postprandial oxidative stress response to a 
meal ingested 1–2 h before exercise (5, 216) and 24 h after exercise 
(215), in part through improved glucose and triglyceride process-
ing and clearance and increased antioxidant activity (214). Acute 
high-intensity exercise may also attenuate postprandial oxidative 
stress (212, 213); however findings are inconsistent and likely 
depend on whether exercise is performed before or after meal 
consumption (5, 214).

The divergent effects of postexercise oxidative stress (physi-
ological) and postprandial oxidative stress (pathological) on 
metabolic health may stem from the mechanisms of ROS 
production (59, 79). The pathological effects of oxidative stress 

are reported to primarily occur through mitochondrial dysfunc-
tion and excess mitochondrial ROS production (9), whereas 
exercise-induced ROS production are reported to primarily 
occur through alternative mechanisms such as NADPH oxidase 
and xanthine oxidase (95). Furthermore, the effects of ROS on 
glycemic control appear to occur on a spatiotemporal paradigm 
that involve the concentration of ROS (221), the exposure time 
of ROS (160), the type of ROS, organs and organelles involved 
(79), the subcellular localization of redox-sensitive protein sign-
aling (160), and the type of exercise and postexercise recovery 
timepoint (14, 128, 222).

Negative Regulation of insulin  
Signaling by ROS
Sustained activation of redox-sensitive SAPK signaling pathways 
leads to impaired insulin signaling via increased phosphorylation 
of IRS-1 and IRS-2 on multiple serine and threonine residues, 
see the study by Copps and White (223) for a detailed review. 
Sustained IRS-1/2 serine phosphorylation impairs PI3K activity 
and downstream insulin signaling through attenuated tyrosine 
phosphorylation and IRS proteasomal degradation and subcel-
lular relocalization (27, 160, 224–232) (Figure 5). The prevention 
of IRS-1 degradation through the inhibition of ROS and SAPK 
signaling restores insulin signaling and insulin-stimulated 
glucose uptake (8, 75, 181, 198, 233). Paradoxically, IRS serine 
phosphorylation may also be necessary for normal insulin signal 
transduction and glucose uptake (234). However, reports are 
contradictory (229, 231, 235) and depend largely on the length 
and degree of phosphorylation on specific serine residues (236). 
Previous studies have also reported that hyperinsulinemia 
initiates a negative feedback loop that inhibits insulin signaling 
and glucose uptake in part through SAPK-induced IRS serine 
phosphorylation (229, 231, 237–239).

Positive Regulation of insulin  
Signaling by ROS
The insulin receptor belongs to a subclass of the protein tyrosine 
kinase family. Positive regulation of the insulin signaling cascade 
is mediated in part through the oxidative inactivation of protein 
tyrosine phosphatases (PTP), which include protein tyrosine 
phosphatase 1B, phosphatase and tensin homolog, and protein 
phosphatase 2 (Figure 5). Insulin-induced inactivation of PTPs 
prevents the dephosphorylation of the insulin receptor (240), 
IRS-1 (241), and Akt proteins (242) and prevents the enzymatic 
degradation of PIP3 (243). The PTP superfamily signature motif 
contains an invariantly low-pKa catalytic cysteine residue mak-
ing it highly susceptible to reversible oxidation by ROS (244). 
ROS inactivation of PTP activity is associated with numerous 
cellular processes, including the regulation of cell prolifera-
tion, differentiation, survival, metabolism, and motility (244). 
Under basal conditions, antioxidant defenses such as CAT and 
peroxiredoxin create a reduced intracellular redox environment 
prioritizing PTP activity. Increased PTP activity suppresses 
kinase activity and maintains a dephosphorylated state of the 
IR, IRS-1, and inhibition of the PI3K/Akt signaling pathway 
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FiGURe 5 | Primary ROS signaling pathways involved in positive and negative regulation of insulin signaling. 4-HNE, 4-hydroxynonenal; Akt, protein 
kinase B; AS160, Akt substrate of 160 kDa; GSK3, glycogen synthase kinase 3; IRS-1/2, insulin receptor substrates 1 and 2; JNK, c-Jun N-terminal kinases; 
mTORC2, mechanistic target of rapamycin complex 2; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NOX, nicotinamide adenine 
dinucleotide phosphate oxidase; P38 MAPK, p38 mitogen-activated protein kinases; PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol-3 
kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PP2A, protein phosphatase 2; PTEN, phosphatase and tensin homolog; PTP1B, 
protein tyrosine phosphatase 1B; ROS, reactive oxygen species.
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(243, 245). The binding of insulin to the insulin receptor signals 
a burst of endogenous superoxide production, which is reduced 
to H2O2 creating a local oxidative redox environment (246–248). 
This oxidative redox environment favors the oxidation of 
catalytic cysteine to sulphenic acid, suppressing PTP activity 
and enhancing kinase activity and propagation of the insulin 
signaling cascade (9).

