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Abstract 
 

The field of bone tissue engineering has expanded in the recent decade to meet the 

increasing need to replace bone tissue in skeletal disease, congenital malformation, 

trauma, and tumours. Stem cell encapsulation has become a promising method in the 

future of this field. Alginate is a natural polymer that has been used widely for stem cell 

transplantation due to its biocompatibility. Pigment epithelium-derived factor (PEDF) is 

known for its anti-cancer properties due to its anti-angiogenic and anti-proliferative 

properties, particularly against osteosarcoma, a type of primary bone cancer. This 

study investigated the osteogenic effect of PEDF on mesenchymal stem cells (MSCs) in 

monolayer cell cultures and encapsulated in alginate beads in vitro and in vivo. Stem 

cells were isolated from the bone marrow of mouse long bones, and PEDF was used as 

an osteogenic supplement to differentiate MSCs to osteoblasts in both monolayers and 

in alginate beads (3D structure). Differentiation to osteoblasts was evaluated by 

qualitative and quantitative methods such as immunocytochemistry, mineralisation 

staining, and immunoblotting for the in vitro part of the study. The in vitro study shows 

that PEDF can stimulate MSCs to differentiate into osteoblasts in both monolayers and 

alginate beads. Furthermore, alginate beads containing PEDF degraded significantly in 

comparison to alginate beads alone, indicating that PEDF could be used as an agent to 

modify alginate and make it suitable for stem cells to interact and proliferate inside the 

beads. These results then have been taken further to an in vivo ectopic model. The 

findings from immunohistochemistry for several bone markers as well as 
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microcomputed tomography (µCT) analysis indicate that PEDF in a physiological dose is 

able to induce bone formation in vivo with and without co-encapsulation with MSCs. 

These findings can be useful in order to introduce a new biological model for future use 

in clinical bone tissue engineering. 
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1. Literature review 

 1.1. Stem cells 

  1.1.1. Stem cell definition  
 

Stem cells are usually defined as clonogenic, immature, and undifferentiated 

cells that are capable of keeping their stemness state during cell division [1]. These cells 

have two unique features that are critical for tissue homeostasis; firstly, the self-

renewal property and secondly, the ability to undergo multi-lineage differentiation [2]. 

The activity of stem cells is at its peak during embryonic development and can generate 

all three embryonic germ layers - ectoderm, endoderm, and mesoderm in the 

developing embryo. The first successful attempt at isolation of embryonic stem cells 

(ESCs) from mice embryos was in 1981 [3, 4], though the first human ESCs were 

isolated in 1998 [5]. Adult stem cells are responsible for homeostasis of the tissues in 

which they reside. These cells can be found in most tissues throughout the body such 

as the brain, bone marrow, liver, and retina in a particular area of the tissue called the 

stem cell niche. The stem cell niche is a microenvironment that contains all the cellular 

and molecular factors that regulate and support stem cells. In spite of the unique 

properties of stem cells (self-renewal and differentiation), adult stem cells can stay 

dormant through most of their lifetime and are activated by specific environmental 

factors under certain circumstances such as injuries and diseases [6, 7]. Stem cells need 

to be held within the niche and this happens via adhesion between stem cells and the 

underlying basement membrane or support cells. Generally, three main functions are 
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ascribed to stem cell niches: 1) perpetuation of quiescence, 2) elevation of cell 

numbers, and 3) direction of cell fate and differentiation [8]. Upon division, if a cell is 

placed outside the niche, it commits to differentiation depending on the different 

microenvironmental stimuli and signalling it encounters in its new environment [6]. 

 

   1.1.1.1. Stem cell division 
 

Asymmetric cell division (ACD) is the way in which stem cells can maintain their self-

renewal ability and give rise to progeny in other lineages at the same time [9]. 

Drosophila has been the model for studying ACD [10-13], which revealed two separate 

mechanisms-extrinsic and intrinsic- involved in ACD. In the extrinsic mechanism, cell 

division takes place in a way that one of the daughter cells maintains access to the 

stem cell niche and replaces the divided parent cell, which results in maintaining the 

stem cell pool while the other daughter cell is isolated from the stem cell niche. Losing 

contact with the signalling molecules within the niche will initiate differentiation 

pathways. However, in the intrinsic mechanism, asymmetric inheritance of specific 

proteins such as protein partitioning-defective protein (PAR) in Caenorhabditis elegans 

[14] and cyclin D2 - a cell cycle regulator in cells- (specifically in mammalian brain cells) 

can give differential fate to one of the daughter cells just after cell division [15]. A 

similar mechanism also applies to the Drosophila neuroblast [16] (Figure 1). 
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In bone marrow, there are two known cell populations: the haematopoietic 

stem cells (HSC) that can give raise to various blood cells, that is, myeloid and 

lymphoid, and a rare population of non-haematopoietic adult stem cells that resides in 

the bone marrow as well as most connective tissues of the body. The latter cells have 

the potential to differentiate into a variety of mesenchymal tissues such as bone, 

cartilage, adipose, and muscle. By placing whole bone marrow in plastic culture dishes, 

and removing nonadherent cells after four hours, it was demonstrated for the first time 

that bone marrow contains a heterogeneous population of cells [17]. The first adherent 

cells resulting from that experiment formed round-shaped colonies containing 

fibroblastoids, called a Colony Forming Unit – fibroblast (CFU-f). It was also observed 

that these adherent cells became more homogeneous in appearance after being 

passaged several times, and could differentiate into other mesenchymal cells such as 

bone and adipose cells [17, 18]. Further studies investigated the proliferative ability of 

these cells as well as their multipotency and differentiation capacity, not only into the 

three mesenchymal lineage cell types but also into other cell types such as neurons and 

muscles (Figure 2) [19-22]. The term mesenchymal stem cells (MSCs) was suggested for 

these cells in 1991 [23], considering the multilineage differentiation ability of these 

cells. However, the misconception that using MSCs as a general term for true stem cells 

or expanded multipotent progeny has led to the phrase “multipotent mesenchymal 

stromal cells (MSCs)” from The International Society for Cellular Therapy (ISCT) [23, 24]. 

Furthermore, the ISCT also defined some criteria for the isolated cells in order for them 
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to be defined as stem cells: 1) the shape and plastic-adherence capability, 2) the 

expression/lack of expression of surface antigen - cluster of differentiation (CD) 

markers, and 3) the ability to selectively differentiate into chondrogenic or osteogenic 

lineages in response to environmental stimuli [25].  

 

 

 

 

 

 

 

Figure 1. Asymmetric cell division (ACD) 
 
In extrinsic ACD after cell division, one of the cells that remain in the stem cell niche 
will maintain the stem cell pool whereas the other cell that loses contact with the niche 
will go through differentiation pathways. 
 

 

Stem cell niche  

Niche signal  

Mitosis 

Daughter cells 
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Figure 2. Differentiation capacity of mesenchymal stem cells into mesenchymal lineage. 
adapted from Caplan et.al [21] 

 

  1.1.2. Murine bone marrow-derived stem cells 
 

The mouse has been considered the model of choice for various types of scientific 

research. Nevertheless, difficulties in mouse bone marrow stem cell isolation present 

some challenges in investigating the principals of stem cell biology and their 

therapeutic applications [26, 27]. MSCs have been isolated from several species such as 

human, mouse, rat, dog, baboon, pig, sheep, goat, and rabbit [28]. Although there are a 

number of protocols for isolation and expansion of human bone marrow derived-MSCs, 
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isolation and expansion of MSCs in the mouse is far more difficult. During isolation, 

these cells are usually contaminated with haematopoietic cells, which results in a 

heterogeneous cell population. Furthermore, expansion of a heterogeneous cell 

population can occur. This issue has been addressed in the human [20, 29] and other 

species [30, 31] by serial passaging of adherent cells or co-culture with other cells such 

as endothelial cells [32, 33]; though this approach has not been very helpful when it 

comes to mouse bone marrow-derived MSC isolation as the long term expansion of 

mouse MSCs during culture involves challenges due to the tendency of these cells to 

lose their proliferative potential or result in highly proliferative MSC populations [34, 

35]. However, with certain methods and culture conditions, it is possible to establish a 

proliferative and homogeneous population of MSCs with the capacity of tri-lineage 

differentiation [36-38]. These MSCs would be a very useful tool toward understanding 

and interpreting MSC-based therapies and data for future clinical applications such as 

tissue engineering. 

 

 1.2. Bone tissue engineering  
 

  1.2.1. Bone structure and function   
 

Bones provide mechanical support for muscles and promote movement, as well as 

protecting internal organs. The mechanical support and properties that bone provides 

are based on its structure and orientation. Flat bones and the outer part of long bones 
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are comprised of compact (or cortical) bone, which contains ~ 80 – 90 % mineralised 

tissue providing the mechanical strength. The ends of long bones are made up primarily 

of trabecular (or cancellous) bone. In contrast, only 15 – 25 % of the trabecular bone is 

mineralised. Thus, while trabecular bone contributes to the mechanical strength, its 

initial function is metabolic, as this bone functions as a supply of calcium and 

phosphate ions. Other than the mentioned functions for bone, recently its role in 

metabolism came into light. These includes existence of a novel endocrine regulatory 

loop in which insulin signalling in the osteoblast controls postnatal bone development 

and simultaneously regulates insulin sensitivity and pancreatic insulin secretion to 

regulate glucose homeostasis. [39, 40] 

In addition, in the adult organism, many bones contain cavities filled with the bone 

marrow, and represent the anatomical site for blood cell and platelet production 

(haematopoiesis) [41]. 

Bones are mainly comprised of three different cell types: osteoblasts, osteocytes, and 

osteoclasts. Osteoblasts, which derive from MSCs, are cuboidal, post-proliferative cells 

with high synthetic activity and are responsible for bone extracellular matrix deposition 

and mineralisation. Osteocytes are star-shaped mature osteoblasts and are smaller in 

size, and are embedded in a mineralised matrix and are the most abundant cell type in 

mature bone. Osteoclasts are multinucleated cells of haematopoietic origin with 

osteolytic properties, and are responsible for bone resorption. The coordinated action 



28 
 

of osteoblasts and osteoclasts secure bone homeostasis during development and 

remodelling throughout a lifetime (Figure 3) [42, 43]. 

        

 

Figure 3.The remodelling of compact bone 

Osteoclasts acting together in small group excavate a tunnel through the old bone. 
Osteoblasts enter the tunnel behind them, line its walls, and begin to form new bone. 

 

  1.2.2. Bone extracellular matrix (ECM) 
 
Bone extracellular matrix (ECM) is composed of two main components. The organic 

part, which makes 30-40 percent of the tissue, mostly consists of type I collagen fibrils 

in a bed of proteoglycan aggregates (mainly biglycan and decorin) and glycoproteins. 

Glycoproteins represent the largest proportion of non-collagenous proteins (NCPs) and 

include thrombospondin [44], bone sialoprotein [45], alkaline phosphatase [46], 

osteonectin [47], osteopontin, and osteocalcin [48], as well as amino acids with high 

affinity for calcium, such as aspartic and glutamic acid residues. The inorganic or 

Old Bone 
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mineral part of the bone is mainly made of calcium phosphate crystals in the form of 

hydroxyapatite (HA), which constitutes 60-70 percent of the bone tissue. In addition to 

HA, other minerals such as bicarbonate, citrate, magnesium, potassium, and sodium 

are also found [49]. 

 

  1.2.3. Healing, a natural process  
 

Bone is a highly vascularised tissue and, as mentioned before, the balance between the 

activities of osteoclasts (bone-resorbing cells) and osteoblasts (bone-forming cells) 

leads to a continuous remodelling of the bone, which makes it adaptable to mechanical 

stress and helps the tissue to maintain its health and repair potential. Bone 

homeostasis occurs via basic multicellular units (BMUs) [50]. Each unit includes a 

“cutting cone” of osteoclastic bone reabsorption followed by osteoblasts laying down 

new bone in the trail of osteoclasts, and the end result is an osteon [51]. Proper cell 

proliferation, differentiation, migration, and remodelling of the extracellular matrix will 

lead to the development and regeneration of bone tissue. Cellular condensation 

initiates bone formation, where mesenchymal cells spread out, migrate, proliferate, 

and stick together via adhesion molecules. 
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Figure 4. Matrix changes during endochondral ossification. 
As an in vivo example of the critical role of the extracellular matrix (ECM) during tissue development, the figure illustrates ECM 
changes during endochondral ossification. The ECM evolves at each stage of ossification. 
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  There are two mechanisms responsible for bone development: bones can 

directly develop from MSCs into osteoblasts, called intramembranous ossification, or at 

an early stage where a cartilage template can form, which, after a while, can be 

replaced by bone, called endochondral ossification. 

Intramembranous ossification occurs during development of flat bones and is 

peripheral to the site of the fracture during bone healing. During intramembranous 

ossification, cells of the mesenchymal lineage, which are embedded in a membrane of 

connective tissue, directly undergo osteogenic differentiation and synthesize the 

osteoid (non-mineralised matrix), which eventually mineralise. Stem cell specification 

toward the osteogenic lineage is basically regulated by the combined action of three 

transcription factors, such as RUNX2, OSX and nuclear β-catenin. Several experimental 

studies suggest that RUNX2 directs osteogenesis in the early phases of stem cell 

differentiation, while OSX and nuclear β-catenin act downstream consolidating the 

transition toward the osteoblastic phenotype [52, 53]. 

The latter (endochondral ossification) takes place during the development of short and 

long bones, the growth of the length of long bones (growth plate), and during the 

natural healing of bone fractures. [54, 55]. During this process the mesenchymal 

progenitor cells first aggregate into a cartilage template and are then replaced by bone 

[55, 56]. Prior to endochondral ossification, migration of pre-chondrocytic 

mesenchymal cells occurs (Figure 4). Migration of pre-chondrocytic mesenchymal cells 

to the bone-forming region leads to ECM formation, which is mostly made of 



32 
 

hyaluronan and collagen type-I. These mesenchymal cells produce condensed nodules 

following the chondrogenic phase [55, 57].  

