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ABSTRACT 
 

Streamflow data are critical for water resource investigations, and their development 

projects. However, the scarcity of such data, particularly measured streamflow through 

streamflow gauges, constitutes a serious impediment to the successful implementation of 

development projects. In the absence of such measured streamflow data, streamflow 

estimation using measured meteorological data represents a viable alternative. 

Nevertheless, this alternative is not always possible due to the unavailability of required 

meteorological data. In the face of such data limitations, many have advocated the use of 

remote sensing (RS) data to estimate streamflow. The aim of this study was to generate 

daily streamflow time series data using remote sensing data through catchment process 

modelling and statistical modelling. 

 

This study was conducted in two contrasting case study areas. The first case study area 

was the Macalister catchment in Australia, which is a data rich catchment. The second case 

study area was the Ribb catchment in Ethiopia, which is a data scarce catchment. The Soil 

and Water Assessment tool (SWAT) was used as the catchment process modelling tool, 

and Artificial Neural Networks (ANN) were used as the statistical modelling technique. 

Remote sensing data were used to estimate rainfall and potential evapotranspiration (PET), 

and to classify landuse/landcover (LULC), which in turn were used as inputs to catchment 

process modelling. Various vegetation and thermal indices, and brightness temperature 

were considered as surrogates to meteorological variables. They were used as inputs to 

statistical modelling to estimate daily streamflow. 

 

The SWAT models of the two study catchments were initially calibrated with ground 

measured meteorological data (base models). For the Macalister catchment, the calibrated 

model parameters were used to run the SWAT model with estimated rainfall and estimated 

PET (both estimated from remote sensing data), replacing ground measured data one at a 

time, and then together with both estimated rainfall and estimated PET replacing ground 

measured data. Performance indices were calculated using the estimated streamflow of 

each model and the measured streamflow. Ground measured PET data (i.e. lysimeter data) 

were not available for both catchments. Therefore the SWAT model generated the PET 

data using ground measured data (or data in publicly available databases) on temperature, 

wind speed, solar radiation and relative humidity. These SWAT derived PET data were 
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used as ground measured PET data. The results showed that the daily streamflow 

estimation with ground measured data was the best, while the daily streamflow estimation 

with estimated rainfall and estimated PET was the poorest. No significant difference to the 

daily streamflow estimates was noted when SWAT model derived PET was substituted 

with estimated PET.  

 

For the Ribb catchment, the calibrated model parameters were used to estimate daily 

streamflow by replacing ground measured rainfall and SWAT model derived PET with 

estimated rainfall and estimated PET (both estimated from remote sensing data). Note that 

similar to the Macalister catchment ground measured data were not available for the Ribb 

catchment and therefore the SWAT derived PET data were used as ground measured PET 

data Intermediate models as used in the Macalister catchment were not considered in the 

Ribb catchment. This was because the model with ground measured rainfall data and 

estimated PET data produced similar results to the base model, and the model with 

estimated rainfall and SWAT model derived PET produced similar results to the model 

with estimated rainfall and estimated PET, in the Macalister catchment. The results of the 

base model were the best, and the results of model run with estimated rainfall and 

estimated PET is reasonable. This showed that estimated variables using remote sensing 

data can successfully be employed in catchment process modelling to estimate daily 

streamflow in both data rich and data scarce catchments at the same level of accuracy. 

 

The vegetation indices (i.e. NDVI, NDWI and EVI) of current day, seven lag days and 8-

day average, and the thermal indices of brightness temperature difference and gradient, as 

well as the brightness temperature of current day and three lag days were considered as 

potential input variables for ANN modelling. The Partial Mutual Information method was 

used to select the influential inputs for these ANN models. The ANN models of total 

period and seasons, which were developed for the Macalister catchment, revealed that the 

seasonal models outperformed the total period model. In light of this finding, seasonal 

ANN models with influential input variables were developed for the Ribb catchment. It 

was shown that the ANN models developed with vegetation indices, thermal indices and 

brightness temperature in estimating daily streamflows showed similar performance in 

terms of accuracy of results for both data rich and data scarce catchments. 
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Results also showed that the performance of ANN models with vegetation indices, thermal 

indices and brightness temperature in both case studies was better than the performance of 

the catchment process models with estimated rainfall and estimated PET (both estimated 

from remote sensing data). Furthermore, the results indicated that the performance of ANN 

models (i.e. seasonal) in both case studies were as good as the performance of the 

catchment process models (i.e. base models) developed with ground measured data.  

 

In summary, this study concluded that the ANN modelling approach provided better 

predictions of daily streamflow than the catchment process modelling approach when 

remote sensing data were entirely used to estimate daily streamflow for both data rich and 

scarce catchments.  
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1 CHAPTER 1: INTRODUCTION 

 

Scarcity and misuse of fresh water pose a serious and growing threat to 

sustainable development and protection of the environment. Human health 

and welfare, food security, industrial development and the ecosystem on 

which they depend, are all at risk unless water and land resources are 

managed more effectively in the present decade and beyond than they have 

been in the past (ICEW, 1992). 

 

The above quote summarizes the findings of the Dublin Statement1 on ‘Water and 

Sustainable Development’ (ICEW, 1992). This statement was accepted by 114 countries 

and by a large number of international, intergovernmental and non-governmental 

organizations, at the Rio de Janeiro “Earth Summit” in 1992 (Abbott and Refsgaard, 

1996). Although this conference was held 20 years ago, the situation described above 

remains the same in some parts of the world, and has even worsened in some other parts. 

 

More recently, it was revealed by the UN World Water Development Report (World Water 

Assessment Programme, 2006) that over 800 million people still do not have enough water 

and food necessary for a healthy and productive life. This report further noted that the 

implications of lack of water for food and sanitation go far beyond the question of simple 

access to the resource. In fact, water scarcity represents a complex social and economic 

issue which is central to poverty in the community. Water shortage has become even more 

pronounced due to rapid population growth and increasing industrial and environmental 

demands. 

 

Although water is a renewable resource and a large amount of water exists on the surface 

of the earth, only a minute fraction of this amount can be used to meet human 

requirements. Of the total volume of surface water, 96.5% is salt water which is found 

primarily in the oceans. This salt water is unsuitable for agriculture, domestic human needs 

                                                
1
Scarcity and misuse of fresh water poses a serious and growing threat to sustainable development and protection of the 

environment. This was acknowledged by experts as an emerging global water crisis at the International Conference on 
Water and the Environment (ICWE) in Dublin, Ireland, on 26-31 January 1992. At its closing session, the Conference 
agreed to certain principles which they believed should be implemented by political hierarchy to address the 
aforementioned issues. These principles form the Dublin Statement. 
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and for most industrial processes. Whilst the remaining 3.5% is fresh water, almost all of it 

is stored in the ice caps of the Antarctica and the Arctic (1.7%), or in sub-surface aquifers 

and groundwater (1.7%). The remaining 0.1% is on the surface and in the atmosphere. In 

sum, only 0.006% of the total water content can be found in the rivers (Chow et al., 1988) 

and this is the main water source for global populations. 

 

At this juncture, it is important to highlight that this small portion of potable water is 

shared amongst all living organisms including humans, flora and wildlife. Furthermore, it 

should also be noted that the maintenance of the waterway ecology implies that a healthy 

water flow needs to be upheld. Consequently, a massive demand has been created on the 

available supplies of fresh water, emphasizing the critical need for better water 

management for sustainability reasons. In this respect, whilst it is recognized that the 

knowledge of the spatio-temporal variation and quantification of fresh water is essential on 

a local scale for better management practices, this knowledge is not currently available in 

many parts of the world (Sivapalan, 2003; Sivapalan et al., 2003). 

 

1.1 Stress on water resources 

Water is the one of the basic constituents of all living organisms, and its importance is 

reflected in the fact that living bodies currently hold an amount of water which is nearly 

half of what is available in all the rivers (Chow et al., 1988). However, what is more 

relevant is that, in addition to this structural requirement (i.e. water that is used as building 

blocks of living organisms), living organisms continually need an input of additional water 

to meet their biological activities. Furthermore, the required volume of this potable water 

(for their biological purposes), which is necessary for daily consumption, is increasing 

daily as a result of population growth, adding additional pressure on the remaining water 

sources and ultimately on the environment. 

 

To better understand the reasons behind population growth, it should be noted that since 

the late 19th century and early 20th century, the global death rate has declined, but the birth 

rate, at least until the mid-1960s, has been maintained, causing a peak in population 

growth in the mid-1960s. During this peak time, the population growth rate was above 2%, 

but later, with improved literacy, the population growth rate was gradually reduced as a 

result of low birth rate, and has now stagnated at 1.1% (USCB, 2011). Notwithstanding 
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this reduction in growth rate, according to the United States Census Bureau (USCB) 

statistics, the world population will reach 8 billion in year 2027, which means that, on 

average, 71 million people (calculations based on USCB statistics - 2011) will be added to 

the total population each year. The implication of this population increase is that, at the 

current rate of water use, an additional amount of 56.8 billion m3 of water per year will be 

needed to fulfill the demands of the additional population. 

 

The most pressing needs relate to the provision of reliable clean drinking water, and 

adequate supplies of non-saline water for agricultural purposes and ensuring healthy food 

production and sanitation. In addition, there must be sufficient water for a wide range of 

industrial, recreation and community uses. An adequate amount of water should also be 

available for flora and fauna, and river flows must meet or exceed minimum levels, which 

are of long-term importance for environmental sustainability. In the light of these 

concerns, it is clear that the existing water resources must be carefully managed to cater 

for these varied requirements (World Water Assessment Programme, 2009). 

 

Vast amounts of water are also needed for many industries. Whilst the economic return per 

unit of water is very high in the industrial sector, the growing energy and manufacturing 

industries pose increasing pressure on available water resources. According to recent 

statistics, industries consume around 10% of total water used in the world per annum 

(World Water Assessment Programme, 2009). These industries make a significant 

contribution to the standard of living of communities. Nevertheless, there are several 

challenges with the industrialized use of water such as the increase in water pollution. 

 

The environmental demand for water is of utmost importance for ensuring the 

sustainability of the ecosystem, since in a closed system even small changes in the shared 

environment can adversely affect all contributing sectors. The continued presence and 

availability of volumes of fresh water and other related systems that depend on water, 

provide a range of benefits to human communities and a variety of wild life (Revenga et 

al., 2000). A reduction of the ready availability of water supplies can have major adverse 

effects on these fragile ecosystems. In fact, there are examples where some of these 

systems are already in a state of total collapse. One obvious example is the Aral Sea in 

Uzbekistan, which once was a massive body of fresh water that supported the shipping 

trade, fishing industry and many thriving communities, has now turned into a desert. 
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Over the last decade, unexpected variations in water availability (changes in precipitation 

patterns and disastrous events such as droughts and floods) and demand (e.g. agricultural 

demand) have increased alarmingly, placing augmented pressures on existing water 

supplies. These unexpected variations in water availability and demand strongly emphasise 

the urgent necessity of better management and control of available limited water to ensure 

the wellbeing of all living creatures and the maintenance of a healthy environment. 

 

1.2 Importance of this investigation 

To achieve a fair water allocation for sustainable development, water availability and 

water flow must be accurately quantified, because this knowledge is the most fundamental 

and critical piece of information for the development of any water-related project. 

Therefore, of considerable importance to this investigation is the observation that the 

collection of this information at a local level throughout the world is declining. There are a 

number of reasons for this, some of which have been identified by the recent UN World 

Water Development Report (World Water Assessment Programme, 2006): 

 

There has been a severe decrease in the data collected, especially in 

developing countries, owing to political and institutional instability, 

economic problems, budget constraints, emphasis on new infrastructure, 

and lack of professional education. Increased investment in the basic 

hydrological data collection network is needed to provide information to 

prevent gross errors in water resources decision-making in an 

unanticipated future. Investments in ground-based monitoring networks are 

particularly needed to complement recent advances made in remote sensing 

and geographic information systems (World Water Assessment 

Programme, 2006). 

 

By far the largest consumer of available fresh water resources is the massive demand of 

water for food production. Out of the total world water usage, almost 90% is consumed by 

agricultural operations in all countries (World Water Assessment Programme, 2006). 

Consequently, agricultural water management is a crucial factor in global water 

accounting, and usage must be carefully balanced against an accurate knowledge of water 

availability. Poor decisions, which may occur because of faulty resource information, can 
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ultimately affect the quality of agricultural management, with a resulting decrease in food 

yield and a possible threat to global food security. As an example, Sarvestani et al. (2008) 

highlighted that the agricultural yield of rice, one of the world’s most important food 

resources, can be reduced by 20 – 51% as a result of water stress during the vegetative, 

flowering and grain filling stages. Compounding this issue is that the loss of the crops, 

which can be quite disastrous in itself, can also adversely affect animal husbandry. This 

begins an exponential propagation of effects down the food chain, with ultimate negative 

ramifications for global food security. It is argued here that these potential situations can 

be avoided with precise knowledge of water availability within any given spatial and 

temporal context. 

 

In this respect, the quantification of river flows and the assessment of water resources are 

of immense importance in order to scientifically plan better water allocation for users, for 

timely management of river operations, and to alert authorities of extreme events which 

can allow users to be warned and which can, in the long run, lead to the introduction of 

mitigating strategies (Grimes and Diop, 2003). 

 

Traditionally, the use of flow gauges (or ground networks) represents the mechanism for 

measuring river flows. Flow gauges were introduced some 3000 years ago, with the use of 

the ‘Nilometer’ (Sivapalan, 2003) to measure the flows in the Nile River. Since this time, 

many rivers have had gauges installed, but there is still an unacceptably large number of 

rivers which are ungauged (Sivapalan, 2003). Also, exacerbating this problem is that 

ground networks of hydrological measuring stations are declining and are often very 

sparsely distributed across the world (Adeaga et al., 2005). This is a reality in many 

countries, and even in developed countries like the United Kingdom (UK), where many 

small catchments remain ungauged despite the fact that 1,400 gauging stations are 

currently in operation (Sefton and Howarth, 1998). In Australia, a country which has a 

much larger surface area than the UK, a large number of catchments still remain ungauged, 

and this poses a significant problem in water resources management. 

 

For some of the regions across the world, water-related data are available; however, these 

data related to very short time periods with many missing records. In addition, the limited 

access to available data is also a problem. This is common in Asia and Africa, where 

streamflow data are urgently needed to manage water resources in order to alleviate 
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increasing poverty levels. Often flow gauges are not calibrated in both these regions, and 

there have been serious issues raised with the quality of available data. These problems 

have been further aggravated with unhelpful institutional and political barriers (World 

Water Assessment Programme, 2006) not only in the above mentioned regions but more 

generally across the word. 

 

The existing gauge network in the world is shrinking due to high maintenance costs, 

administrative difficulties and collateral issues such as war related damages, civil unrest 

and animals. This is a common problem, and not restricted to developing countries. In the 

USA, for example, approximately 2,200 flow stations, which were maintained by various 

organizations, closed down between 1980 and 2005 (Smakhtin, 2012). In Canada, only 

2,837 flow stations are active at present, while 5,584 were made inactive in the last decade 

(Environment Canada, 2011). In Australia, streamflow monitoring with gauges has started 

as early as 1865, and has expanded continuously till 1965. Since then, the gauge network 

severely declined in 3 states of Australia, while there has been modest expansion in the 

other four states (Cordery, 2007). According to Smakhtin and Wichelns (2010), in 

Thailand there are 305 streamflow gauging stations which are regularly maintained by the 

Royal Irrigation Department at 2002, but maintenance of 535 stations has stopped. In 

Nepal during the last five years, the stream gauge network shrank from 174 to 120 stations. 

In Bosnia-Herzegovina, where the entire streamflow gauge network totally collapsed 

during the war (1992-1995), recovery of the network is very slow and yet to reach its full 

capacity (Kupusovic, 2007). 

 

In the absence of available measurements of streamflow through ground networks, one 

alternative is to use simulation models that utilize meteorological variables such as 

precipitation, temperature, evapotranspiration and landuse/landcover. Unfortunately, the 

collection of data for these variables is laborious, and the realities of managing 

meteorological stations are not much different to the maintenance of streamflow gauging 

stations. As such, the use of simulation models using the above mentioned meteorological 

variables and landuse/landcover has become extremely difficult and indeed nearly 

impossible with the lack of data on such variables. Likewise, simulating the hydrological 

regime and/or estimating hydrologic parameters to quantify streamflow is extremely 

difficult because the complex nature of the hydrological regime implies strenuous work. 

Often this is costly, especially over large areas with multiple variables, or across several 
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countries. Furthermore, the costs are multiplied when dealing with different agencies that 

handle these data within a country. Simulations become even more complex and costly 

when handling data that deal with catchments that involve several countries. Additionally, 

long record of meteorological data is a basic requirement for streamflow simulation, and 

such long records are not available. 

 

In order to address the issue of the lack of hydrological and meteorological variables for 

streamflow simulation, Lakshmi (2004) suggested that remote sensing data can be used to 

generate these variables and capture surface information such as surface temperature and 

landuse/landcover. Due to its ready availability, cost effectiveness and the ability of this 

data collection method to overcome the natural heterogeneity of the landscape, remote 

sensing is becoming an attractive and common tool among the research community for 

various applications such as agriculture, surface hydrology, forestry and urban 

development. 

 

1.3 Applications of remote sensing 

The applications of remote sensing (RS) for civilian purposes started as early as the 1960s. 

Now the applications span over a wide range of sciences including meteorology, 

volcanology, geology, oceanography, agriculture and hydrology (Lillesand and Kiefer, 

1999). Initially, these applications were limited to the identification of surface objects and 

mapping, based on the limited capabilities of satellite sensors at that time. However, there 

have been recent advances in sensor technology, thereby producing advanced sensors. 

These new advanced sensors stretch from visible to microwave regions of the 

electromagnetic spectrum. Based on these developments, the early RS based applications 

(i.e. mapping and object identification) were expanded to more quantitative applications 

such as rainfall estimation and landuse/landcover assessments. As examples, in 

meteorology, the initial application of cloud identifications was expanded to precipitation 

estimates (Arkin, 1979; Huffman et al., 1995; Huffman et al., 1997; Sorooshian et al., 

2000), and in volcanology, the identification of volcanos was expanded to 

mapping/measuring the surface heat of the volcanos’ surrounding areas as well as volcanic 

ash clouds (Schneider et al., 1999). In hydrology, early applications were limited to 

mapping water bodies, but later applications were expanded to quantifying reservoir 

sedimentation and pollution, monitoring glaciers, monitoring and estimating flood damage, 
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and modelling groundwater (Joseph, 2005). RS data were also widely used in agriculture 

and forestry to monitor crop extent and crop stress, and estimate crop yield (Joseph, 2005), 

and more generally in forest inventory making, species identification and anthropogenic 

damages detection (Roy et al., 1991). 

 

There exist several examples of studies which used RS data to generate climatic and 

landuse/landcover variables. RS data have been directly used to classify and acquire 

landuse/landcover (Wegmuller, 1993; Anys and Dong-Chen, 1995; Gamage et al., 2007) 

and such landuse/landcover information have been used as inputs to many agricultural and 

hydrological applications. Bastiaanssen et al.(1998a), Su (2002) and Senay (2007a) used  

RS data, plus ancillary data, to calculate evapotranspiration, while Grimes and Diop (2003) 

and Artan et al. (2007) applied  RS data to estimate rainfall amount. The RS data have also 

been used to quantify soil moisture (Rüdiger et al., 2003; Scott et al., 2003; Mallick et al., 

2009). The estimates of the above variables can be used in hydrologic models to generate 

streamflow. 