Insulin can elicit ROS production through enzymatic acti-
vation of NADPH oxidases (246–249). Furthermore, insulin-
induced receptor tyrosine phosphorylation inactivates the 
endogenous membrane-associated antioxidant peroxiredoxin I,  
allowing for increased ROS production (78). Mahadev et  al. 
(246) reported that NADPH oxidase-induced H2O2 enhances 
insulin signaling via oxidative inhibition of PTPs. Furthermore, 

palmitate-induced insulin resistance in rat skeletal muscle 
occurs through increased activity of PTPs via JNK and NF-κB 
(250), which is reversed 16 h after acute exercise in rats (222). 
Loh et al. (54) revealed that the elevated H2O2 response to insulin 
in GPx1−/− mouse embryo fibroblasts coincided with elevated 
PI3K/Akt signaling, which can be suppressed by pretreating 
cells with ebselen, an NADPH oxidase inhibitor, or the anti-
oxidant N-acetylcysteine. Subsequent experiments revealed that 
elevated H2O2 in GPx1−/− mice increased PI3K/Akt signaling 
and glucose uptake through decreased PTP activity, which was 
attenuated by the ingestion of n-acetylcysteine (NAC) (54). 
Thus, redox-mediated PTP activity appears to be associated with 
both positive and negative regulations of insulin signaling and 
glucose uptake.
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exercise-induced ROS, SAPK Signaling, 
and Glycemic Control
Reactive oxygen species are readily induced through contraction 
of skeletal muscle (251–253). Importantly, contraction of skeletal 
muscle coincides with increased activation of redox-sensitive 
SAPK signaling pathways implicated in glucose metabolism 
(14, 160, 161, 254–256). Therefore, skeletal muscle SAPK sign-
aling has emerged as a potential candidate for the postexercise 
enhancement of insulin sensitivity (14, 54, 182).

Loh et al. (54) reported that exercise-induced ROS in GPx1 
knockout mice coincided with increased phosphorylation of 
Akt(Ser473) and AS160(Thr642) and enhanced insulin-stimulated 
glucose uptake 60 min after a single session of treadmill exercise. 
This beneficial effect on insulin sensitivity was reversed with 
NAC supplementation, suggesting that redox signaling is not 
only an important regulator of basal insulin signaling and glucose 
uptake but also postexercise enhancement of insulin sensitivity. 
Importantly, GPx1 knockout mice showed similar improvements 
in insulin sensitivity when measured immediately after exercise, 
supporting a growing consensus that the effects of postexercise-
induced ROS on glycemic control are temporal (14, 222).

One of the first studies to indicate a regulatory role of redox 
signaling in exercise-induced enhancement of insulin sensitivity 
in humans was conducted by Ristow et al. (13). It was reported 
that vitamin C and E supplementation in humans attenuated the 
4-week training-induced improvements in insulin sensitivity 
and gene expression of PGC-1α/β, SOD, GPx1, and CAT (13). 
Not all studies in humans and rodents have reported impaired 
exercise-induced improvements in insulin protein signaling and 
insulin sensitivity with antioxidant supplementation (146, 148, 
257). Contradictory findings likely stem from variations in the 
type of antioxidant compound/s used, the dose used, the timing 
of supplementation, and the often non-specific and/or ineffective 
action of antioxidant supplementation for ROS inhibition in 
humans (81, 193, 194).