 During the condensation stage, lots of changes occur during cell-matrix 

interactions. These changes are mediated by specific molecules including N-cadherin, 

fibronectin, syndecans, tenascin, thrombospondins, neural cell adhesion molecule, 

focal adhesion kinase, paxillin, and matrix metalloproteinases (MMPs) [57]. The 

extracellular space becomes limited due to increased activity of hyaluronidase and 

more compact dispersion of collagen types I and III and fibronectin. Afterwards, pre-

chondrocytic cells proliferate and differentiate to osteocytes to provide both 

mechanical support and scaffold for the hard osteoid tissue that will form later [58]. 

Chondrocyte differentiation is defined by cartilage-supporting matrix synthesis, which 

includes a variety of collagens such as collagen-II, collagen-IX, and collagen-XI, and 

various proteoglycans such as aggrecan. The process of chondrocyte maturation 

continues by hypertrophy as the cells secrete hydroxyapatite into the ECM for 

mineralisation [59, 60]. During hypertrophy, chondrocytes secrete collagen type-X and 

matrix metalloprotease-13 (MMP13), and these events lead to changes in ECM protein 

composition. Degradation of the ECM facilitates vascular invasion and recruitment of 

chondroclasts, which results in the removal of apoptotic chondrocytes and migration of 

new MSCs which later differentiate into osteoblasts that exude bone matrix [60]. 

Woven bone gradually substitutes cartilaginous tissue. This remodelling process is 

highly dependent on the function of MMP molecules, especially matrix 
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metalloprotease-14 (MMP14), which also known as membrane type 1 matrix 

metalloprotease (MT1-MMP) as collagen I, II, and III are substrates for MMP14 

protease function [61-63]. To do so, MMP14 uses matrix metalloprotease-2 (MMP2) as 

a substrate and activates it by cleaving its pro-domain, which leads to bone formation 

stage [64, 65]. Furthermore a large number of small signalling molecules like cytokines 

and growth factors (IL-4, BMPs, TGF-ß and VEGF) further influences bone cell activity. 

These factors are produced by hypertrophic chondrocytes during the hypertrophy 

stage and thus are part of mechanisms by which bone cells can influence each other’s 

behaviour. Some are incorporated into the bone matrix and are released again when 

bone matrix is resorbed. This can locally alter behaviour of bone cells. An important 

regulatory mechanism is the RANK-RANKL pathway. Osteoblasts produce RANKL that 

attaches to receptors on the surface of pre-osteoclasts and signals these cells to 

differentiate into mature osteoclasts. In this stage, bone matrix is made of mineralised 

and proteinaceous ECM and is called the primary bone formation stage. As the process 

continues to its final stage, the secondary bone formation stage, the ECM becomes 

more solid and reconstructs itself to weight-tolerable cortical or trabecular bone [66].  

Inflammation is the key difference in developmental skeletogenesis versus 

regenerative skeletogenesis. During regenerative skeletogenesis, inflammatory cells 

secrete necessary growth factors and cytokines to recruit MSCs and initiate bone 

formation. However, developmental skeletogenesis is regulated by non-inflammation-

associated differentiation and growth factors [67, 68]. 
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Usually, bone has the ability to heal small lesions due to its ability to undergo 

spontaneous regeneration, so no invasive procedure such as surgery is required and 

conventional therapy like casting would be sufficient. However, spontaneous healing 

does not apply in cases like non-union or critical-size bone defect (CSD). Non-union is 

defined as “a fracture that is over nine months old and has not shown radiographic 

signs of progression toward healing for three consecutive months” [69]. In the case of 

continuous poor or no healing, the final stage of aseptic non-union would be 

pseudoarthrosis. One approach toward management of pseudoarthrosis is grafting, 

which sometimes involves not only complete removal of the fracture site but also 

tissue around the non-union site [51]. Critical-size bone defect is “the smallest size 

intraosseous wound in a particular bone that will not heal spontaneously during the 

lifetime of the animal”, and the plan for therapeutic management of CSD is bone 

grafting and transplants [51]. 

 

  1.2.4. Bone grafts  
 

In order to have a successful bone graft, there are certain criteria which have to be 

considered. During bone regeneration after the bone graft, three crucial processes 

have to take place in order to generate new bone formation: osteogenesis, 

osteoinduction, and/or osteoconduction. 
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Osteogenesis is the act of bone formation as a result of osteoid expression by 

osteoblasts followed by mineral deposition. Osteoinduction however, is the induction 

of differentiation of undifferentiated cells such as stem cells and other osteoprogenitor 

cells toward the osteoblast lineage. Osteoconduction is the ability of the graft to 

promote and enhance migration and attachment of osteoprogenitor cells and 

osteoblasts as well as vessel formation in order to support the new tissue formation. To 

have a clinically and physiologically functional bone graft, the graft has to exhibit the 

above features.  

 

   1.2.4.1. Autografts 
 
Autogenous cancellous bone or autograft is believed to be the ideal graft material as it 

is harvested from and implanted into the same individual [70]. These grafts are usually 

taken from the iliac crest, rib, fibula, or tibia of the patient. These segments of bone are 

highly vascularised and possess osteogenic potential due to the presence of viable 

osteoprogenitor cells as well as osteoconduction/induction capacity. Furthermore, as 

this graft is from the same patient, it will not transmit disease to the recipient and the 

risk of immunoreactions is low. However, cancellous bone taken from the patient is not 

readily available in unlimited quantities. The process of harvesting the bone imposes 

potential complications and pain to the patient as well as possible complications that 

may occur after surgery including inflammation, infection, and donor site morbidity 

[71, 72]. 
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   1.2.4.2. Allografts 
 

Allografts are harvested from a human donor other than the patient, the prerequisite 

of harvesting being genetic compatibility. The graft specimen has to go through some 

processes to eliminate and reduce the risk of immunoreactions and disease transfer 

such as freeze-drying, washing, demineralisation, and gamma-irradiation or ethylene 

oxide sterilization. However, although these procedures reduce the risk of disease 

transmission and immunoreactions, they also lessen the osteogenic potential of these 

grafts [73, 74]. 

 

   1.2.4.3. Xenograft 
 

Unlike autografts and allografts, xenografts are obtained from a non-human donor. 

Xenografts are not commonly accepted or used in clinical applications due to ethical 

issues and disease transfer. These grafts are usually used as bone void filler to fill burr 

hole and craniotomy defects and in smoothing facial skeletal contour abnormalities. 

Examples of these grafts include: BioOss [75] an inorganic matrix from cows [76], 

porcine organic bone matrix [77],  equine [78], and bio coral grafts [79, 80], and Norian 

CRS Bone Cement [81]. 
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   1.2.4.4. Prosthesis 
 

 The use of a large prosthesis is a common solution to overcome the above-mentioned 

complications. Nonetheless, as there is no biological interaction between the 

prosthesis and tissue, the prosthesis may simply give in and the revision surgery may be 

required in order to fix or replace it [82, 83]. This becomes particularly problematic in 

growing recipients [84]. Other concerns such as risk of allergy and toxicity [85] raise the 

new idea of using alternative materials, and consequently, open a new horizon of tissue 

engineering. 

 

   1.2.4.5. Alternative solution: tissue engineering  
 

  The search for alternative approaches toward bone repair and replacement of 

the conventional methods has resulted in the new field of tissue engineering. This field 

has evolved rapidly over the last 15 years. Scaffolds with designed microstructures give 

sound structural support and adequate mass transport of nutrients and oxygen to 

facilitate tissue regeneration. There are numerous reports on various tissues grown in 

vitro including bone [74], cartilage [86], main bronchus [87], and blood vessels [88]. The 

achievements in the area of tissue engineering in various disciplines are due to the rapid 

advancement in knowledge of stem cell biology and increased understanding of their 

response to environmental cues [89]. The unique ability of MSCs to sense and react to 

secreted molecules and cytokines in the case of injury, and migrate to the lesion site 
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makes them an excellent candidate for use in tissue engineering. However, one cannot 

disregard the need of a suitable vehicle for stem cell delivery. Hence, lots of effort has 

been put into fabrication of an optimal scaffold with the necessary characteristics for 

stem cell delivery [66].  

 

  1.2.5. Scaffolds 
 

Similar to scaffolds in the field of construction, the scaffold for tissue engineering and 

regenerative medicine needs to be strong, reliable, and able to endure the 

environmental conditions for the specific period of time. Moreover, the scaffold should 

be removable without damaging or affecting the newly formed or repaired structure 

[90]. In tissue regeneration, the scaffold is a three-dimensional (3D) construct that acts 

as a template for cell adhesion, proliferation, differentiation, and extracellular matrix 

formation to provide a suitable environment for the newly regenerated tissue. 

 

   1.2.5.1. Scaffold requirements 
 
For successful bone tissue engineering, a suitable environment in which osteogenic 

cells are able to migrate, differentiate, and proliferate is necessary. The scaffold, as a 

three-dimensional structure, can accommodate stem cells in this context and promote 

new bone formation as well as provide mechanical support during bone regeneration 

[91]. To design and manufacture an ideal scaffold for stem cells to survive and be able 
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to proliferate and differentiate, a few considerations need to be taken into account 

(Table 1). The biocompatibility of the material that the scaffold is being made of is 

important to avoid an adverse immunological reaction it may cause in the body. 

Biodegradability is another important characteristic of the scaffold, which means that 

the scaffold should be able to be degraded inside the body naturally at an appropriate 

time and controllable rate. In addition, the degradation products should not be toxic 

and must be metabolised naturally in the body [92]. Furthermore, porosity and 

permeability of the scaffold is essential for high yield of cell seeding (in vitro) and 

proper infiltration (in vivo), nutrient transport, tissue ingrowth, and vascularisation 

[93]. The mechanical stability of the scaffold is another important, desirable feature  

[92]. The construct should mimic the native bone environment and structure to make 

the scaffold ideally osteoconductive, osteoinductive, and osseointegrative of stem cells 

to native bone [91, 94]. 
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Table 1. Summary of scaffold features and their effect on bone regeneration. 

 

Scaffold characterisation Biological effect 

Biomaterial and biocompatibility -  Cell proliferation and differentiation 

-  Appropriate for in vivo implantation 

Geometry and architecture -  Encourage three dimensional  growth of the cell 

-  Controlling the growing tissue morphology 

-  Support cell proliferation 

Porosity -  Encouraging cell differentiation, recruitment, 

aggregation, and vascularisation 

Mechanical properties -  Support mechanical loading 

Degradation rate -  Make space for new tissue ingrowth 

-  Allow the extracellular matrix to remodel 

Biochemical stimuli - Embody proper growth factors and cytokines for  

cell function enhancement 

 

   1. 2.5.2. Scaffold materials 
 

A variety of materials including metals, ceramics, polymers (natural and synthetic), and 

their blends have been used for the replacement and repair of damaged bone tissues. 

Metals and ceramics have two major disadvantages for tissue engineering applications: 

they are non-biodegradable, and their processability is limited [95]. Synthetic and 

natural polymer scaffold applications have been comprehensively examined in the lab 

and clinic in order to replace bone tissue [96-99]. The polymer materials are more 

applicable in the case of scaffold fabrication and the fabrication technique due to their 
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desirable properties such as biocompatibility and degradation, mechanical properties, 

and microstructure [100, 101]. 

 

    1. 2.5.2.1. Synthetic polymers 
 
Synthetic polymers, both organic and inorganic materials, are used in a wide variety of 

biomedical applications. The family of saturated aliphatic polymers including polylactic 

acid (PLA), polyglycolic acid (PGA), poly (lactic-coglycolide) (PLG), and their blends, are 

the conventional materials that have been used in bone tissue engineering. These 

polymers have a high molecular weight and are usually polymerised via a condensation 

reaction. The other method of polymerisation is ring–opening polymerisation (ROP), 

which has been used in the polylactic group. The main core of all aliphatic polymers is 

the same, the only difference being the substituent group that accounts for a variation 

in molecular weight and degradation rate [14, 15]. 

There are other biodegradable synthetic polymers that are being investigated in 

the field of tissue engineering. These polymers include polycaprolactone (PCL), 

polyanhydrides, polyphosphazenes, and bioactive glass. The ability to attach to bone 

and soft tissue makes these materials good candidates for bone graft material. These 

polymers are able to form a layer of hydroxyapatite in the margin of bone and allow 

the graft material to integrate the implant to live tissue [92, 102]. Synthetic non-

degradable polymers include alloplastic, polymethylmethacrylate (PMMA), 

polytetrafluoroethylene (PTFE), and polyhydroxyethylmethacrylate (PHEMA) [103, 
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104]. To overcome the undesirable feature of non-degradability in these useful 

materials, and induce controlled degradation and improve biocompatibility, one can 

combine them with degradable and natural polymers. 

 

    1.2.5.2.2. Natural polymers 
 
The first biomaterials with biodegradability features that had been considered for use 

in bone tissue engineering clinically were natural polymers. Collagen [105-107], fibrin 

[108-111], silk [112-114], hyaluronic acid [115, 116], chitosan [117, 118], and alginate 

[91, 106, 109, 119-122] are used in bone and cartilage tissue engineering applications. 

These materials are able to enhance cell attachment and proliferation in biological 

systems due to their better interactions with cells compared to other polymers such as 

synthetic ones. Natural polymers have a highly organised structure and also possess 

extracellular ligands that may bind to cell receptors. However, limited supply and low 

weight-bearing capacity, high cost, and difficulty in processing them for clinical 

applications are some disadvantages of natural polymers [71, 118].   

 

    1.2.5.2.3. Composites  
 
Composite materials consist of two or more separate materials which can benefit from 

all the positive feature of each to provide a scaffold with better features. The 

polymer/ceramic composite scaffold serves as an imitation of natural bone, which is 
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made of hyaluronic acid and organic collagen. HA belongs to the mineral part of the 

living bone, and is required for better osteoconductivity. In polymer/ceramic 

composites, HA can be used as the ceramic part while collagen, gelatin, chitosan, chitin, 

elastin, poly methymethacrylate, polypropylene fumarate, polyphosphazenes, and poly 

hydroxybutyrate, PCL, PLA, PLG, poly anhydride, and polyorthoester, each can serve as 

the polymer component of the composite. In such constructs, the living bone matrix 

can spontaneously integrate into the HA layer. The degradation pattern of the polymer 

may be affected by the bioactive phase in the polymer composite. Changes in 

degradation kinetics are related to a pH-buffering effect at the surface of the polymer 

due to rapid proton exchange for alkali in the ceramic, which changes the rate of 

polymer degradation in pH-dependent cases (acidic degradation) [123-125]. In 

composite constructs, degradation rates may change due to ceramic accessibility in the 

composite structure, which leads to water absorption and hydrophilicity of the 

hydrophobic polymer structure [125]. An improved environment for cell seeding, 

survival, growth, differentiation, load-bearing, and other mechanical properties are 

some of the beneficial features of composite material for tissue engineering [126]. 

