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Abstract

The advancement of sensing technology has successfully reduced the physical size of a
sensor node and stimulated the application of swarm sensing (millimetre scale sensors).
Such a system has been envisioned to provide novel applications. For example, CSIRO
has commenced the application of swarm sensing technology to track insect that aims to
understand how the environmental situation influences bee behaviour.

While the micro-sensor is still under development, it is crucial to have a baseline data
set for initial data analysis purposes so that reasoning with the rich data is possible once
the hardware has been developed and deployed. This work will propose a field simulation
to address this issue. A hybrid environmental sensor network will be deployed, for the
purpose of making highly dense observations, that consists of: (i) fixed sensor nodes, acting
as weather stations, that collect data in a regularly-spaced time interval; and (ii) mobile nodes
that sense the environmental parameters while insects move within the region with extremely
high frequency – i.e. seconds.

The proposed spatio-temporal interpolation algorithm in this dissertation (i.e. for environ-
mental modelling) has achieved a computational efficiency factor from highly-dense sample
data with an acceptable statistical error. The method also reconstructs the environmental
situation in reality – e.g., produce a smooth surface in space and over the time.

Combination of a successfully developed field simulation and the interpolation algorithm
has opened up a wide range of applications. For instance, researchers could infer bee
behavioural dynamics based on the environmental changes that they are experiencing. Such
activities could assist entomologists to deepen their understanding of bee behaviour, with a
view to advance our knowledge of the decline in bee populations worldwide.
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Chapter 1

Introduction

1.1 Background

Wireless sensor network is a set of interconnected sensor nodes deployed with the purpose of
observing environmental conditions such as temperature, relative humidity, solar radiation.
Such a system has become the key technology for the future of environmental monitoring,
allowing us to observe environmental variables at difficult and hostile locations such as
mountainous and deep marine region. This technology offers a significant contribution to
our society, for instance, early warning system, weather forecast, and precision agriculture.
However, the deployment of those fixed sensor nodes (e.g., weather stations) offer a low
spatial coverage. Also, it requires an appropriate deployment strategy (also known as spatial
sampling method) to obtain a cost-effective and a fit-for-purpose network (i.e., a required
level of network representativeness).

A mobile sensor node, on the other hand, is more versatile than fixed sensor node. It
makes observations while it moves through the area under study (e.g., aerial and autonomous
underwater vehicle). It suffers from the limitation of having a small temporal coverage at
discrete locations. With the advancements in the sensor technology, the cost and size of an
individual sensor node have been decreased. For instance, the Smart Dust project [1] was
envisioned to provide thousands of millimetre-scaled sensing with high spatial and temporal
coverage (also known as swarm sensing). Such a network provides much more discrete
measurements of the environment in a less intrusive way. Example applications using such a
technology could be found in the military (e.g., unmanned aerial vehicles) and animal (or
even insect) tracking.

Irregularly distributed data is obtained from the sensor network which requires estimation
of the missing data at locations without measurements. Spatial or spatiotemporal interpolation
method can be utilised (environmental modelling) to allow environmental managers to obtain
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a continuous surface of the region under study, in which able to support a more accurate
interpretation and decision making. Nonetheless, choosing a suitable interpolation method is
a non-trivial task, and an in-depth investigation must be carried out for the applications in
different purposes. This is because the performance of any interpolator can vary based on
different data sets and requirements (e.g., accuracy and computation efficiency).

1.2 Motivation

CSIRO (Commonwealth Scientific Industrial Research Organisation) has commenced the
development of the swarm sensing technology that attaches micro-sensor to insects (bee in
this case). Such a configuration allow the mobile sensor nodes to make observations as the
bees moving throughout the Region of Interest (RoI). As a result, highly dense data sample
will be obtained, this has stimulated the demand for a computational method to process and
visualise a large amount of data and to make sense of them. CSIRO’s Swarm Sensing Project
(SSP) aims to better understand bees’ response to different stressors such as environment
(e.g., strong wind, heavy rain, extreme weather, pollution) and the surroundings they are
experiencing in (e.g., pesticide exposure, varroa mites, human intervention).

Fig. 1.1 An example of a bee with a Radio Frequency Identification (RFID) micro-sensor
(2.5mm × 2.5mm × 0.4mm, 5.4mg) mounted on its thorax. Credit: CSIRO.

The initial bee experiment conducted by CSIRO involved installing a Radio-Frequency
Identification (RFID) reader at the hive entrance and glueing a RFID tag is being glued on
each bee’s thorax (Figure 1.1), so that the presence of a bee passing through the entrance is
stored in a database. The experimental set-up, resulting from current limitations in technology,
neither allow us to track individual bee flights paths nor provide us information whether an
insect is outside or inside the hive. However, such a data set has offered us an opportunity to
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utilise computational techniques to infer bee behaviour at colony level so that we can answer
the following question: what is the probability of an individual bee in the colony to forage at
a particular time of day (e.g. 6am, 1pm and 4pm)?

Fig. 1.2 An illustration of sensor networks to be developed within the SSP: (a) Sensor nodes.
An individual sensor that records environmental data, i.e., bees in this case; (b) Base station.
Infrastructure acting as an “agent” that receives values from individual sensor nodes and
sends them to the database to be stored; (c) Database. A medium that records the raw data
collected, which always comes with a periodic backup system for security purposes.

Figure 1.2 illustrates the sensor network design to be developed within the next phase
of the SSP. The design consists of three components: (i) sensor nodes acting as individual
entities scattered throughout the region to sense the environment; (ii) a base station that
collects the data obtained from the sensors; and (iii) a database to store the data collected
from the networks.

In the Swarm Sensing project, a number of fixed sensor nodes (such as hive and the
weather station) will be deployed within the region of interest to collect environmental
data in a specific interval (e.g. 5 minutes, 15 minutes, or 1 hour). Nevertheless, a spatial
sampling algorithm is needed to obtain a set of representative locations depending on the
number of weather stations to be deployed. On the other hand, the mobile sensor nodes are
being attached to insects to collect environmental data as they move within the landscape.
However, while the development of micro-sensor is still being undertaken and rich data set
is not available as yet, and so this dissertation also proposes a framework that generates
high-resolution irregularly spaced data points to allow initial statistical data analysis.

The huge amount of data collected from the micro-sensors will be irregularly-spaced in
location and time. Because of the need to have a continuous environmental variable (e.g.
temperature, relative humidity, etc) over the spatial surface to obtain a clear picture of the
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area under study, interpolation and extrapolation of missing values is critical to estimate the
value at locations without data sampling. Therefore, this dissertation proposes a suitable
spatio-temporal interpolation algorithm to accurately model the environmental situation
within the RoI.

1.3 Research Objectives

The main objective of this thesis is to develop a near-to-reality Swarm Sensing Project field
simulation framework and high-resolution environmental modelling within a small-scaled
RoI. This work focuses on the following research components to achieve the objective:

1 To propose a spatial sampling algorithm to obtain representative locations for a set of
static sensor nodes under the study region;

2 To propose a data-driven modelling to infer bee behaviour at the colony level;

3 To propose a Swarm Sensing field simulation framework to generate high-resolution
observations (data sampling) within the region of interest from fixed (weather stations)
and mobile (insects) sensor nodes.

4 To propose a spatio-temporal interpolation that suits the purpose for swarm sensing
applications, based on the following factors: able to incorporate huge amount of data,
low estimation error, and to create a smooth surface that accurately represents the real
environmental situation.

1.4 Thesis Structure

Chapter 2 provides a summary of the current related research work in environmental sensor
networks (ESN), computational bee modelling, and related interpolation techniques. Chapter
3 provides an introduction to the materials utilised in this work, followed by the optimisation
algorithm for the hybrid ESN deployments (data sampling purpose) and the proposed spatio-
temporal interpolation technique (high-resolution environmental modelling). Then a number
of experimental simulations are used to assess the proposed method, and finally a conclusion
is given in Chapter 6.



Chapter 2

Literature Review

A comprehensive overview of current technologies relating the objectives of this dissertation
will be presented in this chapter. As discussed in Chapter 1 (Introduction), the ultimate
goal of this work is the construction of a close-to-reality environmental model using data
acquired from hybrid (static and mobile) sensor networks (Section 1.3). As such, this
chapter will be partitioned into three major themes: (a) environmental sensor networks
and their deployment; (b) computational insect behaviour modelling; and (c) spatial and
spatio-temporal interpolation techniques. A summary discussion on how each component
would contribute to this work (i.e. the swarm sensing simulation framework in Chapter 3)
will be reported at the last section.

2.1 Environmental Sensor Networks (ESN)

The environmental study is an important area that provides a better understanding of natural
situation and also offers a significant contribution to our society. The collected data from the
sensor network is crucial for environmental managers to support decisions for an effective
use of natural resources for other significant applications of benefit to our society (e.g. hazard
warning services). Institutions that provide warning services often do not have enough quality
data (regarding spatial and temporal coverage) that can be used to support highly accurate
predictions [2–4]. Therefore, ongoing enhancement of the system’s components (i.e. sensor
nodes, communication engineering, power management, stability, security) is a demanding
task. Hart and Martinez (2006) have provided an extensive review of ESN usage examples
and they also envisioned that ESN could become a standard research tool in the near future
[3].

A sensor network consists a set of inter-connected devices (Figure 1.2) that is capable
of reconnaissance and surveillance for designated purposes, such as military sensing, traffic
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control, industrial automation, and environmental monitoring [2, 3, 5]. It combines sensing,
communicating, and computing capabilities (e.g., hardware, software, and algorithms). Such
systems evolved from being passive logging systems (involving human-exhaustive effort,
i.e. system maintenance and data collection) to ‘intelligent’ networks, where advances in
cyber-infrastructure have driven the need for better sensor networks to suit different needs
for designated applications or research studies. For example, enhancements in electronic
miniaturisation and for wireless technologies over past decades have opened up the following
unprecedented opportunities [4, 5]: (a) Making measurements at previously inaccessible and
dangerous locations; (b) Improving the data quality in terms of spatial and temporal scales;
(c) Obtaining unexpected observation results that led to the development of new paradigm;
(d) Collaborating work between researchers across distinct professions.

An understanding of the following ESN components is required [2–6] prior to building a
fit-for-purpose sensor network:

i The purpose of the sensor network. This includes the form of data collected and its
interpretation, which has a significant effect on the entire design of the system network
(e.g. communication technologies, security).

ii Technological capabilities and the physical environment. This relates to the deployment
feasibility of sensor network, such as in mountainous or deep marine regions; and the
hardware’s ability to withstand hazardous situations.

iii System standardisation and usability. Variations in data format, hardware and software
design cause difficulties in interoperability, especially when the system requires consid-
erable amount of technical knowledge to be operated and maintained by professionals
from different backgrounds.

iv Other sensor node design goals, including types of data (e.g. use of biotechnology),
sensor integration, size, robustness, power management.

Spatial sampling methods in ESN deployments make an effort to locate sensor nodes in a
way that meets desired design goals [6]. Those methods have attracted wide interest in the
ESN deployments research area. The following sub-sections investigate the different types
of spatial sampling and discuss the swarm sensing requirements for ESN design application.

2.1.1 Sampling with Fixed Nodes

Spatial sampling method is the effort utilising an algorithm (usually involves computational
method) to deploy a fit-for-purpose sensor network that meets a set of user-predefined
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requirements. It has been categorised as an NP-hard (non-deterministic polynomial-time
hard) problem [6, 7], where heuristic-based approaches (mathematical programming) have
been extensively used to address this problem.

Evolutionary algorithms have been utilised to optimise the sensor node placement for
distinct purposes [8–12]. This technique has been widely used for optimisation mainly owing
to its capability for solving multi-objective problems, where a set of near-optimal solutions
(the Pareto Front, PF) will be generated as the result. In some cases, the network manager
is required to possess a certain level of domain knowledge to select a particular solution
from the PF [10] by considering other factors, such as the desired network’s sparsity level or
the feasibility of the sensor node deployments. In addition, spatial simulated annealing has
also been utilised in several studies [13–17] and proven to be practical for spatial sampling
purposes.

Despite the variety of optimisation techniques used for ESN deployments, the literature
has reported a wide range (yet similar) of design goals. The aspects that are most-discussed
and incorporated within the WSN deployment process [6]: (i) network lifetime [7, 18, 19];
(ii) connectivity [17–20]; (iii) coverage [19, 21]; (iv) relay count [19, 20]; (v) data fidelity
[21, 22]; and other aspects such as cost, energy, and minimal sensor counts [7, 11, 17, 19, 21,
22].

2.1.2 Sampling with Mobile Nodes

Mobile sensor node is referring to a moving sensor node during measurements after its
deployment [6]. One of many examples of mobile sensor sampling is the usage of a robot
that requires continual monitoring of the environment to determine the time (when), location
(where), and procedure (how) to perform the relocation. Several studies have been reported
regarding the robot’s positioning scheme in order to boost the network’s performance with
additional consideration of network coverage and travel distance [23–25]. Such systems have
been widely utilised for different applications in recent wireless sensor developments, such
as base station repositioning to optimise data transmission power [26], autonomous vehicle
control [27], animal tracking [28].



8 Literature Review

2.2 Social Insect Modelling

This section reviews relevant topics regarding social insect behaviours (with particular an
emphasis on Apis mellifera, the European honeybee). The following review includes honey
bee behaviour (i.e. bee’s foraging roles) and computational bee modelling applications.
These components are crucial because one of the major contributions in this dissertation is to
propose a swarm sensing field simulation, using insects as the mobile sensor nodes (bee in
this case), to generate a highly dense data points in the region under study.

2.2.1 Bee Foraging Roles

The development of honey bee foraging can also be broken into several distinct roles depend-
ing on the bee’s age and its knowledge of profitable food resources [29]. Initially, novice
bees make several orientation flights to familiarise themselves with the landscape around the
hive [30]. Such effort is crucial for successful homing after future foraging activities. Over
time, bees may start to spontaneously search for food sources. These bees can be seen as
‘scouts’ as they are effectively naive to the availability and/or proximity of food resources
in their foraging range [31]. Alternatively, the same bee whilst in the hive may observe a
waggle dance, and utilise the positional information gleaned from the dance to locate food
resources located by other scouts, and there-by become a ‘recruit’ [32–34].

Once the food source is found, the bee shifts to become an ‘exploiter’. It remembers the
exact location of the source, flying backwards and forwards between the hive and the source
to retrieve nectar, pollen, and/or water until the source becomes exhausted or the hive’s needs
change. During this time, the bee may perform the waggle dance to inform other bees of the
source’s profitability and location [35].

Bees will cease exploiting the resource once it is exhausted, and may either become
resting foragers or perform reconnaissance flights (as an ‘inspector’) to examine whether the
source has replenished and, if so, will start exploiting it again [36]. Alternatively, they may
start to scout for unknown resources or observe waggle dances to again become a recruit. As
a bee becomes more experienced, it tends to retain a constant trip duration but with much
faster speed and larger area coverage [30].

Although most of the foragers are collecting nectar and pollen, some bees are exclusively
specialised on water collection (acting as a ‘water carrier’) with shorter and more constant
flight duration [37]. Water is necessary for hive maintenance in terms of honey curing and
control of hive temperature and relative humidity.
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2.2.2 Computational Modelling of Bee Behaviour

Numerous attempts have been made to model both in-hive and out-of-hive bee behaviours.
Pirk et al. have provided a comprehensive review of statistical guidelines for in-hive bee
experimental design [38]. They have concluded that parametric testing (i.e. regression,
normal distribution) and multivariate analysis (i.e. principal component analysis) are suitable
methods for data analysis purposes (statistical inference) in bee research.

A recent study proposed an algorithm to post-process bee experimental detection data, to
reconstruct bee foraging behaviour, collected from RFID (Radio-Frequency Identification)
tags with a reader installed at the hive and feeder entrances [39]. When developing this
‘Track-a-forager’ algorithm, two major issues needed to be addressed prior to data analysis:
(a) rapid-succession scans where successive detections were recorded in a very short time
interval; and (b) missed readings mainly caused by the hardware limitation including small
tag sizes leading to low detection ranges. Despite these issues, the ‘Track-a-Forager’ program
has been successfully developed and is appropriate for analysing foraging bee behaviour
based on the assumption that the minimal foraging duration is five minutes.