 

The direct estimation of streamflow is possible with RS data by measuring water level 

heights using radar/lidar data (Birkett, 1994; Birkett, 1995; Velpuri et al., 2012). Even 

though this is a robust method, there are numerous difficulties associated to its 

implementation. Among them, high costs and the unavailability of high spatial resolution 

radar/lidar data represent the major setbacks. These difficulties have been overcome with 

catchment models which have been used to estimate streamflow by applying hydrological 

and meteorological variables estimated from RS data. As an example, the surface 

temperature obtained from RS data has been used to estimate evapotranspiration and soil 

moisture, which were then used in a hydrological model to generate streamflow data (Ottlé 

et al., 1989). Schultz (1996) used three different models with different inputs computed 

from RS data to generate interception, evapotranspiration and soil water storage data, 

which were then used to estimate streamflows. Andersen et al. (2002) used the 

precipitation and leaf area index that were estimated using RS data to generate streamflow 

through a streamflow simulation model over the Senegal River catchment in West Africa. 

However, since some ground based data were equally used in the above applications, the 

applicability of those models has been restricted by the quality and quantity of such ground 

measured data. 
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1.4 Objectives of the study 

As noted above, there are significant difficulties associated with the collection of both 

streamflow data, and meteorological data required for traditional catchment modelling to 

estimate streamflows. Therefore, the need is felt for a new mechanism that generates 

streamflow data with no or minimum reliance on ground gauging networks and their data. 

With this in mind, the main objective of this research project was set as the generation of 

daily streamflow time series data using (daily) RS data with minimum reliance on ground-

collected data. This was achieved through the estimation of rainfall, potential 

evapotranspiration, and landuse/landcover using RS data, which were used as input to 

generation of daily streamflow data. 

 

The scope of the study was limited to estimate streamflow data using both catchment 

process modelling and statistical modelling approaches. These two approaches were 

developed and tested in estimating streamflow data with RS data. Rainfall and potential 

evapotranspiration were estimated, and required landuse/landcover was classified using RS 

data. They were used as inputs in the catchment process modelling approach. Various 

remote sensing based indices were estimated and their suitability was assessed to estimate 

streamflow under the statistical approach. Streamflow data estimated using RS data were 

tested against ground measured streamflow data. In addition, the rainfall data estimated 

using RS data were tested against ground measured rainfall. However, the potential 

evapotranspiration (PET) estimated using RS data could not be tested against ground 

measured PET, since lysimeter data were not available to compute PET as ground 

measured data at both study areas; instead the PET estimated from RS data were tested 

against PET computed from the Penman-Monteith (PM) method using ground measured 

data (or data in publicly available databases) on temperature, wind speed, solar radiation 

and relative humidity. The PM estimation method for PET is acknowledged to produce 

similar results to ground measured PET data (Allen et al., 1998; Utset et al., 2004; Allen et 

al., 2011). 

 

The objective of the study was achieved using two phases. The first phase of the research 

was dealt with a data-rich catchment - the Macalister catchment (a sub catchment of the 

Thomson catchment) in Victoria, Australia. This catchment has temperate climate 

condition. The second phase of the research dealt with a data-poor catchment - the Ribb 
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catchment (a sub catchment of the Blue Nile catchment) in Ethiopia. This catchment 

represents tropical climatic conditions, and its meteorological data with regard to some 

climatic variables were not available as in the Macalister catchment. Also the quality of 

data for the Ribb catchment was not as good as in the Macalister catchment. However, it 

had some streamflow data which were used to develop and test both catchment process 

models and statistical models. A brief description of the methodology is given in Section 

1.5. 

 

1.5 Research methodology 

A research design was built around the two approaches (i.e. catchment process modelling 

and statistical modelling) as mentioned in the previous section to achieve the study 

objectives. First, the methods and techniques were developed to generate selected 

meteorological variables such as rainfall and potential evapotranspiration as well as 

landuse/landcover that have an impact on streamflow using the RS data. These variables 

were then used in the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) to 

generate the required daily streamflow data. Second, vegetation and thermal indices were 

calculated using RS data. These indices and brightness temperature were used as input 

variables to estimate daily streamflow with statistical modelling. These input variables 

were considered as surrogates for meteorological variables that influence streamflow. The 

schematic diagram for these two approaches is shown in Figure 1.1. These two approaches 

were carried out using the following four tasks: 

 

Task 1: All relevant data were collected. These data included relevant RS data, 

ground measured meteorological data and streamflow data for the study 

period. 

Task 2: Algorithms were built to estimate rainfall, potential evapotranspiration, 

and classify landuse/landcover from RS data. 

Task 3: Estimated rainfall, potential evapotranspiration and landuse/landcover 

were used as inputs to estimate daily streamflow using the SWAT 

hydrological model. 

Task 4: Relevant vegetation and thermal indices were calculated using RS data. 

The relationships between streamflow and these indices (together with 

other variables such as brightness temperature) were built using statistical 
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modelling. These relationships were then used to estimate daily 

streamflow data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A brief description of above mentioned four tasks are as below. 

 

Task 1: RS data, streamflow data as well as the required meteorological data were 

collected during this task. RS data are available since the 1970s from several satellite 

programs which are operated by diverse nations. Much of these data are available free of 

charge. The recently introduced Moderate Resolution Imaging Spectroradiometer 

(MODIS) data were collected under this task. MODIS bands are characterised by very 

high signal-to-noise ratio (SNR) with moderate spatial resolution (1 km), which is suitable 

for use in small and medium scale catchments (Thenkabail et al., 2004). 

 

Streamflow data and meteorological data of the selected study areas were available from 

the Bureau of Meteorology in Australia (for the Macalister catchment), and the National 

Figure 1.1 Schematic diagram of the proposed methodology 
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Meteorological Agency and Ministry of Power and Water Resources in Ethiopia (for the 

Ribb catchment). These data were collected from the above mentioned organizations.  

 

Task 2: High temporal resolution (3 hourly) but low spatial resolution Tropical Rainfall 

Measuring Mission (TRMM) data and low temporal resolution (daily) but high spatial 

resolution MODIS brightness temperate data were used to estimate daily rainfall. Daily 

potential evapotranspiration data were estimated using RS data by employing the surface 

energy balance method (Su, 2002; Glenn et al., 2007; Gamage et al., 2011b). Surface 

emissivity, surface albedo and surface temperature obtained through RS data were used in 

this process. The performance of these estimates were assessed through Root Mean Square 

Error (RMSE) and Nash-Sutcliffe efficiency (Ef). The supervised classification approach 

with the maximum likelihood classifier was used to classify landuse/landcover for both 

catchments using reflectance data and vegetation index data. Ground-truth data were used 

in the supervised image classification process to train the images and hence acquire a 

higher level of classification accuracy (Gamage et al., 2007). 

 

Task 3: SWAT (Arnold et al., 1998) is a physical-based semi-distributed model that was 

developed to assess the impact that changing land management practices has on 

streamflow, nutrients and soil erosion of the catchments. This model can use variables 

which are estimated from RS data as an input variables. Thus, in this project, variables 

estimated under Task 2 were used as inputs to the SWAT model of the catchments to 

estimate daily streamflow. The performance of these estimates were assessed through Root 

Mean Square Error (RMSE) and Nash-Sutcliffe efficiency (Ef). 

 

Task 4: The appropriate surrogates for climate variables that influence streamflow were 

constructed based on the vegetation and thermal properties of RS data. Specifically the 

vegetation indices such as Normalized Different Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) (Tucker, 1979; 

Gao, 1996; Bastiaanssen, 1998; Huete et al., 2002; Jackson et al., 2004; Thenkabail et al., 

2004), the thermal indices such as the brightness temperature difference (brightness 

temperature difference at band 31 and 32), and the brightness temperature gradient, and the 

brightness temperature (Adler and Negri, 1988; Kuligowski, 2002) were constructed. 

These indices (and the brightness temperature) were used in statistical modelling to 
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estimate daily streamflow. Artificial neural networks models were developed as statistical 

models in this study. The performance of the models was assessed through RMSE and Ef. 

 

1.6 Research significance 

Continuous streamflow data records are essential for the assessment of water resources and 

environmental flows, for the quantification of available water for agriculture, and for 

various other water resources and hydrological analyses. Whilst the use of in-situ stream 

gauges is the traditional way of collecting these data, such gauging stations are often 

sparse and declining in numbers, especially in developing countries. It is also appreciated 

that managing stream gauge networks is laborious and costly, and institutional and 

political barriers in some countries limit the accessibility of such data to various users. 

These reasons are the motivation for hydrologists to develop innovative and alternative 

methodologies to obtain essential streamflow data which have no or less dependency on 

stream gauge networks. 

 

This project used RS data with minimum ground data as an alternative way of obtaining 

daily streamflow data for reasonably long records and at less costs. These RS data have the 

added advantage of better representation of the ground coverage over large areas. Most of 

the RS data are now freely available and well maintained according to international best 

practice standards. 

 

1.7 Outline of the thesis 

Chapter 2 discusses the past work relevant to the topic. This includes reviews of 

streamflow modelling using catchment process and statistical modelling approaches, the 

estimation of meteorological and landuse variables (precipitation, potential 

evapotranspiration and landuse/landcover) using RS data, and the estimation of vegetation 

and thermal indices using RS data. 

 

In Chapter 3, a description of the two study areas is given, in terms of specific climatic, 

topographic and environmental conditions. Both ground measured and RS data are also 

discussed with regards to their availability, quality and sources. The chapter then outlines 

the methodologies that were used in relation to the estimation of daily rainfall and 

potential evapotranspiration, the classification of landuse/landcover variables, and the 
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calculation of vegetation and thermal indices. Finally, the chapter closes with a discussion 

of the catchment process modelling and statistical modelling approaches used in this 

thesis. 

 

Chapter 4 presents the application of the methodology (detailed in Chapter 3) to the 

Macalister catchment. This chapter first discusses the results obtained with regards to the 

estimation of input variables (rainfall, potential evapotranspiration and landuse/landcover) 

using RS data. These data were used as inputs to the SWAT model of the catchment and 

the results of the SWAT model were thereafter compared with ground measured data. The 

performance of the estimated streamflow is also discussed in this chapter. A similar 

description is given for statistical modelling in this chapter with respect to input variables 

and the statistical models. The input variables for statistical modelling were made up of 

vegetation and thermal indices and brightness temperature. The artificial neural networks 

was the modelling technique that was used for statistical modelling. Chapter 5, which 

pertains to the Ribb catchment, follows the same structure as that of Chapter 4. 

 

Chapter 6 presents a summary of the findings, and concludes thesis. It further provides 

suggestions and recommendations for future research. 
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2 CHAPTER 2: STREAMFLOW ESTIMATION USING 

REMOTE SENSING – A CRITICAL REVIEW 

 

2.1 Introduction  

Streamflow in a given catchment is the aggregated result of all geological and 

climatological factors that operate in that catchment (Herschy, 1995). Knowledge of the 

availability of streamflow (i.e. both temporal and quantity) forms the basic foundation of 

any water management project. Therefore, measuring streamflow is important to good 

water management practices. According to Herschy (1995), Sivapalan (2003) and Sutcliffe 

(2004), streamflow is the only component of the hydrological cycle that is confined in 

well-defined channels, as the rest of the components such as rainfall, evapotranspiration 

and soil moisture are spatially distributed. Therefore the measurement of streamflow 

provides higher confidence than measurement of other components (Sivapalan, 2003). 

 

The amount of water that flows in well-defined channels (whether a stream or a river) in a 

given time period defines streamflow data or streamflow record. Streamflow data are 

important for planning, designing and operating water resource projects that deal with 

irrigation water supply, hydroelectric power generation, and urban and industrial water 

supply (Grimes and Diop, 2003). They are also important in monitoring the efficiency and 

sustainability of such projects. This was highlighted by Sutcliffe (2004) who claimed that 

streamflow is the most important and directly applicable variable for monitoring and 

evaluating water resources projects. 

 

Traditionally, stream gauges have been used to measure the amount of streamflow at a 

particular location (called a gauging station) of a river or a stream at regular time intervals 

(Herschy, 1995; Sivapalan, 2003). Despite the importance of streamflow data, the total 

number of stream gauges across many parts of the world is declining (Sivapalan, 2003). A 

few examples of this decline were outlined in Chapter 1. To complicate matters further, 

existing gauges are at the outset sparse and poor management practices in developing 

countries mean that either streamflow data are not recorded at all or false information is 

recorded (Stisen et al., 2008). The false recording of streamflow data in some countries has 

more adverse effects than the non-availability of data and has serious effects on the 
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planning, designing and evaluation of water resource projects. This situation is exacerbated 

due to increased negligence in maintaining the streamflow gauges properly especially 

since the benefits of such gauging network are invisible and difficult to account for 

accurately (Herschy, 1995). 

 

The above mentioned issues can be handled to a certain degree by estimating streamflow 

using meteorological variables. For such purposes, various models can be used and many 

of these existing models were briefly described by Singh and Woolhiser (2002). For the 

successful estimation of streamflow, these models require data of meteorological variables, 

as well as the appropriate values of catchment and model parameters. However, the 

availability of data of meteorological variables is poor in most parts of the world, 

especially in developing countries. As a consequence, many studies have attempted to 

estimate these meteorological variables with RS data. These were briefly described in 

Chapter 1. Several attempts have also been made to estimate streamflow directly with RS 

data. 

 

This chapter will review the literature on RS applications aimed at estimating 

meteorological variables such as rainfall and potential evapotranspiration. In addition, 

landuse/landcover classification with RS data will also be reviewed. It will further review 

the applications of RS based meteorological variables in catchment process modelling. 

Finally, the use of RS data for estimating indices and their use in streamflow estimation 

with statistical models will be elaborated. 

 

2.2 Streamflow estimation 

This section will address the emergence, classification and background of streamflow 

estimation modelling. In the absence of ground measured streamflow data, many attempts 

have been made to estimate streamflows, and a streamflow estimation model (variously 

known as the streamflow simulation model (SSM) or hydrological model) has been 

particularly used in this regard. By definition, the streamflow estimation model is a 

simplified representation of the natural system which consists of rainfall, 

evapotranspiration and ground water. This representation is built by combining a set of 

mathematical expressions and logical statements in order to simulate the natural system 

(Refsgaard, 1996). 



2-3 
 

The streamflow estimation model was initially introduced to the hydrological world by 

Mulvarny (1850), as a modelling approach based on a ‘rational’ method. Four decades 

later, Imbeau (1892) introduced a different dimension to hydrology, presenting an ‘event-

based’ model. This model particularly focused on storm peak runoff and rainfall intensity. 

Subsequently, in the first half of the 20th century, important scientific innovations were 

developed to understand the hydrological cycle. These innovations were related to physical 

and biological processes within the catchment, and opened the way to the emergence of 

many streamflow estimation models. Additionally, this era of hydrological applications 

was strengthened by Sherman (1932) who introduced the ‘unit hydrograph’ concept. The 

latter concept was a breakthrough in the calculation of runoff with excess rainfall in a 

given rain event. Concurrently, Horton (1933) introduced the ‘infiltration theory’ and 

‘hydrograph separation’ techniques, while Lowdermilk (1934) and Hursh and Brater 

(1944) introduced the subsurface water movement component into hydrology. Later, 

Thornthwaite (1948) and Penman (1948) contributed significantly to hydrology with their 

understanding and quantification of evapotranspiration, as an abstraction of the 

hydrological cycle. 

 

The second half of the last century marked the golden era of streamflow estimation 

modelling as a result of the creation of a wealth of knowledge on physical and biological 

processes of the hydrologic water cycle. It led to the development of streamflow 

estimation models, and this was facilitated by the availability of advanced computing 

facilities and other infrastructure. The Stanford Watershed Model-SWM (Crawford and 

Linsley, 1966) was the first model which considered the physical processes related to the 

hydrologic water cycle at the catchment scale. During the late 60s and early 70s, the spatial 

analysis techniques were introduced on a Geographic Information System (GIS) platform. 

This innovation allowed streamflow estimation models to be developed on a GIS platform, 

thereby enabling spatial variability of hydrometeorological variables into hydrological 

processes. Following the development of better infrastructure (such as relevant institutions, 

upgraded hardware to measure input variables of the models, and advanced computing 

hardware and enhanced human capacity), hydrological modelling reached a new level, 

with the emergence of a variety of different models. Amongst them, Storm Water 

Management Model (SWMM) (Metcalf and Eddy Inc. et al., 1971), TOPMODEL (Beven 

and Kirkby, 1979), SHE (Abbott et al., 1986a; Abbott et al., 1986b) and SWAT (Arnold 

and Allen, 1996) are dominant. Singh and Woolhiser (2002) listed more than 60 such 
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models. These models vary based on their internal processes, and requires a variety of 

meteorological variables and catchment and model parameters to enable them to estimate 

streamflow. Given the limited data availability, selecting a particular model for an 

application can prove to be a challenging task. However, the classification of streamflow 

estimation models provides guidance on the suitability of models for different context. 

 

2.2.1 Classification of streamflow estimation models 

The classification of streamflow estimation models has started as early as 1970s 

(Woolhiser, 1973; Fleming, 1975). Later, Singh (1995) proposed a classification scheme 

for the existing streamflow estimation models based on their building process. Based on 

this idea, all streamflow estimation models were classified into six categories, namely; 

process description, time scale, space scale, land-use, model use and technique of solution. 

Since this classification is derived from the model building process, it has only one 

hierarchical level, with all six categories being equally important. The American Society 

of Civil Engineers (ASCE) (1996) proposed an alternative classification mechanism for 

flood analysis models under the headings of (i) event-based rainfall runoff models, (ii) 

continuous precipitation runoff models, (iii) steady flow routing models, (iv) unsteady 

flow routing models, (v) reservoir regulation models, and (v) flood frequency models 

(ASCE, 1996). Since this classification is based on the objective of flood condition 

simulation (Singh and Woolhiser, 2002), it neglected other existing streamflow estimation 

models which are used for planning and operating water resources systems. 

 

Refsgaard (1996) proposed a different classification method for all streamflow estimation 

models based on the mathematical structure of the model. The use of the particular 

mathematical structure of the model as classifier led to the introduction of various 

hierarchical levels in contrast to Singh’s (1995) single level classification scheme. In the 

first level of Refsgaard’s classification scheme, all streamflow estimation models are 

classified as deterministic or stochastic, as shown in Figure 2.1. In general terms, the 

deterministic model branch of Refsgaard’s (1996) classification was considered as 

catchment process modelling, and the stochastic branch was considered as statistical 

modelling. The empirical models under the stochastic branch are further explained under 

Section 2.4.2. 
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2.3 Remote sensing 

The emergence of remote sensing (RS) stemmed from the development of conventional, 

multispectral and infrared photography, non-photographic sensors and scanners, platforms 

for RS such as aircraft and satellites, launching vehicles, communication and data 

transmission, data processing and computer technology and other relevant infrastructure 

(Lillesand and Kiefer, 1999). Importantly, with the advent of RS, the observation regions 

of the electromagnetic spectrum have expanded far beyond the range of human. This has 

significant implications for data collection and subsequent predictive analysis. 