    1.2.5.2.4. Blends 
 

A blend is a category of polymeric material which is manufactured by a combination of 

synthetic–natural, natural–natural, and synthetic–synthetic polymers. The purpose of 

blending these materials is to benefit from idiosyncratic advantages of each material, 

features which include mechanical characteristics, ease of processing and low 



44 
 

production cost of synthetic material, biocompatibility, and controlled biodegradability 

of the natural polymers to match the cell growth rate [127]. PLA, PLG, and PCL as 

synthetic polymers and gelatin, elastin, chitosan, starch and alginate as natural 

polymers have been widely used in manufacturing blend materials [128, 129]. 

 

  1.2.6. Natural polymers: alginates 
 

Due to certain interesting chemical and physical properties of alginates, they have been 

used in a broad range of applications in different fields. In the food and beverage 

industry, alginates are used as thickeners and stabilisers. They also are used for yeast 

encapsulation in the ethanol production industry. Alginates are also applicable in other 

industries such as paper and paint production, ceramic shaping, sewage water 

treatment and purification [130-133]. Alginates have also been used in the healthcare 

and pharmaceutical industries as matrices for cell encapsulation and transplantation 

since 1980 when the first successful encapsulation of islet cells was achieved [134].  

 

   1.2.6.1. Structure and sources 
 

Alginate refers to a family of polyanionic copolymers of 1-4 linear linkages of ß-D-

mannuronic acid (M) and α-L-gluronic acid (G). The various compositions of these 

isomers results in at least three distinctive conformations of the hexopyranose ring 

[132]. The M/G content of the alginates directly affects the stiffness of the gel and will 
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subsequently affect the behaviour of the encapsulated cells. For example, a high G 

content leads to more stable gel compared to the high M content, which can affect the 

final purpose of encapsulation (cell proliferation and growth, or metabolism and 

secretory activity)  [135, 136]. These polysaccharides were initially isolated from brown 

algae, namely Laminaria hyperborea, Ascophyllum nodosum, and Macrocystis pyrifera 

and bacteria such as Azotobacter and Pseudomonas. However, isolation from bacteria 

is not cost-effective, so the material is sourced from brown algae [132]. (Figure 5) 

 

 

  

 

 

 

 

 

Figure 5. Alginate structure. 
 1-4 linear linkages of α-L-gluronic acid (G) and ß-D-mannuronic acid (M) [126]. 
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   1.2.6.2. Cell encapsulation and interaction 
 

Sodium alginate is soluble in an aqueous solution, which is called a hydrogel. Ionic 

interaction with certain divalent cations such as calcium (Ca2+), strontium (Sr2+), and 

barium (Ba2+) at room temperature results in the gelation of sodium alginate and 

consequent formation of a three dimensional structure. Mechanical properties 

including mechanical stability, viscosity, and elastic modulus of alginates are the key 

factors that affect the interaction of cell-gel during cell encapsulation [137, 138]. As 

there are no receptors for alginate polymers in mammalian cells, this polymer acts as a 

practically inert environment and, consequently, the adhesion and proliferation of cells 

within alginate is not affected by it [139]. To improve the cell-gel interaction, some 

adhesion molecules such as laminin [140], collagen [141], gelatin [91], and fibrin [109] 

have been supplemented into alginate during cell encapsulation. However, coupling 

using such materials is challenging to control and may lead to non-specific cell 

interactions. Hence, coupling of short chain amino acids was introduced to improve the 

cell-gel interaction. The fibronectin-derived adhesion peptide arginine-glycine-aspartic 

acid (RGD) and its subtypes are commonly used to improve the cell adhesion properties 

of alginate; considering that RGD-receptors have been identified and well characterized 

in mammalian cells [142]. Furthermore, the manipulation of alginate composition with 

the above-mentioned elements could affect and improve the degradation rate and 

make alginate more suitable for tissue engineering.   
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The mechanism that is responsible for nutrition supply and waste removal from 

encapsulated cells is simple diffusion because of the absence of a vasculature system. 

As a result, the size of the sphere is an important limiting factor in mass transport in 

encapsulated cells [143]. Encapsulation can be achieved by using simple methods such 

as a syringe or pipette [133, 144] or more precise methods including atomisation and 

emulsification. However, the resultant spheres obtained from the different methods 

would vary in size, which eventually will affect the survival and proliferation of 

encapsulated cells. It has been shown that spheres with a diameter of 0.9-1 mm 

displayed a cell layer approximately 0.2 mm thick at the periphery, while cells in the 

centre of the microcapsules were dead, which indicates insufficient nutrition transport 

to the centre. However, this problem can be resolved by reducing the size of the 

spheres [143, 145]. 

 

  1.2.6.3. Stem cell encapsulation in alginate for bone regeneration  
 

Encapsulation of bone marrow-derived stem cells in alginate for the purpose of bone 

tissue formation has been examined extensively and has shown promising results as an 

alternative solution for bone healing. However, to use alginate encapsulation clinically, 

a few strategies have been introduced. One approach is to encapsulate the 

osteoprogenitor cells [146, 147] and another strategy is to co-encapsulate these cells 
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with osteogenic supplements in order to initiate and support osteogenic differentiation 

[148-150].  

 

  1.2.7. Growth factors as osteogenic supplement 
 

In recent years, growth factors such as bone morphogenetic proteins (BMPs) have been 

used extensively in bone tissue engineering. These are the main signalling molecules 

for growth, proliferation, and differentiation of bone progenitor cells, and deliver 

certain advantages that make them effective and suitable for use in pre-clinical and 

clinical settings [151]. 

  

   1.2.7.1. Bone morphogenetic proteins (BMPs) 
 

Bone morphogenetic proteins belong to the superfamily of transforming growth factor-

beta (TGF-ß) and are structurally related. To date more than twenty BMPs have been 

identified. Several BMPs such as -2, -4, -6, -7, and -9 have shown direct effects on bone 

formation through bone morphogenic cascades, which result in proliferation and 

differentiation of osteoprogenitor cells and MSCs, and final bone formation [151, 152]. 

Furthermore, two BMPs are available commercially for use in clinical treatment - 

recombinant human (rh) BMP-2 (Infuse™) [153] and rhBMP-7 (OP-1™) [154]. These 

BMPs are being used widely as substitutes for autografts or in combination with grafts 

to increase their efficacy.  
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The use of BMPs as an alternative for grafts has several advantages such as reducing 

morbidity- and surgery-related complications and also overcoming the limitation of 

supply as BMPs can be made using  recombinant DNA technology [155]. However, the 

application of BMPs also has certain limitations. As BMPs works in a dose-dependent 

manner, the concentration of BMPs needs to reach a threshold level in order to initiate 

bone formation. Additionally, there is a rapid systemic clearance half-life for rh-BMP-2 

(7-16 minutes) and 10-15 hours for rhBMP-7, which necessitates the need to use 

supraphysiological doses in order to rectify the rapid wash-out in order to achieve a 

satisfying response [148]. Moreover, other limitations such as insufficient 

responsiveness of cells, possible inhibitory effect of high doses of BMPs on other 

tissues, and possible side-effects have come to light [156]. Furthermore, recent 

contradicting reports have been published about no positive effect of BMP-2 on 

fracture healing, as well as increasing debate with regards to its side effects such as 

osteolysis, implant reposition, loss of alignment, urogenital, bladder retention, and 

bone overgrowth into the spinal canal, which are the most common complications that 

have reported when rhBMP-2 is used compared with other graft methods [157-172]. 

The production cost of recombinant protein is another reason to search for other 

growth factors with bone regenerative potential.  
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   1.2.7.2. Platelet-rich plasma (PRP) 
 

The concentration of platelet in plasma is almost 1x106 platelets in 5 ml of plasma, 

which contains a 3- to 5-fold increase in growth factor concentration. The main role of 

platelets is in wound healing. The first reaction after wounding and bleeding is 

activation of platelets by contact with collagen and subsequent release of the growth 

factors to initiate the healing process [173]. The known cytokines in platelet are mostly 

involved in cell proliferation, chemotaxis, cell differentiation, and angiogenesis, which 

make it a good candidate to be used in bone repair [174, 175]. The majority of the 

growth factors that have been considered to be used as a supplement for osteogenic 

differentiation are somehow derivatives of PRP such as: platelet-derived growth factor 

(PDGF) [176], vascular endothelial growth factor (VEGF) [177], and fibroblast growth 

factor (FGF) [178]. While it has been shown that using PRP and its derivatives can 

support bone formation in different animal models [179-183], not all the studies are 

supportive of using PRP as a reliable and efficient clinical therapy in bone complications 

[184-186].  

 

  1.2.8. PEDF 
 

Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the 

superfamily of serpin protease inhibitor proteins without inhibitory function, encoded 

by the gene SERPINF1 located on chromosome 17p13, which is well-conserved in 
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evolution [187]. It is a protein of 418 amino acids, with a size of 50kDa and is widely 

expressed in most bodily tissues [188]. The highest amount of expression has been 

observed in the eye, foetal and adult liver, adult testis, ovaries, placenta, and the 

pancreas. [189]. A significant reduction in the expression of PEDF is found in senescent 

(aging) cells [190]. PEDF was originally isolated from the conditioned medium of 

cultured human foetal retinal pigment epithelium cells [189]. It is an extracellular 

protein which shows the typical secondary and tertiary structure of a serpin and binds 

to collagen-1 and heparin. The α-sheet is the dominant feature of the secondary 

structure and comprises the core structural domain of the protein, being closely 

involved in dynamic movements that are part of serpin function [191]. The existence of 

a reactive centre loop (RCL) is another feature of serpins, and it is a proteinase 

recognition site and a critical component of the function of serpins [189]. PEDF 

contains an RCL structure but the function of this is still unknown [189].   

While PEDF is increasingly becoming known for its anti-cancer properties, it is a 

pluripotent molecule with neurotrophic qualities, as well as having anti-angiogenic, 

anti-proliferative, pro-differentiation, neuroprotective, and anti-inflammatory roles 

[192-194]. Recent studies have demonstrated that PEDF supports the survival and 

proliferation of neural, retinal, and embryonic stem cell populations [195]. PEDF is also 

detected in areas of endochondral ossification and active bone remodelling [196]. As 

mentioned before, endochondral ossification is one of the main processes that MSCs 

go through for bone tissue formation [56].  
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   1.2.8.1. PEDF and mesenchymal stem cells (MSCs) 
 

 PEDF is one of the most abundant proteins identified in murine MSC (mMSC)-

conditioned medium [197]. Immunofluorescent staining has shown a high level of PEDF 

in the rough endoplasmic reticulum/Golgi areas [197]. PEDF is also found to be located 

near the plasma membrane and in the extracellular space, giving PEDF the ability to 

bind to collagen and proteoglycans in the extracellular matrix.   

During differentiation of MSCs to osteoblasts, the expression of several genes 

begins or is elevated and this includes PEDF. It has been shown that a high level of PEDF 

is expressed in osteoblasts during the early stages of bone development, and to a lesser 

extent in osteoclasts [198, 199]. Osteoblasts and possibly osteoclasts are able to 

synthesise and release PEDF, and this protein has a critical role in normal and abnormal 

bone angiogenesis [198, 200]. In developing bones, blood vessel growth is localised and 

MSCs may play a role as pericytes in support of newly formed blood vessels, which is a 

very active process during endochondral ossification [201, 202]. In locations such as the 

long bone growth plate, blood vessels selectively invade the region between 

hypertrophic chondrocytes and newly formed bone matrix. These newly-formed 

vessels allow migration of osteoblasts, which leads to new bone matrix deposition and 

bone elongation. PEDF is expressed in the epiphyseal cartilage and in the areas of 

active bone remodelling in the primary spongiosa and periosteum of metaphyseal bone 

[196]. There is a gradual decrease in the intensity of PEDF expression as chondrocytes 

differentiate toward bone at the base of the growth plate. The expression pattern of 
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PEDF varies in bone (Figure 6); a high level of expression was observed in the germinal 

zone, followed by a decrease in expression in the proliferation, maturation, and final 

hypertrophic zones [196, 198].   

1.3. Aims and Objectives 
 

The hypothesis of the current study is that PEDF is intrinsically involved in 

osteoblast differentiation and bone formation.  

 The main objective of this thesis was to investigate the effect of PEDF as an 

osteogenic supplement for MSCs in an alginate bead scaffold for bone tissue formation 

in vitro and in vivo. 

In order to examine the hypothesis, a series of in vitro experiments were carried 

out. The stemness of the isolated cells from mouse bone marrow first examined using 

specific surface markers and other necessary assays such as tri-lineage differentiation. 

The osteogenic potential of PEDF then examined in normal and osteogenic plates in 

mono layer and capsulated in alginate and confirmed via several qualitative and 

quantitative methods including immunofluorescent, immunoblottig, von kossa , alizarin 

Red staining and enzyme activity assay. The study further taken to animal model to test 

the hypothesis in normal physiological environment.   
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Epiphyseal plate  

 

Bone marrow cavity  

(Mesenchymal stem cell source) 

Germinal zone (containing 
stem cells) or resting zone (R) 

Proliferative zone (P) 

Maturation zone (M) 

Upper and lower hypertrophic zone 
(UH, LH)  

Ossification zone (OZ) PEDF expression zone 

Figure 6. PEDF is expressed in the epiphyseal cartilage (growth plate) and in the areas of active bone remodelling.  
The highest level of expression is observed in the proliferative zone, maturation zone, and upper hypertrophic zone respectively. 
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2. Material and Methods 
 

 2.1. In vitro study 
 

  2.1.1. Cell culture 
 
 All the cell culture and in vitro assays were carried out in Greiner culture flasks or 

plates (96-well, 23-well, 12-well and 6-well) at 37°C and 5% CO2 unless otherwise 

specified. 