Vries et al. modelled individual bee foraging behaviour by considering the in-hive com-
munication between foragers to investigate the parameters that influence foraging behaviour
in a bee colony [31]. The motivation for this simulation was the fact that food profitabil-
ity information encoded in the bee’s waggle dance has a substantial influence on foraging
behaviour at colony level [36]. It is also found that the food source positional information
and the probability of a bee abandoning an exhausted source are important factors when
developing an accurate foraging model. For this reason, Granovskiy et al. used both field
experiments and a mathematical model to demonstrate the influence of the waggle dance on
bee foraging behaviours at a colony level on both short and long timescales [36].

An out-of-hive foraging simulation has also been proposed by Adeva to model bee
foraging behaviours during food resource depletion and replenishment [40]. This model
also incorporated distinct weather parameters in its final version. The simulations generated
lacked benchmark behavioural data, making it impossible to validate the model and therefore
validating the accuracy of the system.

Later, Becher et al. modelled both in-hive and out-of-hive bee foraging behaviours when
bees were exposed to different stressors including the parasite and disease vector, the Varroa
mite and pesticides [40]. If accurate, such systems would be extremely useful in assisting
beekeepers and biosecurity managers to understand and predict Varroa’s impact on bee
colonies and dispersal, thereby enabling the development of effective Varroa management
systems and policy advice.
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Application of these technologies to the problem of colony collapse disorder will not
only help to further the development and improve the application of technology, but will
also serve to assist in solving the crisis facing bee populations. Use of the technologies in
this setting allows for field testing of ESNs and improvement of these devices. The data
gathered during these experiments will also allow for monitoring of honey bee colony health,
providing baseline data, and colony health can also be manipulated using commonly applied
chemicals, for instance, to test their effects on bees in the field, furthering research into bee
health and disease investigations.

2.3 Interpolation Algorithms

Interpolation is a method that is used to estimate any unknown values within known points.
For example, given a set of data points/values V = {v1,v2,v3, · · · ,vi, · · · ,vN} at N-locations
based on a function f (x), for which we do not have an analytical expression of this function.
The aim of an interpolation method is to construct the original function f to estimate any
arbitrary spatial locations.

Interpolation is a crucial process where we want to get the information about meaningful
values in the area of interest and has been widely used in many disciplines. It plays a critical
role in the environmental sciences, because of the fact that the environmental analyst requires
spatially continuous data over the area of interest to make valid and confident judgements.

The list below summarises the theoretical features associated with interpolation tech-
niques [41]. Understanding these characteristics is crucial for the environmental manager
because of the fact that there is no single interpolator that suits every situation. A thorough
investigation is required to select the ‘best suited’ method for a particular purpose.

- Global versus local. Global methods utilise the entire observation sample for estimation
to capture the general trend. Local methods, on the other hand, only considers the
samples within a specified distance from the point to be estimated and so are capable
of capturing the local variance [42].

- Exactness. This element is determined by whether or not the method will estimate
the same value at sampled locations. Some examples of an ‘exact interpolator’ are
the nearest neighbour (NN) and triangulation irregular network (TIN) methods [41].
In addition, some statistical error measurements (e.g. leave-one-out cross-validation)
adopted the ‘exactness’ feature to determine the quality of ‘inexact interpolators’ [42].

- Deterministic versus stochastic. A stochastic method provides an estimation of the
measurement’s error, while a deterministic method does not.
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- Gradual versus abrupt. This defines the smoothness of the estimated continuous
surface produced. Gradual methods generate smooth and gradual changes between
the sample observations; In contrast, an ‘abrupt’ technique (i.e. nearest neighbour
interpolation) will produce sharp boundaries in the interpolated surface.

- Convex versus non-convex. A ‘convex’ interpolator will estimate values between
the minimum and maximum values of the samples (i.e. min ≤ estimate ≤ max). A
‘non-convex’ method, on the other hand, might produce estimations that are lower
and greater than the minimum and the maximum values, respectively. An example of
such occurrences is in Kriging where some samples could produce negative weighting
values resulting from the ‘screen effect’ [43].

- Univariate versus multivariate. ‘Univariate’ methods use only one primary variable
(i.e. values at the sampled locations) for estimation, some examples are inverse
distance weighting, simple kriging, ordinary kriging, and triangle irregular network.
‘Multivariate’ interpolators utilise more than one variable within the process, for
instance, ordinary cokriging (OCK) and kriging with external drift (KED).

There has been an increased demand for interpolation techniques to incorporate spatio-
temporal data. Many efforts have been initiated to address this research problem – the
development of Spatio-Temporal Interpolation (STI) algorithm.These adopt either [44, 45]:
(a) an extension approach – It converts the ‘temporal’ dimension into spatial-distance. On
other words, it extends the STI problem into a higher spatial interpolation problem; or (b)
a reduction approach – Such a method reduces the STI technique to a regular interpolation
problem in a way that it estimates the values using spatial-only interpolation method, and
then applies a time-function to incorporate the ‘temporal’ element within the estimation.

The following sub-sections will review some widely-used techniques providing, for
each method, a description of both spatial-only and STI algorithms. Finally, a summary of
applications and related research using these techniques will be presented.

2.3.1 Inverse Distance Weighting (IDW)

Inverse Distance Weighting (IDW) is one of the most widely used interpolation techniques,
proposed by Shepard in 1968 [46, 47]. This technique is categorised as a deterministic
method and is based on the assumption that the value to be interpolated is likely to be more
similar to the nearer observed values than to those at a greater distance. This technique is
expressed in the following:

f̂ (x,y) =
N

∑
i=1

λ (dsi)i · vi (2.1)
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λ (dsi)i =
d−us

si

∑
N
i=1 d−us

si

(2.2)

dsi =
√
(xi− x)2 +(yi− y)2 (2.3)

where f̂ (x,y) indicates that we are estimating the value at location x,y; λ (dsi)i is the weighting
mechanism; dsi is the spatial distance (2-dimensional Euclidean distance) between the point to
be interpolated (x,y in this case) and the known data point (vi); us is a user-defined parameter
that is used to adjust the diminishing strength in relation to increased spatial distance; and, N
is the total number of known points. If the configuration us=2 is applied, this IDW becomes
the Inverse Distance Squared technique [48]. Yet, the parameter us need not always be to
two, and can be adjusted to improve performance [49]. The complexity of conventional IDW
is O(N) which can be seen from Equation 2.1.

The so-called ‘zero distance problem’ has been discussed by de Mesnard [50]. For the
case where location to be interpolated is exactly the same as one of the reference points
(i.e. dsi = 0), Shepard [46] does not interpolate that particular location because we already
have full knowledge at that point – the discrete case. Unfortunately, such implementations
may not be realistic when the mean within a particular area (suburb, city, state, country) is
being estimated (i.e. dsi → 0) and, for these situations, utilising the continuous case is more
satisfactory.

Improved IDW

IDW is based on the notion that nearer data points will have more influence compared to
those further away, and so including every data point throughout the map to interpolate a
single point is unnecessary. This is because, as the distance is further away, the particular
point has very little influence on the original value. An illustration of the improved version
of IDW can be seen in Figure 2.1, and the parameter R can be optimised to improve the
quality of IDW [49]. The improved IDW comes with two major advantages in terms of
computational efficiency: (a) The processing time does not increase as the number of known
points increases; (b) We can further improve the performance by applying the kd-tree data
structure algorithm, reducing the computational time from O(N) to O(logN) [51]. This
feature is crucial because the basic computational time required for the STI algorithm is
O(T ×N), instead of O(N), where T is the number of user-defined window lengths to be
included in the interpolation process.
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Fig. 2.1 A demonstration of the improved IDW. The dots are the sample data points, and the
‘×’ is the point location to be interpolated. R is a user-defined radius parameter that indicates
the farthest distance to be included from the point ×. On this case, only a total of six sample
points will have an influence on the interpolation process. However, no empirical approach
has been developed to obtain the optimal value for the parameter R.

STI - Extension approach

The extension approach to the IDW’s STI method (2-D Space and 1-D Time problem) was
described by Li and co-authors in 2014 [51]:

f̂ (t,x,y) =
stend

∑
tstart

N

∑
i=1

λ (dsti)st,i · vt,i (2.4)

λ (dsti)st,i =
d−ust

sti

∑
N
i d−ust

sti

(2.5)

dsti =
√

(xi− x)2 +(yi− y)2 + c2(ti− t)2 (2.6)

where dsti is the spatio-temporal distance between the measured (xi,yi,cti) and unmeasured
(x,y,ct) location point; ust is the spatio-temporal diminishing strength as distance dsti in-
creases; and, c is the user-defined temporal factor that converts the time unit to a spatial
distance unit; However, there is still no empirical information on how to justify choice of the
temporal factor (c), and a naive choice does not yield optimal results [51].
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The extension of this approach to the 3-D space and 1-D time problem can be expressed
in a slight variation based on Equation 2.6, so that it becomes:

dsti =
√
(xi− x)2 +(yi− y)2 +(zi− z)2 + c2(ti− t)2 (2.7)

where z is the 3rd spatial dimension in which always seen as the altitude (surface height).

STI - Reduction approach (ST Product Method)

This method was proposed by Li et al. and is constructed in the following way [45]:

f̂ (x,y, t) =
N

∑
i=1

λ (dsi)s,i · f̂ (t) (2.8)

f̂ (t) =
ti2− t

ti2− ti1
vi1 +

t− ti1
ti2− ti1

vi2 (2.9)

where the spatial weighting λ (dsi)s,i is equivalent to Equation 2.2; f̂ (t) is the estimated value
at time t; ti1 and ti2 are the first (previous) and second (next) time indices, and similarly, vi1

and vi2 are the first (previous) and second (next) value at corresponding time t.

It is important to note that such an algorithm (Equation 2.9) relies on the assumption
that values at the same location (vi1 and vi2) but at different times (ti1 and ti2) are provided.
Nevertheless, one of the assumptions of this dissertation is that the data are not necessarily
collected in a finely-gridded manner (in both the spatial and temporal dimensions). Due
to the fact that this algorithm does not meet the assumptions of this thesis, it will not be
considered and applied to the simulation in this work.

2.3.2 Kriging

The Kriging interpolation technique, also called the Kriging esimator, is categorised as a geo-
statistical method because it takes the spatial patterns and the uncertainty of the surrounding
surface into account during the interpolation process [42]. An observation Z(s, t) can be
seen as a combination of a space-time mean component m(s, t) and a stochastic residual
component Y (s, t), written as:

Z(s, t) = m(s, t)+Y (s, t) (2.10)

with m representing a deterministic ‘global’ trend and Y the corresponding zero-mean noisy
residual. The following sub-sections will discuss the process of Kriging (characterising trend
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and residual), and an example of the Ordinary Kriging (OK) calculation will be provided at
the end.

Trend Characterisation

The behaviour of an observation variable is different at different spatial and temporal scales
and so can be characterised using a combination of linear models as follows:

m(s, t) =
p

∑
i=0

βi fi(s, t) (2.11)

where βi is an unknown regression coefficient; fi represents the covariates that must be
known exhaustively over the space-time domain; and p is the number of covariates.

Stochastic Residual Modelling – Variogram

A semi-variance is generated to show how much a location point is related to its neighbour
points within a particular distance (called the lag) by using the following equations for the
spatial-only and the spatio-temporal cases:

γ̂s =
1
2

E
[
Y (s)−Y (s+hs)

]2 (2.12)

γ̂st =
1
2

E
[
Y (s, t)−Y (s+hs, t +ht)

]2 (2.13)

where E denotes mathematical expectation; Y (s) and Y (s+hs) is the residual value at spatial
location s and s+hs (separated by spatial lag distance hs) respectively. The semi-variance
γ̂(hs) is plotted against hs, and needs to be fitted in order to create the so-called variogram
model for the estimator process in the later stage.

Some widely-used spatio-temporal stochastic semi-variance models are briefly discussed
below:

(a) Sum-metric model. This model is based on the assumption that the three components
(spatial, temporal, and spatio-temporal) are mutually independent [52]:

γst(hs,ht) = γs(hs)+ γt(ht)+ γst

(√
h2

s +(α×ht)2
)

(2.14)

where ht is the temporal distance lag; and α is the spatio-temporal anisotropy ratio that
converts the unit of temporal separation (ht) into a spatial distance (hs).



16 Literature Review

(b) Product-sum model. Proposed by de Iaco [53] in the form of:

γst(hs,ht) = γst(hs,0)+ γst(0,ht)+ kγst(hs,0)γst(0,ht) (2.15)

with
k =

sillγst(hs,0)+ sillγst(0,ht)− sillγst(hs,ht)

sillγst(hs,0)sillγst(0,ht)
(2.16)

where sillγst(hs,ht) denotes the ‘global’ sill estimated by ‘eye-fit’ after plotting the sample
variogram surface (γst(hs,ht)) or by fitting to minimise the least-squares error of Equation
2.15 [53]. Also, the following must be met in order to satisfy the admissibility condition for
k:

0 < k ≤ 1/max{sillγst(hs,0),sillγst(0,ht)} (2.17)

Ordinary Kriging (OK) Estimation

The weighting mechanism for the OK estimator is formulated by solving the equation:

A−1 ·b =

[
λ

φ

]
, A = variogram_model(DN,N) (2.18)

DN,N =


d1,1 d1,2 · · · d1,N

d2,1 d2,2 · · · d2,N
...

... . . . ...
dN,1 dN,2 · · · dN,N

 (2.19)

where DN,N is a N×N distance matrix between the known points, and A is the matrix holding
the values after applying the variogram model to DN,N ; λ represents the weights between the
location to be interpolated and the known points (∑λ = 1); and φ is the Lagrange multiplier.
Finally, the estimation variance (σ̂2

e ) of the OK estimator can be calculated using:

σ̂
2
e =

n

∑
i=1

λiγ(dsi)+φ (2.20)

A detailed description and a step-by-step example calculation of the OK estimator is
described in greater detail at [42].
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Fig. 2.2 An illustration of the TIN interpolation technique for point x that lies within a triangle
formed by points P1, P2, and P3 (holding values of v1, v2, and v3 respectively). The weight
for each point is calculated based on the corresponding area; for instance, P1 has the weight
A1
A (where A = ∑

N=3
i=1 Ai) and so on.

2.3.3 Shape Functions (SF)

A Shape Function (SF) based spatial interpolation technique employs a Triangular Irregular
Network (TIN) for 2-D spatial-only interpolation purposes [45]. TIN is a digital means of
representing surface morphology and has been extensively used in the GIS (Geographic
Information System) community. It is produced by connecting edges between vertices that
eventually form a network of triangles, and is normally constructed using the Delaunay
triangulation algorithm.

This surface analysis technique can be further extended as a linear approximation in-
terpolation algorithm as proposed by Peuker and co-workers in 1978 for digital elevation
modelling [54]. It was described in the work done by Li in 2003, which uses area divisions
for the weighting mechanism [45] [Figure 2.2]. As it is based on triangle meshes, the total
number of included observed points is 3. It is in the form of:

f̂ (x,y) = λ1v1 +λ2v2 +λ3v3, λi =
Ai

A
(2.21)

where A is the area of the entire triangle according to:

A1

A
= N1(x,y) =

[(x2y3− x3y2)+ x(y2− y3)+ y(x3− x2)]

2A
A2

A
= N2(x,y) =

[(x3y1− x1y3)+ x(y3− y1)+ y(x1− x3)]

2A
A3

A
= N3(x,y) =

[(x1y2− x2y1)+ x(y1− y2)+ y(x2− x1)]

2A

(2.22)



18 Literature Review

A =
1
2

det


1 x1 y1

1 x2 y2

1 x3 y3

 (2.23)

where Ai is the ith sub-triangle’s area formed by the point to be interpolated (x in Figure 2.2);
xi and yi is the ith node (i.e. known point at location x and y).