 

The term ‘remote sensing’ was initially used by Evelyn L. Pruitt of the USA Office of 

Naval Research in the early 1960s to denote satellite images which were markedly 

different from conventional cameras. These images used both visible light and other parts 

of the electromagnetic spectrum, and as such represented a clear difference from the 

conventional photography which relies on visible light only. This led to the development 

of RS as a separate field in the science of data application. Lillesand and Kiefer (1999) 

defined RS as ‘the technique of obtaining information about an object without physical 

contact, as opposed to in-situ sensing in which the measuring device is in touch with the 

Figure 2.1 Schematic diagram of the classification of streamflow estimation models 

(adopted from Refsgaard – 1996) 
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object’. According to this definition, the emitted or reflected electromagnetic energy of an 

object is measured by a sensor as part of the RS process. However, this definition was 

narrowed down by Joseph (2005) following the UN general assembly resolution 

A/RS/41/65, at the 95th plenary meeting in 1986. According to this later definition, remote 

sensing is the ‘sensing of the earth’s surface from space by making use of the properties of 

electromagnetic wave emitted, reflected or diffracted by the sensed objects, for the purpose 

of improving natural resources management, landuse and the protection of environment’. 

This second definition successfully captures the aims of RS unlike the broader definition 

set forward by Lillesand and Kiefer (1999). 

 

2.3.1 History of remote sensing 

The history of RS is intricately linked to World Wars I and II. The rapid development of 

RS technology took place during World War I. After this war, the technology and 

corresponding experts were adapted and used for civilian applications. (Lillesand and 

Kiefer, 1999; Joseph, 2005). The launch of Earth Resources Technology Satellite-1 (ERTS 

1) by NASA in 1972 which was the parts of work started in the 1960s, was the  landmark 

in the history of RS, and is arguably the beginning of modern RS (Estes, 2005; Irons, 

2011) with respect to the civilian applications. This series was later named ‘Landsat’, and 

was the first of several earth-orbiting satellites designed specifically for land observation 

for civil applications. The Landsat program provides systematic and repetitive observation 

of the oceans, atmosphere and land areas (Taylor, 2014). In the recent past, various 

stakeholders such as the Indian Space Research Organization (ISRO), European Space 

Agency (ESA), Centre national d'études spatiales – the French space agency (CNES) and 

Japan Aerospace Exploration Agency (JAXA) have developed numerous sensors with 

various capabilities and have launched satellites to provide better data for the user 

community. 

 

2.3.2 The remote sensing system 

The entire RS system (up to the image acquisition level) consists of several steps. The 

initial step is the emission of source electromagnetic radiation (either from the sun or from 

the collection apparatus), and the transmission of that energy from the source to the object 

of interest location in the ocean, on earth or in the atmosphere. RS can be broadly divided 

into two categories based on the energy used by the sensors to capture RS data: active and 
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passive. Sensors which carry electromagnetic radiation of specific wavelength or band of 

wavelengths to illuminate the earth’s surface are called active sensors, while sensors that 

capture natural radiation, which is emitted or reflected from the earth are called passive 

sensors (Joseph, 2005). 

 

The next step involved in the RS system pertains to the fact that the energy either 

contained in or impinging on the object of interest is subsequently reflected, absorbed, 

scattered or emitted. Once this energy leaves the object, it is picked up by the remote 

sensor (collector). The remote sensor will then transforms the data and finally transmits 

signals to the receiving center. These remote sensors are embedded with four different 

resolutions (Joseph, 2005; Lillesand and Kiefer, 1999), namely they are: 

• Spatial resolution – the ability of the sensor to separately identify two 

different objects. Therefore, the higher the spatial resolution, the smaller the 

object that can be identified. 

• Spectral resolution – the spectral bandwidth within which data are 

collected. 

• Temporal resolution (revisit time) – the ability to view the same target 

under similar conditions at regular intervals. 

• Radiometric resolution – the ability to differentiate between two targets 

based on their reflectance/remittance difference. 

The vehicle upon which the remote sensor is mounted is called the platform (i.e. satellite, 

air plane balloon). 

 

The final step of the RS system is the acquisition of transmitted data by ground station/s. 

This data are recorded on hardware, and are released to data analysts for processing and 

interpretation. The level of processing and interpretation of RS data are directly linked 

with the applications.  

 

2.3.3 Satellites and sensors on board 

There are numbers of satellites and sensors which have been launched for various 

purposes. Amongst them the Landsat, the Indian Remote Sensing (IRS) satellites, ASTER 

and SPOT satellites which are sun-synchronized satellites that acquire detailed ground 

information with higher spatial resolution. In contrast, meteorological satellites such as 
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MTSAT and KALAPANA are geo-stationary satellites which acquire data on higher 

temporal resolution. Thus, they are more sensitive to the temporal changes, but have low 

spatial resolutions. MODIS and AVHRR are sun-synchronized, but have medium spatial 

and temporal resolution. Spatiotemporal characteristics and the applications of Landsat, 

MODIS and Tropical Rainfall Measuring Mission (TRMM) satellites are briefly discussed 

here, since they are important in this study. 

 

Landsat 

The Landsat series of satellites have the longest historical records in RS data collection, 

with these records starting in the early 1970s. The National Aeronautics and Space 

Administration (NASA) has successfully operated the Landsat series (Landsat 1, 2, 3, 4, 5, 

6, 7 and 8) throughout the last 40 years, and has continually improved the sensor features 

from Landsat 1 to Landsat 8.  

 

A variety of applications is possible with Landsat because of the diversity of sensors with 

different bands operating on board. The blue band has been used in the applications of 

water body penetration (Benny and Dawson, 1983; Harrington Jr et al., 1992), coastal 

water mapping (Gamage and Smakhtin, 2009), soil/vegetation discrimination (Gamage et 

al., 2009b)  and forest feature identification (Oguro et al., 1999; Pax-Lenney et al., 2001). 

However, the blue band has its own limitations in terms of scattering due to the range of 

electromagnetic spectrum. Therefore incoming radiance to the sensor is often insufficient 

in intensity. To address this problem, the green band is used as an alternative for 

vegetation discrimination and vigor assessment. The red band has been used to measure 

chlorophyll absorption (Tucker, 1979) of vegetation. The Near Infrared (NIR) band is the 

most important band among all visible range bands, as it enables the determination of 

vegetation types, vigor and biomass (Tucker, 1979), and delineates water bodies (Islam et 

al., 2008). These bands have been prominent in the mapping of landuse/landcover in many 

studies (Pax-Lenney et al., 2001; Shupe and Marsh, 2004; Jackson et al., 2004; Gamage et 

al., 2007). 

 

The Mid Infrared (MIR) band of the Landsat TM/ETM+ sensors is important in 

segregating snow cover from clouds. The Thermal Infrared (TIR) band is intensively used 

to measure vegetation stress via skin temperature and other thermal mapping applications 

such as the estimation of actual evapotranspiration (Bastiaanssen et al., 1998b; Su, 2002; 
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Sánchez et al., 2008; Oguro et al., 2011). Among all the applications mentioned earlier, 

those related to landuse/landcover and evapotranspiration can directly be used for 

streamflow estimation, and are consequently of interest in this study. 

 

Terra and Aqua satellites 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is the primary sensor on 

board of the Terra and Aqua satellites. This sensor is used for monitoring the terrestrial 

ecosystem in the NASA’s Earth Observing System (EOS) program (Justice et al., 2002). 

The MODIS sensor is the predecessor of the Advanced Very High Resolution Radiometer 

(AVHRR). MODIS is very sensitive to the changes in vegetation dynamics (Huete et al., 

2002), and was found to be a more accurate and versatile instrument to monitor global 

vegetation conditions than the AVHRR (Justice et al., 2002). The narrow bands that 

represent vegetation qualities facilitate this accuracy, and because of this ability, MODIS 

based vegetation indices give a better representation of landuse/landcover parameters. 

 

The MODIS sensor consists of 36 bands with spatial resolution varying from 250 m to 1 

km (Table 2.1). This table shows band width, spatial resolution and broader applications of 

each band. Furthermore, this table shows that MODIS band widths are narrower than 

Landsat sensors’ band width, and represent visible, near, mid and thermal infrared regions 

of the electromagnetic spectrum. Therefore, MODIS obviously provides unprecedented 

volumes of data for a wider range of research and applications (Justice et al., 2002). 
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Table 2.1 Band widths and spatial resolution of the MODIS sensor 

Band Number Band width (µm) Spatial Resolution (m) Bandwidth use* 

1 0.620-0.670 250 L 

2 0.841-0.876 250 A, L 

3 0.459-0.479 500 L 

4 0.545-0.565 500 L 

5 1.230-1.250 500 L 

6 1.628-1.652 500 A, L 

7 2.105-2.155 500 A, L 

8 0.405-0.420 1000 O 

9 0.438-0.448 1000 O 

10 0.483-0.493 1000 O 

11 0.526-0.536 1000 O 

12 0.546-0.556 1000 O 

13 0.662-0.672 1000 O 

14 0.673-0.683 1000 O 

15 0.743-0.753 1000 O 

16 0.862-0.877 1000 O 

17 0.890-0.920 1000 A 

18 0.931-0.941 1000 A 

19 0.915-0.965 1000 A 

20 3.660-3.840 1000 O, L 

21 3.929-3.989 1000 Fire, Volcano 

22 3.929-3.989 1000 A, L 

23 4.020-4.080 1000 A, L 

24 4.433-4.498 1000 A 

25 4.482-4.549 1000 A 

26 1.360-1.390 1000 Cirrus cloud 

27 6.535-6.895 1000 A 

28 7.175-7.475 1000 L 

29 8.400-8.700 1000 Ozone 

30 9.580-9.880 1000 A, L 

31 10.780-11.280 1000 A, L 

32 11.770-12.270 1000 A, L 

33 13.185-13.485 1000 A 

34 13.485-13.785 1000 A 

35 13.785-14.085 1000 A 

36 14.085-14.385 1000   

*Broader applications of band use L for land, O for ocean and A for atmosphere. 
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The most common applications of MODIS relate to vegetation and seasonal dynamic 

assessments (Huete et al., 2002; Justice et al., 2002; Thenkabail et al., 2005; Huete et al., 

2006; Colditz et al., 2007; de Silveira et al., 2007). MODIS data have also been widely 

used in evapotranspiration (ET) estimation on various scales from catchment to global 

level (Kuo et al., 2005; Mu et al., 2007; Guerschman et al., 2009; Zhang et al., 2009b). 

Such ET information have further been used in water productivity measurements (Gamage 

et al., 2009b), and have improved rainfall runoff modelling (Zhang et al., 2009b). 

Furthermore, calculated ET has widely been used in root zone soil moisture assessments 

(Schnur et al., 2010). More than this, MODIS has been widely used in oceanic, 

atmospheric and forestry applications. 

 

The Landsat onboard sensors and the MODIS sensor are restricted to the visible, infrared 

and thermal regions of the electromagnetic spectrum. Therefore, acquiring information 

related to the internal structure of clouds is difficult, since they are unable to penetrate the 

cloud cover. This can be avoided by using microwave sensors, which have cloud 

penetration capabilities. Thus, Tropical Rainfall Measuring Mission (TRMM) Microwave 

Imager (TMI) and Precipitation Radar (PR) sensors onboard of the TRMM satellite can be 

used to acquire information of internal structure of clouds.  

 

Tropical Rainfall Measuring Mission satellite 

The Tropical Rainfall Measuring Mission satellite is a platform for a collection of sensors 

to acquire data from many aspects of the atmosphere and clouds in order to estimate 

precipitation in tropical regions. The group of sensors on board of this satellite includes the 

Precipitation Radar (PR), TRMM Microwave Imager (TMI), Visible and Infrared Scanner 

(VIRS), Cloud and Earth Radiant Energy Sensor (CERES) and Lightning Imaging Sensor 

(LIS) (Kummerow et al., 1988). 

 

The data acquired from these sensors on board of TRMM (i.e. TRMM data) are available 

as raw data (such as PR data, TMI data), and as various products (such as TRMM 

precipitation estimates). These data and products are available in various spatiotemporal 

resolutions (Pierce, 2008). They have been used in various rainfall-related applications 

such as streamflow estimation (Giglio, 2007; Collischonn et al., 2008; Su et al., 2008) and 

flood estimation. Additionally, TRMM data have also been used in the identification of 
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fire circles in tropical regions (Giglio, 2007) and in the retrieval of latent heating profiles 

of the atmosphere (Shoichi et al., 2009). 

 

2.4 Streamflow estimation using remote sensing data 

RS data are used in various forms in different modelling approaches to estimate 

streamflow. Indeed, both catchment process modelling and statistical modelling 

approaches have been used with RS data to estimate streamflows in various spatiotemporal 

scales (Ottlé et al., 1989; Hardy et al., 1989; Giacomelli et al., 1995; Minnas and Hall, 

1996; Andersen et al., 2002; Boegh et al., 2004; Chen et al., 2005; Wesseling and Feddes, 

2006; Campo et al., 2006; Asante et al., 2008; Stisen et al., 2008; Milzow et al., 2009; 

Yong et al., 2012). 

 

2.4.1 Use of catchment process models  

Catchment process models with various RS based inputs have been used to estimate 

streamflow in the past (Andersen et al., 2002; Boegh et al., 2004; Campo et al., 2006; 

McMichael et al., 2006). These inputs estimated from RS data are rainfall (Stisen et al., 

2008; Yong et al., 2012), evapotranspiration (Droogers and Kite, 2002; Chen et al., 2005) 

landuse/landcover (LULC) and Leaf Area Index (LAI) (Andersen et al., 2002; Gamage et 

al., 2007), and soil moisture (Giacomelli et al., 1995). The application of rainfall, 

evapotranspiration and LULC to estimate streamflow in catchment process modelling is 

discussed in the remaining part of this section. 

 

Early meteorological satellite data have been used to estimate rainfall data based on cold 

cloud duration (CCD) or GOES Precipitation Index (GPI) (Arkin and Meisner, 1987), and 

they were then used as an input variable to estimate streamflow with the catchment process 

models. Hardy et al. (1989) used daily rainfall estimates for streamflow estimation. They 

derived rainfall using the CCD technique with MTSAT data as inputs. The Pitman model 

(a conceptual rainfall runoff model which was widely used in Africa) (Pitman, 1976) used 

daily rainfall and monthly evapotranspiration as inputs to estimate daily streamflow, in the 

Senegal River basin in West Africa. It was found that the model with estimated rainfall 

performed as accurately as the model with ground measured rainfall. However, it was also 

noted that streamflow estimation was weak with estimated rainfall during large rain events 

(Hardy et al., 1989). Pietroniro et al. (1989) used a simple monthly rainfall runoff model to 
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estimate streamflow, and found a minor improvement in runoff statistics when rainfall 

estimated from RS data was used as an input in a catchment in West Africa. 

 

Andersen et al. (2002) used the MIKE SHE model (a fully distributed hydrological model) 

to estimate streamflow in West Africa with estimated rainfall based on GPI. They 

concluded that the introduction of estimated rainfall, and estimated rainfall complimented 

with ground measured rainfall did not improve the model’s results. They also concluded 

that the improvement of rainfall estimates from RS data could improve the accuracy of 

streamflow estimates. 

 

The introduction of the TRMM satellite took place in late 90’s and the sensors onboard 

this satellite are dedicated to measuring rainfall from space. The data of these sensors not 

only cover the majority of the globe but they also give more information on clouds and 

hence to improve the accuracy of rainfall estimation compared to previous rainfall 

estimates that were based on visible and thermal infrared data. Especially, TRMM 

microwave sensor data empowered existing rainfall estimation procedures by adding 

structural information on clouds (Huffman et al., 1995; Huffman et al., 2007). Since then, 

TRMM data have been used to produce various precipitation products such as 3B42 

(Huffman et al., 2007), and have been extensively applied in hydrology. 

 

TRMM rainfall products have been widely applied in various parts of the world to estimate 

streamflow and results with different levels of performance have been obtained 

(Collischonn et al., 2008; Mc Cabe et al., 2008; Su et al., 2008; Bitew and Gebremichael, 

2011; Yong et al., 2012). For example, while using TRMM rainfall data to estimate the 

streamflow of a large catchment at high latitude, Yong et al. (2012) found several issues 

such as the overestimation of rainfall in higher elevations (snow covered areas), especially 

during winter. The latter concluded that TRMM data do not accurately represent the 

magnitude and spatiotemporal variability of the precipitation in higher latitudes. Wagner et 

al. (2009) used TRMM 3B42 rainfall data, climatological model based rainfall, and ground 

measured rainfall to estimate streamflow in a water balance model. They applied this 

methodology to estimate streamflow in the White Volta basin, and obtained no 

improvement in estimating streamflow with TRMM 3B42. 
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Collischonn et al. (2008) used ground measured and TRMM 3B42 rainfall data to simulate 

streamflow separately in a very large catchment (>460,000 km2). They compared the 

simulation results of both models with observed streamflow data, and concluded that the 

performance of the model based on TRMM 3B42 rainfall data is as good as that with the 

model with ground measured data at the most downstream gauge point of the catchment. 

In the same study, they tested several upstream gauge points in which case they found that 

the performance of estimated streamflow with TRMM 3B42 rainfall data was reduced 

towards the upstream of the catchment, i.e. with decreasing catchment area. Nikolopoulos 

et al. (2010) used TRMM 3B42, KIDD (a rainfall product that was estimated on the 

algorithm proposed by Kidd et al. (2003)), radar and ground measured rainfall data in 

streamflow estimation to investigate the relationship between the error of satellite based 

rainfall data and the size of the catchment. In this study, they concluded that the error in 

streamflow estimation increased while catchment size decreased. They highlighted that the 

use of rainfall products of higher spatial resolution could alleviate the error propagation in 

small catchments. In sum, above studies showed that the spatial representation of TRMM 

rainfall data is not sufficient enough to estimate streamflow accurately in medium and 

small size catchments. 

 

Several attempts have been made to use evapotranspiration estimated from RS data in 

streamflow estimation (Kite and Droogers, 2000; Boegh et al., 2004; Oudin et al., 2005a; 

Oudin et al., 2005b; Zhou et al., 2006; Immerzeel and Droogers, 2008). Boegh et al. 

(2004) highlighted that the evapotranspiration estimates using RS data during the dry 

season were overestimated in the study area, where cultivation fields of Denmark. This 

overestimation has underrated the contribution of groundwater to streamflow. Immerzeel 

and Droogers (2008) used evapotranspiration estimates using RS data (based on Surface 

Energy Balance Algorithm for Land method) for streamflow estimation in the Krishna 

basin of India, and obtained promising results for ungauged catchments. Oudin et al. 