All cell culture reagents and chemicals were purchased from Sigma-Aldrich (St Louis, 

MO, USA) unless otherwise stated. Dulbecco’s modified Eagle medium (DMEM), with 

low glucose, supplemented with 1% penicillin/streptomycin and 10% heat-inactivated 

foetal bovine serum (FBS) is referred to as complete media. Each experiment was 

repeated twice and carried out with 4 replicates (n=4) unless otherwise stated. 

 

  2.1.2. Stem cell isolation and expansion 
 
Wild-type 6 weeks Balb/c mice were sourced from the Monash Animal Research 

Platform, Clayton- VIC, Australia. Animal ethics approval was granted prior to 

commencing the study from the Victoria University Animal Experimentation Ethics 

Committee (AEEC 16/10).  

Mesenchymal stem cells were isolated from the marrow resident in mice long bones 

according to an established protocol with some modifications [38]. Animals were killed 
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by cervical dislocation and the hind limbs were removed and kept on ice in complete 

media, while removing all the muscles and connective tissue from bone by scraping and 

also during cell collection. After removing the growth plates, bone marrow was flushed 

out with complete media using a 27 gauge syringe. The cell suspension was then 

filtered through a 100 mm mesh filter (Millipore) to remove any bone or muscle tissue 

and then cultured in a 150 cm culture flask in 20 ml of complete medium. Every 8 

hours, the nonadherent cells were washed then removed with phosphate buffered 

saline (PBS) and fresh media added for the next 72 hours. The adherent cells were then 

washed with PBS and the fresh media added every 3 days for the next 3-4 weeks until 

cells became 80-90% confluent. Cells were split and passaged every 10-14 days 

following media removal and washed with 10 ml PBS. Cells were detached following 

incubation with 2 ml of 0.25% trypsin/1 mM ethylenediaminetetraacetic acid (EDTA) 

for 2 minutes at room temperature and grown until passage 4 for the derivation of a 

pure stem cell population and to increase the cell number. All experiments were 

performed within 10 passages. As mentioned before, the culture media contained 10% 

FBS which contains PEDF. Unsupplemented medium, that is one without FBS would 

leads to senescence and inhibits cell proliferation and ultimately leads to apoptosis. 

However, considering that all the cells were treated with the same basic media the 

effect of this PEDF in medium can be ignored. 
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  2.1.3. Immunocytochemistry 
 

Stemness of the isolated cells is indicated by the expression of CD73 and CD105 as well 

as a lack of expression of hematopoietic markers, CD34 and CD19 [25, 69, 203]. 

Immunocytochemical analysis was performed to characterise the surface antigen 

expression of CD34, CD19, CD73, and CD105 of the isolated cells according to a 

previously described protocol, with some modifications [204]. Cells were blocked after 

permeabilisation using 0.3% saponin following by a peroxidase block (Dako, 

Melbourne, Australia) for 5 min, with 2% serum (Dako, Melbourne, Australia) 

corresponding to the appropriate antibodies for 30 minutes. Cells were then incubated 

overnight with anti-CD34, -CD19, -CD73, and -CD105 (Santa Cruz)  in 1:500 dilution, and 

were subsequently probed with a biotinylated secondary antibody (Dako, Melbourne, 

Australia) at a 1:2000 dilution followed by Vectastain ABC kit (Vector Laboratories, 

Burlingame, CA, USA) according to the manufacturer’s instructions and 3,3’-

diaminobenzidine (DAB) staining. Haematoxylin staining was used to visualise the 

nucleus. Microscopic imaging was performed using a Zeiss Axioplan 2 microscope 

(Zeiss-Australia). 

  2.1.4. Flow cytometry analysis 
 

The expression of surface markers was also evaluated using an Attune® acoustic 

focusing cytometer (Thermofisher Scientific, NY, USA). Cells were detached with 

trypsin/EDTA and a single cell suspension in 5% PBS and FBS was prepared. The cells 
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were incubated on ice with anti-CD34, -CD19, -CD73, and -CD105 for one hour (1:50 

dilution). After centrifuging at 14000 g for 3 minutes, the cells were washed with PBS 

twice, resuspended in 5% PBS/BSA, and labelled with the corresponding fluorescent 

secondary antibody (1:100 dilution) on ice for 1 hour. Instrument settings were 

calibrated using unstained cells along with stained cells for fluorescein isothiocyanate 

(FITC) and tetramethylrhodamine (TRITC). Cells were gated for FSC-H versus FSC-A to 

eliminate cell doublets and larger clumps, then analysed using dot plots measuring 

forward versus side scatter and red fluorescence versus FITC (green) fluorescence, as 

well as histogram plots measuring events with TRITC (red) fluorescence and green 

fluorescence. Data analysis was performed using Flowjo software (Miltenyi Biotec, 

Bergisch Gladbach, Germany). 

 

  2.1.5. Tri-lineage differentiation  
 

In order to investigate the capability of stem cells to differentiate into different 

mesenchymal lineages, they were induced to differentiate into adipocytes, 

chondrocytes, and osteocytes as follows: 

   2.1.5.1. Adipogenic differentiation  
 

Cells were seeded onto 6-well plates at a seeding density of 104cells/well. After 24 

hours, adipogenic media (STEMPRO®-Gibco) was added and the media changed every 3 

days for 21 days. Adipogenic differentiation was confirmed using Oil Red O staining. In 
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brief, after 21 days, cells were rinsed once with PBS and then fixed with 10 % formalin 

for 30 minutes; cells were then washed with 60% isopropanol for 5 minutes after 

rinsing off the formalin with milli Q water. The cells were incubated in 0.3% Oil red O 

solution for 30 minutes. Wells were washed with milli Q water twice and then nuclei 

were stained with haematoxylin and imaged using a microscope [205]. Oil droplets 

within the cells represent differentiation towards the adipose lineage.  

 

   2.1.5.2. Chondrogenic differentiation 
 

Cells were seeded onto a low adherent surface 96-well plate using a seeding density of 

105cells/well. The plates were centrifuged at 400g for 3 minutes, and without 

disturbing the pellet, chondrogenic medium (STEMPRO®-Gibco) was added. Every 3 

days for 21 days the chondrogenic medium was added carefully to avoid disturbing the 

formed spheres. Chondrogenic differentiation was confirmed using Alcian Blue staining. 

In brief, after 21 days, media were removed and spheres were rinsed once with PBS, 

and fixed with 10% formalin for 30 minutes. After fixation, spheres were washed with 

PBS and then stained with 1% Alcian blue solution for 30 minutes. Afterwards, spheres 

were washed with 0.1 N HCl, followed by three washes with distilled water, and then 

visualised using a microscope. Blue staining indicated the presence of proteoglycans 

synthesised by chondrocytes. 
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   2.1.5.3. Osteogenic differentiation  
 

Cells were seeded on a 6-well plate with a seeding density of 104cells/well. After 24 

hours, osteogenic media (R & D system) was added and the media changed every 3 

days for 21 days. Osteogenic differentiation was confirmed using von Kossa staining. In 

brief, after 21 days, media was removed and cells were rinsed once with PBS, and fixed 

with 10% formalin for 30 minutes. Then, cells were stained with 5% silver nitrate and 

the plate placed under light for 30 minutes for colour to develop. Wells were rinsed 

once with distilled water, treated with 5% sodium thiosulphate solution for 5 minutes, 

and then washed with water once more. The extent of mineralisation was visualised 

under a light microscope.   

 

  2.1.6. Fabrication of alginate beads with MSC encapsulation 
 
A 1.5 % (w/v) medium viscosity sodium alginate solution was prepared by dissolving 

alginate in double-distilled water. MSCs were added to the alginate solution at a 

density of 1x106 cells/ml of alginate and mixed to homogeneity with gentle pipetting 

and manual shaking. PEDF protein (BioProducts MD, Bethesda-Washington DC, USA) 

was added to the cells-in-alginate suspension to a final concentration of 100 nM. The 

resultant suspension was added dropwise by means of a 27 gauge syringe into 0.1 M 

calcium chloride while stirring. The final calcium/alginate beads had an approximate 

diameter of 1.5 + 0.3mm [206].   
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  2.1.7. Viability of MSCs (PEDF and beads)   
 

In each well of a 24-well plate, alginate beads containing 2.5x105 cells were dispensed 

(n = 4).  Five different timepoints - days 1, 2, 3, 5, and 7 – were assessed. To assess 

metabolic activity, 10% Cell Titer Blue (Promega, Melbourne, Australia) was added to 

each well at each timepoint according to manufacturer’s instructions. Alginate beads 

with encapsulated cells were incubated in this solution at 37°C for 2-4 hours (until the 

colour began to change to purple from blue). Media (0.1 mL) from each well was 

transferred to a 96-well black, clear-bottom plate and fluorescence measured (570nm 

Ex- 600 nm Em) using a Fluostar, (BMG Labtech, Melbourne, Australia) plate reader.   

 

  2.1.8. Osteogenic differentiation of MSCs  
 

To examine the pro-differentiation potential of PEDF, PEDF was added to a final 

concentration of 100 nM to MSCs in both conditions – growing as a monolayer culture 

and encapsulated within the alginate bead matrix in normal and osteogenic plates 

(Corning® Osteo Assay Surface), which had been coated with inorganic crystalline 

calcium phosphate. To assess the possible effect of other components within the 

medium, such as β-glycerophosphate (β-GP) and calcium chloride (CaCl2), a set of 

controls was also tested to assess the effect of different factors and to rule out the 

false positive effect of factors such as β-GP and CaCl2 [207] (Table 2). Each of these 

added factors has a role in osteogenic differentiation. Dexamethasone with 10nM 
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concentration, similar to the physiological level of glucocorticoids (10 nM) is the 

optimal concentration for mineralised nodule formation and can induce osteoblast 

differentiation by activating Runx2 transcription factor. The role of ascorbic acid in 

osteogenic differentiation is mainly attributed to the secretion of Col1 into the 

extracellular matrix. β-glycerophosphate facilitates osteogenic differentiation by being 

the source of phosphate for hydroxyapatite. Calcium chloride served as source of 

calcium for later stage of mineralised nodule formation [208]. 

Table 2. Different treatments used in in vitro studies 
Treatment Component 

A Complete media + 100 nM PEDF+ 10 mM β-GP + 1.4 mM CaCl2 

B Complete media + 100 nM PEDF  

C* Complete media + 10 mM β-GP + 1.4 mM CaCl2 

D* Complete media 

E 
Complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50 

µg/ml ascorbic acid 

F Commercial (R&D system) osteogenic media  

 

*Controls for treatments A and B respectively  

 

  2.1.9. Fluorescence immunocytochemistry 
 

To observe the osteogenic differentiation of BMSCs treated with 100 nM PEDF, at 

seeding densities of 10000, 5000, and 1000 cells/well at day 7, 14, and 21 respectively 

(n = 4), four different osteogenic markers [118, 209-211] - alkaline phosphatase, 
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osteopontin, osteocalcin, and collagen-1 (Santa Cruz Biotechnologies, CA, USA) – were 

evaluated via immunocytochemistry [212] . Each of these markers represents different 

stages of osteoblastic differentiation. For example, ALP and OPN are early and mid-late 

differentiation markers while OCN is a late-osteogenic marker. In brief, cells were 

blocked with 2% serum after permeabilisation using 0.2% saponin and 0.5% bovine 

serum albumin (BSA), (Dako, Melbourne, Australia) corresponding to the appropriate 

antibodies (Santa Cruz Biotechnologies, CA, USA) for 30 minutes. Cells were then 

incubated overnight with primary antibody for osteogenic markers (OCN, OPN, 

collagen-I, and ALP in 1:250 dilution), after which cells were treated with the 

appropriate secondary fluorescent antibody (Santa Cruz Biotechnologies, CA, USA) at a 

1:2000 dilution for 30 minutes and subsequently with 1:1000 4′, 6-diamidino-2-

phenylindole dihydrochloride (DAPI). Microscopic imaging was performed using a 

Nikon Eclipse Ti inverted microscope.  

 

  2.1.10. Alizarin red staining (ARS) 
 

The monolayer culture was evaluated to quantify the formation of calcium 

deposits at days 7, 14, and 21 by staining with 4% Alizarin red solution. For 

each timepoint, cells were seeded in 48-well plates at three different cell 

densities.  The seeding densities were 10000, 5000, and 1000 cells/well for day 

7, 14, and 21 respectively. The cells were treated as outlined in Table 2. At 
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appropriate timepoints, cells were stained with 4% AR after fixation with 4% 

paraformaldehyde for 15 minutes. After washing the cells three times for five 

minutes each, 400µl of 10% acetic acid was added to each well for 30 minutes 

with gentle shaking. Cells were then scraped and removed to a 1 mL microfuge 

tube and heated to 85°C followed by centrifugation at 14000g for 5 minutes. 

Supernatants were removed and the pH adjusted to 4-4.5 by adding 10% 

ammonium hydroxide for each sample, then transferred to a 96-well plate and 

read at OD 405. A standard curve was prepared using Alizarin red standards 

[213]. 

 

  2.1.11. von Kossa staining 
 
The cells in monolayers and cells released from beads at different timepoints of culture 

(with seeding density of 10000, 5000, and 1000 cells/well for day 7, 14, and 21 

respectively) were stained to visualise the mineral phosphate deposition. In the case of 

the monolayer culture in both normal and osteogenic plates, after fixing the cells with 

4% paraformaldehyde for 15 minutes, mineralised nodules were stained with 5% silver 

nitrate and the plate placed under light for 30 minutes. Wells were rinsed once with 

distilled water, treated with 5% sodium thiosulphate solution for 5 min, and then 

washed with water once more [214]. Mineralisation of released cells from beads also 

was detected using von Kossa staining. Each well was rinsed with distilled water after 
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carefully removing beads from each well and staining was performed in the same 

manner as for the monolayer cultures.  