STI - Extension approach

Li extended the SF-based STI technique to become a 3-D triangular object (2-D space and
1-D time) called a tetrahedra mesh [45]. Such a function can be generated automatically
using the Delaunay refinement algorithm [55] and its improvement using swapping and
smoothing [56]. Similar to the spatial-only SF interpolation technique described previously,
Eq. 2.21 and Eq. 2.23 now become:

f̂ (x,y, t) = λ1v1 +λ2v2 +λ3v3 +λ4v4, λi =
Vi

V
(2.24)

V =
1
6

det


1 x1 y1 t1

1 x2 y2 t2

1 x3 y3 t3

1 x4 y4 t4

 (2.25)

where Vi is the ith sub-component volume based on the entire tetrahedra volume V ; and ti is
the ith node at time t.

STI - Reduction approach

The reduction-based STI method for SF is similar to the one demonstrated in IDW’s STI
reduction approach, which is based on Equation 2.8 and Equation 2.9. Consequently, by
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applying Equation 2.22 to Equation 2.8, the final form of SF’s reduction based STI technique
can be re-written as [45]:

f̂ (x,y, t) = N1(x,y)
[

t2− t
t2− t1

v1,1 +
t−t1

t2− t1
v1,2

]
+N2(x,y)

[
t2− t
t2− t1

v2,1 +
t−t1

t2− t1
v2,2

]
+N3(x,y)

[
t2− t
t2− t1

v3,1 +
t−t1

t2− t1
v3,2

]
=

t2− t
t2− t1

[N1(x,y)v1,1 +N2(x,y)v2,1 +N3(x,y)v3,1]

+
t− t1
t2− t1

[N1(x,y)v1,2 +N2(x,y)v2,2 +N3(x,y)v3,2]

(2.26)

where t1 and t2 are the first (previous) and second (next) time index before / after the time (t)
to be interpolated; vi, j is the value at node i and time j where j = {1,2} (note that j = 1 and
j = 2 is equivalent to t1 and t2 respectively).

2.3.4 Applications and Related Work

This subsection reviews related work involving spatial-only and spatio-temporal interpolation
techniques and applications. For the purpose of this dissertation, the works reviewed mainly
focus on the environmental sciences area.

Spatial-only interpolators

Inverse Distance Weighting (IDW) is one of the earliest deterministic interpolation techniques
to encompass simplicity and effectiveness during the estimation and interpretation process.
It has been utilised to identify trends and variability in the mean at unsampled locations
for particular climate variables [57]. The continuous surface generated is critical to assist
stakeholders and managers to identify the risks and vulnerabilities for better decision making.
Using the same approach, Chen and Liu (2012) proposed that the spatial distance-decay
parameter us in Equation 2.2 could highly influence the accuracy of this method so should
be chosen carefully [49]. They also adapted the ‘improved’ IDW technique (Section 2.3.1)
to limit the search area and concluded that the number of weather stations also affect the
performance of the technique.

Owing to the simplicity of IDW in terms of computational efficiency and interpretation,
some researchers have further enhanced the performance of pure IDW. For example, in
2008, Lu and Wong proposed an ‘Adaptive’ IDW (AIDW) that could accommodate the
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samples’ sparsity by varying the constant distance-decay parameter (u). They believed that
the parameter u should be lower in a less-dense area [58]. Overall, their experimental results
show that Kriging > AIDW > IDW (where ‘>’ denotes ‘better than’), despite the case where
AIDW > Kriging in one of their empirical studies due to high spatial heterogeneity (i.e.
unable to effectively model variogram functions). It is noted that AIDW surpasses pure IDW
when IDW yields an acceptable outcome.

One of the main deficiencies of IDW is the fact that it is unable to provide a confidence
interval for the estimation. Joseph and Kang (2011) addressed this limitation issue by
developing a Regression-based IDW (RIDW) algorithm so that a Confidence Interval (CI)
error measurement for IDW estimation is possible [59]. They have shown that RIDW has a
similar prediction accuracy to Kriging and, interestingly, also indicated that the CI for RIDW
is much better than the Kriging’s CI.

Starting from the early 20th century, a widely used application of the IDW-based method
is to utilise historical data to generate regularly-spaced gridded environmental data sets at
different resolution levels [60–62]. Despite using a purely distance weighting mechanism
(Equation 2.2), the authors employed the so-called Angular IDW (AIDW) algorithm that
incorporates directional isolation between the sample points to update the weights. Caesar
and Alexander (2006) suggested that the distance-decay parameter us = 4 (as in Equation 2.2)
is favourable in order to compromise for an acceptable statistical error and helping to reduce
spatial smoothing [61]. Other spatial interpolation methods such as isolation and combination
between Thin-Plate Splines (TPS) and Kriging-based methods (Indicator Kriging, Universal
Kriging, and Kriging with external drift) were also utilised for spatially continuous climate
data reconstruction for Australia [63] and for Europe [64].

A number of other spatial interpolation methods have been compared to assess the suit-
ability of different techniques for mapping rainfall spatial variability. Kriging-based methods
provide the most consistent results, while spline and trend surface fitting (using polynomial
regression) performed poorly in most cases under one empirical study [65]. Plouffe et al.
utilised rainfall data for different months (May and September) and suggested that Bayesian
Kriging and splines provide good estimation at low and high rainfall, respectively [66].
It is concluded that there is no ‘optimal’ method for this purpose and the interpolator’s
performance depends on the setting and the characteristics of a specific data set.

Another application of interpolation algorithms is to characterise soil properties over a
region of interest. Two widely used interpolation techniques have been investigated for this
purpose by Gotway et al., namely OK and IDW with different distance-decay parameter
values [67]. They suggested that the IDW’s distance-decay parameter should be altered
based on the coefficient of variation (CV) of the data set, but OK still provides the most
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accurate prediction with the cost of heavy computational effort. Meul and Meirvenne
studied the stationarity component of soil properties using geostatistical analysis [68]. They
compared the performance of Kriging-based methods under different forms of nonstationarity
– Universal Kriging (UK), Simple Kriging with varying local means (SKlm) and Ordinary
CoKriging (OCK). They reported that different methods performed better under distinct
circumstances: (i) OCK is preferable when there is a high correlation between the primary
and secondary variables; and (ii) UK is best when local nonstationarity is present. In addition,
they have found that Kriging yields the highest precision when utilising a combination of
UK and OCK. In spite of the aforementioned interpolation applications for soil properties,
Schloeder et al. (2001) doubted the accuracy of interpolators because of the following
factors: spatially independent data, limited data, sample spacing, extreme values, and erratic
behaviour [69].

As well as the application of deterministic and geostatistic mechanisms for interpolators,
some authors have proposed Machine Learning (ML) based interpolation algorithms. For
instance, Sun et al. not only compared the performance of various Kriging-based techniques
(simple kriging, OK, UK) and IDW, but also included the Radial Basis Function (RBF). Their
result indicates that ML-based methods (RBF in this case) may not necessarily be better
than the conventional interpolators: SK > IDW > RBF > OK > UK [70]. In 2013, Matos et
al. have also proposed several ML-based techniques in addition to RBF, they are: Support
Vector Regression (SVR) and Least Squares Support Vector Regression (LS-SVR). They
concluded that ML-based methods could produce superior outcome under certain condition
[70, 71] in which has been shown in [72]. However, one should also consider the excessive
amount of time required for the process of ML-based estimator.

Lastly, a hybrid method has been proposed and compared by Sanabria et al. [73] for
wildfire risk assessment in Australia. They have investigated IDW (non-geostatistical),
OK (geostatistical), Random Forest (RF, machine learning), and also a combination of
methods – RFIDW and RFOK. They concluded that the proposed hybrid method achieved
better estimation than any of the isolated methods, even though RF-based method is more
computationally demanding.

Spatio-temporal Interpolators

Li and Revesz (2003) compared the three most widely used Spatio-Temporal Interpolation
(STI) techniques. They also made comparisons between the different STI approaches: (a)
Extension – TIN, Kriging and IDW; (b) Reduction – TIN and IDW [74]. They reported
that TIN is the most suitable method for house pricing interpolation regardless of the type
of STI method used. In this case, TIN could be acceptable because the data type of house
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pricing varies in a way that does not necessarily involve gradual changes over the surface
(as environmental variables do). It is interesting to see that, reduction-based IDW surpasses
Kriging’s performance. The extension-based IDW exhibited the worst performance probably
because the space-time interaction component has not been extensively studied (i.e. the
anisotropy ratio between space and time). Li et al. (2011) utilised an identical extension-
based TIN method to that described for an air pollution application [75]. Within the study, the
authors ‘scaled’ the temporal data in an effort to increase the prediction accuracy; However,
an ‘optimal’ time-scaling method for the data set has yet to be found.

A fast extension-based IDW STI algorithm was proposed by Li et al. [51]. They put the
main focus on the computational efficiency of the algorithm and it has been successfully
achieved by utilising the following practices: (i) using the ‘improved’ IDW technique, as
discussed in Section 2.3.1, which only includes k nearest neighbours within the estimation
process; (ii) using kd-tree data structure; and (c) using parallel programming techniques.

In the case of geostatistical STI algorithms, Kilibarda et al. (2014) have successfully
modelled global temperature data at high resolution (e.g., 1km2) using STI regression-kriging
and a sum-metric variogram structure [76]. The only disadvantage of such methods is that the
‘optimal’ estimation of the anisotropy ratio that converts the temporal unit to a spatial-distance
unit has yet to be found [51]. An alternative is the product-sum variogram model, which has
been utilised by Zeng et al. (2012) within STI OK to estimate the carbon dioxide distribution
in China [77].

2.4 Summary of the Literature

This section provides a discussion on how each of the previously reviewed components
would contribute to the research work in this dissertation.

2.4.1 Hybrid ESN for the Swarm Sensing Project (SSP)

As mentioned previously, since the development of micro-sensor is still ongoing, we are
unable at this stage to deploy it on insects to make observations as they move throughout
the landscape. This has stimulated the need to develop a near-to-reality hybrid ESN field
simulation framework to collect highly-dense environmental data, using: (a) static sensor
nodes, acting as weather stations, that make measurements on an hourly basis; and (b) mobile
sensor nodes, such as micro-sensors being deployed on bees, that sense the environmental
conditions that they are experiencing as they move.
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2.4.2 Computational bee modelling

The current literature for bee modelling mostly addresses the influence of individual bee
behaviour, with the help of ‘waggle dance’ for in-hive communication, on colony-level
foraging behaviour. For example, the encoded information within a bee’s dance can be
used to assess the profitability of a single food source and to determine whether it is more
beneficial to keep exploiting it or to abandon the exhausted source [31, 36, 78].

Despite the extensive research done, however, there is little information that could be
usefully incorporated into the SSP’s field simulation. For example, the model’s ability so that
individual bees could sense and collect the environmental situation data (i.e. data sampling)
as they fly through the landscape. Another issue is the feasibility of simulating an artificial
bee behaviours throughout the day without any empirical evidence on which to base the
simulation. To illustrate, assuming no domain knowledge of bee behaviour, one could ask: at
what time of the day is a bee most active? and, what is the probability of a bee foraging in
the morning, noon, or late at night?

This work proposes a data-driven statistical modelling framework to address these issues
so that simulating an artificial bee is possible.

2.4.3 Interpolation algorithm

It is widely recognised that there is no ‘optimal’ interpolation technique that is perfectly
suitable for all purposes [42, 65, 66, 71] and the performance of interpolators varies depending
on (and not limited to): sampling density, sampling pattern, spatial structure of primary
variable, and surface type [41, 48, 79]. Therefore, a careful investigation is required in order
to select the most appropriate algorithm for a certain objective [42]. Nevertheless, it is also
noted that some subjective aspects regarding the selection of interpolation method are also
significant, such as: (i) the required level of computational efficiency in the case of extremely
large data set; (ii) the applicability of the interpolator for a specific task – it is unrealistic
to map temperature data using a triangular irregular network algorithm because it produces
abrupt surface discontinuities; and (iii) the availability of particular information required
prior to the interpolation process – Simple Kriging requires a known mean of the region
under study.

For the purpose of this dissertation, based on the fact that observations made from
a swarm of sensor nodes will generate a huge amount of data over a small landscape,
computational efficiency becomes a crucial factor for the spatio-temporal interpolation
algorithm development. The statistical error of the method will also be carefully considered.
Finally, given that the ultimate purpose of the interpolation algorithm being developed for the
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high-resolution environmental modelling over the region under study, then the characteristics
of the algorithm output must match those of the real environmental situation being modelled.
For instance, it is expected that the temperature over a small region would vary gradually and
that a smooth surface would be obtained.

The Inverse Distance Weighting (IDW) interpolation method has been recognised as a
computationally efficient technique that provides acceptable results [51]. Given that IDW
performs well in a highly dense network [49], an ‘IDW-like’ method would be a promising
technique to be considered and implemented in my research project. The following main
challenges still remain and will be investigated in this dissertation: What statistical measures
can be used to accurately represent the space-time relationships to be utilised within the
spatio-temporal interpolation technique in a computationally efficient manner?



Chapter 3

Methodology

The main objective of this dissertation is to propose and to develop a computational field sim-
ulation framework and environmental modelling application for swarm sensing application.
Figure 3.1 depicts the Region of Interest (RoI) on which the field simulation will be based
the South Esk region, Tasmania. To begin with, Table 3.1 presents summary attributes based
on different sensor types to be deployed.

Fig. 3.1 Map of the state of Tasmania. The red rectangle (in the north-eastern corner of the
map) is where Tasmanian’s South Esk region is located. (Image source: Google map)

The static nodes, acting as conventional large-sized weather stations, are assumed to be
an individual entity that has the capability of storing each observation made (i.e. similar
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Attribute (a) Weather Station (b) Micro-sensors

Short Description A conventional weather
station.

Micro-sensors each attached
to a bee’s thorax (Figure 1.1).

Sensor Size Large Small (sub-millimetre)

Number of Sensors Small (N < 10) Large (e.g., thousands)

Dynamics Static Mobile

Communication Wired Wireless

Energy Availability Unconstrained Constrained

Spatial Coverage Small (one location point) Large (various locations)

Table 3.1 Distinct types of sensor nodes to be deployed: (a) static weather station; and (b)
mobile micro-sensors. N indicates the number of sensor nodes.

to a base station), so that network connectivity and relay capability are not issues. Regular
maintenance of the system will be conducted throughout the experiment to minimise data loss
during system downtime. Since it is quite costly to set up a weather station, the number of
deployments is usually low. This kind of sensor node only has a very small spatial coverage
but could be configured to make high frequency measurements. Considering other factors
such as power consumption and data storage, it is often set up in a way that data collection
occurs only within a pre-defined time interval (5m, 30m, 1h, daily, etc) under the assumption
of having unconstrained energy. For the purpose of this work, weather stations are categorised
as the following entities: food and/or water sources, and bee hives (Table 3.2). Note that
weather stations are placed at each of these entities/locations.

Mobile nodes, on the other hand, are being deployed on insects (i.e. bees in this case) to
‘sense’ the environment as they fly through the landscape. A large number of measurements
and spatial coverage will be achieved within the area under study. Due to limitations in the
technology, energy available for individual sensor node to transfer data to the base station
will be constrained. Spatial sampling (relocation) of the mobile sensor node is not the focus



27

of this thesis, and is impractical to do so in this case (since it would require us to manipulate
the insect flight paths). Since one of the main objectives of this dissertation is to propose a
framework to simulate artificial bees, bee foraging flight path data is crucial. Therefore, this
work will employ the modelled bee foraging flight paths data set which have been developed
by the CSIRO’s Swarm Sensing team [80]. Further description of this component will be
given in Section 3.1.3.

Sensor
Type

Item
Deployment

Strategy
Number
of Nodes

Reading
Frequency

Static Food source Manual 5 Hourly

Static Water source Manual 1 Hourly

Static Weather station Manual 4 Hourly

Static Hive Optimisation 5 Hourly

Mobile Insects
Random

(foragers)
20† Minute /

Seconds

† Number of nodes deployed each day, from a single hive.
Table 3.2 This table shows the configuration of the field simulation to be deployed within the
area of interest (South Esk region of Tasmania, see Figure 3.1).

Table 3.2 presents the configuration of our proposed hybrid environmental sensor net-
works (ESN) field simulation at our Region of Interest (RoI). Based on the table, three types
of stationary sensor nodes will be deployed for different purposes: (a) bee hive; (b) food and
water sources for the bees; and (c) four extra weather stations located at the RoI’s map corner
because the environmental modelling on the later stage is an interpolation issue (instead of
extrapolation). In addition, note that the table shows 20 bees will be created each day in each
hive, which indicates that a total of 100 bees (5 hives × 20 bees) will be generated every day.