(2005a) used 27 potential evapotranspiration (PET) estimation methods to investigate the 

efficiency of PET in runoff estimation using a lumped model. Interestingly they found that 

PET estimation methods using temperature and radiation provided the best PET estimates, 

while the Penman method responded weakly. They showed that the PET estimations based 

on temperature and radiation are sufficient to estimate streamflow. Given those studies, RS 

data will be used in this study to estimate PET, which will be then used to estimate 

streamflow. 
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Landuse/landcover classified using RS has also been widely used in streamflow 

estimation. These landuse/landcover maps have been extensively used in defining crops 

area, and the hydrological model has mainly been used to define the cropping pattern and 

the rest of the parameters (Boegh et al., 2004). The LULC information computed from RS 

data has been used as early as 1977 (Pluhowski, 1977) to improve estimates of streamflow 

characteristics. It was concluded that landuse/landcover information of RS provides an 

effective means of significantly improving estimates of streamflow. Even though 

landuse/landcover has widely been used in streamflow estimation as an input, 

landuse/landcover has been considered as a time constant variable in most of the 

applications. 

 

Landuse/landcover has not only been used as input to streamflow estimation, but it has 

also been utilized to investigate the impact on hydrology due to LULC changes (Githui et 

al., 2009; Dadhwal et al., 2010; Gumindoga, 2010). Gumindoga (2010) used RS data to 

classify landuse/landcover over the Gilgal Abay catchment in Blue Nile in Ethiopia, and 

thereafter used it in the TOPMODEL hydrological model to investigate the impact of 

landuse/landcover changes on the hydrology of the catchment. Gumindoga (2010) 

concluded that RS data not only helped to achieve the objectives of the study, but also 

facilitated the derivation of vital information for planning and implementation of 

development projects, especially in ground measured data scarce areas like Ethiopia. 

Moreover, Vaze et al. (2011) used landuse/landcover information obtained from RS data to 

estimate regional model parameters of Sacramento and SIMHYD models. They then used 

these parameters to estimate streamflows in ungauged catchments in Australia. 

 

The above mentioned literature clearly shows the depth of the applications of estimated 

rainfall, evapotranspiration, and landuse/landcover using RS data in streamflow 

estimation. However, the use of these RS based estimates is challenging in that 

applications vary according to the catchment’s size and required fine time scale such as 

daily. 
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2.4.1.1 Estimation of input variables using remote sensing data  

The primary driver of streamflow is rainfall (Tang et al., 2009), and is a highly important 

meteorological variable, which intimately affects terrestrial living conditions (Huffman et 

al., 2010). This importance is mainly attributed to the amount and rate of rainfall, which 

can lead to the potentially disastrous situations like droughts and floods. Streamflow 

amount at a given time is determined by the spatiotemporal variation of rainfall. Therefore, 

it is important to know the magnitude and spatiotemporal variation of rainfall to quantify 

streamflow. Whilst rainfall can be measured using a physical gauge, the existing rain 

gauge network is not sufficient to address the spatial variability of rainfall in many areas 

(Huffman et al., 2007; Tang et al., 2009; Huffman et al., 2010). 

 

Other than rainfall, evapotranspiration and landuse/landcover also play important roles in 

determining streamflow. Evapotranspiration, as the second largest component of the water 

cycle (Chow et al., 1988), removes significant amounts of water from a catchment. 

Therefore, the consideration of evapotranspiration in streamflow estimation is essential for 

the accuracy of such estimation. Because direct measurements of evapotranspiration are 

not available for streamflow estimation, water lost by evapotranspiration has been 

estimated using a number of indirect methods. These methods use several meteorological 

variables, and data for those variables are often not readily available. Therefore, similar to 

the case of precipitation estimation using RS data, attempts have also been made to 

estimate evapotranspiration using RS data. 

 

Landuse/landcover in a catchment influences evapotranspiration directly, and soil moisture 

indirectly. Therefore, the use of accurate landuse/landcover information in streamflow 

estimation is very important, and RS data have become particularly advantageous in 

gathering landuse/landcover when traditional mapping techniques such as topo sheets are 

not available or are not convenient. 

 

In summary, the rapid development of the field of RS has empowered the estimation of 

precipitation, evapotranspiration and landuse/landcover through the use of both active and 

passive RS data. In that regard, the relevant literature for estimating precipitation, 

evapotranspiration and landuse/landcover with RS will be investigated in Sections 2.4.1.2, 

2.4.1.3 and 2.4.1.4 respectively. 
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2.4.1.2 Rainfall estimation using remote sensing data 

Since the first dataset was received from the Television and Infrared Observation Satellite 

(TIROS-1) soon after it launch on 1 April 1960, RS data have been used to understand 

cloud properties and to measure the cloud fraction (Arking and Childs, 1985) which are 

both important in the rainfall process. During the last three decades, satellite sensors have 

become more advanced when compared to the rudimentary sensors of TIROS-1. These 

advanced sensors are used to collect an enormous amount of data on the land, in the 

atmosphere and over the sea. Most of these sensors are specially designed to acquire 

reflectance and radiance data in the visible, infrared, thermal and passive microwave 

regions of the electromagnetic spectrum. Due to the variety of sensors, these data can 

represent different features of the atmosphere and clouds in various temporal, spatial, 

spectral and radiometric resolutions. The use of these data to estimate rainfall is one of the 

oldest applications, and still represents a leading research area in RS (Michaelides et al., 

2009). 

 

(a) Use of visible and thermal remote sensing data for rainfall estimation 

Initial geostationary satellite sensors were only capable of acquiring data through the 

visible and thermal windows of the electromagnetic spectrum. As such, algorithms which 

were used to estimate rainfall before the 1980s were mostly based on these data (Barrett, 

1970; Barrett, 1973; Scofield and Oliver, 1977; Arkin, 1979). Many of these algorithms 

were based on the cloud indexing method, and were written as: 

 

� =���� × ��																																																																																																								�2.1	
�

���
 

 

where, ri is the rain rate assigned to the cloud type, fi is the fraction of time of a given point 

covered with cloud and R is the total rain at a given point. 

 

Cloud fraction was estimated using geostationary satellite images and rain rate was 

decided based on the possible maximum rainfall per hour. Whilst the assumption that all 

clouds over a given area contribute equally to rainfall weakens this estimation, these 

algorithms are still in use even though they need to be calibrated locally. Later, Arking and 

Childs (1985) used visible and thermal data available from the National Oceanic and 
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Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 

(AVHRR) sensor (i.e. NOAA AVHRR) to extract cloud parameters. They extracted cloud 

fraction, optical thickness of the clouds, cloud top temperature and microphysical 

parameters (i.e. size and shape of cloud particles) from the NOAA AVHRR data. These 

parameters were used to understand basic elements of cloud climatology, and could be 

used as inputs to rainfall estimation models. In the recent past, Levizzani et al. (2007) have 

explained in detail the use of such parameters in rainfall estimation using RS data. 

 

Arkin and Meinser (1987) used thermal data from the GOES satellite over the northern 

hemisphere to investigate the relationship between large scale convective rains and cold 

clouds. They introduced a different scale to Equation (2.1) by replacing cloud fraction with 

cloud-top temperature threshold. They found that the cloud-top temperature threshold 

depends on the latitude of the location, since a slightly different relation between 

convective rains and cold clouds was noted with the latitudinal change of location. A year 

later, Adler and Negri (1988) used the same satellite sensor data to estimate tropical 

convective and stratiform rainfall. They highlighted a number of rainfall estimation 

methods, and proposed the Convective Stratiform Technique (CST) to estimate rainfall 

using visible and thermal RS data. In this technique, the amount of rainfall in a given cloud 

is quantified as a function of the minimum brightness temperature of the cloud. They 

found that their method of estimating rainfall had the highest accuracy when compared to 

contemporary methods. 

 

Ba and Gruber (2001b) used a different approach to estimate rainfall using the visible and 

thermal data of the GOES satellite. Initially, they used thermal data to identify rainy clouds 

from non-rainy clouds based on the temperature gradient method introduced by Adler and 

Negri (1988). Second, they introduced a rain probability function for rainy clouds, based 

on the cloud top temperature to estimate amount of rainfall. They concluded that the 

probability function based algorithm of rainfall estimation showed a higher accuracy in 

daily and monthly rain estimation. Moreover they emphasised that although this method is 

capable of estimating daily and monthly rainfall accurately, the accuracy of extreme 

rainfall events in small areas are poor. 

 

An artificial neural networks (ANN) model has been used by Grimes et al. (2003) to 

estimate rainfall over Africa with the Cold Cloud Duration (CCD) technique. They used 
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METEOSAT thermal data to estimate CCD, and then used estimated CCD and numerical 

weather model analysis data as inputs to the ANN model. In their study, they observed that 

the ANN model approach gave a slightly better rainfall estimate than the standard CCD 

technique (i.e. assigning a constant rain rate for cloud duration). Furthermore, Grimes et al. 

(2003) highlighted that the accuracy improved significantly for higher rainfalls, thereby 

benefitting to hydrological modelling applications. 

 

All of the above mentioned methods of estimating rainfall are based on visible and thermal 

data of polar orbital and geostationary satellites, and these data have certain advantages. 

They are easy to handle and are freely available most of the time. These data are usually 

available in sub-daily intervals, and as such continuous information on cloud systems can 

be collected (Adler and Negri, 1988). However, there are some disadvantages involved 

with using visible and thermal RS data to estimate rainfall. The main disadvantage is the 

lack of accuracy of rainfall, thereby limiting further applications. Furthermore, most of 

these data are based on geostationary satellites. Therefore the spatial resolution of these 

data is significantly lower than polar orbital satellite data, thereby causing problems in 

capturing localized rain events using geostationary satellites. These geostationary satellites 

cover most of the area in tropical regions but are less useful in Polar Regions. Despite 

these weaknesses, visible and thermal data are still used to estimate rainfall, mainly 

because of the better spatiotemporal coverage. 

 

Some of the disadvantages of visible and thermal data have been addressed through the 

bispectral technique of rainfall estimation introduced by Dittberner and Vonder Haar 

(1973). Clouds which are brighter in visible images were combined with clouds which are 

colder for better accuracy since they have a greater tendency to rain than dark and warm 

clouds. However, rain estimates with methods that only used cloud-top variables poorly 

represent the underlying rain amount, so that research has predominantly focused on the 

use of different frequencies of the electromagnetic spectrum which have cloud penetration 

abilities. 
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(b) Use of microwave data for rainfall estimation 

Both passive microwave (most commonly known as microwave) and active microwave 

(most commonly known as radar) data have been used in estimation of rainfall. These data 

can be used to address some of above mentioned disadvantages of visible and thermal data. 

Microwave frequencies are capable of penetrating clouds, therefore, they are able to give 

information on the instead structure of the cloud. Since clouds’ internal processes have 

direct influence on the rainfall process and its magnitude, the use of microwave data 

provides a significant advancement in rainfall estimation compared to the use of visible 

and thermal data (Michaelides et al., 2009). Additionally, microwave data can penetrate 

through haze and smoke which visible and thermal waves are incapable of doing 

(Lillesand and Kiefer, 1999). 

 

Nonetheless, the estimation of rainfall using microwave is a complicated process. At first, 

microwave based temperature is used to separate water bodies and land surfaces from 

cloud cover. Then, the known rain rate is assigned to a cloud temperature which is based 

on the microwave data (Pierce, 2008). Moreover, microwave scatters and absorbs in the 

presence of rain/ice drops. Both the scattering and absorption rates increase with the 

frequency of microwave data and rain rate. These features are employed to estimate 

precise rainfall amounts. 

 

Lovejoy and Austin (1980) introduced a rainfall estimation algorithm with microwave data 

using both absorption and scattering, and explained the advantages and disadvantages of 

this approach in details. In their study, they stressed the fact that the, separation of cloud 

water from rainwater was difficult, and that the use of only one emissivity factor over such 

a large area weakened the results. 

 

Recently more efficient algorithms for estimating rainfall using microwave data were 

introduced by Kummerow et al. (2001), Weng et al. (2003), and Kummerow et al. (2007). 

These algorithms have been drawn from the initial work of Mugnai et al. (1993) who 

introduced statistical physical algorithms to estimate rainfall with microwave data. This 

was the foundation of an algorithm used to estimate rain with TRMM Microwave Imager 

(TMI). The basic function of this algorithm was written as (Kummerow et al., 2001): 
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P��|��	 = P��	 × P���|�																																																																																								�2.2	 
 

where, P(R|BT) is the probability of a particular rain profile in a given BT (brightness 

temperature), P(R) is the probability of observing R rain profile, P(BT|R) is the probability 

of observing the BT vector. The accuracy of this model to estimate rainfall was find to be 

quite high. However, it was also argued that the model should be optimized separately for 

different satellite sensors (Kummerow et al., 2001). 

 

As mentioned in the earlier part of this section, high frequency microwave data yield 

higher accuracy in rainfall estimation than low frequency microwave data (Michaelides et 

al., 2009). TRMM TMI sensor is sensible for high frequency microwave data, and 

provides fundamental information to estimate rainfall globally. Even though they are good 

in providing necessary information to estimate rainfall, they still cause issues in some 

areas of application. The main issue relates to the noise of data created with emissivity 

uncertainties over mixed areas (land and water bodies) such as coastal regions. These 

disadvantages paved the way to explore radar as an alternative method for rainfall 

estimation. 

 

The use of radar data for rainfall estimation has a long history. Initially, ground based 

radar was used to forecast, monitor and estimate rainfall. However, ground radar has 

limited coverage due to terrain undulations. Other than that, installing, managing and 

maintaining a ground radar system (i.e. hardware, software and skilled labor) is very 

expensive. These disadvantages are significantly hampered on its applicability and 

usefulness. Some of these disadvantages were overcome by satellite based radar sensor 

which is attached to TRMM satellite (Kummerow et al., 1988). 

 

TRMM satellite is a platform to a precipitation radar sensor (Pierce, 2008). This sensor 

opened a new avenue in rainfall estimation using satellite data. According to Michaelides 

et al. (2009) different algorithms were quickly developed to serve rainfall estimation with 

radar data, and a platform was made available to evaluate all other rainfall satellite 

products. However, this data only covered a narrow swath, and data were limited to 35 0N 

and 35 0S latitudes. 
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(c) Use of combined data for rainfall estimation 

The availability of wide varieties of RS data which represent different features of the 

rainfall process suggests that a combination of different varieties of data could give a 

better result in the estimation process. Early foundations were laid in this regard by Arkin 

(1979), who combined visible data and radar data to estimate rainfall. Later, many studies, 

were introduced using multispectral RS data to estimate rainfall (Arking and Childs, 1985; 

Huffman et al., 1995; Huffman et al., 1997; Sorooshian et al., 2000; Ba and Gruber, 

2001b; Huffman et al., 2001; Weng et al., 2003). 

 

Amongst the products that use combined data to estimate rainfall, the Climate Prediction 

Center’s morphing technique (CMORPH) product (Joyce et al., 2004), the Tropical 

Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near 

real time products (Huffman et al., 2007), and the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIANN) (Sorooshian et al., 

2000) are the dominant ones. These products are almost identical to the spatiotemporal 

resolution and are used as input data to generate rain rates with different algorithms. The 

ability of these products to predict streamflow has been investigated by Bitew et al. (2011) 

who applied them to the MIKE SHE model. The latter researchers concluded that TMPA 

data outperformed PERSIANN and CMORPH data in this application. 

 

The availability of TRMM data made a breakthrough by combining precipitation 

estimation, with visible, thermal, microwave as well as radar sensors. Since then, 

numerous studies have used TRMM data to estimate streamflow (Collischonn et al., 2008; 

Su et al., 2010; Bitew et al., 2011; Chen et al., 2011; Li et al., 2012; Wang et al., 2014), 

and hence obtained various levels of accuracy. Better results have been obtained in yearly 

and monthly time scales than in daily streamflow estimation. In these studies, it was 

concluded that TRMM data are not comparable to ground measured rainfall in small to 

medium catchments on a daily basis. 

 

2.4.1.3 Evapotranspiration estimation using remote sensing data 

Evapotranspiration is a combined term for evaporation which is the direct removal of 

water from open water bodies, soil and vegetation surfaces in the form of vapour, and 

transpiration through vegetation. The above processes are very difficult to quantify 
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separately, and as such they are collectively called evapotranspiration (ET). Energy 

supply, vapour transport and water availability (open water source or soil moisture) affect 

the rate of ET (Chow et al., 1988). The energy available, the carrying capacity of air 

(Bastiaanssen et al., 1998a; Su, 2002) and the amount of soil moisture control 

transpiration, and as such control ET (Biggs et al., 2008). 

 

ET is the second largest component of the terrestrial water balance. Water that is removed 

in the process of ET contributes to atmospheric water vapour and cloud formation. These 

clouds precipitate on the same or different areas. In this way, ET plays an important role in 

the water balance and in the energy cycle for the maintenance of maintain the atmospheric 

temperature. Knowledge of ET is essential for policy makers and managers to make out 

decisions, and conduct technical and management tasks such as watershed management 

and hydrological modelling, irrigation scheduling, and weather forecasting. Moreover, this 

knowledge is important to understand the long term effect of landuse/landcover changes 

and the effect of climate change on catchment water budget (Glenn et al., 2007). In brief, 

the quantification of ET is essential for better management of water resources. 

 

The quantification of ET has been undertaken in two ways. First, ET has been derived 

from a range of measurement systems including lysimeter, eddy covariance, Bowen ratio, 

water balance (gravimetric, neutron meter, other soil water sensing), sap flow and 

scintillometer. Second, ET has been estimated through the use of modelling techniques 

with hydrometeorological variables as inputs (Allen et al., 2011). The Lysimeter method is 

the oldest and the most direct method of deriving ET from measurement systems. In this 

method, ET is calculated as a residual of the water balance equation. However, the 

available number of lysimeters is not sufficient for the water management decision making 

process. Moreover, many of these lysimeters are located within cropping areas, and thus 

do not represent other LULCs within a catchment. In general, this situation is common to 

all methods that derive ET through measurement systems. The second is the modelling 

techniques, and this included catchment water balance, hydrometeorological equations and 

the energy balance method. 

 

Several modelling techniques have been developed in the absence of derived ET from 

measurement systems (Thornthwaite, 1948; Penman, 1948; Monteith, 1965; Priestley and 

Taylor, 1972). Thornthwaite (1948) explained a way to estimate potential 
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evapotranspiration (i.e. the maximum amount of water removed as a result of ET, when 

there is no limitation to water availability) using surface temperature as input data. 

Potential evapotranspiration (PET) was computed as a function of monthly average 

temperature. Later various correction factors were introduced to Thornthwaite’s method to 

improve the accuracy of estimates (Willmott et al., 1985; Camargo et al., 1999; Pereira and 

Pruitt, 2004). However, the Thornthwaite’s method does not account for the 

thermodynamic effect. As such, the accuracy of PET remains low when compared to other 

methods such as the Penman-Monteith and the Priestley-Taylor methods (PT) (Malek, 

1987). Moreover, the Thornthwaite’s method estimates PET on a monthly basis. Thus, this 

information is insufficient to make decisions in certain applications like irrigation 

scheduling. 

 

The above mentioned disadvantages are partially addressed by the Penman ET estimation 

method (Penman, 1948). The Penman ET estimation method which is essentially based on 

the energy used to evaporate water, was further enhanced by introducing the ‘advection 

effect’ into the process (Monteith, 1965). The Penman-Monteith (PM) formula is a 

combination of both the energy term and this advection term, and is widely used in PET 

estimation (Allen et al., 1998). In addition, Priestley and Taylor (1972) introduced a 

simplified ET estimation procedure over uniform wet surfaces. Considering that dry air 

moving over a uniform wet surface comes to a level of equilibrium, they simplified the 

energy balance by inserting a constant. 