 

  2.1.12. Immunoblotting 

 
Immunoblotting was performed on the MSCs cultured under conditions described 

previously (Table 2, A-F). Cells were grown to 85-90% confluency in 75 cm2 flasks, 

harvested by scraping, and total cellular proteins extracted using ice-cold RIPA lysis 

buffer (20mM Tris-HCl, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% NP40, 2.5mM 

pyrophosphate, 1mM β-glycerophosphate, and 1mM sodium vanadate) containing 

complete protease inhibitors. Lysates were electrophoresed through a 4–20% gradient 

NuPAGE gel (Invitrogen, Melbourne, Australia) and electrotransferred to a 

polyvinylidene difluoride (PVDF; Invitrogen) membrane. Membranes then were blocked 

with 5% skim milk for 1 hour. Primary antibodies (Santa Cruz Biotechnologies, CA, USA) 

for osteogenic markers (OCN, OPN, collagen-I, and ALP) were applied and then 

incubated overnight at 4°C while shaking gently in a 1.5% skim milk solution. 

Secondary-HRP antibodies were incubated with the membranes in a 1.5% skim milk 

solution for one hour and were visualised using the ECL-Plus chemiluminescence 

system (Amersham Biosciences, Sydney, Australia) [215].  
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  2.1.13. Alkaline phosphatase activity 
 

The alkaline phosphatase (ALP) activity was determined using a fluorescence detection 

kit according to the manufacturer’s protocol. In brief, cells were seeded in 48-well 

plates at three different cell densities using osteogenic plates.  The seeding densities 

were 10000, 5000, and 1000 cells/well for day 7, 14, and 21 respectively. At each 

timepoint, cell lysates were collected using CelLytic lysis buffer. Samples were 

incubated for 15-30 minutes at 65°C and cooled on ice for 2 minutes. A mixture of 

dilution buffer and fluorescent buffer in 1:8 ratio was then added to 20 µl of sample in 

a 96 well plate. Finally, 1 µl of substrate was added to each well and the fluorescence 

measured (360 nmEx- 440 nmEm) every 15 minutes for 5 hours. A standard curve was 

prepared using ALP standards. 

  2.1.14. Statistical analysis 
 

Each datum point represents the mean of four experiments and the error bars 

represent the standard deviation from the mean. Statistical significance was 

determined using one way or two-way ANOVA and Student’s t-test for paired and 

unpaired data. Differences were considered significant if the p-value was less than or 

equal to 0.05. 
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 2.2. In vivo study 
 

  2.2.1. Animals 
 

Wild type 5 weeks Balb/c mice were obtained from the Animal Resources Centre 

(Perth, Australia). Animal ethics approval was granted from the Curtin University 

Animal Ethics Committee prior to experimentation (AEC-2013-21). All the animals used 

in this study were both age, gender and weight matched with the animals that the stem 

cell were isolated from.   

  2.2.2. Procedure  
 

Animals were randomly divided into four groups upon arrival (n = 8 mice/group) and 

kept and monitored for five days prior to the experiment. On the day of surgery, 

alginate beads in 4 different conditions, which consisted of alginate beads (negative 

control), alginate beads with 100 nM PEDF, alginate beads with MSCs without PEDF, 

and alginate beads containing 100nM PEDF and MSCs, were fabricated 3 hours before 

surgery.  

Mice were anaesthetised with isoflurane and both lateral thigh furs clipped. 

Aseptically, a lateral skin incision along each thigh was made and a muscle pocket 

created using a pair of blunt scissors. Alginate beads were carefully implanted into a 

gastrocnemius muscle pocket (n = 8 mice/group, 10 beads/leg ~ 50,000 MSCs per 

implant site). Muscle and skin layers were sutured and animals monitored closely after 

surgery until full recovery. Metacam 1.5mg/kg was injected subcutaneously (SC) 
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immediately after surgery, and Buprenorphine (0.075mg/kg) was also injected SC to 

manage pain in animals every 12 hours for 72 hours post-surgery. Mice had 

unrestricted access to food and water, and were on a 12 hours light/dark cycle. Five 

weeks after beads insertion (end of the study), mice were euthanased by isoflurane 

inhalation, followed by cervical dislocation, and the implant and surrounding tissue 

harvested. Left limb of each animal were used for micro CT and right limb were used 

for histology experiments. Micro-CT was performed on implant sites to determine 

whether bone tissue had been produced. Implants and surrounding muscle and fat pad 

tissues were processed histologically post-fixation in 10% buffered formalin, then 

embedded in paraffin, and sectioned at 5µm.  

  2.2.3. Microcomputed tomography (µ-CT) and bone volume analysis 
 

Mouse hind limbs were placed supine in the bed of a Skyscan 1076 in vivo X-ray 

microcomputed tomography machine. Two-dimensional (2-D) projections were 

obtained using an X-ray source setting of 70 kV and 139 μA, with beam filtration 

through a 1.0 mm aluminium filter. Data were collected every 0.5° rotation step 

through 180°. The scanning width was 35 mm, and the height was 17 mm. 

Reconstruction was performed employing a modified Feldkamp back projection 

algorithm. The resulting raw image data were Gaussian filtered and globally 

thresholded at the fixed range of 0.0–0.0752 cross-section to image conversion to 

extract the mineral phase. Using transverse image slices, trabecular bone was 
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segmented from the cortical bone using vendor-supplied analysis software (CT-

Analyser, Skyscan, BE), with semi-automated contouring. Bridging of the metaphyseal 

growth plate was used as the anatomical landmark for the proximal origin of trabecular 

bone. The selected region of interest spanned approximately 50 slices, and was 

analysed using morphometric software to determine trabecular bone volume ratio 

(Bone Volume/Tissue Volume [BV/TV]), and volumetric cortical Bone Mineral Density 

(BMD, g/cm3), after calibration with standard hydroxyapatite “phantoms”. 

 

  2.2.4. Immunohistochemistry and histological staining  

 

   2.2.4.1. Immunohistochemistry 
 

Prior to any tissue staining, 5 µm sections on SuperFrost (Thermo Fisher Scientific, 

Melbourne, Australia) slides were deparaffinised with 100% xylene and rehydrated 

with a series of concentrations of ethanol (100%, 70% and 30%). Antigen retrieval was 

carried out with a high pH buffer consisting of 10mM Tris and 1mM EDTA (pH 9.0) for 

12 min at high temperature (~90oC). Endogenous peroxidase activity was blocked with 

3% hydrogen peroxide in phosphate buffered saline (PBS, pH 7.4). Blocking was 

achieved with BSA for 30 minutes and tissues were subsequently incubated overnight 

at 4°C with primary antibody (Santa Cruz Biotechnology) for OCN, OPN, ALP, pro-

collagen I, MT1-MMP, HSP47, collagen I, and MMP-2. Tissue sections then were treated 

with a biotinylated link (DAKO), followed by streptavidin-HRP (DAKO). Staining was 
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achieved with DAB after incubating the sections with biotinylated secondary antibody 

for one hour. Counterstaining was subsequently achieved by dipping the sections 3 

times in haematoxylin followed by dipping 3 times in Scott’s tap water. Tissues were 

dehydrated in a series of ethanol washes in increasing concentrations (30%, 70%, and 

100%) for 5 minutes each prior to a five minute xylene rinse. Mounting was achieved 

using Depex solution. Imaging was performed with an Olympus BX51 microscope and 

CellSens software (Olympus, Perth, Australia) 

 

   2.2.4.2. Alcian Blue staining 
 

Sections were deparaffinised in 100% xylene and followed by rehydration with a series 

of concentrations of ethanol (100%, 70%, and 30%). After staining the slides with Alcian 

blue stain (pH~ 2.5) for 30 minutes and washing 2 times, sections were counterstained 

with 0.1% Nuclear Fast Red stain for one minute. Sections then were dehydrated in a 

series of ethanol washes in increasing concentrations (30%, 70%, and 100%) for 5 

minutes each prior to a five minute xylene rinse. Mounting was achieved using a Depex 

solution. 
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   2.2.4.3. Haematoxylin and eosin staining (H & E staining) 
 

Sections were deparaffinised in 100% xylene, followed by rehydration with a series of 

concentrations of ethanol (100%, 70%, and 30%). After staining the slides with 

haematoxylin for four minutes, sections were differentiated with 0.3% acid alcohol, and 

stained with eosin for 2 minutes.  
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3. Results 

3.1. In vitro studies 

3.1.1. Stem cell isolation, identification, culture, and viability  
 

To isolate the stem cell population from mouse bone marrow, the cultured cells were 

treated regularly with trypsin to reduce the number of haematopoietic cells. Before 

cells became fully confluent, the morphology of the cells was observed to see if it fitted 

the described criteria of MSC. Figure 6 is a bright field microscopic image of the 

isolated stem cells. As pointed via arrows, the cells were spindle-shaped and showed 

several morphological shapes from very slender and elongated to more cuboidal with 

less cytoplasm and shorter pseudopodia.  

 

 

Figure 7. Morphological features of the isolated mesenchymal stem cells (MSCs) 
Spindle-shaped morphology of MSCs that appear at day 1( black arrows). Scale bar =20µm. 
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  3.1.1.1. Immunocytochemistry, FACS analysis and trilineage differentiation 
 

When cells reached the desired confluency (around 85-90 %), they were examined via a 

panel of four specific surface markers (CD 34, CD 19, CD 105, and CD 73) which are 

critical for confirming the stemness of the cells [25]. Two markers (CD 34 and CD 19) 

out of the panel of four were not expressed by the cells (Figure 7a-b), while there was 

positive staining for the other two (CD105, CD 73), which indicated the expression of 

these surface markers by the cells (Figure 7c-d). FACS analysis (Figure 8), also 

confirmed lack of expression of CD34 and CD19 and the presence of CD105 and CD73, 

which indicated that the MSCs were not contaminated by haematopoietic cells.The 

trilineage differentiation potential of stem cells was also tested. The isolated cells had   

the capacity to differentiate to adipogenic, chondrogenic, and osteogenic lineages, 

which was visualised using oil red O, alcian blue, and von Kossa staining respectively. As 

shown in Figure 9-a, the blue staining represents the glycosaminoglycan presence in 

cells differentiated to chondrocytes. In Figure 9-b, cells accumulated oil droplets, as 

demonstrated by oil red O staining, and represented adipogenic differentiation. 

Osteogenic differentiation of the stem cells was confirmed by von Kossa staining, which 

showed organic phosphate deposits made by differentiated cells (Figure 9-c). 
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Figure 8. Immunocytochemical identification of harvested mesenchymal stem cells (MSCs) by 
light microscopy. 
MSCs at passage 5 post-harvest were analysed under the light microscope post-
immunocytochemistry. (a) Lack of expression of surface marker CD34. (b) Lack of expression of 
surface marker CD19. (c) Left, expression of surface marker CD105. Right, negative control (d) 
Left, expression of surface marker CD73. Right, negative control  Scale bar = 20µm. 

c 

d 
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Figure 9.Flow cytometric identification of harvested mesenchymal stem cells (MSCs). 
MSCs at passage 5 post-harvest were analysed via flow cytometry. Histogram analysis of cell surface markers showed that MSCs were not 
contaminated by haematopoietic cell lineages. (a) Cells were gated for stem cell population. (b) Stem cell population gated for single cells. (c) 
Lack of expression for CD 34. (d) Lack of expression for CD 19. (e) Expression of CD 105. (f) Expression of CD 73. 

a b 
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Figure 10. Differentiation capacity of mesenchymal stem cell.  
(a) Chondrogenic differentiation visualised by alcian blue, (b) Adipogenic differentiation 
visualised by oil red O, and (c) Osteogenic differentiation visualised by von Kossa staining. Scale 
bar = 50µm. 
 

   3.1.1.2. Stem cell viability 
 

To test the effect of PEDF and alginate on cell viability, cells in monolayers and 

encapsulated in alginate beads were examined for seven days at five timepoints - days 

1, 2, 3, 5, and day 7. The CT-Blue assay was carried out to assess the viability of the 

cells. In monolayer culture, cells were treated with 100 nM PEDF [192, 216] along with 

cells grown in complete DMEM. With the cells in monolayers, the CT-Blue assay 

showed no significant difference between cells treated with PEDF and negative control 

at the first three timepoints. However, on day 5 of the experiment, cells treated with 

100 nM PEDF appeared to have an increase in viability compared to controls (not 

statistically significant) (Figure 10). Furthermore, there was a statistically significant 

difference between viability of the cells treated with PEDF and untreated control at day 

7 (p ≤ 0.01). The encapsulated cells in alginate beads in both conditions (without and 

a b c 
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with PEDF) showed no significant difference at any timepoint. However, PEDF 

treatment in day 3 raised the cell viability percentage, although it was not statistically 

significant. Overall, there was no particular trend and there was no significant 

difference between PEDF-treated and untreated cells (Figure 11).  
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Figure 11. Viability of mesenchymal stem cells (MSCs) in the presence of pigment epithelium-
derived factor (PEDF). 
Viability of MSCs under control condition and PEDF treatment in monolayers over 7 days. n = 8. * p 
<0.01. 