Lastly, the research design being undertaken in this work is as follows:

1 Data collection.
A number of data sources will be utilised in this work for different purposes, they are:
the South Esk Hydrological Model, CSIRO’s bee experimental data, an agent-based
bee behavioural model developed by CSIRO, and a ‘benchmark’ data set for validation
at the end.
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2 The ‘swarm sensing’ field simulation.
Propose a framework to simulate a hybrid Environmental Sensor Network (ESN) to
generate high-resolution spatio-temporal data within the RoI (i.e. data sampling).

3 Formulating the spatio-temporal interpolation algorithm.
Investigate related mathematical and/or geo-statistical interpolation techniques that
might be relevant. Develop a 3-Dimensional (3D = 2D Spatial + 1D Temporal)
spatio-temporal interpolation (STI) algorithm that meets the Swarm Sensing project re-
quirements: computational efficiency (elapsed time); quality (low statistical error); and
subjective assessment (e.g. near-to-reality environmental situation, visual preference,
etc).

4 System implementation.
Implement the field simulation framework and the developed interpolation mathemati-
cal model into software using the Python programming language, and finally, create a
realistic environmental model.

5 Validation and analysis.
Evaluate the algorithm that has been developed.

The following sub-sections will cover the details of materials used in this work and the
framework’s components as shown in Figure 3.2.

Fig. 3.2 An overview of the swarm sensing field simulation to produce highly-dense observa-
tions (Section 3.4) to be utilised as an input for the spatio-temporal interpolation algorithm
(Section 3.5). Spatial sampling to optimise the hives locations (Section 3.2) and modelling
bee behaviour (Section 3.3) are acting as the “supporting components” in order to accomplish
the field simulation.
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3.1 Material

First of all, this section will describe the list of data sets that will be employed for the purpose
of this dissertation. For ease of reference in the following Chapters, the notations illustrated
in Table 3.3 are used and detailed information for each data set is described in the following
sub-sections.

Dataset # Abbreviation Data Set Name Section #

DataSet 1 ‘modelled’ South Esk Hydrological Model Section 3.1.1

DataSet 2 ‘experimental’ Bee Experimental Data Set Section 3.1.2

DataSet 3 ‘foraging’ Bee Foraging Flight Model Section 3.1.3

DataSet 4 ‘benchmark’ Benchmark Data Set Section 3.1.4

Table 3.3 List of data set notations and abbreviations that will be used throughout
the dissertation.

3.1.1 South Esk Hydrological Model

Introduction

The South Esk hydrological model developed by Commonwealth Scientific Industrial Re-
search Organisation (CSIRO) is utilised in this work [81]. It is located at the South Esk
region of Tasmania (−41.0◦ to −42.0◦ latitude and 147.0◦ to 148.5◦ longitude), Australia
3.1]. The model covers a range of distinct environmental parameters describing the RoI,
which is mapped onto a 151×101 grids of a the 2-D spatial map (with 1 km2 resolution) and
is measured with high temporal resolution (1 hour interval). The data set is stored in NetCDF
(Network Common Data Format) format [82].

For the purpose of this study, I utilised the data set for the year 2013 and mainly focused
on four different parameters that are widely used for the environmental study: surface height
(also called elevation), temperature, relative humidity, and solar radiation. It is undeniable
that the data set consists of some missing data. However, by considering the integrity of the
evaluation in this work (since we need ‘real’ data to assess the algorithm’s performance), I
will not attempt to ‘fill in the gaps’ of those missing data. Also, such an activity is outside
the scope of this work.

The following subsection will provide some data analytics and visualisations so that
readers will have a better understanding of the data set’s overall characteristics. The color
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maps that are used to plot the 2D-maps in the following sections are chosen based on the
findings provided by Engelke et al. [83].

Analytic and Visualisation

Fig. 3.3 A typical surface height data visualisation of Tasmania’s South Esk Hydrological
model: (top) The actual elevation data (meters) within the RoI; (bottom) The distribution of
elevation values within the 151×101 grid.
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Surface Height

Surface height data is used to describe the physical spatial attribute of the landscape that
is measured from the sea level. The map consists of elevation data between 0 meters (m),
indicating sea level as depicted using dark blue, and 1475 m at the mountain peak which
is illustrated using a brown-white colour in Figure 3.1. At the bottom of Figure 3.1 is
the distribution of height data and it shows that the average height across the landscape is
approximately 200 m.

Elevation data is crucial for the environmental study [84], mainly because such data is
highly correlated with some environmental parameters (e.g., temperature as shown in Figure
3.5a). There are also other factors that support the notion that elevation data is a good data
source to be utilised for research:

– Does not vary for a long period of time (i.e., decades); unlike other parameters such as
temperature that shift within seconds.

– Can be easily obtained from different sources on the Internet.

Other Parameters

The three other parameters that will be used in this work are: temperature, relative humidity,
and solar radiation. Example visualisations of different environmental variables are depicted
in Figure 3.4. The temperature (K) data exhibit seasonality effects with higher temperatures
expected during summer (between December and February) and lower temperatures during
winter (between June and August). Relative humidity data, on the other hand, is presented
using a percentage ranging from 0% to 100%. Finally, similar to the temperature data,
seasonal effects also exists (i.e. higher value during summer and lower value during winter)
within solar radiation data.

Parameter Correlation

Following, a statistical method is utilised to investigate the correlation between parameters
by using the squared Pearson’s correlation coefficient (r, Equation 3.27) – Coefficient of
Determination (R2). Figure 3.5 projects the correlation level between parameters after
applying such a calculation.

It is observable that the two most correlated parameters are surface height and temperature,
in which can be seen from Figure 3.5a and Figure 3.5b. Yet, the correlation level varies
between months and the highest correlation among them occurs during April and August.
Based on Figure 3.5b and Figure 3.5c, temperature and relative humidity also have fairly
good correlation (R2 = ±0.4). Finally, solar radiation is the least correlated parameter to
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(a) Temperature (K) (b) Relative Humidity (%)

(c) Solar Radiation (W/m2)

Fig. 3.4 Example of three environmental parameters that are utilised in this work: (a)
temperature; (b) relative humidity; and (c) solar radiation. The colour bar on the right of
each image corresponds to each parameter’s value and unit.

other parameters where the median of monthly R2 value throughout the year lies below 0.4
Figure 3.5d.
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(a) Surface Height

(b) Temperature

(c) Relative Humidity

(d) Solar Radiation

Fig. 3.5 Box plot demonstrating the monthly R2 value of hourly data (2-D map) between
parameters throughout the year 2013. The horizontal axis represents the months in a year
and the vertical axis shows the corresponding R2 value.
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3.1.2 Bee Experimental Data Set

CSIRO’s Swarm Sensing project conducted an initial bee experiment at Geeveston, Tasmania,
from 02 April to 27 November 2014. A radio-frequency identification (RFID) reader and a
mini computer were installed at each hive entrance so that the presence of tagged bees (going
in or out of the hive) near the reader will be detected and recorded in a Comma Separated
Values (CSV) format output file. The data consists of two columns: (i) datetime data, that
records the exact date and time when an individual is detected by the RFID reader; and (ii)
bee_id, the unique identifier for an individual bee.

Four bee hives were set up and the Swarm Sensing team members visited the field twice
a week (on average) to deploy the RFID tags each bee’s thorax and, eventually, thousands of
bees were tagged to collect bee detections data throughout the experiment.

3.1.3 Bee Foraging Flight Model

The data set in this section is mainly obtained from the generated output from [80]. The data
set is only used for the artificial bee’s foraging flight paths within the RoI.

Within the flight model, individual bees fly out from the hive along various random walk
flight paths, with the characteristics or each flight path determined by the foraging role of that
bee, the foraging activity that it is undertaking, the location of the bee within the foraging
range and the environmental conditions currently being experienced by the bee.

The flight behaviour of the bees is determined by a set of rules, coded into the Insect
Flight Simulator, which specifies the action to be taken by each bee, at each simulated time
step, depending on its current foraging activity and the local environmental conditions. Other
rules determine when the bee will change its foraging activity, depending on its location and
environmental conditions.

Fig. 3.6 A snapshot visualisation of the output generated by the agent-based computational
bee foraging flight paths.
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The simulation produces, as output, a set of realistic three-dimensional honey bee forager
flight paths, embedded within a three-dimensional sensing environment. These flight paths
can be visualised using three-dimensional animation software or used, as input, for various
third-party visualisation and analysis software packages. An example is shown in Figure 3.6.

3.1.4 Benchmark Data Set

Finally, the weather stations data within the RoI (i.e., the South Esk’s region, Tasmania) was
utilised as the ‘benchmark’ data set. The data set is the initial sources for the ‘modelled’
high-resolution data set (Section 3.1.1). Table 3.4 shows the list of sites (weather stations)
and their corresponding configurations that were employed for the purpose of this work:

Site# Site name Coordinates (lon, lat) Parameters Frequency

1 Ben Lomond 147.6613, -41.5401 temp 15m

2 Ben Ridge Road 147.7088, -41.3519 temp, rh 10m

3 Snow Hill Farm 147.8374, -41.8559 temp, rh 5m

4 St. Patricks Head 148.2178, -41.5770 temp, rh 10m

5 Storys Creek 147.7393, -41.6346 temp, rh 10m

6 Tom Gibson Nature Reserve 147.3031, -41.7729 temp, rh, rnet 15m

Table 3.4 Sites information that was utilised as the ‘benchmark’ data set. Note that within the
‘Parameters’ column, the following abbreviations are used: temp (temperature), rh (relative
humidity), and rnet (solar radiation).

The main purpose of utilising this data set was to validate the spatio-temporal interpolation
technique proposed in this dissertation. The swarm sensing simulation will be conducted
by employing the ‘modelled’ environmental data. It would also be interesting to investigate
the performance of the interpolation technique by comparing results with the ‘benchmark’
data set which was originally used for the creation of ‘modelled’ data. Such efforts are
feasible because the proposed spatio-temporal interpolation algorithm in this work is capable
of estimating values at any irregular space and time point.
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3.2 Optimisation Algorithm - ESN Deployments

The deployments of Environmental Sensor Networks (ESN) is an interesting research area in
which a particular algorithm (spatial sampling method) is used to obtain optimal placements
of nodes within the RoI. As already mentioned in the previous chapter (Chapter 2, Section
2.1), a number of techniques have been investigated to address this problem, and yet, no
optimal method is applicable and appropriate in all circumstances. Therefore, a new spatial-
sampling technique is utilised based on Evolutionary Algorithm (EA) in this dissertation to
build a near-optimal ESN [10]. EA mimics the procedure of the biological mechanism such
as reproduce, cross over, mutation, recombination, and elitism, that maximise or minimise a
user-defined fitness function in order to reach a near-optimal solution.

3.2.1 Problem Statement

Distinct types of static sensor nodes are denoted as: SNi = {sni,1,sni,2, · · · ,sni,n, · · · ,sni,N}
with i = item = {hive, f ood,water,corner} to represent bee hive, food source, water source,
and weather stations located at the map’s corners (top-left, top-right, bottom-left, and bottom-
right) respectively. We can also denote nodes within entire networks using SN = {sn : sn ∈
SNhive∪SN f ood ∪SNwater∪SNcorner}.

Furthermore, for the purpose of this work, a constraint is being introduced for the
optimisation algorithm so that the sensor nodes placements to be optimised (SNhive) are
located within the ‘convex hull’ generated by SN f ood ∪SNwater (Figure 3.7). This assumption
is made in order to concentrate the bee hives in the middle-part of the RoI and to reduce the
probability of insects flying around the map’s border. Therefore, a solution will be invalid if
one or more optimised sensor nodes (hives) is located outside of the convex hull (a grey area
in Figure 3.7).

Fig. 3.7 Illustration of the ‘convex hull’ generated by SN f ood ∪SNwater (white area), in which
the SNhive is allowed to be optimised within. The squares are: weather stations at the map’s
corners (brown), food (green) and water (blue) sources respectively; whilst the triangle
denotes the locations of bee hives to be optimised.
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3.2.2 Chromosome Design

Chromosome (also called an ‘individual’ in EA) design is an important step in the develop-
ment of any optimisation EA technique in order to represent a single solution so that it is
assessable for quality evaluation using the so-called f itness function.

Fig. 3.8 A chromosome encoding and decoding example that consists of only the hive nodes
which are to be optimised.

Let SNchrom = {sn : sn ∈ SNhive} be a set of sensor node locations encoded as a chromo-
some for optimisation purposes. It stores a list of integers with the N = N(SNchrom) elements,
where each item ranges from 0 to 15250 (a total of 101×151 = 15251 grids/cells through-
out the RoI). In order to obtain the exact spatial location (x and y) within the landscape
(chromosome decoding), we use the following:

loc(csn) =

x = snn mod 151

y = snn÷151
(3.1)

An example is shown in Figure 3.8 to illustrate the procedure. Then, a f itness function is
used for quality assessment of a single chromosome in the following sub-section.

3.2.3 Fitness Function

The main motivation of the fitness function calculation is based on the fact that spatial
interpolation is often criticised for an inability to estimate extreme values [84]. For example,
within a mountainous region, if we only deploy the sensor nodes within the lower ground of
the landscape (the foothills in this case), no interpolation method is capable of estimating the
temperature values on the mountain’s peak. Thus, the main objectives of the fitness function
are focusing on the following:

• To capture the representative nodes within the RoI, such that extreme low and high
values are represented. Here, ‘representativeness’ is defined as the ability of an
interpolator to best estimate the condition of a particular environmental parameter of
the RoI at a later stage (given a pre-defined number of nodes for optimisation).
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• To minimise redundant nodes. The term ‘redundant’ in this case refers to those points
that are able to be estimated by the interpolation method with less statistical error (e.g.
RMSE);

• Create a sparsely distributed network of sensor nodes. In addition to the objectives
given above, a dispersed sensor network design is also preferred.

A statistical error measurement method is exploited; Leave-One-Out Cross-Validation
(LOCCV), in conjunction with spatial interpolation method to obtain the critical points over
the landscape. The ‘critical’ points are defined as the representative sensor nodes placed
in such a way that each node’s observation is unable to be restored (estimated) using a
conventional interpolation technique; In other words, the absence of any node would degrade
the representativeness of the entire sensor network:

LOCCV ( f̂ ) =

√
1
N

N

∑
n=1

(ychrom,n− f̂ (−n)(xchrom,n))2 (3.2)

where f̂ is a particular interpolation technique; N is the total number of nodes within SNchrom;
yn is the observed value at SNchrom,n; and f̂ (−n)(xchrom,n) is the estimated value of xchrom,n

using f̂ method using the sensor nodes of food sources, water source, and the hives (nodes
to be optimised) with nth node absent (i.e. (SN f ood ∪SNwater∪SNhive)\SNhive,n). Also, note
that the LOOCV is only calculated from SNchrom.

The f itness function within the optimisation process is calculated by maximising the
following equation:

f itness = LOCCV ( f̂ )× sparsity

= LOOCV ( f̂ )×min{ pdist(SN f ood ∪SNwater∪SNchrom) }
(3.3)

where the network’s sparseness is estimated by obtaining the minimal pairwise distance
(pdist) between the sensor nodes: SN f ood ∪SNwater∪SNchrom.
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3.3 Bee Behaviour Modelling

This section proposes the data-driven artificial bee simulation framework using the ‘ex-
perimental’ data set (DataSet 2, Section 3.1.2). In summary, the main components to be
addressed are: (a) The start and end of single bee activity within a day; (b) The possible
activities of a bee depending on time-of-day; (c) Propose the data-driven bee modelling
framework. Consequently, the procedure to simulate an artificial bee will be discussed at the
end.