 

The above discussed methods are based on several meteorological variables. However, 

many catchments do not have sufficient ground measured data to estimate PET. Whilst 

heterogeneity of the surface vegetation makes estimation of ET difficult, partial canopies 

create further problems. Su (2002) highlighted that PET estimation procedures such as PM 

and PT estimate PET accurately over homogenous small areas. Nevertheless, the accuracy 

of estimates are reduced as the area becomes larger, in which case PET estimation 

procedures become insensitive due to the lack of representative hydrometeorological 

variables. 

 

Over large areas, RS based ET estimation has numerous advantages (Bastiaanssen and 

Chandrapala, 2003; Bandara, 2003; Bos, 2004; Ahmad et al., 2005). RS gives a better 

representation of the ground heterogeneity, and its temporal changes. The accessibility and 
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the quality of RS data are superior compared with ground measured data, and data are 

available to the research community on a near-real time basis. Additionally, RS data are 

available at zero or minimum costs. In the light of all these advantages, Bastiaanssen et al. 

(1998a) and Su (2002) advocated the use of surface energy balance based ET estimation 

method with RS data as inputs as an alternative to the above mentioned estimation 

methods. 

 

The Surface Energy Balance Algorithm for Land (SEBAL) method which was proposed 

by Bastiaanssen et al. (1998a), uses the surface energy balance equation to estimate ET. In 

this method, ET is calculated as the residual of the difference between the net radiation to 

the surface and losses due to the ground heat flux (energy stored in the soil and vegetation) 

and the sensible heat flux (energy used to heat the air) (Senay et al., 2007b). 

 

The net radiation of the above method is the difference between incoming and outgoing 

radiation, and RS based surface albedo and emissivity are used as inputs to calculate it. 

The ground heat flux is estimated using surface temperature, albedo, and NDVI. The 

sensible heat flux is estimated as a function of the temperature gradient above the surface. 

Surface roughness and wind speed are required for this, and surface roughness is 

calculated as a function of the NDVI in SEBAL (Bastiaanssen et al., 2002; Bastiaanssen 

and Chandrapala, 2003; Ahmad et al., 2005; Ahmad et al., 2009; Gamage et al., 2009a). 

The Surface Energy Balance Systems (SEBS) method (Su, 2002) also used the surface 

energy balance equation to estimate ET. This method uses the same inputs computed from 

RS data as the SEBAL. However, SEBS uses a numerical simulation model to estimate 

ET, instead of SEBAL’s hot and cold pixel approach. 

 

The Surface energy balance method used in SEBAL and SEBS was further simplified by 

Senay et al. (2007b) with their proposed methodology of Simplified Surface Energy 

Balance (SSEB). They introduced the fraction of surface temperature instead of the 

hot and cold pixel approach of SEBAL and the numerical simulation approach of SEBS. 

 

Initially, evapotranspiration computed from the surface energy balance method was used 

to calculate water efficiency, agricultural water requirement (Ahmad et al., 2009), and 

water resources assessment (Muthuwatta et al., 2010). These calculations require 

computing daily, monthly and annual ET values. However, non-cloudy RS images are 
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essential to estimate ET using the above described methods. Therefore, calculating ET 

continually on a daily basis is virtually impossible. This has slightly been overcome to a 

certain extent in monthly and annual estimation of ET by introducing a temporal 

integration mechanism (Ahmad et al., 2009). Temporally integrated ET can be used in 

water resources assessments and planning, but not for daily streamflow estimation 

purposes. 

 

The above mentioned RS based ET estimation methods require a few ground measured 

meteorological data, with wind speed being the most important input. Unfortunately, 

obtaining wind speed data in data scarce catchments represent a challenging if not 

impossible task. Therefore, a method is proposed in this study to estimate PET, and then 

use it for streamflow estimation. The surface energy balance method has been modified 

under the proposed method, so that minimum ground measured data and maximum RS 

data are used. 

 

2.4.1.4 Landuse/landcover classification 

Since the early stages of remote sensing, RS data have been used to categorize 

landuse/landcover (LULC) classes (i.e. LULC classification or thematic mapping). Later, 

the digitally acquired data from space borne RS (satellites) opened a new era of LULC 

classification. The ability to acquire data more frequently, high spatial resolution, easy 

access and low costs collectively make the use of RS data for LULC classification purpose 

a popular option. Currently, LULC classification is the most common application of RS 

data (Foody, 2002). 

 

Basically, classification is done by grouping pixels that have the same spectral signature 

(or pattern) in a single or multiple bands (Bastiaanssen, 1998; Lillesand and Kiefer, 1999). 

This pixel grouping has been done through two main approaches; unsupervised 

classification and supervised classification. Unsupervised classification is defined as a 

categorization of pixels in RS data solely based on the statistics of that RS data without 

considering training samples or a priori knowledge of the area. In this classification 

approach, a statistical algorithm (i.e. unsupervised classification algorithm) is used to 

make clusters of pixels that have the same spectral signature. Implementing an 

unsupervised classification on an image is a fairly simple task which is handled by a 
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computer with less user intervention. However, this can lead to a reduction in the accuracy 

of the classification. Moreover, some of the classes under this approach may not be 

equivalent to the actual classes (Hasmadi et al., 2009), thereby lowering the accuracy of 

LULC results (Kiptala et al., 2013). 

 

The supervised classification is defined as the procedure of identifying spectrally similar 

areas on an RS data by identifying ‘training’ sites of known targets (i.e. LULCs) and then 

extrapolating those spectral signatures to other areas of unknown targets (Lillesand and 

Kiefer, 1999). The supervised classification approach has been more widely used 

compared with the unsupervised classification approach (Bastiaanssen, 1998), mainly 

because of the better level of control of the LULC classification process by the user. 

Indeed, the number of classes is controlled in supervised classification, and is based on a 

meaningful representation of ground based LULC classes. 

 

According to Lillesand and Kiefer (1999) the process of supervised classification can be 

summarized into three stages namely the: 

 

1. Training stage: The main objective of this stage is to identify the signatures of RS 

data relevant to existing LULC classes within the interested area (i.e. the study area 

in this study). This can be achieved in two ways. One way is to use prior 

knowledge of the LULC classes of the study area. The other way is to carry out a 

ground-truth data survey to identify existing or existed LULC classes in the study 

area (Foody and Mathur, 2004). Ground-truth data is a representative sample 

(homogeneous) of a particular LULC class in the study area. A portion of this 

ground-truth data is used to train the images for appropriate LULC classes. 

Compared to the total image, training samples cover a small portion of the image, 

but they are chosen well to represent all LULC classes. These small portions of the 

image are called training sets (Gamage et al., 2007). 

 

2. Classification stage: Categorizing all the pixels in the image into relevant LULC 

classes using the signatures that were identified during the training stage is the 

main task of the classification stage. In order to achieve this task, training sets, and 

a parametric rule/classifier are used. A number of parametric rules have been 

introduced to serve this purpose such as the maximum likelihood classifier, the 
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minimum distance to mean classifier and the parallelepiped classifier. Each pixel of 

the RS image is assigned an LULC class at the end of this stage (Joseph, 2005). 

 

3. Output stage: The classified image is presented as a map, graph or table at this 

stage. In addition to that, some of the ground truth-data that were not used to train 

the image are instead used to calculate classification accuracy. Both descriptive and 

analytical techniques (Congalton, 1991; Thomlinson et al., 1999; Smits et al., 1999; 

Foody, 2002) are used in this stage to verify the accuracy of image classification. 

Once the accuracy assessment is satisfactory, the classified, data are ready to be 

used for other applications such as urban, agricultural, hydrological and forestry. 

 

Compared with the unsupervised classification approach, supervised classification is 

advantageous in that it yields more accurate results. Nonetheless, the finalization of the 

LULC map is a costly process because of heavy user involvement. 

 

Other than the above mentioned two approaches, Lillesand and Kiefer (1999) further 

reported that a hybrid classification approach is also available. This is a combination of 

supervised and unsupervised approaches. Initially, the unsupervised classification 

approach is used to understand the image signature, and later supervised classification is 

used to improve the accuracy of the classified map. Gamage et al. (2007) used a similar 

approach to acquire LULC information over small heterogeneous farmlands in Pakistan, 

and have obtained a high level of accuracy in the classification. 

 

Various satellite sensor data have been used with the previous approaches (i.e. supervised 

and unsupervised) to classify LULC on various scales ranging from field to global levels. 

The scale of the application is determined by the sensor’s characteristics in terms of spatial 

resolution, which in turn determines the LULC level of classification. Amongst available 

sensor data, feature the NOAA AVHRR sensor data, which are characterized by 1 km 

spatial resolution and which have been widely used at the global scale for LULC 

classification purposes (De Fries et al., 1998; Loveland et al., 2000). Thenkabail et al. 

(2008) used various AVHRR products and some other sensor data such as Landsat and 

IRS data. However, these classifications are undertaken at the global scale and the 

complexity involved with such a scale always reduces the accuracy of the maps 

irrespective of the quality of RS data. Furthermore, since collecting ground truth data to 
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represent all LULC classes is not practical, Thenkabail et al. (2008) used unsupervised 

classification , which in turn reduced the accuracy of such maps. 

 

Thenkabail et al. (2005) used MODIS sensor data to develop an irrigated area map for the 

Ganges and Indus River catchments. They used a time series of MOD09 (i.e. a product of 

MODIS data which has a spatial resolution of 500 m) from 2001 to 2002 to classify 

LULC. In a separate study, Gamage et al. (2007) used Landsat ETM+ data at a field scale 

(in irrigated command areas) to make an LULC map. These maps have been used to detect 

seasonal changes of crops and cropping areas on a field scale. 

 

An output map of such classifications has often been used as input variable for streamflow 

estimation models. Boegh et al. (2004) used Landsat TM data to classify LULC 

information, and used the resulting LULC information as an input to the MIKE SHE 

model. They used this information to investigate the relationship of vegetation with soil 

moisture availability and ET. Campo et al. (2006) used Landsat ETM+ data to create an 

LULC map over the Arno River catchment in Italy. They used the supervised classification 

approach to make the LULC map and obtained 49% of overall accuracy in their 

classification, which is less than the accepted level of accuracy. Indeed, the generally 

accepted accuracy is 70% for an individual class and 85% for the overall classification 

(Thomlinson et al., 1999). This LULC information was used in the BOBIDEC model 

(Campo et al., 2006), which is a distributed raster based model to estimate streamflows. In 

a separate study, Tibebe and Bewket (2011) used Landsat TM data to classify LULC 

information with the supervised classification approach. This study took place in the 

Awash catchment in Ethiopia, and RS based LULC information was used as input to a 

SWAT model to simulate surface runoff and to estimate soil erosion. He et al. (2008) used 

RS data to identify the dynamic change of LULC for the period of 1986 to 2000. They 

introduced this information to a SWAT model to examine the effect of LULC changes on 

surface runoff generation. 

 

In most of the streamflow estimation applications, the RS based LULC has been used as a 

“one time” input variable since the change of LULC is much slower than the change in 

other meteorological variables such as rainfall and evapotranspiration. In some cases, 

LULC has been used as a dynamic variable in streamflow estimation, especially when 
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determining the effect of LULC changes in surface runoff generation, soil erosion 

estimation (Tibebe and Bewket, 2011) and groundwater recharge. 

 

Various other satellite data such as SPOT, IRS, IKANOS and Quickbird have been also 

used for LULC classification purposes in various applications. The lack of LULC 

information has an adverse impact on any hydrological modelling, and the literature shows 

that RS data can be used in different scales to acquire LULC information. The LULC 

classifications in other studies have been derived for special purposes and have yielded 

different levels of accuracies. Considering prior studies, an attempt is made in this study to 

acquire LULC information for medium size catchments that have homogeneous and 

heterogeneous LULC classes. 

 

2.4.2 Use of statistical models  

Statistical models are categorized as empirical models under the model classification 

hierarchy proposed by Refsgaard (1996). They are developed without consideration to the 

physical processes that are associated with catchment streamflow generation. Therefore, 

model building, calibration and validation are less complex in statistical modelling than in 

catchment process modelling. However, these models do not consist of logical 

relationships between model inputs (meteorological and catchment variables/parameters) 

and output (streamflow) (Refsgaard, 1996). 

 

Refsgaard (1996) further categorized empirical models into three types, namely the 

empirical-hydrological methods, the statistically based methods and the hydroinformatics 

based methods. A best known empirical-hydrological method is the unit hydrograph which 

is widely used for streamflow routing. Statistically based methods rely on traditional 

statistical methods, and according to Refsgaard (1996) these statistical methods are more 

advanced than the empirical-hydrological methods. It is highlighted that a time series 

analysis of the Autoregressive Integrated Moving Average (ARIMA), and Constrained 

Linear Systems (CLS), the gauge to gauge correlation, the Antecedent Precipitation Index 

(API) are all examples of methods that have been used in streamflow estimation under this 

category. According to Refsgaard (1996), hydroinformatics based methods are based on 

transfer function models, and are generally new and emerging. Artificial Neural Networks 

(ANN) represents one such type of modelling. It should, however, be noted that ANN have 



2-31 
 

travelled a long way since Refsgaard’s comment, and are now well established in 

numerous hydrological applications (Maier et al., 2010). Most of the above mentioned 

techniques are based on regression (linear/nonlinear), and as such some of them will be 

discussed in this chapter considering the regression function of the models. 

 

A review of the literature reveals that many studies have used regression analysis to 

estimate streamflow. For example, Bonne (1971) used a multiple regression model 

(multiple inputs) to estimate monthly streamflow using different independent variables 

such as the previous month's streamflow, the present month’s precipitation, antecedent 

monthly precipitation and accumulated precipitation over several previous months. In this 

study, Bonne found that a multiple regression model performed better than several simple 

regression models (single input) in streamflow simulation with improvements being noted 

in the coefficient of determination. This early study clearly highlighted the complex 

relationship between variables and streamflow even within a monthly timescale, and 

consequently, this early work has been followed by many researchers as a base while 

estimating streamflow with regression modelling. 

 

Zhu and Day (2009) used regression modelling to estimate total streamflow, base flow and 

storm runoff for water resources planning and management purposes. They used 

meteorological data as well as basin geomorphological, geological, soil and climatic 

characteristics that were estimated using geographic information systems as inputs to this 

modelling. They obtained a coefficient of determination of more than 0.94 in all models 

that were tested. It was concluded that such simple models are vitally important in water 

resources planning and management process since policy makers are not specialized in 

water related disciplines. 

 

Many others used regression modelling to estimate streamflow (Brandes et al., 2005; 

Liang and Song, 2009; Lima and Lall, 2010). Of these studies, Lima and Lall (2010) used 

a periodic autoregression model to forecast monthly streamflow for the use of reservoir 

operations. They applied large scale climatic information such as sea surface temperature 

to forecast streamflows up to three months in the future, and have consistently obtained 

better results than simple linear regression models. However, they observed that the 

model’s performance improved as they moved to large scale catchments, but applications 

to medium and small catchments were not promising as for the large catchments. 
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In addition to estimating streamflow, regression modelling has widely been used to 

investigate the effects of LULC changes on streamflow (Krishnaswamy et al., 2012; Wine 

and Zou, 2012; Yan et al., 2013a; Tran and O’Neill, 2013), and the impact of climate 

change on streamflow (Jiang et al., 2011; Yan et al., 2013b; Ahn and Merwade, 2014). 

However, all of the aforementioned studies have used ground measured meteorological 

data as inputs for regression models. Instead of the traditional input variables such as 

rainfall and surface temperature, which are scarce in some parts of the world, some 

academics have used RS based inputs with regression models to estimate streamflows. 

 

Weissling and Xie (2009) used RS based indices (i.e. land surface temperature, vegetation 

indices, water stress index) and Next Generation Weather Radar system (NEXRAD) 

precipitation data to estimate the 8-day mean streamflow of a catchment in south central 

Texas in USA. They used a stepwise multiple linear regression model to estimate 

streamflow for the period running from 2001 to 2007. MODIS satellite data were used to 

calculate RS based indices on every 8-day, and such indices were then used in regression 

modelling. They observed the non-linearity of streamflow and RS based indices, and 

therefore used data transformations to transform input data to a suitable format for use in 

regression modelling. The ability of RS indices to detect soil moisture has been 

highlighted by the authors while claiming that more accurate NEXRAD precipitation could 

have improved the performance of streamflow estimation. 

 

Fitch et al. (2010) used vegetation data computed using MODIS reflectance data to 

estimate hydrological response variables such as streamflow and ET. They used NDVI, the 

Leaf Area Index (LAI), the fraction of Photosynthetically Active Radiation (fPAR) and the 

Net Primary Production (NPP) as vegetation indices (independent variables) to estimate 

hydrological response variables using linear regression models. They tested a number of 

catchments in California (USA) for the period of 2001 to 2005, and found weaker to 

moderate performance in streamflow estimation. They concluded that the relationship 

between vegetation and streamflow, which is dependent on the ability of the ecosystem to 

transfer water from the soil to the atmosphere, can be represented by vegetation indices in 

the hydrological modelling process. However, they have not used any representative index 

of the water content of the vegetation. Furthermore, they concluded that the above method 

can be used to identify hydrologically similar catchments. 
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Most of the above examples are based on regression modelling. More recently Artificial 

Neural Networks (ANN) have gained popularity in hydrological applications (Maier et al., 

2010), because of their ability to treat complex and non-linear problems. These ANN 

models have been used for streamflow estimation in gauged and ungauged catchments, 

streamflow forecasting, and regionalization (Lima and Lall, 2010; Rizzo et al., 2010; 

Samuel et al., 2011; Gamage et al., 2011a). 

 

2.4.2.1 Artificial Neural Networks applications on streamflow estimation 

The Artificial Neural Networks is an information processing system which resembles the 

structure and operation of the brain (Samarasinghe, 2006; Maier et al., 2010). The ANN 

modelling approach was initially developed by McCulloch and Pitts (1943), and later used 

in a variety of applications due to its power of addressing the relationships between a 

number of input variables to a single or multiple output (Morid et al., 2007). The ASCE 

Task Committee on Application of Artificial Neural Networks in Hydrology (2000) 

highlighted that with the availability of sufficient data, ANN can be used to model any 

relationship between a series of independent and dependent variables. 

 

The ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 

(2000) and many other studies have highlighted some of the following important 

advantages of ANN in water-related applications: 

• ANN is suitable for dynamic flow forecasting because the weights associated with 

the input data can be updated when fresh observations are made available. 

• ANN does not require any exogenous input other than a set of input–output vectors 

for training purposes (Thirumalaiah and Deo, 1998) since, like a human brain it is 

able to recognize the relationship between the input and output variables without 

explicit physical consideration (Haykin, 1999; ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology, 2000). 

• ANN works well even when the training data sets are of poor quality and/or in the 

presence of missing data in limited number of inputs (Lee et al., 2003; Sudheer et 

al., 2003). In addition to the all above, ANN is easy to handle once it is trained 

(ASCE Task Committee on Application of Artificial Neural Networks in 

Hydrology, 2000). 
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• The ANN model can fully define its intermediate relationships without the 

operator’s interference (Tran et al., 2009). 