 

With PEDF Without PEDF 



81 
 

 

 

 

 

 

3.1.2. Osteogenic differentiation of MSCs in monolayer culture 
 

   3.1.2.1. Fluorescence immunocytochemistry  
 

To explore the potential osteogenic effect of PEDF, stem cells were seeded in 24-well 

plates for the duration of 21 days with 3 timepoints (day 7, 14, and day 21). Four 

osteogenic markers, osteopontin (OPN), osteocalcin (OCN), collagen I (Col-I), and 

alkaline phosphatase (ALP) were selected in order to evaluate the expression of 

osteoblast-specific protein in different stages of osteogenic differentiation. Cells were 

treated with 100 nM PEDF [216] and other control media as described previously 

(Table 2 in 2.1.8). The expression of OPN, OCN, Col-I, and ALP increased gradually from 
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Figure 12. Viability of mesenchymal stem cells (MSCs) in the presence of pigment 
epithelium-derived factor (PEDF). 
Viability of MSCs encapsulated in alginate beads under control condition and PEDF treatment 
over 7 days. n = 4.   
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day seven till day 14 in treatments A, B, E, and F respectively (Figures 12, 13, 14, and 

15). However, the expression of ALP was decreased after day 14, and the fluorescence 

intensity was less at day 21 for treatments A, B, E, and F. No staining was observed for 

treatments C and D (DMEM + β-GP +CaCl2 and DMEM respectively) for the above 

mentioned osteogenic markers. 
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Figure 13. Immunocytochemistry of osteopontin (OPN) marker in monolayer culture of differentiated mesenchymal stem cells (MSCs) 
under conditions A – F (key below) at days 7, 14, and 21. 
 Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, complete media + 100 
nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar =100µm.   
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Figure 14. Immunocytochemistry of osteocalcin (OCN) marker in monolayer culture of differentiated mesenchymal stem cells (MSCs) 
under conditions A – F (key below) at days 7, 14, and 21. 
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, complete media + 100 
nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 100µm. 
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Figure 15. Immunocytochemistry of collagen I (Col I) in monolayer culture of differentiated mesenchymal stem cells (MSCs) under 
conditions A – F (key below) at days 7, 14, and 21.  
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, complete media + 100 
nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 100µm.   
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Figure 16. Immunocytochemistry of alkaline phosphatase (ALP) marker in monolayer culture of differentiated mesenchymal stem cells 
(MSCs) under conditions A – F (key below) at days 7, 14, and 21. 
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, complete media + 100 
nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 100µm 
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   3.1.2.2. von Kossa staining  
 

The mineralisation of cells was observed using von Kossa staining of monolayer cultures 

in normal (non-coated) plates. The mineralised cell deposit at day 21 is shown in Figure 

16. Treatment F showed a high amount of mineralisation at day 21, while treatments A, 

B, and E also showed significant mineral deposition. In treatments C and D, no 

mineralisation was detected. Only mature osteoblasts carry out mineralisation, hence 

von Kossa staining is not expected to be positive at the earlier points. The same trend 

was observed in monolayer cultures of stem cells in osteogenic plates. However, the 

intensity and amount of staining seemed higher in osteogenic plates. This was as 

expected as the crystalline calcium phosphate coating in the plate supports osteogenic 

differentiation and mineral formation (Figure 17). 
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Figure 17. von Kossa staining results of mesenchymal stem cells (MSCs) grown on uncoated 
plate surface. 
Images of stained mineral deposits (arrows)  from differentiated MSCs. Key: A, complete media 
+ 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, 
complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete 
media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml 
ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 10µm 
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Figure 18. von Kossa staining results of mesenchymal stem cells (MSCs) grown on osteogenic 
plates. 
Images of stained mineral deposits (arrows)  from differentiated MSCs. Key: A, complete media 
+ 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, 
complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete 
media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml 
ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 10µm. 
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   3.1.2.3. Alizarin red staining (ARS) 

 
The monolayer cultures were evaluated quantitatively for formation of calcium 

deposits at days 7, 14, 21 by staining with AR solution. An increasing trend was 

observed in the amount of mineralised calcium in treatments A, B, E, and F during the 

differentiation period, whereas the negative controls (treatments C and D) showed 

very little/no mineralisation at the corresponding study periods. As shown in Figure 18, 

there is a significant difference (p ≤ 0.05) in the amount of mineralisation between 

treatments A, B and their negative control C, D respectively. Furthermore, there is a 

significant difference between all treatments (A, B, C, and D) with positive controls (E 

and F).  

The amount of calcium was also evaluated in osteogenic plates at day 21 for the MSC 

culture under treatments based on Table 2. As shown in Figure 19, there is a significant 

difference (p ≤ 0.01) in the amount of mineralisation between treatments A, B, E, and 

F, and treatments C and D. As shown in Figure 19, there is no significant difference 

between the amount of calcium detected in positive controls (E and F) and treatments 

(A and B). It appears that the crystalline calcium phosphate coating in the plate 

supports osteogenic differentiation in treatment A and B, which was also shown via 

von Kossa staining for organic phosphate deposition. 
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Figure 19. The mineral concentration of mesenchymal stem cells (MSCs) grown on normal 
(non-bone-matrix-coated) plate surface as measured by Alizarin Red  
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium 
chloride (CaCl2), B, complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM 
CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. * p < 0.05. 
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Figure 20. The mineral concentration of mesenchymal stem cells (MSCs) grown on osteogenic 
(bone matrix- coated) plate surface as measured by Alizarin Red. 
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium 
chloride (CaCl2), B, complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM 
CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4. * p < 0.01. 
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   3.1.2.4. Immunoblotting 
 

Figure 20 shows the Immunoblotting of the whole cell lysates of MSCs for all conditions 

based on Table 2. The first panel (Figure 21-a) shows the results of Western blotting for 

treatments A-D at day 14. The proteins corresponding to osteoblastic differentiation in 

treatments A and B were observed in contrast to negative controls. The second panel 

(Figure 21-b) shows the results for the same osteogenic markers for treatments A, B, E, 

and F at similar timepoints. The nearly two-fold increases in expression of mid 

osteoblastic markers (OCN and ALP in treatment B) indicate the progression of stem 

cells toward osteoblasts. Two-fold increase in expression of OPN and a significant drop 

in expression of ALP in treatment E (positive control) shows the final stage of 

osteoblastic differentiation of these cells. The consistent intensity, although faint, is in 

accordance with other findings from fluorescence immunocytochemistry, 

mineralisation staining, and quantification  
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Figure 21. Immunoblot analysis shows the expression level of four osteogenic markers; 
alkaline phosphatase (ALP), collagen-1 (Col-1), osteopontin (OPN), and osteocalcin (OCN) at 
day 14.  
(a). Comparing PEDF treatments (A and B) with negative controls (C and D). (b). Comparing 
PEDF treatments (A and B) with positive controls (E and F). key: A, complete media + 100 nM 
PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, complete 
media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, 
complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml ascorbic 
acid, F, commercial osteogenic media. n = 3. (c). Quantitative analysis of immunoblot bands 
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   3.1.2.5. ALP activity 

 
Alkaline phosphatase (ALP) enzyme activity is one of the indicators of osteoblastic 

differentiation. ALP activity of the MSCs in previously described conditions, cultured on 

osteogenic plates, was measured on day 7, 14, and 21. As shown in Figure 21, the ALP 

activity of cells in all the treatments was similar except in treatment F, which was 

nearly twice as much as the other treatments at day 7. As the cells progressed through 

the differentiation path, the activity of the enzyme increased and reached its peak at 

day 14 and then decreased as the cells converted to osteoblastic cells. There was a 

significant difference between enzyme activity in days 7 to 14 and 14 to 21 in 

treatments A, B, E, and F, which indicates the transformation of MSCs to mature 

osteoblasts. There was a significant difference (p ≤ 0.05) in ALP activity in all three 

recorded timepoints between negative controls (treatment C and D) and the rest of the 

treatments. 
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Figure 22. Alkaline phosphatase activity of mesenchymal stem cells (MSCs) in monolayer 
culture in osteogenic plate at days 7, 14, and 21.  
key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium 
chloride (CaCl2), B, complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM 
CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4, * p < 0.05. 
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3.1.3. Osteogenic differentiation of MSCs encapsulated in alginate beads 
 

   3.1.3.1. Alginate bead degradation and cell release 
 

 

Microphotographs of MSCs encapsulated in alginate beads under six previously 

described treatments (Table 1) are shown in a weekly timeline until day 21 in Figure 22. 

At day 7, beads in treatments B, E, and F started to break up or “crack” and release the 

stem cells. Bead degradation in treatment A started after day 14, while for beads in 

treatments B, E, and F, the degradation process started within the first 7 days; and 

almost 80 % of the beads in treatment F, 44 % and 41 % of beads in treatments E and B, 

respectively, were degraded and released the encapsulated cells within 14 days. On 

day 21, all of the alginate beads in treatments E and F and more than 60 % of the 

alginate beads in treatment B released the encapsulated cells, while 33 % from 

treatment D and 18 and 11 % of alginate beads in treatments A and C respectively were 

degraded and released the cells (Figure 23). There is a significant difference between 

percentages of degradation in treatments B, E, and F, and treatment A, C, and D (p ≤ 

0.05). 
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Figure 23. Time-course of mesenchymal stem cell (MSC) growth and development in alginate beads. 
Alginate beads at days 7, 14 and 21 post-MSC-encapsulation in cell culture.  Beads are beginning to ‘crack’ as early as day 7 under some 
conditions (arrow). key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, 
complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete media, E, complete media + 10 mM β-GP + 
1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4, scale bar = 50 µm. 
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Figure 24. Time-course of alginate bead degradation over a period of 21 days in cell culture. 
Key: A, complete media + 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium 
chloride (CaCl2), B, complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM 
CaCl2, D, complete media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM 
dexamethasone + 50µg/ml ascorbic acid, F, commercial osteogenic media. n = 4, * p < 0.05 

 

  3.1.3.2. Alizarin red staining 
 

The quantitative evaluation of calcium deposits from released cells from alginate beads 

at day 21 in osteogenic plates is shown in Figure 24. There is a significant difference 

between the amounts of mineralisation in treatments A, B, E, and F with treatments C 

and D (p ≤ 0.05). The crystalline calcium phosphate coating in the osteogenic plate 

supports osteogenic differentiation of the released cells. 
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Figure 25. Mineralisation by released cells from alginate beads in osteogenic plate at day 21 
in monolayer culture. 
The mineral concentration was measured by Alizarin Red assay. Key: A, Complete media + 100 
nM PEDF + 10 mM β-GP + 1.4 mM CaCl2 , B, Complete media + 100 nM PEDF, C, Complete 
media + 10 mM β-GP + 1.4 mM CaCl2, D, Complete media, E, Complete media + 10 mM β-GP + 
1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml ascorbic acid, F, Commercial osteogenic 
media. n= 4, * p< 0.05  

 

   3.1.3.3. von Kossa staining 
 

Figure 25 shows the mineralisation of the cells released from alginate beads in normal 

plates as well as osteogenic plates (Figure 26) at day 21. In normal plates, the staining 

for mineralisation in treatments A and B is similar in amount and no mineralisation was 

observed in treatments C and D; however, the staining for mineralised nodules in 

osteogenic plates in treatment B is comparable with treatments E and F, while 

treatment A along with treatments C and D show no staining and indicate the absence 

of mineralisation. 
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Figure 26. von Kossa staining results of mesenchymal stem cells (MSCs) released from 
alginate beads on normal (non-bone-matrix-coated) plate surface. 
Images of stained mineral deposits (arrows) from differentiated MSCs. Key: A, complete media 
+ 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, 
complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete 
media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml 
ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 10µm. 
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Figure 27. von Kossa staining results of mesenchymal stem cells (MSCs) released from 
alginate beads on osteogenic plate surface. 
Images of stained mineral deposits (arrows) from differentiated MSCs. Key: A, complete media 
+ 100 nM PEDF + 10 mM β-glycerophosphate (β-GP) + 1.4 mM calcium chloride (CaCl2), B, 
complete media + 100 nM PEDF, C, complete media + 10 mM β-GP+ 1.4 mM CaCl2, D, complete 
media, E, complete media + 10 mM β-GP + 1.4 mM CaCl2 + 10 mM dexamethasone + 50µg/ml 
ascorbic acid, F, commercial osteogenic media. n = 4. Scale bar = 10µm 
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 3.2. In vivo study 
 

  3.2.1. Macroscopic findings  
 

An intramuscular pocket was created for alginate bead implantation. PEDF in alginate 

beads, MSCs in alginate beads, PEDF + MSCs in alginate beads, and empty alginate 

beads were carefully inserted into the muscle pocket, and after 35 days all of the 

implants in the first three groups resulted in implants that had blood vessels clearly 

visible and with yellowish-white morphology to the implants (Figure 27.a-c), which 

indicated the cellular occupancy of the implants as opposed to the ‘milky-white’ hue 

observed in the empty bead cohort (Figure 27.d). Macroscopically, in the empty bead 

group, beads with acellular matrix were noted as well as the beads having a brittle 

texture. Furthermore, alginate beads were intact and kept their spherical shapes, and 

no enzymatic/cellular degradation/interaction was visible. In contrast with these 

findings, in the other three groups, the implants had an elastic-feel texture and the 

alginate beads had lost their integrity and fused together as a result of 

enzymatic/cellular degradation/interaction and formed a yellow mass surrounded with 

blood vessels. They also exhibit layer-looked especially in PEDF in alginate beads and 

MSCs with PEDF in alginate beads group. The vasculature around the implants of 

alginate and PEDF, and alginate with PEDF and MSCs, were more prominent compared 

to the vessels around alginate with MSC implants. This is an interesting finding 

considering that PEDF is usually known for its anti-angiogenic properties.  
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Figure 28. Macroscopic observation of beads implanted in Balb/c mice for 35 days. 
(a) Alginate beads with pigment epithelium-derived factor (PEDF). (b) Alginate beads with 
mesenchymal stem cells (MSCs) (c) Alginate beads with MSCs and PEDF. (d) Empty alginate 
beads with a milky-white hue and acellular texture (red arrow). Blood vessels (black arrow) and 
yellowish hue (blue arrow) were noted. Scale bar = 1mm.  
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  3.2.2. Micro-CT 
 

Micro-CT imaging revealed the formation of osteoid tissue in the implant site (Figure 

28). In the alginate with PEDF group (Figure 28-a), the formation of considerable 

osteoid tissue in the implant area is visible as well as in the alginate and MSC group but 

in a much lesser extent (Figure 28-b). Interestingly, micro-CT images of the alginate 

with PEDF and MSC group (Figure 28-c) showed a significant amount of osteoid tissue. 

Micro-CT imaging also picked up some mass formation in the empty alginate bead 

group. The structure of the latter was in complete contrast with the images from other 

groups. As pointed out by the blue arrows in Figure 28 a-c, the mass formed in the first 

three groups is more likely an osteoid tissue (woven bone) with crinkled edges and a 

wrinkled/rippled surface, whereas in the alginate alone group (yellow arrow), complete 

round edges with a smooth surface are visible. Quantitative micro-CT was also carried 

out for a few important bone parameters (Figure 29 a-c). The bone volume in three 

different groups was quantified via micro-CT imaging. There is a significant difference in 

bone volume in MSCs with PEDF in alginate beads compared to PEDF in alginate beads, 

and MSCs in alginate beads (Figure 29-a). The same significant difference was also 

observed for the structural thickness of the formed tissue (Figure 29-b). However, the 

comparison of tissue mineral density of the same three groups showed no significant 

difference (Figure 29-c). Overall, the order of de novo bone formation in increasing 

order was: MSCs in beads < PEDF in beads < MSCs + PEDF in beads. 
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Figure 29. Micro-CT images of alginate bead implants. 
(a) Alginate beads with pigment epithelium-derived factor (PEDF) (b) alginate beads with 
mesenchymal stem cells (MSCs) and PEDF (c) alginate beads with MSCs (d) empty alginate 
beads. Arrow: yellow, smooth exterior of alginate bead implants; blue, rough exterior of 
alginate bead implants. Scale bar = 1mm 
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Figure 30. Quantitative micro-CT measurements. 
Measurements of (a) bone volume (mm3) determined in three different groups, (b) structural 
thickness (mm), and (c) tissue mineral density (g/mm3). n = 6, * p < 0.05. 
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3.2.3. Haematoxylin and eosin (H & E staining) 
 

Two sets of figures are presented as a panel of four images to compare the morphology 

and degradation state of the implants with different magnification via haematoxylin 

and eosin (H&E) staining. 