3.3.1 Bee Behaviour Classification

First of all, the data set was ‘grouped’ based on individual bee on a daily basis. Then, the data
needed to be analysed so that we could obtain meaningful information for analytic purposes
of the data set. Bee activities are classified into three different behaviours to distinguish the
possible activity of an individual bee throughout the day, namely: By The Entry (BTE), Short
Mission (SM), and Foraging (FG). The FG activity includes activities occurring outside or
inside of the hive. Table 3.5 summarises the categorisation rules for this work based on field
observations:

Successive
Readings
Threshold

Activity
Duration

By the entry x < 3m x < 30m

Short mission 3m≤ x≤ 6m 3m≤ x≤ 6m

Foraging x > 6m 6m≤ x≤ 6h

Table 3.5 Summary of bee activity classification rules based on field observations. Within
the ‘Activity Duration’ column, if the duration x is more than the pre-determined range (e.g.,
by the entry x > 30m), the data will be omitted. Note that the configurations may vary for
different bee species.

By The Entry (BTE). A detections difference that is less than 180s is to be categorised
as BTE in which the bee hovers around the RFID reader making consecutive readings.
Therefore, the estimated duration for this particular activity is made up of the accumulated
values for those readings. This method allows us to detect dead bees near the reader, indicated
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by a very high reading frequency of consecutive readings for the entire day, enabling these
data to be classified as invalid and omitted from the model.

Short Mission (SM). A bee is assumed to be in ‘short mission’ where the interval of
successive readings is between 3m and 6m. During this period, bees are likely to be doing
the following activities: short flights, orientation flights to familiarise themselves with the
hive’s surroundings (occurs among novice bees), walking around the hive, etc.

Foraging (FG) period. Successive readings with more than six minutes interval (x > 6m)
will be classified as foraging; nevertheless, this activity is further divided into two categories:
(a) Out-of-hive foraging where bee is scouting/exploiting for food/water sources; and (b)
In-hive foraging period where an individual deposits food sources into the hive. In addition,
it is also assumed that an individual bee does not forage before sun rise or after sun set.

Eventually, by applying the above behavioural rules to the ‘experimental’ data, we can
obtain knowledge of the bee activities throughout the day and this information will be used
in the following sub-sections.

3.3.2 Bee Activities Modelling

This sub-section is one of the main contributions of this dissertation that involves utilising
the activity data generated from the previous sub-section (Section 3.3.1) to perform the
curve fitting optimisation procedure to model bee behavioural activity in a day. To begin
with, problem quantification (mathematical notation) needs to be formalised and will be
used within the rest of the framework description. The data set (D) will be divided into two
hierarchical levels (summarised in Table 3.6):

i Bees’ activities. Let A = {ai=1,ai=2,ai=3}= {BT E,SM,FG} be a set of bee activities
with a total of 3 items (I = 3) as described in Section 3.3.1.

ii Time of day. The second hierarchical level is the time-in-day T = {t1, t2, · · · , t j, · · · , tJ}
which holds pre-defined ‘bins’ throughout the day to indicate occurrence (frequency)
of a particular activity at a designated period of time. For the purpose of this work
the bin size tbin = 30m is used which means that J (the number of elements in T)
= 24h÷30m = 48 elements (i.e. T = {t1, t2, · · · , t j, · · · , tJ=48}).

A set of mathematical notations is also established in order to select a sub-set of data D
based on a particular category (hierarchical level) of D. A number of examples are presented
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Set Notation Description
Representation

Item Index Example

A Bee Activity ai i, · · · , I A = {a1,a2, · · · ,ai, · · · ,aI}

T Time of day t j j, · · · ,J T = {t1, t2, · · · , t j, · · · , tJ}

D Data set di, j D = {· · · ,di, j, · · · ,dI,J}
Table 3.6 Mathematical notations that will be used throughout this sub-section.

as follows:

D = {d : d ∈ D}
= {d1,1,d1,2, · · · ,di, j, · · · ,dI,J}

Di = Di=x

= {d : d ∈ D∧ i = x}
= {dx,1,dx,2, · · · ,dx, j, · · · ,dx,J}

D j = D j=x

= {d : d ∈ D∧ j = x}
= {d1,x,d2,x, · · · ,di,x, · · · ,dI,x}

Also, please note that x is an artificial notation which serves different purposes. For example,
in case of Di = Di=x, the notation x represents ai in activity A.

A summation function S(d) = ∑
N
n dn over a set of datum d that consists of N elements.

Further, the weighted mean (µ∗) and standard deviation (σ∗) are also formalised to corre-
spond with the data availability (di, j, here, denoted by wi):

µ
∗(V,W ) =

∑
N
i wi · vi

∑
N
i wi

(3.4)

σ
∗(V,W ) =

[
∑

N
i wi · (vi−µ∗)2

∑
N
i wi

] 1
2

(3.5)

where V and W are the lists of values (vi) and weights (wi) respectively, with a total of N
elements.
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Modelling Bee Activity in Time-of-day

By employing the data set D previously discussed, we model the bee activity within a day
using the following Gaussian Probability Density Function (PDF):

GALL =
I

∑
i

Gi = GBT E +GSM +GFG (3.6)

Gi(x, I,Tµ ,Tσ ) = Ie−
(x−µ)2

2σ2 (3.7)

where Gi is one single Gaussian distribution function of the ith activity in A, x is the data point
(time of day in this case) to be estimated, I is the intensity, and µ and σ are the mean and
the standard deviation of the distribution respectively. Then, the curve fitting optimisation
process will be executed using the Gaussian PDF to obtain the activity distribution within a
day.

To do this, the preliminary step is to ‘normalise’ the data because a particular bee activity
(especially BTE) could occur any moment regardless time of day and will cause the so-called
‘background effect’ (BKG) of the data which will result in degradation of the curve fitting
performance. The presence of such an effect does not comply with the characteristic of a
PDF and must be removed from the data before executing the optimisation. BKG can be
estimated by calculating the mean (µ) of Di that holds the minimal Coefficient of Variation
(CV) of the first n f irst and last nlast datum within a day:

argmin
n f irst ,nlast

CV
(
(Di)n f irst ∪ (Di)nlast

)
(3.8)

where CV () is the CV function; the n f irst datum (Di)n f irst =
{

S(Di, j=z) : z∈{1,2, · · · ,n f irst}
}

;
and the nlast datum (Di)nlast =

{
S(Di, j=z) : z ∈ {L− nlast , · · · ,L}

}
. Then, the BKG can be

estimated by:
BKGi = µ

(
(Di)n f irst ∪ (Di)nlast

)
(3.9)

with n f irst and nlast corresponding to the minimised Equation 3.8. This framework also
assumes that an individual bee only forages during the day (i.e. in between sunrise and
sunset); Therefore, the BKG for foraging period (FG) does not exist. Then, the Gaussian
distribution to be curve-fitted (Equation 3.7) can now be re-written as:

Gi(x,BKG, I,Tµ ,Tσ ) = Ie
− (x−Tµ )2

2T 2
σ +BKG (3.10)
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Then, let time Tf irst,last = {tx ∈ Z∧ n f irst < x < nlast} be a sub-set of T and its corre-
sponding datum Ui = {Di, j=x : x ∈ Z∧n f irst < x < nlast}. The remaining parameters for the
individual Gaussian Gi of distinct activity (ai) are estimated in the following:

Estimation Constraint

Ii µ({u : u ∈Ui∧u≥Ui,unq,(n−2)}) σ({u : u ∈Ui∧u≥Ui,unq,(n−2)})

(Tµ)i µ∗({Tf irst,last ,Ui}) 30 minutes

(Tσ )i σ∗({Tf irst,last ,Ui}) σ∗({Tf irst,last ,Ui})÷2

where u denotes each datum within Ui and Ui,unq,(n−2) is the third largest ‘unique’ value
within Ui (represented using an order statistic). Lastly, the lower and higher boundaries (i.e.
search spaces) for the optimisation are calculated by:

Clo = Estimation−Constraint

Chi = Estimation+Constraint
(3.11)

Chromosome Design

Fig. 3.9 An illustration of the chromosome design utilised in this work, where each element
within the individual holds a value between 0 and 1, and B denotes the background (BKG).
The encoding and decoding example of the intensity (Ii) parameter of distribution Gi is also
presented. In this case, assume that we have element Ii with value 0.7615 (encoded) within
the individual which is equivalent to 205.32 (decoded) after applying Equation 3.12.

The process of chromosome encoding and decoding quantifies the problem creating
an ‘individual’ for the optimisation process. For the purpose of this curve fitting, a single
individual is designed using the a similar approach as to that [85]. A single parameter to be
optimised will be encoded as a value between 0 and 1, the following equation is utilised to
decode the value:

p(x,Clo,Chi) =Clo + x · (Chi−Clo) (3.12)

where x and p are the encoded and the decoded value of a particular Gaussian parameter; Clo

and Chi are the constraint values (lower bound and higher bound) calculated from Equation
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3.11. Figure 3.9 demonstrates the design of single individual with a decoding example being
a parameter I of the Gaussian distribution Gi.

Fitness function

In this work, the optimisation will minimise the sum of chi-square (χ2) fitness function to
obtain the best individual [10, 85]:

f itness =
I

∑
i

χ
2
i (3.13)

χ
2
i =

1
J−Np

J

∑
j

(di, j−Gi, j)
2

di, j +1
(3.14)

where I and J are the total number of activities A and time of day T respectively, Np is the
number of parameters to be optimised (4 in this case) for each Gaussian, di, j and Gi, j are
the data and curve-fitted lines at ith activity and jth time-of-day. Note that the +1 within the
denominator of Equation 3.14 is introduced to avoid a divide-by-zero error.

3.3.3 Artificial Bee Simulation

This section will describe the procedure to simulate a bee within the field by utilising the
previously discussed components based on Figure 3.10.

Fig. 3.10 Simulation procedure to generate an artificial bee.
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The initial step is to obtain the f irst and last detections (detection f irst and detectionlast)
of the bee within a day. To do this, two time-stamps will be randomly chosen using distribu-
tion GALL (Equation 3.6) and the lower/higher value will become the first/last detection for
that particular bee.

In the following, operator tcurr is used to indicate the current time-stamp of the bee to
be simulated within the iterations. Provided tcurr ̸= detectionlast , the algorithm obtains a
list of ‘possible’ activities (Section 3.3.2). Here, ‘possible activity’ means that the next
bee behaviour is based on the empirical rule illustrated in Table 3.7. Then, by utilising the
optimised (curve fitted) PDF of distinct ‘possible’ activities, a ‘weight’ is assigned according
to the current time-of-day tcurr. Eventually, the bee’s activity at tcurr is randomly chosen
from the weighted choices of activities. In addition, in case where anext = FG and where the
bee is out-of-hive, a bee foraging flight paths (Section 3.1.3) will also be allocated to the
particular bee activity. The random activity duration is given based on the information in
the post-processed ‘experimental’ data set (Section 3.3.1). The entire iteration is repeated if
tcurr ̸= detectionlast ; otherwise, the simulation process returns the newly generated artificial
bee.

acurr Activity Description Possible next activity (anext)

Init Initial/first detection anext = {BT E,SM,FG}

BT E By The Entry anext = {SM,FG}

SM Short Mission anext = {BT E,FG}

FG Foraging anext = {BT E,SM}

Table 3.7 The empirical rules utilised for choosing the next activity (anext) of a bee based on
its current activity (acurr). The Init denotes that the tcurr is the first detection (detection f irst)
of that particular bee on that day.
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3.4 Swarm Sensing Data Sampling

The entire swarm sensing field simulation (hybrid ESN) can be generalised in the following:

Step 1 Initialise a number of pre-defined static nodes (acting as weather stations) within the
region of interest, they are: food (SN f ood) and water sources (SNwater), and sensor
nodes at the map’s corners (SNcorner).

Step 2 Execute the optimisation algorithm for ESN deployments (Section 3.2) to locate the
statistically optimised locations for a number of pre-defined hives (SNhive) within the
area under study. Please note that, for the purpose of this work, the optimisation
execution is also being constrained in a way that the locations of individual hive in
SNhive are to be located within the convex hull created by SN f ood,water = SN f ood ∪
SNwater.

Step 3 Employ the artificial bee simulation framework as described in Section 3.3 from each
hive (SNhive) in order to generate a user-defined number of bees. The bees are acting as
mobile sensor nodes that collect high frequency data as they move (forage) throughout
the landscape.

Hence, by utilising the South Esk Modelled data set (Section 3.1.1) the main objective of this
section is to propose a set of procedures to perform data sampling for the field simulation
described above which corresponds to different sensor node types (i.e. static and mobile) as
illustrated in Table 3.2.

3.4.1 Fixed Sensor Nodes

Since the field simulation is using the South Esk ‘modelled’ data set (Table 3.3) that consists
of hourly data within the RoI, the simulated weather stations

(
SNstatic = SN f ood ∪SNwater∪

SNhive
)

sense the environment in a way that collect environmental parameter data on an
hourly basis. Note that the fixed sensor node deployments (spatial sampling) will utilise the
optimisation approach described in Section 3.2.

3.4.2 Mobile Sensor Nodes

On the other hand, for the purpose of this dissertation, the mobile sensor will be mounted
on the insect’s thorax and collects environmental data in a way that follows empirical rules
according to the insect’s behaviours (Table 3.8)



3.4 Swarm Sensing Data Sampling 47

Bee Behaviour

By The Entry Short Mission
Foraging (out of
hive)

Foraging (in
hive)

Bee’s
Location

Hive entrance Around hive Out of hive Inside hive

Detections start · · · end start, end start · · · end start, end

Frequency 10s N/A 60s N/A

Activity Hive defence
Orientation
flights

Search / exploit
food sources

Deposit pollen

Table 3.8 Data sampling configuration for mobile sensor nodes – insects. Note that the ‘· · · ’
on row ‘Detections’ indicates that the data are collected continuously with a certain interval
(column ‘Frequency’) between the start and end time-in-day.

First, if the bee is detected by-the-entry (BTE) of the hive, a very high frequency of
readings will be carried out (i.e. 10 sec interval). This is based on the assumption that a
reader will be installed at the hive’s entrance, in which has a similar configuration to that
used in the CSIRO’s Swarm Sensing initial bee experiment (Section 3.1.2).

In the case of a Short Mission (SM), which is believed to occur only among novice
bees learning to fly, only the start and end time-of-detection at the hive’s entrance will be
recorded.

Lastly, the foraging (FG) behaviour represent the actual bee ‘foraging’ periods. Such a
behaviour includes in-hive FG and out-of-hive FG. An out-of-hive FG is where a consecutive
‘sensing’ of the environment will take place as bees move throughout the landscape. A bee
flight path will also be assigned to such a behaviour using the bee foraging flight model
data set (Section 3.1.3). In this simulation, ≈ 60sec interval of detections is utilised because
by considering the hardware capability limitations (i.e. power source), it is more realistic
that sensors further away from the reader will have lower reading frequency compared with
nearer sensors to the readers, for instance, BTE. On the other hand, similar to SM, the in-hive
FG will only record data at the start and end of the behaviour period. In this case, the bees
are assumed to be involved returning from an out-of-hive FG to deposit food or water and
performing the so-called ‘waggle dance’ to inform other bees of the newly found food/water
sources.

By having the above bee out-of-hive foraging configurations, the simulated bee’s spatial
and temporal ‘sensed’ data will be irregularly spaced. However, since the South Esk Modelled



48 Methodology

data set (Section 3.1.1) consists of only regularly spatial (location represented as integers) and
temporal data (on an hourly basis), further estimation of irregularly-spaced environmental
data is necessary from the data set.

In this work, a linear reduction-based spatio-temporal interpolation algorithm is employed
[45]. The term ‘reduction’ implies that the algorithm first interpolates the value in the spatial
dimension, then ‘reduces’ it to an estimation in the temporal dimension.