Enhanced glucose uptake approximately 4.5 h after one-legged 
knee extensor exercise in humans is reported to coincide with 
greater basal and insulin-stimulated p38 MAPK phosphorylation 
(182), highlighting SAPK signaling as a potential moderator of 
postexercise glucose metabolism. Trewin et  al. (55) reported 
that NAC infusion attenuated whole-body insulin sensitiv-
ity approximately 5  h after exercise. Phosphorylation of p38 
MAPK was lower immediately after exercise with NAC infusion; 
however, phosphorylation was not significantly different to 
baseline or the placebo after insulin stimulation. However, the 
null findings for p38 MAPK phosphorylation may be due to the 
timing of postexercise biopsies, the relatively small effect of NAC 
on insulin sensitivity (~6% reduction), and that NAC infusion 
was not maintained during the recovery period and subsequent 
insulin clamp (55). Interestingly, Parker et al. (14) demonstrated 
that a bout of high-intensity interval exercise prior to a 2-h  
euglycemic–hyperinsulinemic clamp in obese middle-aged males 
elicited greater insulin-stimulated p38 MAPK, JNK, NF-κB, and 
AS160Ser588 phosphorylation, which was associated with improved 
insulin sensitivity compared to a resting clamp. Equivocal find-
ings in humans may stem from reports that postexercise skel-
etal muscle SAPK and insulin protein signaling are effected by 

training status and occur in an exercise intensity and postexercise 
time course-dependent manner (256, 258).

Berdichevsky et al. (160) reported similar JNK phosphoryla-
tion in C2C12 myoblasts and L6 myotubes treated with chronic 
oxidative stress (1 µM of H2O2 for 48 h) and acute oxidative stress 
conditions (500 µM of H2O2 for 3 h). Interestingly, chronic oxida-
tive stress decreased insulin-stimulated Akt(Ser473) phosphoryla-
tion, whereas acute oxidative stress enhanced insulin-stimulated 
Akt(Ser473) and GSK3-α/β phosphorylation. Furthermore, acute 
oxidative stress exposure in insulin-resistant muscle cells res-
cues insulin-stimulated glucose uptake through increased IRS1 
protein abundance; increased phosphorylation of JNK, Akt(Ser473), 
Akt(Thr308), and GSK3-α/β; and decreased IRS-1(Ser307) phosphoryla-
tion (160). In contrast, Ropelle et al. (222) reported that a single 
bout of exercise in male rats reverses diet-induced insulin resist-
ance 16 h later via attenuation of JNK, NF-κB, and IRS-1(Ser307) 
signaling. It is possible that acute exercise enhances insulin signal 
transduction through the transient and immediate increase in 
ROS and SAPK signaling, which also leads to a delayed increase 
in antioxidant activity and subsequent attenuation of chronic 
oxidative stress and sustained SAPK signaling pathways associ-
ated with insulin resistance. Certainly, SOD protein content, 
SOD activity, and total antioxidant status increase and/or remain 
elevated for up to 16–24 h after exercise (116, 212, 259), whereas 
lipid-induced postprandial oxidative stress is attenuated (213).

Taken together, previous studies support a potential role for 
exercise-induced redox-sensitive protein signaling and glycemic 
control (Table  2); however, specific mechanisms remain to be 
elucidated (Figure 6).