 Figure 30 shows a low magnification image of the alginate beads implant in four 

different groups.  Figure 30 a-c shows PEDF in alginate beads, MSCs in alginate beads, 

and MSCs with PEDF in alginate beads respectively. In all of these three groups, 

alginate beads show degradation and loss of integrity and shape, which were greatest 

in the group of MSCs with PEDF in alginate beads. In this group, the beads fused 

together and formed a mass of cells with an alginate residue in between. A lesser level 

of degradation was observed in the other two groups (PEDF in alginate beads and MSCs 

in alginate beads). Figure 30-d shows the alginate bead alone group. In this group, 

beads kept their spherical shape and stayed intact with no sign of degradation. Higher 

magnification images of beads from the different groups are shown in Figure31. In the 

first image (Figure 31-a), it seems that PEDF caused cell migration [217, 218] (believed 

to be mainly stem cells) toward the alginate beads from available sources such as 

adipose tissue near the implant site. Considering the formation of osteoid tissue in this 

group, based on micro-CT results, it can be postulated that PEDF can attract stem cells 

from nearby tissues such as adipose tissue and muscle and modulate their 

differentiation toward an osteoblastic phenotype. Black arrow shows the osteoblasts. 

Figure 31-b shows the MSCs in alginate beads group. Some light purple nuclei (nuclear 
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ghosts) were visible in this group, suggesting that some of the cells died during the 

course of the study (red arrow). However, a significant number of the cells survived and 

partially differentiated toward an osteoblastic phenotype. Figure 31-c shows the MSCs 

with PEDF in alginate beads group. The cellular organization within these beads was 

homogeneous and differentiation of stem cells to osteoblasts is visible throughout the 

section (black arrow). An alginate bead is shown in Figure 31-d. Intact alginate with 

some of the surrounding cells showed no significant change in morphology, size, and 

degradation. 

The H & E staining for fat (Figure 32) and muscle (Figure 33) surrounding the implant 

site shows that both muscle and fatpad tissue morphology were not altered by PEDF.  
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Figure 31. Haematoxylin and eosin (H & E) staining for different groups. 
View of alginate bead degradation in four different groups, a) alginate bead with pigment 
epithelium-derived factor (PEDF) b) alginate bead with mesenchymal stem cells (MSCs), c) 
alginate bead with MSCs and PEDF d) alginate bead. Scale bar=200 µm. 
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Figure 32. Haematoxylin and eosin (H & E) staining for different groups. 
High magnification of alginate bead degradation in four different groups, key: a) alginate bead 
with pigment epithelium-derived factor (PEDF) b) alginate bead with mesenchymal stem cells 
(MSCs), c) alginate bead with MSCs and PEDF d) alginate bead. Arrow: black, osteoblasts, red, 
dead cells. Scale bar=20 µm. 
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Figure 33. Haematoxylin and eosin (H & E) staining for muscle surrounding the implant site 
for four different groups. 
Key: a) alginate bead with pigment epithelium-derived factor (PEDF), b) alginate bead with 
mesenchymal stem cells (MSCs), c) alginate bead with MSCs and PEDF, d) alginate bead. Scale 
bar = 20µm.  

          

Figure 34. The Haematoxylin and eosin (H & E) staining for fat tissue surrounding the implant 
site for four different groups. 
Key: a) alginate bead with pigment epithelium-derived factor (PEDF), b) alginate bead with 
mesenchymal stem cells (MSCs), c) alginate bead with MSCs and PEDF, d) alginate bead. Scale 
bar = 50µm. 
 

  3.2.4. Alcian blue staining 
 

Alcian blue staining for PEDF in the alginate bead group (Figure 34-a) and MSCs in 

alginate group (Figure 34-b), did not show the blue hue attributed to the 

glycosaminoglycan-rich matrix (black arrows), which is seen in the PEDF + MSCs in 

alginate beads group (Figure 34-c). The low level of glycosaminoglycan production in 

the implant site indicated that cells were less likely to be of the chondrogenic lineage. 

In the alginate alone group, no staining was observed (Figure 34-d). 

a c b d 

c b a d 



 

113 
 

   

   

Figure 35. Alcian blue staining for the four different groups. 
Key: a) alginate bead with pigment epithelium-derived factor (PEDF), b) alginate bead with 
mesenchymal stem cells (MSCs), c) alginate bead with MSCs and PEDF, d) alginate bead. The 
blue hue indicating the presence of a glycosaminoglycan-rich matrix in group c (black arrow) 
Scale bar= 20µm. 
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  3.2.5. Immunohistochemistry 
 

The immunohistochemistry of bone markers OCN, OPN, ALP, and col-I, and markers 

related to bone matrix formation such as pro-col-I, HSP47, MT1-MMP, and MMP-2 was 

explored.  

High intensity staining (yellow arrows) for OCN for the MSCs with PEDF in alginate bead 

(Figure 35-c) group was observed. Furthermore, a notable amount of staining as also 

seen for the alginate beads with PEDF group (Figure 35-a). The alginate beads with 

MSCs (Figure 35-b) group showed no positive staining for this marker. The acellular 

structure of the alginate alone group (Figure 35-d) showed a yellow-light brown 

background due to DAB staining (black arrow). Interestingly, the intensity of staining 

for OPN (yellow arrows) was higher in the alginate beads with PEDF group (Figure 36-a) 

compared to the MSCs with PEDF in alginate beads group (Figure 36-c). Some cells in 

the MSCs in alginate bead group (Figure 36-b) also showed positive staining for this 

marker; however, no staining was observed in the alginate alone group (Figure 36-d) 

other than the yellow-light brown background.   

No expression for ALP was observed in the alginate beads with PEDF group (Figure 37-

a), MSCs with PEDF in alginate beads group (Figure 37-c), and alginate alone group 

(Figure 37-d), while a considerable amount of staining was observed in the MSCs in 

alginate beads group (Figure 37-b). The distribution of col-I was greater but more 

localised in the PEDF + alginate (Figure 38 a) and MSCs in alginate beads groups (Figure 

38 b). A more homogenous and even distribution of col-I was observed in the MSCs 
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with PEDF in alginate beads group (Figure 38 c) but no staining was observed in the 

alginate alone group (Figure 38-d) other than a yellow-light brown background.  

 

  

  

Figure 36. Immunostaining of alginate bead implant paraffin sections for bone marker 
osteocalcin (OCN) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate beads with 
mesenchymal stem cells (MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. 
Arrows: black, acellular alginate bead matrix; yellow, positive staining. Scale bar = 20µm. 
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Figure 37. Immunostaining of alginate bead implant paraffin sections for bone marker 
osteopontin (OPN) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate beads with 
mesenchymal stem cells (MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. 
Arrows: black, acellular alginate bead matrix; yellow, positive staining. Scale bar = 20µm. 
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Figure 38. Immunostaining of alginate bead implant paraffin sections for bone marker 
alkaline phosphatase (ALP) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate beads with 
mesenchymal stem cells (MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. 
Arrows: black, acellular alginate bead matrix, yellow, positive staining. Scale bar = 20µm. 
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Figure 39. Immunostaining of alginate bead implant paraffin sections for bone marker 
collagen-I (Col-I) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate bead with 
MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. Arrows: black, acellular 
alginate bead matrix; yellow, positive staining. Scale bar = 20µm. 
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In addition to bone forming markers, bone matrix markers were also investigated. Pro-

col-I was most abundant in the MSCs with PEDF in beads group (Figure 39-c) compared 

to the PEDF in alginate beads group (Figure 39-a), which showed low and localised 

expression of pro-col-I (yellow arrows). The MSCs in alginate group (Figure 39-b) 

showed no staining for this marker. The alginate beads group (Figure 39-d) was 

acellular in appearance (black arrow) and showed no staining. The staining for HSP47 

was more intense for the MSCs with PEDF in beads group (Figure 40-c) in comparison 

with the PEDF in alginate beads (Figure 40-a) and MSCs in alginate groups (Figure 40-

b), which showed very low expression of HSP47 (yellow arrow). No staining was 

observed for the alginate beads alone group (Figure 40-d). A relatively similar amount 

of staining was observed for MT-MMP1 (yellow arrow) in the PEDF in alginate beads 

(Figure 41-a), MSCs in alginate (Figure 41-b), and MSCs with PEDF in beads groups 

(Figure 41-c). No staining was observed for the alginate beads alone group (Figure 41-

d) and also, there was no staining observed for MMP-2 in this cohort (Figure 42 a-d).  
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Figure 40. Immunostaining of alginate bead implant paraffin sections for bone matrix marker 
pro- collagen-I (pro-col-I) in four different groups. 
Key: a) alginate bead with pigment epithelium-derived factor (PEDF), b) alginate bead with 
mesenchymal stem cells (MSCs), c) alginate bead with MSCs and PEDF, d) alginate bead. 
Arrows: black, acellular alginate bead matrix, yellow, positive staining. Scale bar = 20µm. 
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Figure 41. Immunostaining of alginate bead implant paraffin sections for bone matrix marker 
heat shock protein 47 (HSP47) in four different groups. 
Key: a) alginate bead with pigment epithelium-derived factor (PEDF), b) alginate bead with 
mesenchymal stem cells (MSCs), c) alginate bead with MSCs and PEDF, d) alginate bead. 
Arrows: black, acellular alginate bead matrix, yellow, positive staining. Scale bar = 20µm. 
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Figure 42. Immunostaining of alginate bead implant paraffin sections for bone matrix marker 
membrane-type matrix metalloproteinase (MT1-MMP) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate beads with 
mesenchymal stem cells (MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. 
Arrows: black, acellular alginate bead matrix; yellow, positive staining. Scale bar = 20µm. 
 

 

b a 
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Figure 43. Immunostaining of alginate bead implant paraffin sections for bone matrix marker 
matrix metalloproteinase 2 (MMP-2) in the four different groups. 
Key: a) alginate beads with pigment epithelium-derived factor (PEDF), b) alginate beads with 
mesenchymal stem cells (MSCs), c) alginate beads with MSCs and PEDF, d) alginate beads. 
Arrows: black, acellular alginate bead matrix. Scale bar = 20µm. 
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4. Discussion 
 

 4.1. In vitro study 
 

Previously it has been shown that PEDF protein is expressed by osteoblasts and 

osteoclasts [198]. PEDF has also been detected in areas of endochondral ossification 

and active bone remodelling [196]. Endochondral ossification is one of the main 

processes that MSCs go through for bone tissue formation [56]. The role of MSCs 

during bone formation is far from clear. The osteogenic potential of these cells makes 

them suitable candidates for bone tissue engineering. It is also suggested that these 

cells may have a role as pericytes in support of newly formed blood vessels, which is a 

very active process during endochondral ossification [201, 202]. While adipose-derived 

MSCs can be differentiated to osteoblasts at the expense of adipocytes by PEDF [219] , 

and PEDF can differentiate bone marrow-derived MSCs to osteoblasts grown in 

osteogenic medium [220], no reports of differentiation of bone marrow-derived MSCs 

by PEDF in the absence of osteogenic supplements are available. This is critical if PEDF 

is to be used clinically in future for bone tissue engineering in situ.  All these facts led to 

the hypothesis for the present study that PEDF might have a pre-osteoblastic 

differentiation effect on MSCs in the absence of osteogenic supplements.  

A natural osteogenic supplement would be desirable for bone tissue engineering, and 

in the case of PEDF, not only it is naturally expressed at high levels in the active bone 

forming site, it also has a high affinity binding to glycosaminoglycans and collagens in 
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the ECM [196]. To support this hypothesis, after isolation of MSCs from bone marrow, 

four of the recommended surface markers for stem cells were used for stem cell 

identification. Our results were consistent with previous reports [25, 221] and 

expression for two positive markers (CD73 and CD105) was detected whereas no 

expression for CD34 and CD19 was observed via immunocytochemistry. Consistent 

with our immunocytochemistry findings, FACS results also showed a similar expression 

of MSC-characteristic surface markers (CD73 and CD105) and the absence of 

haematopoietic markers (CD34 and CD19), indicating that the isolated cells had no 

haematopoietic cell contamination [27, 222]. The tri-lineage differentiation, which is 

one of the important characteristics of MSCs [223], were replicated in our results here, 

demonstrating that these cells have the capacity to be induced to differentiate into 

bone, fat, and cartilage. Before testing the osteogenic potential of PEDF, stem cell 

survival in the presence and absence of PEDF was studied. Previous studies have shown 

that PEDF supports cell survival and proliferation of human embryonic stem cells [224, 

225]. It also induces self-renewal, activates cell division, and plays a role in the 

maintenance of multipotency in neural stem cells [226] and self-renewal and cell 

expansion in retinal stem cells [227, 228]. Consistent with these studies, results of this 

study show that PEDF helps MSC survival in a monolayer culture after seven days in the 

absence of other pro-differentiation factors. 