Algorithm 1 Estimate the value in the spatial dimension
function SPATIAL(x,y, t)

if x is not integer and y is not integer then
K←{(xlo,ylo, t),(xlo,yhi, t),(xhi,ylo, t),(xhi,yhi, t)}

else if x is integer and y is not integer then
K←{(xlo,ylo, t),(xlo,yhi, t)}

else if x is not integer and y is integer then
K←{(xlo,ylo, t),(xhi,ylo, t)}

else
K←{(x,y, t)}

end if
return IDWs( (x,y), K )

end function

To do this, Algorithm 1 is employed in conjunction with the Inverse Distance Weighting
(IDW) interpolation technique to compute the value at spatial dimension (x, y) and time t:

IDWs
(
(x,y),K

)
=

N

∑
i

wi · vi ,wi =
1
da

i
(3.15)

where K is the sample data that will be considered in the interpolation process; di, wi and vi

are the distance, weight and value of the ith sample point respectively; and a is the distance-
decay parameter. Furthermore, based on Algorithm 1, dimlo and dimhi is the lower and
upper integer value of a particular dimension dim ∈ {x,y}; In other words, this method only
considers the nearest data in the linear spatial estimation. Then, the ‘reduction’ step to the
irregular-temporal dimension t is performed using:

fst(x,y, t) = spatial(x,y, tlo)×
thi− t

thi− tlo
+ spatial(x,y, thi)×

t− tlo
thi− tlo

(3.16)
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where spatial() represents the Algorithm 1; tlo and thi are the rounded-down and rounded-up
values of time t. Note that if t is an integer, Equation 3.16 will simply become a spatial-only
estimation, i.e. fst(x,y, t) = spatial(x,y, t).
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3.5 Spatio-temporal Interpolation (STI) Algorithm

In this dissertation, a computationally efficient spatio-temporal interpolation (STI) technique
is proposed to perform environmental modelling from a swarm of static and mobile sensor
nodes produced by the swarm sensing field simulation (Section 3.4). Firstly, a new variation
of the method is proposed to model the space-time interaction by utilising a geo-statistical
technique for the weighting mechanism of the STI algorithm to be discussed shortly.

Then, the high-resolution irregularly-spaced observations generated from the RoI will
be pre-processed for the STI technique. The rationale of this procedure is to ‘reduce’ the
complexity of sample points to be processed by the STI algorithm to facilitate computational
efficiency. On the other hand, such activity can also be seen as Quality Control (QC) because
the STI algorithm will consider the data quality in terms of data variability and observation
density.

Lastly, a hybrid approach (using an extension and a reduction method) STI interpolation
technique will be proposed that satisfies the swarm sensing requirements: (a) computationally
not intensive; (b) acceptable quality; and (c) complies with the environmental situation in
reality, such as, producing smooth/gradual space-time transitions. The error measurement of
the corresponding STI algorithm will be given at the end. The following sub-sections will
describe the aforementioned components.

3.5.1 Geo-statistical Modelling: Spatio-temporal Variogram

For this part, only the static nodes SNstatic = {SN f ood ∪SNwater∪SNhive} will be utilised. In
geostatistic, an observation can be written as:

Z(s, t) = m(s, t)+Y (s, t) (3.17)

where Z(s, t), m(s, t), and Y (s, t) are the spatio-temporal observation, mean component, and
stochastic residual component respectively. In order to model the spatio-temporal variogram,
only the Y (s, t) component is incorporated to indicate the relationship between a particular
space(hs) and/or time (ht) distance. The variogram is created by using:

γst(hs,ht) =
1
2

[
Var

(
Y (s+hs, t +ht)−Y (s, t)

)]
(3.18)

where Var() is a function to calculate the variance of two observations with a specified
spatio-temporal ‘lag’ distance (hs and ht). This work will utilise the generalised product-sum
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model proposed by De Iaco [53]:

γst(hs,ht) = γst(hs,0)+ γst(0,ht)+ kγst(hs,0)γst(0,ht) (3.19)

with
k =

sillγst(hs,0)+ sillγst(0,ht)− sillγst(hs,ht)

sillγst(hs,0)sillγst(0,ht)
(3.20)

where the sill at different dimensions (space, time, and spatio-temporal) are estimated by
using the variance of the corresponding data set. Finally, the following rule must be met in
order to satisfy the admissibility for γst as in Equation 3.19.

0 < k ≤ 1/max{sillγst(hs,0),sillγst(0,ht)} (3.21)

3.5.2 Raw Data Pre-processing

Figure 3.11 illustrates the processing example for a 2D spatial-only case. The entire RoI will
be divided into a number of partitions in a way that each partition consists of one sample
data point on average. Then, each partitions holds the mean (µ) and standard deviation (σ )
calculated from the sample data within the corresponding partitions and is spatially-located
at the midpoint of rectangle (light-green as in the right of Figure 3.11). On other words,
the interpolation algorithm will use the µ value for the estimation, while the σ is used to
compute the estimation error (Section 3.5.4).

Fig. 3.11 Data pre-processing (spatial-only case). Left: 2D spatial map; Right: ’partitioned’
sub-area from the map.

Such a procedure can be extended to the spatio-temporal case (2D-spatial and 1D-
temporal) as demonstrated in Figure 3.12, where the actual swarm sensing field simulation
high-resolution sample observations will be generated (left of the figure). Similar to the
estimation presented on the right of Figure 3.11, on the right of Figure 3.12 is an example of
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Fig. 3.12 Data pre-processing for 2D-spatial + 1D-temporal case. Left: 3D spatio-temporal
data ‘cube’; Right: ’partitioned’ sub-area of the 3D data cube.

the partition value located at the midpoint of time tx = (t1 + t2)/2 that holds the µ and σ of
the observations (blue dots).

After execution, the raw data from the field simulation will be in the form of a regularly-
spaced spatio-temporal grid (called the ‘processed’ data/observations hereafter) that holds the
µ and σ values for the purpose of the STI estimation (Section 3.5.3) and its corresponding
error measurements (Section 3.5.4) respectively.

3.5.3 The Hybrid Approach STI Algorithm

Let V = {vst,1,vst,2,vst,3, · · · ,vst,i, · · · ,vst,N}= {µst,1,µst,2,µst,3, · · · ,µst,i, · · · ,µst,N} be a list
of space-time ‘processed’ observations with a total of N elements:

ST Ired(x,y, t) = ST Iext(x,y, tlo)×
thi− t

thi− tlo
+ST Iext(x,y, thi)×

t− tlo
thi− tlo

(3.22)

ST Iext(x,y, t) =
N

∑
i=1

wst,i · vst,i =
N

∑
i=1

γ
−2
st,i · vst,i (3.23)

where ST Ired and ST Iext are the reduction and extension approaches of the STI algorithm
respectively; x, y and t are the (x,y) spatial-location at time t to be interpolated; tlo and thi

are the lower and higher time indices based on time t; and finally, γst is the spatio-temporal
variogram that models the space-time interaction for the weighting mechanism (Section
3.5.1). An example of the above algorithm is illustrated in Figure 3.13.
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Fig. 3.13 Visual illustration of the proposed STI algorithm. In this example, the value at
time t is to be interpolated. The algorithm first estimates the values at both tlo = t2 (red) and
thi = t3 (blue) utilising the extension approach (Equation 3.23); and then interpolates the
value at time t (purple) using the reduction approach (3.22).

In this work, only plus-and-minus one time index (i.e. ±1 hour in this case) will be
utilised based on the justification that the observation at a particular time will not be correlated
at the exactly same time-frame on the previous and/or following day. Furthermore, such a
configuration has been shown to be superior to the empirical data set (South Esk Modelled
data set in Section 3.1.1) which is the same data set as is used in this work [86]. Eventually,
the spatio-temporal variogram (Section 3.5.1) is only modelled on a daily basis to facilitate
computational efficiency.

3.5.4 STI Algorithm Error Measurements

Finally, the proposed STI algorithm is able to calculate the measurement error using the
following equation (similar to Equation 3.23):

ST Ierr(x,y, t) =
N

∑
i=1

wst,i ·σst,i =
N

∑
i=1

γ
−2
st,i ·σst,i (3.24)

This calculation is mainly used to address the Quality Control (QC) component of the
data utilised within the STI process, so that the proposed algorithm is able to provide a certain
confidence level during interpretation.

3.5.5 Performance Assessment

There are many statistical techniques that can be used for performance evaluation of an
interpolation method. Li and Heap [54] lists the mostly used statistical techniques for
evaluation of interpolation methods. One of these techniques, the leave-one-out cross-



54 Methodology

validation method will be implemented to evaluate the capability of interpolation method
that has been developed based on: e.g., how well it can predict an omitted value, compared
with the original value at that location [58, 72, 76].

The interpolation technique will also be assessed using Root Mean Square Error (RMSE).
This is used to measure the error between the predicted values, compared with the model
being estimated [49, 72, 75, 76, 87]. RMSE is based on the following equation:

RMSE =

[
1
N

N

∑
i=1

(oi− pi)
2

] 1
2

(3.25)

where N is the total number of samples, oi and pi are the observed and the estimated/interpolated
values of the ith node. However, RMSE suffers from the drawback of being sensitive to
outliers [54]. Therefore, the results could also be investigated using Mean Absolute Error
(MAE), a measurement that is less sensitive to extreme values:

MAE =
1
N

N

∑
i=1
|oi− pi| (3.26)

Li [54] suggests that in assessing an interpolation technique’s performance, a combination
of exact (cross-validation) and inexact (RMSE and MAE) methods is desirable to have
confidence in the overall capability of the method.

The statistical mean will also be used to measure how ‘correlated’ two sets of variables
are using the Pearson’s r product-moment correlation of coefficient. The calculation is as
follows:

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2(yi− ȳ)2

(3.27)

where x = {x1,x2, ...,xn} and y = {y1,y2, ...,yn} are the two sets of values being examined; x̄
and ȳ are the mean value of x and y respectively. The resultant value will always lie between
-1 (total negatively correlated), 0 (no correlation) and +1 (perfect positive correlation). In this
study, x and y can be seen as the observed (sample points) and estimated values respectively.
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3.6 System Design

3.6.1 Software

Python programming language was used for this development work. This particular language
was particularly chosen because it allows a user to build the research prototype and to obtain
results in a relatively short period of time. Furthermore, because of an increase in the size
of the Python community and the number of useful packages for scientific purposes (i.e.
data processing and analysis, optimisation, visualisation, etc), it was considered that Python
would be an ideal choice especially with time being a critical aspect for a PhD candidate (i.e.
approximately 3 years).

The following Python packages were utilised during the software development process:

i Numpy [88]. A computationally effective mathematical computation package used in
Python.

ii Scipy [89]. Provides a number of useful built-in algorithms for scientific computing.

iii Pandas [90]. A high performance, open-source Python data structure and analysis
tools.

iv Matplotlib [91] and seaborn [92]. Widely used Python libraries for scientific plotting.

v Distributed Evolutionary Algorithms in Python (DEAP) [93]. An evolutionary compu-
tation framework used in Python for single or multi optimisation.

The entire field simulation and the spatio-temporal interpolation algorithm are imple-
mented using the aforementioned tools. Eventually, the proposed framework in this disserta-
tion is intended to assist environmental managers and/or researchers to make better decisions
by using the software that has been developed – both statistical methods and visual analytics.

3.6.2 Hardware

The software development throughout the work was conducted on a personal computer with
3.40 GHz with 12GB RAM on a Windows 7 64-bit operating system.





Chapter 4

Software Implementation

This chapter discusses the design and execution of the experimental field simulation frame-
work for the Swarm Sensing Project based on the previous chapter (Chapter 3: Methodology).
The experiment was conducted using the following procedure:

Step 1 Spatial sampling for near-optimal environmental sensor networks (ESN) deploy-
ments. As previously discussed, the optimisation algorithm (Section 3.2) is mainly
utilised for the deployments of hives’ locations within the Region of Interest (RoI).
Furthermore, the method also employed for the following purpose: comparing
different spatial interpolation algorithms by considering several aspects, such that,
statistical error, computational efficiency, and visual results acceptability.

Step 2 Data-driven bee behavioural modelling. This section covers the statistical mod-
elling algorithm (curve fitting optimisation, Section 3.3.2) to generate artificial
bees (Section 3.3.3) within the RoI that act as mobile sensor nodes flying through
the landscape and ‘sense’ the environmental situation that they are experiencing.

Step 3 Swarm sensing data sampling from the hybrid ESN field simulation. Procedures to
generate the high-resolution spatio-temporal environmental observations within
the RoI from static (weather stations, hives, food and water sources) and mobile
(e.g. insects) sensor nodes.

Step 4 Evaluating the proposed spatio-temporal interpolation (STI) algorithms. This
section demonstrates the final results of high-resolution environmental modelling
framework which has been proposed in this dissertation.

Each section consists of an introduction to various experimental designs and applications,
followed by the corresponding simulation results and discussion.
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4.1 Simulation 1: Spatial Sampling of Static Nodes

First of all, optimisation is executed mainly for the bee hives’ location using the Evolutionary
Algorithm (EA, see Section 3.2) to build a static-only ESN incorporating the pre-defined
sensor nodes from the food sources, water source, and the map’s corners (illustrated in Table
3.2).

However, as previously mentioned, this method will also be employed for the spatial
sampling of different numbers of sensor nodes in order to evaluate the 2-Dimensional (2D)
interpolation algorithms. Based on the assumption that we will collect a huge amount of
data (up to thousands of observations) with a very high temporal frequency (every minute),
computational efficiency is also a crucial factor during algorithm selection. Therefore, a
careful analysis must be performed during selection to ensure a ‘balanced’ spatio-temporal
interpolation algorithm is developed. The criteria for a ‘balanced’ spatial interpolation
algorithm are as follows:

• Computational efficiency. The processing time does not increase significantly as the
number of sensor nodes increases;

• Produces acceptable statistical error. This is the most widely compared element for
spatial interpolation algorithm performance assessments;

• Creates visually acceptable results. Some interpolation techniques yield abrupt results,
which do not faithfully represent real environmental situations.

4.1.1 Experimental Setup

This experiment includes two components: (i) ESN optimisation for the field simulation; and
(b) ESN optimisation for comparing different interpolators.

Swarm Sensing Field Simulation. Using the description in Section 3.2, we simulate only
five hives locations for this purpose, i.e. N(SNhive) = 5. Also, SNhive will be optimised within
the ‘convex hull’ generated by static nodes: SN f ood ∪SNwater.

Comparing different interpolators. The configuration for this experiment is different
from that for the Swarm Sensing Field Simulation discussed above. In this case, the experi-
ment does not incorporate the static nodes for food and water sources (i.e. SN f ood ∪SNwater);
it only uses the static nodes at the map’s corners (SNcorner). Then, the ESN optimisation algo-
rithm is executed based on different numbers of sensor nodes N = {5,10,15,20,25}. These
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designs will be used to compare distinct spatial interpolators, namely: Ordinary Kriging
(OK), Inverse Distance Weighting (IDW), and Shape Function (SF) (also called the Triangle
Irregular Network – TIN). Finally, MAE (Equation 3.26) and RMSE (Equation 3.25) will be
utilised for the statistical error validation.

The following table depicts the configuration employed for the EA:

Parameter Value

Population size 50
Crossover probability 0.7
Mutation probability 0.05
Crossover operation One point

Table 4.1 EA parameter configuration to be utilised within the execution.

4.1.2 Results

Bee Hives Locations for the Field Simulation

(a) N(SNhive) = 0 (b) N(SNhive) = 5

Fig. 4.1 Demonstration of the EA-assisted ESN optimisation: (a) the RoI and the pre-
defined static nodes for execution; and (b) using the number of hives to be optimised
N = N(SNhive) = 5. The figure is labelled as follows: red square (SNcorner), green square
(SN f ood), blue square (SNwater), yellow triangle (SNhive), and the ‘convex hull’ area (dashed-
line connecting nodes: SN f ood ∪SNwater) within which SNhive are to be optimised..

The simulation has been executed and visualisation results for the optimised ESN deploy-
ment is presented in Figure 4.1. Figure 4.1 presents the results for the static node deployments
for the field simulation framework. Note that Figure 4.1a (where N = 0) is only used to
illustrate the manually deployed static nodes (SN f ood ∪ SNwater ∪ SNcorner). The figure is
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presented using the surface height data (meters) because the algorithm utilised elevation
information from the South Esk ‘modelled’ data set during the optimisation.

In general, based on visual cues, the optimisation performed as expected in that it captured
the ‘extreme value’ of the RoI’s topography. Based on Figure 4.1, this phenomenon can
be observed from the fact that one hive is located at the middle part (white-brownish) of
the RoI that indicates a high elevation data (Figure 4.1b). The algorithm also performed
satisfactorily in terms of the sparsity of the entire network (i.e. no extremely-closely located
nodes observed).