 

The ANN modelling technique has been designed by examining the way the human brain 

processes information through a network of neurons that connect together (Samarasinghe, 

2006). The basic structure of ANN modelling has been explained by Minnas and Hall 

(1996), Samarasinghe (2006), Sahoo and Ray (2006), and Barua (2010). Additionally, the 

ANN modelling mechanism, the model architecture, model selection, input selection and 

model development is well documented in Maier et al. (2010). 

 

A comprehensive description of ANN modelling applications in water resources have been 

given by many academics (Maier and Dandy, 2000; Bowden et al., 2005a; Bowden et al., 

2005b; Maier et al., 2010). According to the latter, ANN has been used for streamflow 

estimation, streamflow forecasting, water quality modelling, drought and flood analysis 

and many more. A list of ANN applications to surface water for the period of 1999 to 2007 

is tabled by Maier et al. (2010). In this paper, it was stressed that 90% of ANN 

applications on surface water pertain to the quantification of streamflows. 

 

Sahoo and Ray (2006) discussed in detail the application of ANN models in streamflow 

forecasting, and highlighted that streamflow forecasting has been done with different 

architectures of ANN models and different input variables. They successfully used an 

ANN model to forecast streamflow in the Waiakeakua and Manoa Streams in Hawaii. 

Yilmaz et al. (2011) used an ANN model to estimate streamflow in the Karasu Basin 

located in eastern Turkey, and obtained high accuracy in estimating streamflow. They also 

mentioned that seasonal models performed better than a single model across all seasons. 

 

In an earlier study, Minnas and Hall (1996) found that a single ANN model did not 

properly represent the estimation process because streamflow is a combination of extreme 

and normal events. This was further investigated by Wang et al. (2006) by applying a 

Divide and Conquer (DAC) based ANN model to estimate daily streamflow. They 

introduced DAC to the ANN model by categorizing streamflow into high and low flows, 

and, then described different ANN models to estimate high and low flows separately. The 

results from these different ANN models were then combined to produce a time series of 

streamflow for the total period. They found that this approach gave substantially better 
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results in streamflows compared to a single model dealing with extreme and normal 

events. 

 

Sharma and Tiwari (2009) used various catchment variables, which are based on 

topographical, meteorological, soil, geomorphological and vegetation, to estimate runoff in 

the Upper Demodar Valley catchment – India, by employing an ANN model. They 

considered 39 variables, and used Principal Component Analysis (PCA) method to reduce 

data redundancy, and finally selected 10 variables from the initial set of variables. From 

this list, they found that monthly rainfall, slope, coarse sand, bifurcation ratio and NDVI 

gave the best results in estimating monthly runoff. They also found that increasing the 

number of variables did not improve the accuracy of the estimates. 

 

At this juncture, it should be highlighted that, at the time of this study, no literature was 

available on the use of RS based input variables such as vegetation and thermal indices to 

estimate streamflow. This research gap will be subsequently investigated in this thesis. 

 

2.4.2.2 Remote sensing based indices for streamflow estimation 

Derivatives of RS data have been used as indicators of vegetation, water, soil, atmosphere 

and clouds. The use of RS based indices as indicators of biophysical properties of 

vegetation stemmed from the application of satellite data to civilian purposes (Jensen, 

2000). Jackson (1983) emphasized several qualities that the vegetation index should have 

:“the index should be particularly sensitive to vegetative covers, insensitive to soil 

brightness, insensitive to soil color, little affected by atmospheric effects, environmental 

effects and solar illumination geometry and sensor viewing conditions”. Based on that, the 

reflectance value of visible, near infrared and mid infrared bands have been used as inputs 

to vegetation indices (Jensen, 2000). 

 

Pearson and Miller (1972) developed the first two vegetation indices, which are the ‘Ratio 

Vegetation Index’ (RVI) and the ‘Vegetation Index Number’ (VIN). They are the band 

ratios of red and near infrared bands. They can be written as; 

 

��� = �
���         (2.3) 
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��� = ���
�         (2.4) 

 

where R is the mean reflectance of the red band and NIR is the mean reflectance of the 

near infrared band. These indices were used to enhance contrast between land and 

vegetation, but they are very sensitive to the atmospherical effects. 

 

Later, the Normalized Difference Vegetation Index (NDVI) was introduced by Tucker 

(1979), and quickly become the most commonly used vegetation index within the RS 

community (Kite and Pietroniro, 1996). It represents vegetation density, vigor, vegetation 

stage and seasonality (Jackson et al., 2004; Thenkabail et al., 2004). Furthermore, it has 

been used to estimate the Leaf Area Index (LAI). LAI is identified as the single most 

important variable for quantifying energy and mass exchange by plant canopies over 

landscapes (Running et al., 1986). Therefore, LAI has become a vital variable in 

hydrological process modelling. LAI has been widely used to generate ET information that 

are few into the catchment process models (Kite and Pietroniro, 1996; Andersen et al., 

2002) for streamflow estimation. Since, the traditional method for calculating LAI is 

laborious (Kite and Pietroniro, 1996), many authors used NDVI to calculate this vital 

information. As a representative index of vegetation, NDVI has been used in various other 

applications such as LULC classification (Gamage et al., 2007), drought monitoring 

(Thenkabail et al., 2004), spatial downscaling of TRMM data (Immerzeel et al., 2009), soil 

moisture estimation (Wang et al., 2007; Schnur et al., 2010) and for understanding the 

seasonal dynamics of the canopy cover (de Silveira et al., 2007). 

 

The inherent nonlinearity of ratio based indices (i.e. the index is not directly proportionate 

to the input) is the main disadvantage of the NDVI. In addition, this index is sensitive to 

additive noise effects such as atmospheric path radiances, and it exhibits scaling problems 

and saturated signals over high biomass conditions. Furthermore, it is very sensitive to 

canopy background variations with NDVI degradation being particularly strong in case of 

high canopy background brightness (Huete, 1988). To address these disadvantages, Huete 

et al. (2002) introduced the Enhanced Vegetation Index (EVI) which has improved 

sensitivity in high biomass regions and improved vegetation monitoring through de-

coupling of the canopy background signal and a reduction in atmosphere influences. 
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EVI has been widely used in vegetation applications. Huete et al. (2006) used EVI to 

examine the vegetation growth of the Amazon forest during its dry season. EVI has also 

been used in LAI calculations as a substitute to NDVI in ET estimations (Ahmad et al., 

2005). Guerschman et al. (2009) used monthly EVI and interpolated climate data as input 

variables to derive monthly actual ET estimates. The main advantage of this methodology 

which was facilitated by EVI, is that it required a single set of parameters. The EVI has 

been widely applied in many disciplines including in the calculation of Net Primary 

Production (Wu et al., 2011). 

 

Both EVI and NDVI are good indices that represent vegetation greenness well, but they 

perform poorly in respect to vegetation water content (Jackson et al., 2004), which is a 

surrogate of soil moisture content. Therefore, Jackson et al. (2004) used the Normalized 

Difference Water Index (NDWI) (Gao, 1996) to map the vegetation water content over 

agricultural crops. They were able to successfully map the vegetation water content using 

NDWI over the period of 1 month which was their study period. This index was further 

examined by Weissling and Xie (2009) who used NDWI and other indices to estimate the 

8-day mean streamflow in a Texas (USA) catchment. They tested 32 variables which are 

based on visible and thermal bands. Out of those 32 variables, they found that the 

deseasoned land surface moisture stress index, NEXRAD precipitation and the MODIS 

daytime land surface temperature are significantly related to streamflow. In this study, they 

also found a fair level of agreement between observed and estimated streamflow, and 

concluded that the estimation performances could have been improved by improving 

NEXRAD precipitation. 

 

Other than vegetation indices, indices based on thermal bands were also used in vegetation 

and hydroclimatological applications. Visible, near infrared and mid infrared bands’ 

reflectance values were directly used as inputs for the calculation of vegetation indices. 

However, the radiance values of thermal bands were converted into brightness temperature 

before they were used as inputs to thermal indices. 

 

Brightness temperature (BT) has been directly used to estimate rainfall given its direct 

relationship with rainfall (Arkin, 1979; Arking and Childs, 1985; Arkin and Meisner, 

1987). Furthermore, BT has been used to separate no-rain clouds from rain clouds (Ba and 

Gruber, 2001a; Kuligowski, 2002). For example, Kuligowski (2002) used brightness 
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temperature difference and brightness temperature gradient to conduct such separation. 

These indices indicate the presence of water vapor and textural information of the cloud 

top. These properties provide vital information needed to separate rain clouds from no-rain 

clouds. In addition to its cloud-related applications, BT has been widely used in ET 

estimation (Bastiaanssen et al., 1998b; Bastiaanssen et al., 2002), which were then used in 

water productivity investigations over large command areas (Gamage et al., 2009a). 

 

The above mentioned thermal indices and BT based applications were initially restricted to 

the data acquired from meteorological satellites. However, such applications were made 

possible with sun synchronized satellites like NOAA AVHRR. Since NOAA AVHRR 

holds two thermal bands (band 4 and 5), it was possible to use BT difference as an index 

for rain/no rain cloud separation. This situation was further improved with the emergence 

of the MODIS satellite. MODIS introduces several other thermal bands in addition to the 

bands of NOAA AVHRR. Indeed, MODIS adds 14 new thermal bands in the range of 

3.660 µm to 12.270 µm, which can be used in various applications such as surface and 

atmospheric temperature mapping, cirrus cloud identification and cloud top temperature 

estimation. 

 

The literature described above has important implications for the hypothesis of this study: 

that remotely sensed indices (both vegetation and thermal) sufficiently represent the 

variation of hydrometeorological variables such as rainfall, evapotranspiration and soil 

moisture. However, sparse literature is available for using RS indices to estimate 

streamflow. This will be explored later in this study. 

 

2.5 Summary 

This chapter started by explaining the process of streamflow estimation, its history and 

classification of streamflow estimation models. It then proceeded to exploring the history 

of RS and discussing RS systems that are used to acquire data. Some satellites and sensors 

are also discussed. These satellites and their sensors were especially selected as they have 

been widely used in hydrological applications. Next, the chapter reviewed streamflow 

estimation with RS data. Under this section, both catchment process modelling and 

statistical modelling approaches were discussed in two separate sub sections. First the 

estimation of rainfall, evapotranspiration, and classification of LULC using RS data, which 
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are the most important inputs for catchment process modelling, were discussed under the 

sub section labelled catchment process modelling. Second the RS based vegetation and 

thermal indices that are surrogates of hydrometeorological variables were reviewed under 

the sub section labelled statistical modelling. 

 

Different catchment process models that aim at estimating streamflow using RS based 

input variables as inputs were discussed in Section 2.4.1. The review showed that RS 

estimated inputs have been used in different spatiotemporal scales ranging from sub-daily 

to annual and micro catchments to mega catchments. The literature also showed that the 

accuracy of the estimation is higher in lower temporal resolution such as monthly and 

annually in large catchments. In contrast, the literature showed that results are not 

satisfactory when the same data were applied to medium or small catchments on finer 

temporal resolution (i.e. daily). 

 

Rainfall estimation is the oldest application of RS data which is used in meteorological 

satellite data. Initial rainfall estimation was based on the cloud indexing technique using 

thermal infrared bands data. Later, this technique was modified by introducing a brightness 

temperature threshold for rainy clouds. However, the accuracy of the estimates were poor 

since brightness temperature only gave information relating to cloud-top. More accurate 

rainfall estimation processes were developed with microwave and radar RS data, which 

have the ability to penetrate clouds. However, rainfall estimates, which used microwave 

and radar, are low in spatial resolution, thus failing to address the variability of rainfall in 

medium and small catchments. 

 

The estimation of potential evapotranspiration (PET) is another important variable, both in 

streamflow estimation as well as in agricultural applications. PET data can be derived 

using direct measurements such as the lysimeter or can be estimated using a modelling 

approach, which use meteorological variables as inputs. In the absence of direct 

measurements and meteorological variables, RS data have been used partially used as 

inputs to estimate PET. SEBAL and SEBS are examples of models that utilize RS data to 

estimate PET. However these estimations are limited to non-cloudy days. 

 

RS data have been widely used in classifying LULC. The unsupervised and the supervised 

are the two main LULC classification approaches. The unsupervised classification is 
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simple but less accurate. In contrast, supervised classification is complex, but accurate and 

meaningful. It has three stages, and uses knowledge on the ground to classify LULC. 

LULC information has been applied in various hydrological models to assess the effect of 

LULC changes on streamflow generation, ground water discharge and climate change. 

 

Various statistical models have also been used to estimate streamflow with meteorological 

variables. Recently, the Artificial Neural Networks models have gained popularity among 

various statistical models. They have also used meteorological variables as inputs to 

estimate streamflows. At the time of this writing, no literature was available on the use of 

RS based indices as inputs to estimate streamflow by employing ANN models. 

 

The literature examined in this chapter shows some of the gaps in estimating rainfall, ET 

and LULC for streamflow estimation. In addition, it is clear that sparse literature is 

available on the application of RS based indices for streamflow estimation. Therefore, 

methodologies are proposed to overcome some of the gaps mentioned in this chapter. 

These methodologies will be discussed in Chapter 3. 
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3 CHAPTER 3: STUDY AREA, DATA AND 

METHODOLOGY 

 

3.1 Introduction 

This chapter presents the rationale for the selection and the consequent description of the 

two study areas, and the data that were used for these study areas. The chapter also 

includes a description of the methodologies that were used in this study. 

 

3.2 Rationale for the selection of study areas 

This study was made up of two case studies. First, suitable study area, which is rich with 

all required ground measured meteorological and streamflow data, was selected to enable 

the later investigation of streamflow estimation with RS data. In particular, the study was 

designed to test the accuracy and suitability of relevant RS data and to test the 

methodology used in estimating streamflow using RS data. The methodologies of the first 

case study were then used in the second case study, which deals with a study area where 

data availability is poor. 

 

3.2.1 The first case study area 

A data rich catchment site in Victoria (Australia) was selected as the first case study area. 

This catchment was selected on basis of several factors. It was considered that the selected 

catchment should be large enough to work with RS data, should have least or no 

streamflow regulation, should have least anthropogenic changes, and should have least 

agricultural use. These information was sought using the available water information from 

Water Resources Overview - Victoria (2009). 

 

Agricultural areas in Victorian catchments are mostly irrigated and regulated with strict 

management practices. This is considered as a significant anthropogenic effect within the 

catchment, and therefore such catchments were not considered in the selection process. 

Information regarding all Victorian catchments, their areas, agricultural and non-

agricultural areas as well as the percentage of non-agricultural areas are presented in Table 

A.1 of Appendix A. 



3-2 
 

Least streamflow regulation, least irrigated agriculture and minimum anthropogenic 

changes were the key selection criteria in the selection process. Based on these criteria, the 

East Gippsland catchment ranked as the most suitable one for the study. This catchment 

spans both New South Wales and Victoria, and consists of several smaller catchments, 

which are in Victoria. In some of these smaller subcatchments, ground measured 

meteorological and streamflow data are scarce (Water Resources Overview - Victoria, 

2009). For this reason, the East Gippsland catchment was eliminated as a study area. As a 

consequence, the next ranked catchment, which is the Thomson catchment, was considered 

as being appropriate to carry out the first case study. At a finer detailed level, because the 

Macalister River of the Thomson catchment is not regulated before Glenmaggie Lake, the 

catchment area upstream of Glenmaggie Lake was selected as the first case study area. 

 

3.2.2 The second case study area 

In order to test the effectiveness of the use of RS data for streamflow estimation, a 

catchment area of considerable economic and human importance as the first case study 

area and with little or no ground monitoring stations, was selected as the second case study 

site. Although this catchment has some ground measured data, it was considered as a 

catchment with no ground measured data.  

 

A sub catchment area located in the important Blue Nile catchment of northeast Africa 

(also known as Abbay in Ethiopia) was selected as the second case study area. In general, 

most catchments in Ethiopia are data scarce, but this selected catchment is one of the 

catchments which had some ground measured data. Still this catchment is data scarce 

compared to the Macalister catchment (Section 3.2.1), but had sufficient data to test the 

accuracy of modelling techniques used in this study. The reasons for selecting the Blue 

Nile catchment are explained below. 

 

• The Blue Nile catchment is a very large catchment encompassing 311,548 km2 of 

surface area (Hydrosult Inc et al., 2006). Referring to the Eastern Nile Technical 

Regional Office (ENTRO, 2006), Haileslassie et al. (2008) reported that the 

catchment has a population of at least 22.9 million. Of the total catchment area, 

approximately 199,000 km2 is laid within Ethiopia. It is the largest and most 

important catchment which has direct impact on the Ethiopian economy. It covers 
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approximately 17% of the Ethiopian territory and 50% of surface water supply. 

This shows how important the Blue Nile catchment is to Ethiopia and its economy 

which mostly depends on agriculture. This is the major reason for selecting this 

catchment for the second case study. 

 

• The Blue Nile catchment is not only important to Ethiopia but also to downstream 

countries as it provides 84% of the Nile River flow during high flows (Setegn, 

2010). Sudan which is a neighbor country, where livelihood is not different to 

Ethiopia also fully depends on the Blue Nile. Likewise, the flow of the Blue Nile is 

a vital water source for Egypt for agriculture and hydropower generation purposes. 

 

• Over 80% of the total population of the Blue Nile catchment lives in the rural 

areas, and are directly dependent on agriculture (Haileslassie et al., 2008). 

Agricultural practices put immense pressure on the water resources in the 

catchment which is characterised by low productivity and high soil erosion. In turn, 

this questions the sustainability of existing agricultural practices. Poverty and 

malnutrition are also major issues in the Blue Nile catchment (Setegn, 2010). The 

alleviation of poverty and malnutrition in the catchment population is only possible 

by shifting current primitive agricultural practices into modern practices. However, 

such changing in practices needs precise information on available water resource 

(such as streamflow), which is not sufficiently collected over the catchment. 

 

• In this region, much of the required ground measured data for water management 

are not collected, and indeed many of the critical sites are not physically accessible, 

even to install gauges and collect data. The non-availability of the ground measured 

data can be estimated through RS data, which is the purpose of the case study. 

 

• The researcher was employed by the International Water Management Institute 

(IWMI) which worked on water resources management issues in the Blue Nile 

catchment in Ethiopia to improve the living conditions of the catchment population 

while achieving sustainability of water resources. Findings of this research will 

enhance the effort made by IWMI to improve the living conditions in the Blue Nile 

catchment.  
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Access to water resource information in Ethiopia is not easy for the research community 

and the public, since these data are considered as ‘classified’, meaning not to the public. 

Therefore, a literature survey of publicly available information (Haileslassie et al., 2008; 

Awulachew et al., 2008) was done to build the initial knowledge on the catchment. The 

Blue Nile catchment within Ethiopia is sub-divided into 16 subcatchments (Yilma and 

Awulachew, 2009), based on its major tributaries. At the outset of the investigation, a 

comprehensive assessment was carried out to collect the available data from existing 

stream gauges, meteorological stations and water regulation facilities together with 

available LULC information and physical features of subcatchments such as area and 

elevation. The collected information for these 16 subcatchments are given in Tables A.2 

and A.3 of Appendix A. 