Potential Mechanisms Linking SAPK 
Signaling and enhancement of  
Glycemic Control
Modulation of glycogen synthesis by oxidative stress-induced 
SAPK signaling has been associated with glucose metabolism and 
regulation (27, 160, 182, 260). Transient stimulation of C2C12 
myoblasts with H2O2 increases JNK, Akt, and GSK3α/β phospho-
rylation (160), suggesting the short exposure to exercise-induced 
ROS may increase postexercise glycogen synthesis and skeletal 
muscle glucose uptake. Likewise, postexercise enhancement of 
insulin-stimulated p38 MAPK phosphorylation is associated 
with postexercise glycogen depletion (182). Chan et  al. (261) 
established that low intramuscular glycogen was associated with 
greater phosphorylation of nuclear p38 MAPK after 60 min of 
cycle exercise. In contrast, insulin stimulation of rat skeletal 
muscle exposed to 1 h of H2O2 (~90 μM) exhibits impaired insu-
lin protein signaling, glycogen synthesis, and glucose uptake, 
despite increased p38 MAPK phosphorylation (27). Diamond-
Stanic et  al. (260) reported similar findings and proposed that 
p38 MAPK and GSK3 were unlikely to play a beneficial role in 
insulin-stimulated glucose uptake. Activation of JNK in skeletal 
muscle of mice is also associated with increased insulin-stimulated 
glycogen synthesis via the RSK3/GSK3 signaling pathway (262); 
however, greater postexercise JNK phosphorylation and insulin 
sensitivity in human skeletal muscle do not coincide with greater 
insulin-stimulated phosphorylation of GSK3 α/β (14).
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TABLe 2 | Summary of key findings from research investigating exercise, redox state, and enhancement of glycemic control.

Reference Participants/
animals/cellsa

exercise stimulus Redox 
manipulation

Time point/conditions SAPK signaling Glycemic control

Berdichevsky et al. (160) Myocytes, 
myoblasts, and/or 
myotubes

Acute oxidative stress 
(simulated exercise)

Chronic oxidative 
stress

Acute oxidative 
stress

Chronic oxidative stress

Acute oxidative stress

Insulin-resistant cells

Insulin-resistant cells + acute 
oxidative stress

↑ p-JNK

↑ p-JNK

↑ p-JNK

Greater ↑ p-JNK

↓ p-AktSer473,Thr308. ↓ glucose uptake

↑ p-AktSer473,Thr308 and ↑ p-GSK3β. ↑ glucose uptake

↑ p-IRS-1Ser312, ↓ IRS-1 and glucose uptake

↓ p-IRS-1Ser312, ↑ IRS-1 and glucose uptake

Castorena et al. (51) Low-fat and high-fat 
diet fed rats

Swimming exercise 3 h postex. + Ins. NC p-JNK NC AktSer473,Thr308, IRTyr1162/1163, IRS-1-PI3K
↑ pAS160Thr642,Ser588

↑ Insulin sensitivity

Greater ↑ in insulin sensitivity and pAS160Thr642,Ser588 in 
low-fat diet fed rats

Geiger et al. (233) Male Wistar rats In vitro contraction p-p38MAPK 
inhibition

3 h postcontraction

3 h postcontraction + P38 
MAPK inhibition

Post-Ins.

3 h postcontraction + Ins.

3 h postcontraction + Ins. +  
p38MAPK inhibition

↑ p-p38 MAPK

NC p-p38 MAPK

Not measured

Not measured

Not measured

Not measured

Not measured

↑ glucose uptake

Greater ↑ glucose uptake

Similar glucose uptake as previous condition

Higashida et al. (146) Male Wistar rats 3-day swimming program 
or 3 weeks, 6 days/week 
swimming program

Vehicle or 
vitamin C + E 
supplementation

Post 3-day training 3-day and 3-week training: vitamin C + E: similar ↑ in 
measures of mitochondrial protein content, ↑ GLUT4, 
↑ glucose uptake

Post 3-week training

Loh et al. (54) 10 wild-type mice

9 GPx1−/− mice

Treadmill exercise GPx1−/− and 
N–acetylcysteine

Postex. + Ins.

1 h postex. + Ins.

GPx1−/− mice: similar insulin sensitivity

GPx1−/− mice: greater ↑ p-AktSer473 and insulin 
sensitivity
N-acetyl.cysteine: attenuated insulin sensitivity

Parker et al. (256) 8 young adults

Active

Healthy

Crossover design

Cycling exercise:  
SIE: 4 × 30 s all-out sprints;  
4.5-min recovery periods

HIIE: 5 × 4-min cycling bouts 
at 75% of Wmax;  
1-min recovery periods

CMIE: 30 min at 50% of Wmax

Postex.