Evaluating Spatial Interpolation Algorithms

The main focus of this simulation is to compare the performance of three spatial interpolation
algorithms (OK, IDW, and SF) based on three factors: computational efficiency, statistical
error, and visual aspect. The results in this section are used to justify: based on significant
characteristics of the interpolators being compared, which interpolation technique can be seen
as a ‘balanced’ method and is potentially suitable to be considered for the spatio-temporal
interpolation algorithm.

(a) N(SNhive) = 5 (b) N(SNhive) = 10

(c) N(SNhive) = 20 (d) N(SNhive) = 30

Fig. 4.2 Visual examples for the optimised sensor nodes (yellow triangles) within the RoI
bounded by the map’s corners (red squares).
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Fig. 4.3 Computational efficiency comparisons between distinct methods. The figure demon-
strates the mean and its corresponding 95% confidence interval (vertical bar).

Figure 4.2 demonstrates the weather stations’ locations after the EA-assisted ESN optimi-
sation as proposed in Section 3.2. The results of the EA may be different in distinct iterations,
therefore it is important to execute the algorithm for a number of replications. In this case, a
total of 10 runs were employed in order to have confidence in the results and interpretation
[10].

Figure 4.3 illustrates the time elapsed to execute different interpolation methods. The
main objective of this computational efficiency test is to observe how the increase in number
of observation (sample data) would influence the required time for the interpolator’s execution.
Therefore, the result is normalised using x = x−min, where min is the minimum elapsed
time corresponded to different methods. Based on the figure, it is clear that the required
computation time of OK grows significantly as the number of nodes increases. This indicates
that OK is definitely not preferred if the number of observations is high. On the other hand,
SF is the better option for a large-scale problem compared to IDW. Also the elapsed time of
IDW increases gradually, while SF possess the advantage of being computationally efficient
regardless of the number of nodes (sample data).

In terms of the statistical error comparison, the overall performance of the interpolators
yields similar a trend in that the error decreases as the number of nodes increases. Comparing
the different methods, OK performed the best (lowest RMSE in Figure 4.4 overall) while SF
and IDW have comparable quality. These results confirmed the finding that a geostatistical-
based method is more likely to perform better than a deterministic method, such as, IDW and
SF in this case [69].
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Fig. 4.4 RMSE comparison of elevation data between different interpolators.

Number of sensor nodes

N = 10 N = 20 N = 30

(a
)O

K
(b

)I
D

W
(c

)S
F

Fig. 4.5 Visual assessment of different interpolators using the optimised sensor nodes and
the interpolated/estimated surface height data based on the design shown in Figure 4.2. Each
row represents a different method and each column a different number of nodes.
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The final assessment is to determine the most realistic interpolation method using vi-
sual cues. To do this, the simulation modelled the environmental situation using distinct
interpolation techniques within the RoI (Figure 4.5). In general, SF is not considered for
environmental interpolation modelling purposes because produces an abrupt result which
does not comply with environmental properties in reality (i.e. temperature). Comparing OK
and IDW indicates that OK is the preferred method because IDW has a more observable
“bull’s eye” effect. For instance, based the dark blue area (i.e. sea level) on the right-side of
the RoI, OK performed than IDW because IDW produced a noticeable “bull’s eye” in that
area which is not very realistic.
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4.2 Data-driven Bee Behavioural Modelling

This simulation utilises the ‘experimental’ data set obtained from the bee experiment con-
ducted at Geeveston, Tasmania, which records the bee detections information (Section 3.1.2).
The motivation for this bee behavioural statistical modelling is to overcome one of the main
disadvantages of RFID systems for insect tracking studies - missed readings. Then, by
using pre-defined assumptions and the assistance of computational optimisation, statistical
modelling (i.e. inferring) of bee behaviour at time-of-day is possible at the colony-level with
a reasonable confidence level.

4.2.1 Experimental Setup

The experimental procedures that will be discussed are based on Section 3.3. Firstly, the
‘experimental’ data set is grouped on a daily basis for each individual, followed by bee
behaviour classification (Section 3.3.1). Then, using the ‘processed experimental’ data,
curve-fitting using an Evolutionary Algorithm is implemented to optimise the Gaussian
Probability Distribution Function (PDF) parameters of distinct bee behaviours (Section
3.3.2).

The following sub-section presents the results (i.e. data analytics and discussions)
obtained from this simulation.

4.2.2 Results

Bee Detections Data and Bee Activities Distribution

First of all, Figure 4.6 presents the histogram of the unprocessed raw detections data on
a daily basis. The figure includes the so-called ‘background data’ with a Count values of
approximately 10,000. This results from the fact that the raw bee detections data include
readings from dead bees who are within the reader’s detection range, thus producing large
numbers of very high-frequency detections for each dead bee.

By applying the bee behavioural rules outlined in Section 3.3.1, bee behaviour distribution
data can be obtained (Figure 4.7) and will be used for the optimisation process. The figure
displays different bee behaviours data (i.e. DBT E , DSM, and DFG) that are subject to the
curve fitting process. By comparing Figure 4.6 and Figure 4.7, the ‘background data’ has
been removed. The disappearance of the ‘background data’ is resulted from the fact that,
based on Table 3.5, BTE durations of more than 30min are seen as invalid data and will be
omitted from the modelling process.
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Fig. 4.6 Raw daily detections data from the bee experiment at Geeveston, Australia.

Fig. 4.7 Bee behaviour data after applying the bee classification rules as described in Section
3.3.1. These data will be used for the curve fitting optimisation process to be applied later.
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In addition, after the application of the bee behavioural rules to the bee detections data,
Figure 4.8 illustrates the activity duration for different activities at the colony-level. Here, we
can say that the data set (i.e. for the curve fitting process) is valid because it complies with
the pre-defined assumptions listed in Table 3.5. For example, the BTE duration is between
0min and 30min; while, FG is between 0hr and 6hr.

(a) By the entry (b) Short mission

(c) Foraging

Fig. 4.8 Bee activities duration from the data in Figure 4.7.

Statistical Inference

At this stage, the curve fitting process (described in Section 3.3.2) is executed on the dataset
in Figure 4.7, and the results are shown in Table 4.2 (Gaussian PDF parameters details),
Figure 4.9 (data and the curve fitted Gaussian PDF), and Figure 4.10 (percentage of bee
behaviour relative to time of day).

Based on Table 4.2, the BKG for FG is 0 since it was assumed that an individual bee
does not forage earlier/later than sunrise/sunset. Overall, the model suggests that the bees
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Gaussian PDF Parameter
Area(%)

BKG I Tµ Tσ
G

A
LL

GBT E 1.18 322.08 12:53 1h 41m 17.94
GSM 0.29 77.17 12:57 1h 38m 4.18
GFG 0.00 1550.91 12:46 1h 33m 77.87

Table 4.2 Parameter details for the curve fitting results shown in Figure 4.9. The last
column ‘Area(%)’ indicates the percentage of bees, at a colony-level, involved in a particular
behaviour within a day.

Fig. 4.9 Outcome of the curve fitting process for different bee behaviours. The dots represents
data and the solid-line denotes the curve fitted Gaussian PDF. Note that the black dots and
black dashed-line denote the summation of data (D) and Gaussian PDF (GALL), respectively.

Fig. 4.10 Normalised values (presented as percentages), based on Figure 4.9, of bees involved
in different activities relative to the time-of-day.
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are mostly active around 12:52pm (average of Tµ ) and each of the distributions has a spread
of approximately 1h 37m (average of Tσ ). In order to quantify the percentage of workers
(at colony level) involved in different behaviours within a day, we can estimate them by
calculating the ‘area under the curve’ of each Gaussian PDF. The outcome (last column of
the table) suggests that approximately 78% of the workers are engaged in foraging activities,
followed by BTE behaviour (≈ 18%), and SM in which only ≈ 4% of the colony workers
are engaged.

Figure 4.10 presents the normalised proportions based on the results in Figure 4.9. As
illustrated, relative to the time of day, the probability of bees (within the colony) involved in
different behaviours will vary. The model suggests that bees start forage as early as at 5am
and ends at 8pm (i.e. do not forage before/after sunrise/sunset); during very early morning
and late night, approximately 80% of the bees are involved in BTE (e.g. defence) and 20%
on short missions near their nest.

Lastly, this simulation provides important information with which to perform a data-
driven artificial bee (mobile nodes) simulation described in Section 4.3. The Gaussian PDFs
(for different bee behaviours) obtained in this section (Figure 4.10) will be used for the
generation of artificial bee data for high-resolution data sampling (Section 4.3.1), so that the
simulation is not conducted randomly without any physical basis.
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4.3 Swarm Sensing Field Simulation

This experiment involves execution of the ‘field simulation’ for the South Esk region of
Tasmania and the configuration is shown in Table 3.2. In summary, a number of static nodes
(acting as weather stations) are deployed to collect hourly environmental data (food/water
sources, weather stations at map’s corners, and bee hives). Also, for the purpose of this work,
I simulated a total of 20 bees each day (mobile nodes) from different hives resulting with a
total of 100 bees (5 hives × 20 bees) in a day, sensing the environmental situation in high
frequency (Section 3.4) according to the simulated bee behaviour as described in Section 3.3.

The main objective of this experiment is to mimic the environmental situation in reality
and to develop a computational simulation for the CSIRO’s Swarm Sensing Project; and
eventually, to generate high resolution data sampling within the area under study for environ-
mental modelling purposes (Section 4.4). The following sub-sections will present the field
simulation results, including examples of the raw data output and visual demonstrations.

4.3.1 High-Resolution Data Sampling

Fig. 4.11 An illustration of the sampled data (CSV output file) from the swarm sensing field
simulation. The words with a coloured background on the left are acting as a ‘legend’ to
illustrate the type of sensor node data in ‘beeId’ column. Also, the commas are highlighted
in light-green for ease of visualisation.
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Figure 4.11 presents the high resolution generated comma-separated-values (CSV) data
produced by the field simulation. To illustrate, a ‘legend’ on the left is used with the colour
corresponding to the sensor node type in the beeId column: hive (blue, beeId =−1), food
source (yellow, beeId =−2), weather stations at map’s corners (red, beeId =−3), and the
actual bee data (green, beeId ≥ 0) that ‘sense’ the environment while they fly.

4.3.2 Data Visualisation

This sub-section will present the high-resolution data generated. In this part, results will be
presented for a particular simulated bee over one day from each hive. The hourly data from
the static nodes will also be presented throughout the day. Results are displayed in Figure
4.12 and Figure 4.13.

Fig. 4.12 A demonstration of the field simulation, showing the data collected within the RoI
(X and Y spatial dimension) throughout the day (Z - time of day). Squares denote hourly data
detections from the static sensor nodes: food (green) and/or water (blue) sources, the weather
stations at the map’s corners (red). Triangles are the hives that are represented using different
colours. Finally, the arrows represent bees’ flight paths and each of them is a particular datum
obtained by ‘sensing’ the environment. Flight paths of a particular colour match the colour
of the hive from which that bee originated.
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4.4 Environmental Modelling

The final simulation is to utilise the simulated data/observations (Section 4.3) within the
RoI and to generate a near-to-reality environmental model for the Swarm Sensing project
conducted by CSIRO. To achieve this, the Spatio-temporal Interpolation (STI) procedure
described in Section 3.5 will be employed. This experiment will execute the framework
that has been developed and demonstrates the results obtained from the implementation.
Discussions of the outcome will also be provided.

4.4.1 Spatio-temporal Variogram Model

The initial effort is to generate the spatio-temporal variogram to model the space-time
interaction of the residual component within the observations as discussed in Section 3.5.1.
Figure 4.14 illustrates a particular daily spatio-temporal variogram which is used for the
weighting mechanism in the STI algorithm. However, since the model is generated on a daily
basis, the simulation will produce slightly different variogram parameters (i.e. range and sill)
for different days. Such a phenomenon is acceptable in a way that environmental situation in
reality might possess a non-identical variability at distinct days.

Fig. 4.14 Spatio-temporal empirical variogram model generated using the static-only nodes
for the temperature data on 06 January 2013.
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4.4.2 Data Pre-processing

Prior to the STI algorithm execution, pre-processing of the high-resolution observations is
needed (Section 3.5.2). At this stage, the high-resolution spatio-temporal simulated data
(Figure 4.15) will used in a way to generate a 3D ‘cube-like’ data set that holds the mean (µ)
and standard deviation (σ ) values resulting from observations within the individual partitions.
The output is illustrated in Figure 4.16.

Based on Figure 4.16, the x and y axes are the spatial dimensions and are sub-partitioned
into 11 and 12 partitions respectively; while the z-axis represents the temporal unit (time-of-
day) that is divided on an hourly basis leading to a total of 23 sub-partitions within a day.
For visualisation purposes, each temporal index can be distinguished using distinct colour.
For instance, the 2D-spatial ‘processed’ data (dots) are in purple at 1am (top) and gradually
change colour to red as they progress through the day to 11pm (bottom). As previously
mentioned, each dot represents a datum that includes a µ value (for the actual estimation) and
a σ value (for the corresponding error measurement), to be used within the STI algorithm at
a later stage.

Fig. 4.15 High resolution data obtained from the Swarm Sensing hybrid sensor network
(Section 4.3). Each dot is a data point ‘sensed’ by either a fixed or a mobile node. The data
are denoted using different colours based on time-of-day (z-axis): early morning (00:00,
blue); noon (12:00, red); and late night (24:00, green).
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Fig. 4.16 Visualisation of the data set after the ‘pre-processing’ procedure. Each dot repre-
senting data holds the mean (µ) and the standard deviation (σ ) value that will be used for the
interpolator’s estimation and its corresponding error, respectively.

4.4.3 STI Assessment

This experiment validates the performance of the proposed STI-algorithm based on a ‘bench-
mark’ data set (Section 3.3) that consists of six sites as described in Table 3.4. In addition,
the ‘modelled’ data set will also be used for validation because the data was originally used
for the field simulation’s data sampling process. Furthermore, please note that since the
site locations are not regularly gridded as shown in the ‘coordinates’ column in Table 3.4,
Equation 3.16 will be employed for the value estimation at different sites over a specified
time-frame. Finally, after the STI-algorithm execution, an ‘estimated’ data set will also be
produced for final validation purposes.

From the experimental configuration discussed previously, three data sets will be used
for comparison and validation purposes. As such, the following Schemes will be used to
identify comparisons between paired data sets: (a) Scheme 1: ‘modelled’ and ‘estimated’;
(b) Scheme 2: ‘modelled’ and ‘benchmark’; (c) Scheme 3: ‘estimated’ and ‘benchmark’.
Lastly, the validation will be carried out using three different error measurements, they are:
the Pearson’s r correlation of coefficient (Equation 3.27), the mean absolute error (Equation
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Site #
Pearson r MAE RMSE

temp rh rnet temp rh rnet temp rh rnet

(a
)S

ch
em

e
1

1 0.97 - - 0.88 - - 1.37 - -

2 0.98 0.97 - 1.76 4.81 - 1.99 6.92 -

3 0.98 0.99 - 0.69 2.65 - 0.95 3.49 -

4 0.97 - - 1.21 - - 1.43 - -

5 0.96 0.93 - 1.23 6.80 - 1.63 8.75 -

6 0.99 0.97 1.00 0.46 2.96 16.30 0.64 4.56 25.67

(b
)S

ch
em

e
2

1 0.94 - - 1.43 - - 1.88 - -

2 0.92 0.78 - 1.90 16.06 - 2.41 20.43 -

3 0.94 0.82 - 1.78 9.29 - 2.29 12.55 -

4 0.87 - - 1.78 - - 2.41 - -

5 0.95 0.79 - 1.62 11.83 - 2.08 15.55 -

6 0.93 0.85 0.91 1.61 9.02 97.93 2.04 12.57 123.63

(c
)S

ch
em

e
3

1 0.91 - - 1.95 - - 2.56 - -

2 0.93 0.81 - 3.40 18.08 - 3.75 21.65 -

3 0.93 0.83 - 1.69 8.90 - 2.17 11.94 -

4 0.89 - - 2.27 - - 2.80 - -

5 0.92 0.78 - 1.59 10.68 - 2.04 13.94 -

6 0.94 0.84 0.91 1.49 8.96 95.43 1.91 12.41 122.63

Table 4.3 Summary error statistics of the STI-algorithm.