 

The collected information of these subcatchments was carefully investigated to select a 

suitable subcatchment for this study. Least or no streamflow regulation, appropriate 

catchment size (> 1000 km2) and the availability of key ground measured data were 

considered in this selection process. These key data are streamflow (to be used for 

accuracy assessment) and air temperature (which is needed to estimate potential 

evapotranspiration). After considering the information mentioned above, both the Jemma 

and the Lake Tana subcatchments were selected as potential catchments for the 

investigation. According to the field officers of the Ministry of Water Resources 

(Ethiopia), the Jemma subcatchment is subject to flash floods during the rainy season and 

often many of the installed gauges have been washed away during those flash floods. It 

also appears that the available data are not accurate due to serious issues (absence of 

periodic maintenance and calibration) with the calibration of the streamflow gauges 

(Personal Communication, MoWR, 2011). Furthermore, the ground condition of the 

Jemma subcatchment is extremely rough, and accessibility is difficult because of its terrain 

conditions and poor infrastructure, which means that it would be difficult to collect 

ground-truth data for LULC classification. Therefore, the Jemma option was quickly 

eliminated because of the unfavorable issues involved with stream gauge data, which are 

needed to assess the accuracy of the estimated streamflow data with RS data. 

  

The Lake Tana subcatchment was then considered as the second study area. This 

subcatchment consists of many small catchments. The main catchments of the Lake Tana 

subcatchment are Gilgel Abbay, Ribb and Gumera. Gilgel Abbay is the largest among 



3-5 
 

them: however, its streamflow is regulated to generate electricity, and as such Gilgel 

Abbay was eliminated. The Ribb subcatchment, which is the second largest among them, 

was selected as the second case study area because it was not regulated and it was still 

large enough to work with RS data. 

 

3.3 The Macalister catchment 

The first case study area, which is shown in Figure 3.1, is a subcatchment of the Thomson-

Macalister catchment in Victoria (Australia) (I and II of Figure 3.1). The Thomson-

Macalister catchment (shown as II and III in Figure 3.1) is an important water resource 

catchment for the Melbourne Water Corporation, which is responsible for managing and 

distributing water for industries and domestic purposes in and around Melbourne 

(Melbourne Water, 2011). Whilst the Thomson catchment serves as a buffer to 

Melbourne’s water supply by acting as a ‘drought security storage’ (West Gippsland 

Catchment Management Authority, 2005), the Macalister River does not contribute to 

Melbourne’s water supply. Instead, it is a vital water source for the Macalister Irrigation 

District (MID) and industries surrounding Maffra (Southern Rural Water, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Macalister catchment showing relevant meteorological stations 
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The total Macalister catchment before joining Thomson River is located 250 km east of 

Melbourne (Figure 3.1 - II) and covers an area of 2,250 km2. This river flows into 

Glenmaggie Lake which is located between Heyfield and Licola, and has a capacity of 

190,000 Ml. The lake is managed by the Southern Rural Water Corporation and its water is 

distributed for irrigation, domestic and industrial purposes. Further, the Macalister River 

provides vital environmental flows to Lake Wellington. The upper and middle parts of the 

Macalister catchment are heritage areas reserved for vital flora and fauna within the west 

Gippsland catchment area (West Gippsland Catchment Management Authority, 2005). The 

catchment area above Glenmaggie Lake was selected for this investigation as it did not 

have any imposed flow regulations. The stream gauge of the Macalister River at 

Stringybark Creek, which is a few kilometers upstream of the Glenmaggie Lake was 

selected as the catchment outlet. The catchment area upstream of the Stingybark Creek 

stream gauge was considered for this study as the case study area and this study catchment 

is referred to as the Macalister catchment hereafter in this thesis (Figure 3.1 - IV). 

 

The Macalister catchment originates from Mt. Howitt in the Alpine National Park located 

in the Snowy Mountains (Water Resources Overview - Victoria, 2009). It consists of two 

main tributaries, the Barkly and Wellington Rivers. The Barkly River, which flows from 

the western part of the catchment, joins the Macalister River at about 15 km northwest of 

Licola. The Wellington River which originates from the eastern part of the catchment, 

joins the Macalister River about 1.5 km north of Licola. 

  

The upper part of the catchment is steeply sloped and elevation is over 1,000 m above the 

Australian Height Datum (AHD). This area is covered with riparian forest. The elevation is 

approximately 1,000 m AHD in the middle area of the catchment and approximately 250 

m AHD in the lower part. The elevation profile of the catchment is shown in Figure 3.2. 

The middle and lower parts, especially the area close to the river consists of plain areas, 

which are mostly utilized for grazing and animal husbandry. The areas further away from 

the river are covered with riparian forest. 
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The air temperature of the catchment is highly dependent on seasonality and elevation. The 

mean monthly maximum and minimum temperatures of two different locations-one 

representing the middle part of the catchment (Mt. Tamboritha) and the other representing 

the lower part of the catchment (Licola) are shown in Table 3.1. These two locations have 

nearly a 750 m elevation difference, and as such the lowery situated Licola shows 

consistently higher temperatures than those of Mt. Tamboritha. The highest temperatures 

are recorded during January, where the daily temperature of Licola can reach 40 0C and 

above during some summer days. The lowest temperatures are recorded in July. Even 

though the mean minimum air temperature values are positive, individual daily minimum 

air temperatures can be below 0 0C during winter. This is particularly the case on the high 

altitudes of the catchment during winter months. 

 

 

 

(Elevation is in meters) 

Figure 3.2 Elevation map of the Macalister catchment 

Note: Catchment area is slightly rotated clockwise from its original north direction to obtain a better 

visual of its elevation 
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Table 3.1 Mean monthly maximum and minimum temperatures at Licola and Mt. 

Tamboritha 

  
Maximum temperature 

(
0
C)  

Minimum temperature 

(
0
C)  

Station Licola 
Mt. 

Tamboritha 
Licola 

Mt. 

Tamboritha 

January 28.9 23.3 13.2 10.7 

February 27.5 22 13.1 10.2 

March 25.5 19.7 10.9 8.5 

April 21.1 14.9 8.6 5.9 

May 17.1 11 6.6 3.8 

June 14.3 8 4.5 1.8 

July 13.6 6.6 3.9 0.7 

August 15.2 8.1 4.3 1.2 

September 17.6 10.8 5.6 2.2 

October 20.6 14.5 7.1 4.2 

November 23.5 17.7 9.9 6.7 

December 25.7 19.8 11.4 8.3 

Source: Bureau of Meteorology - Australia 

 

The mean annual potential evapotranspiration (PET) varies with altitude and LULC of the 

catchment, and is shown in Figure 3.3. The upper catchment (north and west) area is rated 

at nearly 1,050 mm of PET annually, while the lower catchment area is rated at 1,150 mm. 

The increase of PET is gradual from north to south. The middle part of the catchment, 

which fundamentally consists of forest, has a rating of nearly 1,100 mm. However, the 

evapotranspiration within the catchment is highly seasonal with high values in summer and 

low values in winter. 

 

 

 

 

 

 

 

 

 



3-9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While rainfall is the major source of precipitation in the catchment area, patches of snow 

can be seen in higher mountains (above 1,400 m AHD) especially in winter, but they melt 

very quickly. The mean annual rainfall reduces in magnitude from north to south as well as 

west to east, and the highest rainfall occurs in the north and northwest area of the 

catchment. This is approximately 1,400 mm or more, with 1,000 mm in the middle areas 

and 600 mm in the lower areas. Figure 3.4 shows the mean monthly rainfall of the 

catchment at Mt. Tamboritha and Licola. As can be seen from this figure, June to 

December is the main rainy period in the lower part of the catchment (Licola); however 

higher rainfall can occur any time during the year in the upper part of the catchment (Mt. 

Tamboritha). Winter (June to August) shows the highest rainfall over the entire catchment, 

while the lowest amount of rain is received during autumn (March to May). 

 

 

 

 

 

Figure 3.3 Spatial distribution of mean annul potential evapotranspiration over the 

Macalister catchment 
(Adopted from IWMI Climate and Water Atlas - 2000) 
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The mean monthly streamflow of the Macalister River at Stringybark Creek is shown in 

Figure 3.5. According to this figure, June to November is the high flow period while the 

remaining period has low flows. September shows the highest average flow, and March 

has the lowest average. Streamflow peak is not the same as the rainfall peak due to the lag 

effect of streamflow to rainfall (see Figures 3.4 and 3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Mean monthly rainfall over the Macalister catchment 
(Source: Bureau of Meteorology - Australia) 

 (Source: Bureau of Meteorology) 

Figure 3.5 Mean monthly streamflow - Macalister River at Stringybark Creek 
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LULC of the catchment is dominated by undisturbed forest (West Gippsland Catchment 

Management Authority, 2005). It has been reported that Mountain Ash, Alpine Ash and 

Snow Gum are the dominant species within the catchment area (Peel et al., 2000), and they 

coexist with various types of bushes and grasses that are present as the under-layer of the 

forest. Landuse is predominantly for grazing, especially in those lands that are located 

close to the rivers and streams. There are no major settlements or industries within the 

catchment. 

 

According to the Australian Soil Classification (Isbell and CSIRO, 1996), Tenosols 

predominate close to the rivers and streams of the catchment, while Kandosols are the 

major order in the remaining areas. In addition to these most common soil orders, 

Ferrosols and Rudosols are also available in some areas. Soil textural data from field 

experiments are not available for the catchment area other than the general values for 

major soil types. Finer levels of soil information (suborder, great group, sub group and 

family) are not available for the catchment area. According to the West Gippsland 

Catchment Management Authority (2008), soil erosion is dominant in most parts of the 

catchment area. Sheet and rill type erosion is common because of the intensive rainfall. 

This is particularly the case in areas where soils are of the Kandosols order because of 

their weak texture. As a result, nearly 1,200 ha of catchment area consists of gullies and 

tunnels. 

 

3.3.1 Data 

All data which were used in this study were for the period of 1 January 2003 to 31 

December 2008. This period was selected because of the availability of RS data at the time 

the study began. All data used in this study can be broadly categorized into two groups: RS 

data and ground measured data. Moderate Resolution Imaging Spectroradiometer 

(MODIS), Tropical Rainfall Measuring Mission (TRMM) and Infrared Global 

Geostationary Composite (IGGC) data were used as RS data. Rainfall, air temperature, 

evapotranspiration and streamflow data were collected as ground measured data. 
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3.3.1.1 Remote sensing data (satellite-based data) 

Different types of RS data were used in this study to estimate different meteorological 

variables and LULC information. All RS data that were used are described in the following 

sub sections. 

 

MODIS data 

Moderate Resolution Imaging Spectroradiometer data are the major set of RS data used in 

this study. MODIS is the predecessor of Advanced Very High Resolution Radiometer 

(AVHRR), and was developed for land, ocean and atmospheric applications at regional 

levels. MODIS provides better sensitivity to vegetation and other ground features because 

of its specific sensor characteristics (Thenkabail et al., 2004). The MODIS sensor acquires 

data on a daily basis in 36 spectral bands (Table 2.4), with variable spatial resolution of 

250–1,000 meters. Bands 1 and 2 have a 250 m spatial resolution, bands 3 to 7 have a 500 

m spatial resolution, and the remaining bands have a 1,000 m spatial resolution. These 36 

MODIS bands are generally designed for atmospheric, land and ocean studies, but the first 

seven bands are considered optimal for land applications (Justice et al., 2002). MODIS 

was used in this study to acquire information on ground features such as vegetation, 

surface emissivity and surface temperature as well as brightness temperature of clouds. 

Both MODIS Terra and Aqua level 1 data were collected for this study from the 

Atmospheric Archive and Distribution System (LAADS) web portal of the National 

Aeronautics and Space Administration (NASA) 

(http://ladsweb.nascom.nasa.gov/data/search.html). However, MODIS data which are on 

the Terra platform were mainly used in this study, while any tilted and absent images from 

Terra were replaced with images from Aqua. 

 

TRMM data 

The Tropical Rainfall Measuring Mission is a unique program jointly designed and 

operated by the NASA and the Japan Aerospace Exploration Agency (JAXA) for the 

purpose of accurately measuring spatial and temporal variation of tropical rainfall. Both 

optical and microwave sensors are mounted in TRMM, and as such it can acquire 

information on the magnitude and spatio-temporal variation of precipitation as well as the 

latent heat over land and ocean (Pierce, 2008). This helps to understand the spatial 

variation of precipitation and its frequency, as well as the intensity of the precipitation. In 
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addition, TRMM is used to understand the vertical distribution of hydrometeors, and the 

convective and monsoonal precipitation categories. TRMM acquires data on a daily basis. 

Based on these data, NASA and JAXA release various rainfall products with different 

spatial and temporal resolutions. 

 

In this study, dataset 3B42 of TRMM Multi Satellite Precipitation Analysis (TMPA) was 

used to generate finer spatial resolution rainfall data. This dataset is 0.250x0.250 degrees in 

spatial resolution with three hour temporal resolution, and covers 500 N to 500 S of the 

globe. The 3B42 dataset is primarily a merged product of the microwave and infrared 

precipitation, which is then calibrated with rain gauge data (Huffman et al., 2007). The 

microwave data are based on Low Earth Orbital (LEO) satellite microwave sensors, and 

infrared data are based on Geosynchronous Earth Orbit (GEO) satellite sensors. The 

microwave sensor data (SSM/I, AMSU-E, AMSU-B and TMI) have higher spatial 

resolution but only cover 80% of the earth’s surface globe in the range of 400 north and 400 

south from the equator per day (Huffman et al., 2007). However, GEO infrared data cover 

the entire globe every 30 minutes with 4 km x 4 km spatial resolution. 

 

In the process of deriving 3B42, instantaneous microwave data are first used to estimate 

precipitation for the nearest three hour period (0000, 0300, …). It is then merged with 

infrared precipitation which is estimated separately. This fills the gaps of microwave 

precipitation estimates and gives seamless data coverage over the globe. Finally, the 

merged data are calibrated with TRMM precipitation radar, Global Precipitation 

Climatology Project (GPCP) monthly rain gauge analysis and Climate Anomaly 

Monitoring System (CAMS) monthly rain gauge analysis data (Huffman et al., 2007) to 

produce 3B42. This dataset (3B42) was downloaded at no cost for the entire duration of 

the study (2003 – 2008) from the Goddard Earth Science and Data Information Centre’s 

web portal (http://mirador.gsfc.nasa.gov/cgi-

bin/mirador/presentNavigation.pl?tree=project&project= TRMM). 

 

IGGC data 

Infrared Global Geostationary Composite (IGGC) data (https://wist.echo.nasa.gov), which 

are available at every 30 minutes intervals, were used to estimate cloud cover in this study, 

which in turn were used to estimate evapotranspiration. IGGC data are a combination of 

several geostationary and polar orbiting satellite data, received from the Geostationary 
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Satellite system (GOES), the Multi-Functional Transport Satellite (MTSAT), and the 

Meteosat and National Oceanic and Atmospheric Administration (NOAA). All of these 

data are from the infrared band (11 µm channel) of the aforementioned satellites. The 

geostationary satellites of GEOS, Meteosat and MTSAT cover the area surrounding the 

equator, while the NOAA satellite covers the Polar Regions (Goodman, 2011). 

 

Landsat Data 

Landsat data were used in this study to classify LULC, as its spatial resolution is sufficient 

to represent the ground heterogeneity of the study areas compared to MODIS data. Landsat 

data are also freely available compared to other competitors such as the Indian Remote 

Sensing (IRS) satellite data and SPOT (Système Pour l’Observation de la Terre) data. 

Landsat 5 (which was launched on 1 March 1984 and decommissioned on 5 June 2013) 

and Landsat 7 (which was launched on 15 April 1999 and is still operational) data can be 

downloaded from the internet. 

 

Landsat 5 is equipped with a Thematic Mapper (TM), and has seven bands. Out of those 

seven bands, six bands which are visible and short wave infrared have 30 m spatial 

resolution, while the longwave infrared (thermal) band has 120 m spatial resolution 

(Lillesand and Kiefer, 1999). The revisit time of the Landsat 5 is 16 days, and Landsat data 

can be downloaded either from the NASA’s Earth Observing System Data and Information 

System (EOSDIS) web port (http://reverb.echo.nasa.gov/reverb/) or from the Global Land 

Cover Facility (GLFC) web port of University of Maryland 

(http://www.landcover.org/index.shtml). 

 

3.3.1.2 Ground-based data 

Meteorological data 

The daily meteorological data (such as rainfall, minimum and maximum air temperatures, 

sunshine hours, wind speed, relative humidity) were acquired from the Bureau of 

Meteorology – Australia (BOM) and the SILO climatic dataset 

(http://www.longpaddock.qld.gov.au/silo/) for the stations within and in close proximity to 

the catchment. These stations are shown in Figure 3.1. These meteorological data are 

quality controlled. In addition, the Penman-Monteith based potential evapotranspiration 

data were obtained from the SILO database. 
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Streamflow data 

The required daily streamflow data for the Macalister catchment were acquired from the 

Victorian Water Resources Data Warehouse’s 

(http://www.vicwaterdata.net/vicwaterdata/home.aspx) web portal. The Victorian Water 

Resources Data Warehouse is a dedicated web portal to disseminate up-to-date water 

information throughout Victoria. There are a number of gauges located along the 

Macalister River. The Macalister River at Stringybark Creek gauge was selected for this 

study since it is the last stream gauge installed before Glenmaggie Lake (Figure 3.1). 

 

Soil data 

The required soil data for the Macalister catchment was obtained from the United Nations 

Food and Agriculture Organization’s (FAO) Digital Soil Map of the World. This database 

was originally published in 1974 as the Soil Map of the World (SMW) in a non-digital 

format but was then converted into a digital map, and later re-projected and converted into 

a grid format under the Global Resources Information Database (GRID) project of the 

United Nations Environmental Program (Levick et al., 2004). Initially, the FAO Digital 

Soil Map had 26 major soil groups containing 106 soil units. However, after adaptation to 

the International Union of Soil Sciences (IUSS) taxonomy in 1998, the FAO digital soil 

map was reclassified with 30 reference soil groups. This map is arranged into 10 major 

continental regions namely Africa, Australasia, Central America, South America, Europe 

and West of the Ural, North America, Central and North East Asia, Near East, Far East, 

and South East Asia. The country boundaries within the continental regions have been 

updated as of 1994. The region of Australasia was used to extract the soil information of 

the Macalister catchment. 

 

3.4 The Ribb catchment 

The Blue Nile River starts from Ethiopian highlands and flows through Sudan before it 

meets the White Nile in Khartoum in South Sudan. The Ribb catchment, which is a 

subcatchment of the Blue Nile catchment, originates from the central highland mountains 

of Ethiopia and is shown in Figure 3.6. This figure shows the Amhara region in Ethiopia 

(Figure 3.6 - I), the Ribb catchment and the locations of Lake Tana in Amhara (Figure 3.6 

- II), and the detailed map of the Ribb catchment (Figure 3.6 - III). In addition, the figure 

also shows meteorological stations within and near proximity to the catchment, stream 
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gauge locations as well as the drainage network. The Ribb River flows in a northwest 

direction until the middle of the catchment and then turns to west and meets Lake Tana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 shows the elevation profile of the Ribb catchment. This figure was generated by 

the 90 m Digital Elevation Model (DEM) and was rotated anti-clock wise from its normal 

north oriented position (Figure 3.6 – III), to give a better view. The elevation of the 

catchment varies between 1,750 m to 4,100 m (Figure 3.7) above the mean sea level 

(MSL). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Ribb catchment showing meteorological stations in and around the 

catchment area 
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The temperature over the catchment changes with seasons as well as with the elevation. 