3 h postex.

All ex.: similar ↑ p-JNK, ↑ 
p-p38 MAPK, ↓ IκBα; SIE: 
↑ p-NF-κB; CMIE and HIIE: 
NC p-NF-κB

All ex.: similar ↑ p-JNK, ↑ 
p-p38 MAPK, ↓ IκBα. NC 
p-NF-κB

All ex.: NC IRS-1, similar ↓ p-AktSer473; SIE: ↑ 
p-IRS1Ser307, greatest ↓ p-AS160Ser588; HIIE: greatest ↑ 
p-IRS1Ser307, ↓ p-AS160Ser588; CMIE: ↑ p-IRS1Ser307,  
NC p-AS160Ser588

All ex.: NC IRS-1, similar ↓ p-AktSer473; SIE: NC 
p-IRS1Ser307, NC p-AS160Ser588; HIIE: NC p-IRS1Ser307,  
↓ p-AS160Ser588; CMIE: ↑ p-IRS1Ser307, ↓ p-AS160Ser588

Parker et al. (14) 11 middle-aged 
males

Sedentary

Obese

Cycling exercise: HIIE: 
(4 × 4 min at 95% HRpeak; 
2-min recovery periods)

Rest trial: 2 h post-Ins.

Exercise trial: 1 h postex.

3 h postex + Ins.

↑ p-JNK, ↑ p-p38 MAPK, 
↓ IκBα
↑ p-JNK, ↑ p-NF-κB, ↑ 
p-p38 MAPK, ↓ IκBα
Greater ↑ p-JNK, greater ↑ 
p-NF-κB, greater ↑ p-p38 
MAPK

Similar ↓ IκBα

↑ p-IRS1Ser307, ↑ p-AS160Ser588, Ser318

↑ p-AS160Ser588

Greater ↑ insulin sensitivity and greater ↑ p-AS160Ser588

 
 
Similar ↑ p-IRS1Ser307 and ↑ p-AS160Ser318

(Continued)
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Reference Participants/
animals/cellsa

exercise stimulus Redox 
manipulation

Time point/conditions SAPK signaling Glycemic control

Picklo and Thyfault (257) 56 high-fat diet-
induced obese 
Sprague-Dawley  
rats

Motorized wheel exercise. 
12 weeks, 5 times  
per week

With and without 
vitamin C + E 
supplementation

Posttraining Vitamin C + E: similar improvement in HOMA-IR and 
OGTT

Attenuated measures of mitochondrial protein content

Ristow et al. (13) 40 young males 
(20 trained and 20 
active)

Biking, running and circuit 
training. 4 weeks, 5 times per 
week

Placebo or 
vitamin C + E 
supplementation

Posttraining Vitamin C + E: attenuated ↑ insulin sensitivity, mRNA 
expression of PPARγ, PGC-1α/β

Healthy

Ropelle et al. (222) Male Wistar rats

Control (n = 6)

Obese (n = 8)

Obese + Ex. (n = 8)

Swimming exercise 16 h postex. + Ins. Compared to control:  
obese: ↑ p-JNK, ↓ IκBα

Compared to obese: 
obese + Ex.: ↓ p-JNK,  
↑IκBα

Compared to both control and obese + Ex.: obese 
attenuated insulin sensitivity, PI3K, p-IRS-1/2, p-IR. 
↑ PTP1B content/activity and p-IRSSer312

Somwar et al. (181) Male Wistar rats In vitro contraction p-p38 MAPK 
inhibition

Post-Ins.

Post-Ins. + p38 MAPK 
inhibition

Postcontraction

Postcontraction + p38 MAPK 
inhibition

↑ p-p38 MAPK and activity

Attenuated p38 MAPK 
activity

↑ p-p38 MAPK and activity

Attenuated p38 MAPK 
activity

Not measured

Attenuated glucose uptake

Not measured

Attenuated glucose uptake

Thong et al. (182) 7 young males

Active

Healthy

60 min of one-legged knee 
extension

3 h postex.

3 h postex. + 30 min Ins.