Fig. 4.17 Scatter plot based on Table 4.3: x-axis denotes the sites, and y-axis is the error values
for corresponding error measurements (i.e. Pearson’s r, MAE, and RMSE). The shapes are used to
distinguish the Scheme: square (Scheme 1), triangle (Scheme 2) and cross (Scheme 3); The colours
represent distinct parameters: temperature (green), relative humidity (blue), and solar radiation (red).
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3.26), and the root mean squared error (Equation 3.25). The results are presented in Table
4.3 and Figure 4.17.

Scheme 1: ‘modelled’ and ‘estimated’ data sets. First, the performance of the proposed
STI algorithm output (‘estimated’ data) against the South Esk ‘modelled’ data set is assessed.
The results show that the proposed STI-algorithm provides r ≥ 0.94 and, more interestingly,
r ≈ 1.0 at Site 6 (Table 4.3 and Figure 4.18). This is because, based on Figure 4.19, we
observe that the surroundings around Site 6 possess low variance. Also, the figure shows that
the proposed STI algorithm is able to capture the overall surface structure of the area under
study. Therefore, the proposed technique is able to provide a reasonable level of accuracy
(i.e. both statistically and visually) and is suitable for environmental modelling applications.

Scheme 2: ‘benchmark’ and ‘modelled’ data sets. Then, we introduce the ‘benchmark’
data set (Section 3.1.4) for validation purposes to assess the quality of the South Esk ‘mod-
elled’ data set, which was used for the entire Swarm Sensing field simulation. The results in
Table 4.3 show that the ‘modelled’ data set is acceptable, with r ≥ 0.88 on average.

Scheme 3: ‘benchmark’ and ‘estimated’ data sets. Finally, we conduct a comparison
between the ‘benchmark’ data set and ‘estimated’ data set. Such a process can be seen
as a performance evaluation of the entire Swarm Sensing field simulation, because the
‘benchmark’ data set and the ‘estimated’ data set were obtained/processed using entirely
different approaches (e.g. data sampling and application of STI algorithm was involved with
the ‘estimated’ data set). Based on such assumptions, it is expected that the errors in Scheme
3 would approximate the combined error of Scheme 1 and Scheme 2 (i.e. r in Scheme 3 is
less than either Scheme 1 or 2); Yet, interestingly, there is an anomaly within temperature
where r in Scheme 3 is higher than that of Scheme 2 for Sites 4 and 6.

Finally, the MAE and RMSE error measurements within Table 4.3 and Figure 4.17
is investigated. Similar to the previous discussion, it is shown that Scheme 1 provides
better results (i.e. lower statistical error) than those of Schemes 2 and 3. Nevertheless, an
anomaly occurred at Site 3 where the temperature RMSE of Scheme 1 is higher than that of
Scheme 2. This phenomenon can be explained by the significant change of topography (and
temperature data, which is highly correlated with elevation) around Site 1 resulting from the
post-processing of the spatiotemporal data before the STI algorithm execution. In this case,
based on the right of Figure 4.19, the location of Site 1 is just outside of the ‘partitioned’ area
around it, leading to a higher discrepancy between the ‘modelled’ and the ‘estimated’ values.
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Fig. 4.18 Timeline plot showing the values from three different data sets: ‘benchmark’
(green), ‘modelled’ (blue), and ‘estimated’ (red). This example is based on Site 1 (Ben
Lomond) on 06 January 2013.

Fig. 4.19 A visualisation demonstrating the ‘modelled’ (left) and ‘estimated’ (right) tempera-
ture data on 06 January 2013. It also presents the spatial locations of six weather stations
(denoted using ‘×’) from the ‘benchmark’ data set.
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4.4.4 High Resolution Environmental Modelling

Lastly, this simulation is executed to demonstrate that the proposed STI-algorithm is capable
of generating a spatio-temporal environmental model that is realistic, in that it produces
smooth transitions within the spatial surface and along the temporal dimension. In this
particular example, temperature data are employed for the high-resolution environmental for
the day on 06 January 2013.

The result is shown in Figure 4.20. Each row in the figure illustrates the outputs generated
from different time frames and intervals on that day. It is shown that the algorithm can
produce smooth transitions on an hourly basis (Figure 4.20a and Figure 4.20b) and also in 10
minute intervals (Figure 4.20c). The technique is also capable of estimating the values at
even higher resolutions, such as the irregularly-spaced spatial locations and time points.



4.4 Environmental Modelling 79

Time-of-day
and Interval

Visualisation
(a

)
1a

m
··
·1

1p
m

in
te

rv
al

=
1h

(b
)

8a
m
··
·4

pm
in

te
rv

al
=

1h
(c

)
12

pm
··
·2

pm
in

te
rv

al
=

10
m

Fig. 4.20 Demonstration of high-resolution spatio-temporal environmental modelling. The
x and y are the spatial dimensions, namely, easting and northing respectively; whilst, the z
is the time-of-day with different intervals. For instance, (a) and (b) are generated in hourly
basis, and (c) is produced in 10 minutes interval.





Chapter 5

Discussion

This chapter provides a comprehensive discussion of the implementation results presented
in Chapter 4. The following sections discuss different components of the framework and
mainly focusing on the folowing aspects where appropriate: (i) analysis of the results;
(ii) fundamental assumptions of the simulation; and (iii) the limitation of the method or
simulation.

5.1 Spatial Sampling of Static Node

To begin with, after the manual deployments of fixed sensor nodes (weather stations, food and
water sources), this work utilised an evolutionary algorithm to optimise the hive locations so
that the network can to capture the representativeness of the entire region using a pre-defined
number of nodes (Section 4.1). In this work, the representativeness of a network is calculated
based on the error between the original data set and the interpolated estimation using the
optimised hive locations.

There is no doubt that an increase in the number of sample data will result in better
understanding of the environment (surface height of the RoI in this experiment). Nevertheless,
it is also worthwhile to consider the cost to set up and maintain the sensor networks, and
eventually, to determine whether a high number of nodes is necessary to obtain a certain
level of understanding of the RoI for a particular purpose. However, these issues are outside
of the scope of this work.

An experimental simulation, using the proposed spatial sampling algorithm, was con-
ducted to assess different spatial interpolations (Section 4.1.2). Table 5.1 summarises the
comparison of the three different interpolators; OK, IDW and SF. The table is generated
based on the requirements of the Swarm Sensing application where a large number of ob-
servations will be incorporated into the spatio-temporal interpolation process. Firstly, since
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Item
Method

OK IDW SF

Computational Efficiency -1 0 +1
Statistical Error +1 0 0

Visual Assessment +1 0 -1

Table 5.1 Summary comparison of interpolators. The values are to be interpreted as: +1
(most preferred), 0 (neutral), and -1 (least preferred).

computational efficiency is the most critical factor for a swarm sensing application (e.g.,
processing highly-dense observations), a Kriging-based technique is not suitable because
it very computationally demanding. IDW and SF exhibit similar performance as far as
statistical error is concerned. It is suggested that an IDW-based method is an ideal option
for the spatio-temporal interpolation algorithm because SF produces abrupt changes in the
surface.

5.2 Data-driven Bee Behavioural Modelling

The bee behaviour classification in this work (Chapter 3.3.1) was interpreted based on the
readings frequency (i.e. using threshold values as illustrated in Table 3.5). Based on this and
with the additional consideration that missed readings are a major issue in insect tracking
using RFID systems, this indicates that higher thresholds have lower confidence levels in
the analysis. For example, there is a high certainty level for bees involved in BTE-related
activities (i.e. hive defence, micro-climate of the hive, etc) and SM activities (i.e. orientation
flights, short flights, or wondering around the hive); FG activities, on the other hand, can
only be inferred with a very high uncertainty resulting from the missed readings issue. It is
because, if the system misreads one of the readings, it is almost impossible for a biologist to
accurately interpret what the individual bee was actually doing at that particular time.

To conclude, the main contribution of this model is to infer bee behaviour at a colony
level using incomplete RFID detection data and to use that information to execute an artificial
bee simulation utilising the generated Gaussian probability distribution functions. The model
estimates the proportion of bees involved in different behaviours (i.e. by the entry, short
mission, and foraging) at different times of day (e.g. 10am, 2pm, 10pm). Such an effort is
crucial to simulate artificial bee activities over a day using bee activity data obtained from
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Abbreviation Behaviour Bee activities Certainty

BTE By the entry
Hive defence,
maintaining the hive
micro-climate

High

SM Short mission
Orientation flight,
walking around the hive

Medium

FG
Foraging
(in-hive)

Searching or exploiting
food/water sources

Low

FG
Foraging
(out-of-hive)

Depositing food/water
into the hive

Low

Table 5.2 Summary of bee behaviour with the ‘possible’ activities for each classification.
The level of certainty for distinct behaviours is given in the last column (Certainty).

experimental work conducted at Geeveston, Tasmania, thus ensuring that there is a physical
basis for the simulation. In swarm sensing field simulation, it is assumed that bees do not
forage before sunrise or after sunset.

One of the major limitations of this model is the data quality issue. This was mainly
caused by hardware limitations such as misreadings of bee detections and computer failure.
In such cases, our data analysis would be erroneous because the estimated duration of a
particular bee’s activity would be greater than the actual duration.

Domain knowledge is critical to define the ‘threshold’ configuration (Table 3.5) in
addition to considering the bee species, experiment’s location (weather condition in that
area), etc. In this work, the thresholds are defined based on field observation and a little
knowledge on bee behaviour.

Another limitation is that the inability to replicate the bee experimental data obtained
from the field. This is because of several reasons: the geographical location of the experiment,
the frequency of field visit to tag the bees, and the seasonality effect that has a great influence
to bee activities.

5.3 Swarm Sensing Field Simulation

The actual Swarm Sensing field simulation (hybrid ESN) is then used to generate high-
resolution observations – data sampling (Section 4.3). The fixed sensor nodes within the
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networks collect data on an hourly basis. Then, the framework simulates a number of bee
activities throughout the day and, based on the activity that a particular individual bee is
involved in, data will be sampled at different frequencies. Also, flight paths will be assigned
for bees that are involved in out-of-hive foraging (e.g. scout, recruit, exploit) so that they
sense the environment as they fly within the area under study. The sampled spatio-temporal
data points are stored in a Comma Separated Values (CSV) data format.

The bee foraging data set used in this work (Section 3.1.3) that was done by one of the
team members in Swarm Sensing team at CSIRO. This model was developed based on the
information about bee foraging behaviour obtained from the current literature and is subject
to further improvement over time. Since this work employed the bee flight paths from this
simulator within the field simulation for high-resolution data sampling (Section 3.4), it is also
worthwhile to consider the modelled data’s credibility to ensure the entire field simulation’s
validity. However, this area is outside of the scope of this dissertation.

5.4 Environmental Modelling

Lastly, by using the high-resolution sampled data from the field simulation, a number of
experimental simulations are executed to assess the proposed Spatio-temporal Interpola-
tion (STI) algorithms (Section 4.4). The method involves a combination of extension and
reduction based approaches for a smooth transition between space and time. The results
revealed a high correlation between the data (originally used for the simulation) and the
estimation (interpolated values), suggesting that the algorithm is statistically acceptable.
Moreover, the interpolation technique also demonstrated the ability to estimate values at
irregularly-gridded spatial locations and time points. These results indicate that the proposed
hybrid approach (extension and reduction) STI algorithm is suitable for high-resolution
environmental modelling applications.

This dissertation focuses on the environmental study, thus, such an assumption requires
an interpolation method that can produce a smooth continuous surface of the study region to
comply with the environmental situation in reality. Based on the result presented in Figure
4.3, it shows that the Shape Function (SF) interpolator is the most efficient algorithm (i.e.,
elapsed time does not increase significantly as the number of nodes increases). This has
justified that, in the case where surface smoothness is not of an issue, shape function could
become the most suitable method for high dense data observations. For instance, Li uses a
SF-based spatio-temporal interpolation algorithm to estimate the house price [45].



Chapter 6

Conclusion and Future Work

This work mainly focussed on proposing a near to reality field simulation for swarm sensing
application to obtain highly-dense data so that an initial data analysis could be undertaken
while the micro-sensor development is still ongoing. Data collected from the swarm of
mobile nodes (insect in this case) will be analysed to better understand bee behaviour, and
eventually, to help discover the environmental impacts that are contributing to the detriment
in bee populations worldwide.

6.1 Research Contribution

The main contribution of this thesis is the proposal of a Swarm Sensing field simulation
framework and a new variation of the Spatio-temporal Interpolation (STI) technique for
high-resolution environmental modelling purposes. The key research component addressed
in order to achieve this objective are:

1. Environmental sensor network deployment – spatial sampling. An optimisation method
is proposed to provide a near-optimal design static sensor networks with minimal his-
torical knowledge within the region of interest. For instance, this work only employed
the surface height (i.e. elevation) data to serve the purpose. This method has been used
for two purposes in this work: (i) For the Swarm Sensing field simulation to optimise
the locations of bee hives; and (ii) To deploy a sensor network, with a pre-defined
number of nodes, for an empirical study to determine a ‘balanced’ spatial interpolation
technique that considers computationally efficiency, acceptable statistical error, and
the near-to-reality environmental situation.

2. Data-driven statistical inference of bee behaviour. This part utilises the real experi-
mental data obtained from the bee experiments being conducted by CSIRO, to model
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the bee behaviour within a day. A curve fitting optimisation process is executed to
obtain the Probability Density Function (PDF) of the Gaussian distribution for the bee
detection data. The main focus of this step is to address following question: what is
the probability of a specific bee behaviour at a particular time-of-day? This component
is crucial for the artificial bee simulation process within the Swarm Sensing field
simulation.

3. The Swarm Sensing simulation for high-resolution spatio-temporal data sampling.
This is the actual Swarm Sensing field simulation to ‘sense’ the environment from
static (i.e. weather stations, food and water sources, bee hives, etc) and mobile (insects)
sensor nodes based on different reading frequencies. For instance, the static weather
stations record data on an hourly basis, and the mobile nodes collect environmental
data according to the insect’s behaviour at high frequency (i.e. seconds).

4. A Spatio-temporal Interpolation (STI) algorithm for environmental modelling. This
work proposes a hybrid (i.e. extension and reduction) approach to create a high-
resolution environmental model from a huge amount of data obtained from the field
simulation (Item 3). Firstly, a geo-statistical method is utilised to model the space-time
interactions by using only the static nodes for computational efficiency considerations.
Then, the entire input data are pre-processed to address the sampling density issue.
Finally, the hybrid STI algorithm is executed to create the environmental model. This
framework can estimate the parameter value at any irregular spatial and temporal
location with reasonable accuracy (i.e. low statistical error), providing that the input
data is valid.

The author has implemented the framework/software using the Python programming
language and a series of experimental simulations have been conducted to demonstrate and
validate the results.

6.2 Future Work

One of the useful future research goals would be to develop a novel algorithm to curate
the experimental bee data obtained by CSIRO (Section 3.1.2). As with any other statistical
model, data quality is a crucial factor to have a certain level of confidence that the developed
model is accurate. In this case, the Swarm Sensing simulation model is dependent on the bee
experimental dataset, which suffers from the limitation of high a misreading frequency.

Another future research direction is to utilise other data types (e.g., sound recording
within the hive, scale, and camera) to infer better the bee behaviour at both individual-bee
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and colony level. Such an effort could beneficial to the artificial bee simulation framework
proposed in this dissertation (Section 3.3.3).

Scientists could analyse the data obtained from the swarm sensing field simulation
generated from this work (Section 4.3.1) for a wide range of applications. For example,
utilising analytical method to discover pattern within the sampled data and correlate the
‘sensed’ environmental data to make inferences of insect behaviour, in which might contribute
to the understanding of detreimental impacts of bee population worldwide.

The spatio-temporal interpolation (STI) algorithm proposed in this dissertation is subject
to improvement particularly within the space-time interaction model (e.g. variogram). Also,
since the performance of any interpolator is highly dependent on the type of data set, the
proposed STI algorithm is expected to perform differently in other cases. Thus, it is also
worthwhile to apply and compare the proposed STI method in this dissertation with other
algorithms in order to verify the conclusion drawn in this work.
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