The encapsulation of stem cells for cell delivery and tissue engineering purposes is now 

being increasingly performed [146, 229-234]. There are a significant number of studies 
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that have utilised fast-degradable hydrogels such as gelatine and collagen. Degradation 

and cell release are two important parameters in successful bone tissue formation. A 

fast degradation rate (degradation in less than 6 days) will lead to minimum bone 

formation by transplanted stem cells and loss of support for cell proliferation. On the 

other hand, slow degradation of beads may inhibit cell proliferation and matrix 

formation [235, 236]. Co-immobilising stem cells with endothelial cells in alginate 

beads [146], and arginine-glycine-aspartate (RGD)-grafted alginate beads [237], and a 

blend of alginate-fibrin [109] and alginate co-encapsulation with anti-BMP2 monoclonal 

antibody [238] were shown to increase the rate of alginate degradation, cell release, 

and differentiation. Our study showed that encapsulating PEDF and stem cells in 

alginate beads (treatments B and in some cases treatment A) improves degradation of 

and cell release from alginate beads significantly (p < 0.05) compared to encapsulation 

of stem cells alone in alginate beads (treatments C and D). It has also been observed 

that the cells released from alginate beads with PEDF treatment (both treatments A 

and B) differentiated into osteoblasts as exemplified by von Kossa staining. The 

significant difference in degradation rate of alginate beads in comparison to treatments 

B, E, and F might be due to the presence of CaCl2 (which is the active factor in alginate 

polymerisation) in treatments A and C.  

Staining for osteogenic markers in the monolayer study showed a similar 

increasing trend in expression of late differentiation markers including osteocalcin 

(OCN) and osteopontin (OPN) in all osteogenic treatments (A, B, E, and F) from day 7 to 
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day 21 [118, 209]. The expression of ALP was also observed in these treatments with 

strong staining at day 14 and a gradual reduction in expression afterward. The same 

trend was also observed in ALP activity, which was evaluated for the monolayer 

cultures in osteogenic plates during the course of differentiation for days 7, 14, and 21. 

Increased enzyme activity at day 14 was observed in treatments A, B, E, and F, followed 

by a decreasing trend until day 21 as cells differentiate; the expression and activity of 

ALP would reduce (day 14 onward). In contrast, in treatments C and D, no significant 

difference was observed at the different timepoints and is consistent with findings 

from previous studies [118, 239, 240].  

Collagen I expression also expectedly had an increasing trend, which would be 

due to assembly of a collagen matrix for pre-osteoblast cells. At day 21, a decrease in 

collagen I was observed that is consistent with the fact that day 21 is close to the 

maturation point of osteoblasts, when the expression of collagen decreases and matrix 

mineralisation is initiated. These results also have been confirmed using whole cell 

protein content, which was shown by immunoblottig at day 14. Overall, the increased 

amount of the four osteoblast-specific proteins (ALP, Col-1, OCN, and OPN) observed 

after day 14 indicates the presence of post-proliferative osteoblast cells in the culture. 

Alizarin red [109, 241] and von Kossa [118, 146] staining were performed in 

order to monitor the calcium and phosphate mineralisation respectively. The significant 

amount of mineralisation in both treatments A and B compared to controls (treatments 

C and D) indicates the successful osteogenic effect of PEDF in both normal and 
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osteogenic plates. The sudden increase in mineral concentration in treatment C 

(complete media + 10 mM β-GP + 1.4 mM CaCl2) above baseline and treatment D 

(complete media) may be due to cell-associated, non-HA precipitates that form in the 

presence of β-GP [210]. Considering other results from immunocytochemistry, von 

Kossa staining, and immunoblotting, which showed negative results with treatments C 

and D, this mineral staining is not likely to be representative of bone-like matrix 

mineralisation [210].  

 

4.2. In vivo study 
 

 To investigate the bone formation potential of any engineered construct in vivo, 

one of the commonly used methods is intramuscular (muscle pouch) implantation 

[242-246]. This model can be used in nearly any animal model and, in fact, it was also 

tested on a human patient in 2004 [247]. The promising in vitro results of osteoblastic 

differentiation of MSCs via PEDF observed in both monolayer cultures and 

encapsulation in alginate beads, leads to the further step of testing the hypothesis in an 

animal model. The micro-CT images show formation of osteoid tissue in all three 

groups (PEDF in alginate beads, MSCs in alginate beads, and MSCs with PEDF in alginate 

beads) with no osteoid tissue found in the alginate alone beads group. However the 

amount of formed osteoid tissue varied, and the highest amount was observed in the 

MSCs with PEDF in alginate beads group followed by PEDF in alginate beads group and 
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MSCs in alginate beads group. The quantitative analysis on bone parameters acquired 

from micro-CT such as bone volume, structural thickness, and tissue mineral density 

[248, 249] also confirm the formation of bone tissue in this cohort for the mentioned 

groups. The micro-CT also showed a morphologically different mass in the alginate 

alone group. Further parameter analysis for this group showed no data representing 

osteoid tissue formation, which might be due to the presence of CaCl2 in the polymer 

structure of alginate as well as the formation of a necrotic collagen capsule as part of 

the animal’s foreign body reaction [148, 250]. Along with micro-CT findings, 

immunohistology results showed  high expression of OCN - a late osteoblastic marker- 

in MSCs with PEDF in alginate beads group, followed by PEDF in alginate beads group, 

and finally with the MSCs in the alginate beads group. These results indicate that the 

cells in the MSCs with PEDF in alginate beads group were in a later stage of osteoblastic 

differentiation compared to the other two groups. Additionally, immunostaining also 

showed that expression of OPN, a mid-late osteogenic marker was as follows: PEDF in 

alginate beads > MSCs with PEDF in alginate beads > MSCs in alginate beads. These 

observation stating that the involving in alginate beads with PEDF also going through 

differentiation but in earlier stage than MSCs with PEDF in alginate beads. The 

expression of col-I can also be summarised as follows: PEDF in alginate beads > MSCs in 

alginate beads = MSCs with PEDF in alginate beads. Expression of ALP – a mid 

osteogenic marker - however, was higher in the MSCs in alginate beads group, followed 

by the PEDF in alginate beads group and lastly, a very weak level of expression was 
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observed in the MSCs with PEDF in alginate beads group. The interesting finding 

regarding the expression of col-I was that col-I appeared to be more localised in the 

MSCs in alginate beads and PEDF in alginate groups compared to MSCs with PEDF in 

alginate beads group. When cells are traversing the late stage of differentiation, col-I 

diffuses from the cytoplasm to the ECM to form a matrix that is replaced during 

ossification. In regard to pro-col-I, less expression was observed in differentiated cells 

(MSCs with PEDF in alginate beads) as this protein is the precursor of col-I. HSP47 

expression on the other hand, was the highest in MSCs with PEDF in alginate beads 

group in comparison to the other groups as it is the active chaperone for col-I folding. 

These observations of pro-col-I, col-I, and HSP47 coincide with the high amount of 

expression of MT1-MMP observed in the MSCs with PEDF in alginate beads group. In 

bone, collagen-I can be degraded by MT1-MMP, which is critical for growth plate 

function and secondary ossification [251-254]. Moreover, in the Alcian blue staining, 

the glycosaminoglycan-rich matrix seems weak and was only observed in the MSCs 

with PEDF in alginate beads group, which could represent the late, hypertrophic stage 

of ossification.  

Taking micro-CT and immunohistology data together, it can be postulated that PEDF 

differentiated the alginate encapsulated MSCs toward an osteoblastic lineage and 

produced osteoid tissue (Figure 28-c). The most intriguing finding was that the PEDF 

without MSCs in alginate beads group also produced bone tissue (Figure 28-a) by 

utilising cells seconded from the surrounding tissue. However, it seems that these cells 
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are in earlier stage of differentiation, as demonstrated by immunohistology for the 

majority of the cells. It has been suggested that these PEDF-attracted migrating cells 

are derived from the adjacent adipose tissue, as these adipose-derived stromal cells 

can be channelled towards the osteoblastic lineage [255, 256], as can cells from the 

spatium intermuscular [257]. It is unlikely that inflammatory cells were the 

predominant cells migrating into the alginate bead scaffolds since osteoblastic markers 

stained a clear majority of cells resident in implant sites in this cohort. One interesting 

observation was the presence of blood vessels in implants that contained PEDF; one 

possible explanation can be that PEDF function is to restore a balance in pathological 

angiogenesis by counteracting excessive VEGF activity. It is not known to block or 

destroy normal blood vessel formation rather it destroys leaky blood vessels. It is found 

early in embryogenesis when blood vessels are developing so unlikely to affect normal 

angiogenesis event. 

Bone morphogenic proteins (BMPs), especially (rh) BMP-2 and (rh) BMP-7, have 

been used widely in the clinic and orthopaedic surgery to enhance bone growth. 

Several studies carried out in different animal models have concluded that BMPs have a 

species-specific osteo-inductive dose. For example, in non-human primates, the 

minimum required dose of BMP-2 to induce bone formation is substantially higher than 

in rodents [258]. The wide range of species-specific differential in the osteo-conductive 

BMP-2 dose may account for the lack of evidence of BMP2-related side effects in 

animal models such as rodents, where the lower doses will result in bone formation 
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with no significant side-effects [259]. However, due to high dose requirements of BMP 

in human treatment, several adverse side effects have been documented including 

ectopic bone formation with spinal cord impingement, osteoclast activation with 

transiently elevated bone resorption, cyst-like bone void formation, and life-

threatening cervical swelling [260-263]. Interestingly, in most cases the swelling was 

due to inflammation and soft tissue swelling rather than fluid accumulation such as 

seen with haematoma [260]. The inflammatory response is not unexpected, as BMP2 is 

a known chemoattractant for lymphocytes, monocytes, and macrophages [263]. One of 

the suggested solutions to address this issue is combining BMPs with other growth 

factors to dampen the unwanted inflammatory reaction. The other strategy is to 

suppress the natural antagonist of the BMPs such as noggin and inhibit them from 

blocking BMPs. In that case, the required dose would decrease [264]. Nevertheless, 

these invasive strategies have to be investigated thoroughly for potential side-effects 

and interference with other biological reactions before they can become clinically 

applicable. In this study, the osteogenic potential of PEDF encapsulated in alginate with 

or without stem cells provides us with a new technique for bone tissue engineering. In 

this method, PEDF induces osteogeneration in vitro when co-encapsulated with MSCs, 

and in vivo using cells present endogenously in the body (that is without the need for 

co-encapsulation of MSCs). Considering the fact that PEDF has inflammation-

dampening effects in tissues such as the eye (retinal pericytes) [265] and has a 

protective effect on cerebellum granule cells [266], as well as an inhibitory effect on 
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pro-inflammatory cytokine production in neonatal astrocytes and cultured microglia 

[267, 268], make this protein a suitable candidate for further investigation in the field 

of bone tissue engineering for potential clinical use.   
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5. Conclusions, limitations and future directions 
 

5.1 Conclusions 
 

 In the present study, the effects of a cell-based technique were tested in vitro 

and investigated ectopically in a mouse model. Alginate beads were used for scaffold 

fabrication in combination with mesenchymal stem cells and PEDF as the sole 

osteogenic supplement. Mineral deposition representing bone tissue was found in vitro 

along with a mineral structure similar to bone in vivo. Interestingly, in the in vivo 

model, the MSCs plus PEDF was not the only group able to produce bone and the group 

with alginate supplemented only with PEDF also produced bone in a comparable 

manner. A noteworthy observation in this case is the ability of PEDF to recruit cells and 

directly contribute to ectopic bone formation in vivo. 

 Bone morphogenic protein is a clinically used factor in several orthopaedic 

scenarios. However, the safety of this powerful biological product is debatable based 

on recent clinical trials. Several studies showed that a super physiological dose of BMPs 

is required to induce bone formation. The high-dose of BMP2 not only induces 

significant tissue inflammation (that explains the clinically observed cervical swelling), 

but also increases osteoclastogenesis that may manifest clinically as vertebral 

subsidence or collapse and excessive bone resorption. PEDF, a naturally available 

protein during bone formation and remodelling, with anti-inflammatory effects can be 

a suitable candidate for future studies in the field of bone tissue engineering. As shown 
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by this study, a biological dose of PEDF (100nM) successfully formed bone mass in an 

ectopic animal model. 

5.2 Limitations and future directions: 
 

So far the focus on PEDF has been limited to its anticancer potential and anti-

angiogenic properties. Thus, several molecular mechanisms in those areas are known. 

However, in the last couple of years, other properties of PEDF have come to light 

especially as a differentiation factor.  There are only two other reports on the in vitro 

osteoblastic effect of PEDF. The present study is one of the first studies looking at 

osteogenic differentiation of PEDF in vitro and in vivo. Hence, the knowledge on the 

molecular mechanisms is yet scarce in this field. One possible pathway which might be 

involved in the osteogenic differentiation via PEDF is ERK/MAPK.  However, there might 

be other pathways involved and more study is warranted.  

PEDF-R is the general receptor identified for PEDF in several different cell lines. 

Other receptors such as plexin domain containing 1 (PLXDC1), plexin domain containing 

2 (PLXDC2), laminin receptor and membrane linked F1-ATP synthase have also been 

recognised for PEDF, however, the involvement and role of these receptors in PEDF 

osteogenic pathways need to be investigated as this is unchartered territory.   

Murine MSCs were used in this study and showed promising results to take the 

hypothesis further to other animal models and possibly clinical trial. However, to 

explore the efficacy and feasibility (relative potential) of this technique for its future 
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clinical application, additional comparative studies are needed. First of all, it is of great 

importance to introduce hMSCs and hESCs to this system with the objective of final 

clinical application. Following this, systematic studies are crucial using optimised 

alginate bead size (in micro scale) in vitro accompanied with relative assessments, as 

well as in vivo studies using different animal models with defects of critical size before 

its introduction to clinical trials. Alginate has been used in clinical trials since 2006 for 

different tissue engineering purposes such as bone and periodontal tissue repair, as 

well as a vehicle for cell therapy. However, microbead handling might be a problem 

despite its easy use, especially when it comes to CSD healing, fracture, or tumour 

resection defect area.  

The safety of using hMSC and hESCs in combination of PEDF should be verified, as these 

cells might provoke inflammatory and/or immune adverse reactions while going 

through differentiation and transformation, even though PEDF has an anti-

inflammatory and protective effect. Utilising PEDF knock-out animal model would help 

to investigate the effect of endogenous PEDF on MSCs and their behaviour. 

 Finally, with regard to the possibility of immune rejection and the need for immune 

suppression, it is striking to consider a “patient-specific” cell-scaffold for personal bone 

tissue engineering. In this case, the patient’s stem cells can be used for personalised 

tissue regeneration with the advantage of minimizing the risk of immune rejection.  
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