3 h postex + 100 min Ins.

↑ p-p38 MAPK

Greater ↑ p-p38 MAPK

p-p38 MAPK similar to 
previous time point

Not measured

↑ insulin sensitivity compared to control leg

↑ insulin sensitivity compared to control leg

Trewin et al. (55) 7 young adults

Active

Healthy

55 min cycling at 65% VO2peak 
followed by 5 min at 85% 
VO2peak

Crossover:  
N–acetylcysteine 
and saline infusion

Postex.

3 h postex.

3 h postex. + 2 h Ins.

NAC: ↓ p-p38 MAPK

Both: NC p-p38 MAPK

Both: NC p-p38 MAPK

Both: NC p-AktThr308,Ser473, ↑ p-PAS160

Both: ↑ PAS160. NC p-AktThr308,Ser473

Both: ↑ p-AktThr308,Ser473, ↑ p-PAS160
NAC: ↑ insulin sensitivity

Yfanti et al. (148) 21 young males

Active

Healthy

Intense endurance training 
program

Placebo or 
vitamin C and E 
supplementation

Posttraining Vitamin C + E: similar ↑ insulin sensitivity, ↑ Akt, 
↑ HXK2, ↑ GLUT4

5 times/week for 12 weeks

aWhere appropriate sample sizes for animal research are reported.
Ins., insulin stimulation; NC, no change compared to baseline or control; ↑, significant increase compared to baseline or control; ↓, significant decrease compared to baseline or control; Akt, protein kinase B; AS160, Akt substrate  
of 160 kDa; CMIE, continuous moderate-intensity exercise; GLUT4, glucose transporter type 4; GSK3, glycogen synthase kinase 3; HIIE, high-intensity interval exercise; HOMA-IR, homeostatic model assessment for insulin  
resistance; HXK2, hexokinase II; IRS-1/2, insulin receptor substrates 1 and 2; JNK, c-Jun N-terminal kinases; NAC, n-acetylcysteine; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; P38 MAPK,  
p38 mitogen-activated protein kinases; PI3K, phosphatidylinositol-3 kinase; PPARγ/α/β, peroxisome-proliferator-activated receptor gamma/alpha/beta; PTP1B, protein tyrosine phosphatase 1B; SIE, sprint interval exercise;  
SAPK, stress-activated protein kinase.

TABLe 2 | Continued
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FiGURe 6 | Primary signaling pathways involved in contraction and insulin-stimulated glucose uptake and the potential role of ROS. 4-HNE, 
4-hydroxynonenal; Akt, protein kinase B; AMPK, 5′ adenosine monophosphate-activated protein kinase; AS160, Akt substrate of 160 kDa; CaMK, Ca2+/calmodulin-
dependent protein kinase; GLUT4, glucose transporter 4; GSK3, glycogen synthase kinase 3; IRS-1/2, insulin receptor substrates 1 and 2; JNK, c-Jun N-terminal 
kinases; mTORC2, mechanistic target of rapamycin complex 2; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NOX, nicotinamide adenine 
dinucleotide phosphate oxidase; P38 MAPK, p38 mitogen-activated protein kinases; PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol-3 
kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PP2A, protein phosphatase 2; PTEN, phosphatase and tensin homolog; PTP1B, 
protein tyrosine phosphatase 1B; RAC1, ras-related C3 botulinum toxin substrate 1; ROS, reactive oxygen species.
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Other potential pathways include JNK-, NF-κB-, and p38 
MAPK-stimulated secretion of the recently identified insulin-
sensitizing interleukin-6 (IL-6) (255, 263–265). Carey et  al. 
(264) reported that IL-6 infusion increases insulin-stimulated 
glucose uptake in humans. Furthermore, IL-6 treatment in L6 
myotubes coincides with increased glucose uptake and GLUT4 
translocation, likely through AMPK pathways independent 
of the canonical insulin signaling cascade (264). Importantly, 
IL-6 secretion is increased following muscular contrac-
tion, likely via activation of JNK, NF-κB, and/or p38MAPK  
(261, 266, 267). It has also been reported that p38 MAPK inhibit-
ers, alongside expression of a dominant-negative p38 mutant, 
impairs insulin-stimulated glucose uptake without reductions 
in GLUT4 translocation (254). Researchers concluded that p38 
MAPK may exert its insulin-sensitizing effect through increased 
activation of translocated GLUT4 (254), but not all findings are 
supportive (268) and have yet to be investigated in humans. 
The reported subcellular redistribution of phosphorylated JNK 
from the cytoplasm to the nucleus with acute hydrogen peroxide 
exposure in skeletal muscle cells highlights another potential 
mechanism for the postexercise insulin sensitizing effect of JNK 
(160). Future research is warranted to explore the subcellular 
localization and activation of SAPK proteins after exercise and 
insulin stimulation in humans.

THe FUTURe OF eXeRCiSe-iNDUCeD 
OXiDATive STReSS, ROS, AND  
ReDOX SiGNALiNG

Early studies, and the majority of current findings, rely primarily 
on associations and the assumption that increased/decreased 
ROS and/or markers of oxidative stress are reflective of, or 
are likely to lead to, increased/decreased redox signaling (91). 
Certainly, studies inhibiting or increasing ROS have been useful 
for establishing a relationship between ROS and certain bio-
logical outcomes such as glycemic control and exercise adaption  
(13, 14, 55, 135, 161). However, in the absence of specific redox 
signaling measurements such as protein cysteine oxidation or 
S-nitrosylation (162, 269), research studies are limited in their 
capacity to elucidate specific redox cellular signaling networks 
that are complex, compartmentalized, and spatiotemporally 
regulated (195). Future studies utilizing modern redox proteom-
ics are required to establish the reversible and, in some cases, 
irreversible, redox regulation of kinases, phosphatases, tran-
scription factors, and coactivators, thus establishing the “true” 
redox signaling role of exercise-induced ROS (195, 270–274). 
Furthermore, not all ROS are equal in their capacity to exert sign-
aling effects (56). Future studies investigating exercise-induced 
oxidative stress should therefore strive to identify the specific 
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ROS involved, which can be achieved through the use of robust 
techniques such as electron spin resonance, targeted fluorescent 
probes, and mass spectrometry (252, 275–278).

Despite their non-specificity and/or inability to adequately 
reflect redox signaling, the measurement of ROS, oxidative 
stress, and/or antioxidant activity in a biological sample provides 
insight into the effects of an intervention (e.g., exercise) on redox 
homeostasis and remains a useful biomarker of overall health 
and disease (91). As such, a combination of both traditional 
measures of redox biomarkers, the direct measurement of ROS, 
redox-sensitive protein signaling, and specific redox proteomics 
will likely provide a robust investigation of exercise-induced ROS 
and subsequent redox signaling.

CONCLUSiON

Physical inactivity, excess energy consumption, and obesity 
are associated with elevated ROS production, systemic oxida-
tive stress, and sustained activation of redox-sensitive protein 
signaling pathways. If left unchecked, this chronic state of 
physiological stress can lead to insulin resistance, which likely 
contributes toward the development of cardiometabolic disease. 
Paradoxically, a single session of exercise transiently increases 

ROS, oxidative stress, and redox-sensitive protein signaling, yet 
both acute and regular exercises elicit favorable improvements in 
glycemic control and skeletal muscle adaptation. It appears that 
exercise-induced redox-sensitive protein signaling is necessary 
for adaptation to physiological stress. However, the spatiotempo-
ral interplay between physical activity/inactivity, ROS, PTP activ-
ity, SAPK and MAPK signaling, insulin protein signaling, and 
the subsequent effects on glycemic control and cardiometabolic 
health remain unclear. Future research would benefit by employ-
ing a combination of human primary cell culture, animal research, 
modern proteomics, and immunohistochemistry/subcellular 
analysis of human tissue to elucidate the physiological relevance 
of transient oxidative stress (exercise induced), chronic oxidative 
stress (physical inactivity/excess nutrition intake), and the role of 
redox-sensitive protein signaling in human health and disease.
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