The mean maximum and minimum temperature at two different meteorological stations 

over the Ribb catchment are shown in Table 3.2. The Debra Tabor station is located at a 

higher elevation than Addis Zemen, and hence its temperature is slightly lower than that of 

Addis Zemen. Table 3.2 shows that first the half of the year (before the monsoon starts 

(June)) is warmer than the second half. The table shows that the maximum temperature 

drops by approximately 3 0C with the start of monsoon. The drop in maximum temperature 

continues until July, then gradually increases and finally the highest maximum temperature 

is recorded in March. The minimum temperature pattern in the catchment area is different 

to the maximum temperature pattern. The lowest minimum temperature is recorded in 

December, while the highest one is recorded in May. 

 

 

Figure 3.7 Elevation map of the Ribb catchment 

(Elevation is in meters) 
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 Table 3.2 Mean monthly maximum and minimum temperatures at two different 

meteorological stations over the Ribb catchment 

  
Maximum temperature 

(
0
C) 

Minimum temperature 

(
0
C) 

Station 
Addis 

Zemen 
Debre Tabor 

Addis 

Zemen 
Debre Tabor 

January 31 22.5 9.8 8 

February 32.8 23.9 10.6 9.4 

March 33.5 24.5 12.8 10.6 

April 32.8 23.7 13.8 11.1 

May 31.8 23.7 14.1 11.3 

June 28.3 21 13.8 10.5 

July 25.5 18.4 13.3 9.8 

August 25.7 18.5 13.6 9.6 

September 27.2 19.6 13 9.3 

October 29.3 20.7 10.6 8.2 

November 30.2 21.4 9.5 7.8 

December 30.3 21.6 8.8 7.6 

 

The mean annual potential evapotranspiration (PET) of the Ribb catchment is shown in 

Figure 3.8. The PET over the lower catchment area (close to Lake Tana) is as high as 

1,800 mm/year, and is around 1,500 mm/year in the upper part of the catchment (i.e. the 

most southern position). PET significantly varies from month to month with the highest 

PET being recorded during May and the lowest one during July. From July, PET gradually 

increases until May of the following year and then drops from May to July. 
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The climate of the Ribb catchment is influenced by the tropical highland monsoon. The 

existence of tropical monsoon makes two clear seasons with regards to rainfall: namely the 

wet and dry seasons. Figure 3.9 shows the mean monthly rainfall of two stations in the 

Ribb catchment. These two stations are considered to be representative stations of the Ribb 

catchment in terms of rainfall. According to this figure, June to September is the wet 

season, and 75 to 90% of annual rainfall is received during this period when monsoon 

prevails (based on Addis Zemen and Debra Tabor stations – Figure 3.9). The mean annual 

rainfall over the catchment is around 1,300 mm. The highest precipitation is received in 

the month of July as a result of monsoonal activation, but rainfall of August is also close to 

July. The remaining period (October to May) is predominantly dry, with the driest months 

being December and January. The rainfall of the catchment varies with the elevation, 

showing approximately 1,000 mm of annual rainfall near the Lake Tana area (lower 

catchment) and 1,500 mm in the mountain areas. 

 

 

 

 

 

 (Adopted from IWMI Climate and Water Atlas - 2000) 

Figure 3.8 Annual potential evapotranspiration over the Ribb catchment 
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Figure 3.10 shows the mean monthly streamflow in the Ribb River near the catchment 

outlet. Streamflow is highly seasonal in the Ribb catchment with its monsoonal rainfall 

pattern. July to November is the period having high flows and more than 90% of the flow 

occurs during that period. The rest of the period has low flows. River flow is highest in 

August, whereas precipitation is highest in July. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Mean monthly rainfall over the Ribb catchment  

(Addis Zemen and Debra Tabor) 

Figure 3.10 Mean monthly streamflow in the Ribb River near Lake Tana 

(Based on the period of 1959 to 1992 – source: MoWR Ethiopia) 
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The landuse of the catchment is predominantly for agricultural crop lands, mostly in the 

lower parts of the catchment. The middle part of the catchment, which is partially 

mountainous, consists of moderate cultivation and Afro-alpine forest. The upper part of the 

catchment is mountainous, and the steep rocky soil there has hindered cultivation. 

However, this part of the catchment is covered with shrubs and Afro-alpine forest. The 

agricultural production system in the Ribb River catchment is a crop-livestock mixed 

system, and the dominant crops are barley (Hordeum vulgare), wheat (Triticum durum and 

Triticum aestivum), teff (Eragrostis tef), millet (Eleusine coracana), noug (Guizotia 

abyssinica), maize (Zea mays), rice (Oryza sativa), chickpea (Cicer arietinum) and rough 

pea (Lathyrus hirsutus). The livestock in the catchment are cattle and goat. Soil erosion is 

the biggest challenge in the Ribb catchment due to intense precipitation, poor agronomical 

practices and extensive livestock (Mwendera et al., 1997; Haileslassie et al., 2008). As 

such, the most fertile top soil in the catchment erodes to Lake Tana. 

 

The major soil types in the Ribb catchment are shown in Figure 3.11. Four different soil 

types i.e. Eutric Leptisols, Chromic Luvisols, Eutric Fluvisols and Eutric Nitisols can be 

found in the catchment. Out of these, Eutric Leptisols and Chromic Luvisols cover 

approximately 74%, Eutric Fluvisols covers approximately 25%, and Eutric Nitisols 

covers the remaining area of the catchment. Eutric Fluvisols can also be found in the lower 

part of the catchment, which is mostly used for cultivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.11 Major soil types in the Ribb catchment 
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3.4.1 Data  

Similar to Section 3.3.1, all data that were used in the Ribb catchment to generate 

streamflows can be broadly categorized into two groups; remote sensing data and ground 

measured data. The study period was the same as for the first case study period (2003 – 

2008). 

 
3.4.1.1 Remote sensing data (satellite-based data) 

Similar to the Macalister catchment, MODIS, TRMM and IGCC data which were 

described in Section 3.3.1.1 were used in the Ribb catchment study. Landsat 5 TM data of 

cloud free and within the cultivation season (to acquire better representation of all possible 

LULC classes) were not available in the Ribb catchment, especially for the study period. 

Therefore, Landsat 7 ETM+ data which is Scan Line Corrector (SLC) off, but gaps filled 

(which was done by the University of Maryland – USA) was used in the LULC 

classification. 

 

Landsat 7 is equipped with the Enhanced Thematic Mapper Plus (ETM+). This is an 

advanced sensor to TM, and has eight bands. Out of those eight bands, seven bands which 

are visible and short wave infrared have 30 m spatial resolution, while the longwave 

infrared (thermal) band has 60 m spatial resolution. The remaining panchromatic band has 

15 m spatial resolution. Even though ETM+ data are ideal for catchment level applications, 

its SLC malfunctioned in May 2003, and as such Landsat 7 ETM+ data were unable to 

scan 100% of the swath areas. As a result of that, the total catchment area was not covered. 

This deficiency was overcome filling those gaps using the nearest day Landsat ETM+ 

image and the gap filled data can be downloaded either from the NASA’s Earth Observing 

System Data and Information System (EOSDIS) web port 

(http://reverb.echo.nasa.gov/reverb/) or from the Global Land Cover Facility (GLFC) web 

port of the University of Maryland (http://www.landcover.org/index.shtml). Similar to 

Landsat 5, the revisit time of the Landsat 7 is 16 days. 

 

3.4.1.2 Ground-based data 

Similar variables used in the Macalister catchment to estimate streamflow (Section 3.3.1.2) 

were used for the investigation of the Ribb catchment. 
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Meteorological data 

The required daily meteorological data for the Ribb catchment were acquired from the 

National Meteorology Agency (NMA) – Ethiopia for the stations within and in close 

proximity to the catchment. Those stations are shown in Figure 3.6. Rainfall, minimum 

and maximum temperatures and sunshine hours of the selected meteorological stations 

were collected from NMA. Minimum and maximum temperatures and sunshine hours 

were collected to estimate potential evapotranspiration. However, these data were not 

quality controlled. Therefore, the data were checked for their quality. It was found that 

there were a number of missing records within the study period, and it was not possible to 

fill these data gaps with reasonable accuracy. 

 

One procedural difference between the Ribb catchment and the Macalister catchment is 

that the Penman-Monteith based evapotranspiration was estimated in the case of the Ribb 

catchment following  Allen et al. (1998). 

 

Streamflow data 

There are no major water diversions or regulations along the river except for the 

intermittent pumping of water for agricultural purposes. The most downstream gauge, 

which is located just above Lake Tana was selected, for this study as the catchment outlet 

(Figure 3.6). The required daily streamflow data at this gauging station were acquired from 

the Ministry of Water Resources (MoWR) in Ethiopia. 

 

Soil Data 

The required soil data for the Ribb catchment was obtained from the FAO Digital Soil 

Map of the World, as was the case for the Macalister catchment. 

 

3.5 Estimation of input variables using remote sensing data for 

catchment process modelling  

In this section, the methods and techniques that were used to estimate rainfall and 

evapotranspiration, and classify LULC from RS data are presented. In estimating these 

input variables, RS data were predominantly used. However, a few ground measured 

meteorological data were also used. 
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3.5.1 Rainfall estimation 

Rainfall is considered as a form of precipitation consisting of liquid water droplets having 

diameters between 0.5 and 5.0 mm (AMS Glossary, 1999). Rainfall is the most significant 

variable which determines the amount of streamflow at a given time (Gourley and Vieux, 

2005; Su et al., 2008). Therefore, the accurate data of rainfall in a catchment (amount and 

spatial distribution) is an essential component in streamflow estimation, and the lack of 

rainfall data significantly hinders the estimation accuracy. Since the networks of 

meteorological stations (and the number of stations within networks) are shrinking, and 

because of the difficulties involved in obtaining ground measured meteorological data (as 

outlined in Chapters 1 and 2), alternatives to measuring rainfall data needed to be 

considered. The estimation of rainfall data using RS data (Arkin, 1979; Grimes et al., 

1999; Grimes et al., 2003; Grimes and Diop, 2003; Coppola et al., 2006; Bocchiola, 2007; 

Huffman et al., 2007) is one of these alternatives. According to Kuligowski (2002), the RS 

based rainfall estimation methods can be categorized into four groups, based on the 

approach used; 

 

1. The use of precipitation index and subsequent adjustment (Arkin, 1979; Arkin 

and Meisner, 1987),  

2. Probability matching (Atlas et al., 1990), 

3. Regression modelling (Grimes et al., 1999; Grimes et al., 2003), 

4. A combination of infrared, microwave and field data (Huffman et al., 2007). 

 

The first three approaches use visible and/or infrared data to derive rain rates (and then the 

amount of rainfall). These rain rates are normally estimated from cloud-top properties (i.e. 

brightness temperature, temperature gradient, etc.). The fourth approach uses microwave 

observations, and visible and infrared data together to provide rain rates (Huffman et al., 

2007). The use of microwave observations in rainfall estimation provides better rain rates 

in their combined approach than in the other approaches (Kuligowski, 2002). Accordingly, 

Topical Rainfall Measuring Mission (TRMM) visible, infrared, microwave and radar data 

are combined with data from numerous other meteorological satellites such as GEOS and 

MTSAT to generate TRMM Multisatellite Precipitation Analysis (TMPA) data (Huffman 

et al., 2007). 
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Under the TRMM program, several rainfall products are released free of charge to the user 

community. These rainfall data products vary in their spatial and temporal resolutions. A 

TMPA data product called 3B42 is used in this study as input data to estimate rainfall. The 

TMPA 3B42 data cover 500 north to 500 south of the globe. These data are characterised 

by higher temporal resolution (3 hour), but lower spatial resolution (0.250x0.250 degrees - 

approximately 625 km2 on ground). The low spatial resolution of TMPA 3B42 adversely 

affects streamflow estimation especially when TMPA 3B42 is used for small and medium 

scale catchments, since TMPA 3B42 is unable to represent the spatial variability of rainfall 

over these small and medium scale catchments (Collischonn et al., 2008). 

 

The SWAT hydrological software modelling tool was used in this study for streamflow 

estimation. SWAT works in several subcatchments and their corresponding hydrological 

response to estimate streamflow. These hydrological response units are significantly 

smaller in size than one pixel (625 km2) of TMPA data. As a result of this low spatial 

resolution, TMPA data do not represent the spatial variability of rainfall within the small 

subcatchments of study areas. This situation is almost similar to the absence of ground 

based meteorological stations and ground measured data for streamflow estimation. 

However, MODIS has radiance data at a spatial resolution of 1 km2. Therefore, they can be 

used to estimate rainfall with better spatial resolution. Furthermore, MODIS data are freely 

available to the user community, and cover the entire globe on a daily basis (Justice et al., 

2002; Thenkabail et al., 2004). 

 

In this study, a methodology is proposed to estimate high spatial resolution (1 km2) but 

daily rainfall data using MODIS radiance and TRMM 3B42 (hereafter TRMM rainfall in 

this thesis) data. This methodology is summarized below and is described in detail later on 

this section. 

 

• The first step is to convert hourly rain rates of TRMM rainfall data into daily 

values. 

• The second step is to separate rain clouds and no-rain clouds from MODIS cloudy 

images (Section 3.5.1.1). 

• The third step is to define the MODIS brightness temperature (BT) threshold to 

calculate BT difference (Section 3.5.1.2). 
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• The final step is to estimate high spatial resolution (1 km2) daily rainfall data using 

daily brightness temperature difference and daily TRMM rainfall data by 

employing a gamma function (Section 3.5.1.3). 

 

TRMM 3B42 data are available for every three hour period with hourly rain rate. These 

rain rates were used to calculate daily rain amount and this step does not need further 

explanation. 

 

3.5.1.1 Rain no-rain cloud separation 

The separation of rain clouds from no-rain clouds from all cloudy images is critically 

important, since all clouds do not yield rain at all times. In particular, thin clouds, such as 

cirrus which are often categorized as cloudy RS images, do not produce any rain. 

Therefore, in order to get a higher level of accuracy, such no-rain clouds should not be 

considered in rainfall estimation. The brightness temperature of MODIS was chosen as an 

input to identify the no-rain clouds in this study. This is in line with the studies undertaken 

by Fritsz and Lazsol (1993), Tjemkes et al. (1997) and Kuligowski (2002), who introduced 

several methods for rain/no-rain cloud separation using BT. The band width used in these 

previous studies were also considered in this study and they are; (i) 6.53 – 6.89 µm (band 

27 of MODIS), (ii) 10.78 – 11.28 µm (band 31 of MODIS) and (iii) 11.77 – 12.27 µm 

(band 32 of MODIS). 

 

The required BT was calculated using MODIS radiance data (band 27, 31 and 32) as 

inputs in Plank’s formula, which is given as (Oguro et al., 2011): 
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where Li is the wavelength of band i, h is the Planck's constant, c is the speed of light, k is 

the Boltzmann's constant and Ri is radiance value of band i. Band i refers to band 27, 31 

and 32 of the MODIS sensor. 
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The use of constant BT to differentiate rain clouds from no-rain clouds is not always 

appropriate since the vertical temperature profile changes over time (Kuligowski, 2002). 

This difficulty has been overcome by using the BT difference of thermal bands (Ba and 

Gruber, 2001a; Kuligowski, 2002). In line with those studies, differences of (i) band 27 

and band 31, and (ii) band 31 and band 32 were used to differentiate rain clouds from no-

rain clouds in this study. The reasons for using these BT differences for the separation of 

rain and no-rain clouds are given below. 

 

According to Fritsz and Lazsol (1993) and Tjemkes et al. (1997), the brightness 

temperature of band 27 (BT27) is higher than the brightness temperature of band 31 

(BT31), when a high amount of water vapour is present on top of the cloud. Based on the 

above finding, Kuligowski (2002) stated that the bigger the difference between BT27 and 

BT31, the greater is the probability of having rain clouds. 

 

The difference in brightness temperature between band 31 and band 32 (BT32) is larger 

for thin clouds than for thicker clouds (Inoue, 1987). This is due to the emissivity 

differences between band 31 and band 32 which produce minimal differences in brightness 

temperature for thick clouds (whose emissivity is effectively uniform) but have higher 

differences for thin clouds. Therefore, Kuligowski (2002) deduced that a higher difference 

between BT31 and BT32 suggests a higher probability of having no-rain clouds. 

 

Threshold levels for screening rain clouds from no-rain clouds using the above differences 

have also been highlighted by Kuligowski (2002). According to this study, the spatial 

median value of BT differences (of both BT27 - BT31 and BT31 - BT32) were used to 

separate rainy clouds from no-rainy clouds. The same approach was used in this study as 

thresholds to separate rain clouds from no-rain clouds. Clouds with BT difference values 

of bands 27 and 31 which are higher than or equal to spatial median values were 

considered as having rainy clouds. Similarly, clouds with BT difference values of bands 31 

and 32 which are less than or equal to spatial median values were considered as rainy 

clouds. 
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3.5.1.2 Brightness temperature threshold 

The brightness Temperature of rain clouds is considered as a key cloud-top property that is 

used to estimate rainfall data in this study. Del Beato (1981) observed that the drop in 

cloud-top temperature (which is slightly different from brightness temperature that was 

used in this study) from 283 K to 218 K has increased the probability of precipitation over 

Victoria in Australia. The study of Del Beato (1981) is based on several rainfall events, 

and 80% of the considered events have yielded rain when the cloud-top temperature 

dropped from 263 K to 218 K. The findings of Del Beato (1981), that is, low cloud-top 

temperature results in higher probability of rainfall, could be partially explained by further 

analysis of the rainfall process as described below. 

 

The occurrence of rain from a cloud depends on several factors, and is mostly determined 

by the supersaturation process. Supersaturation is a condition that exists in a given portion 

of the atmosphere when the relative humidity exceeds 100% (AMS Glossary, 1999). The 

supersaturation process helps the formation of cloud particles. It is driven by ambient 

temperature, which affects the size of the rain drops. Through a laboratory experiment, 

Madonna et al. (1961) observed that the supersaturation process is highly dependent on 

temperature. They found that temperatures above 238 K result in super-cooled water, but 

those below 238 K form ice crystals. Later, this finding was confirmed by Rosinski and 

Lecinski (1983) who found that the lower the temperatures the higher the supersaturation 

percentage. Xinping et al. (2000) found that the lower the temperature, the higher the 

proportion of ice crystals in the cloud which can in turn increase the probability of having 

rainfall. 

 

The Global Precipitation Index (Arkin and Meisner, 1987) approach is an earlier approach 

of estimating precipitation, and is based on a fixed rain rate for clouds when their cloud-

top temperature is less than 235 K. According to Rosenfeld (2007), most clouds which 

have cloud-top temperature less than 235 K are anvils of cumulonimbus clouds. The above 

studies show that the lower brightness temperature of these clouds the higher the 

probability of rain. This is because lower BT gives higher BT difference from the 

threshold (such as 235 K) and thus higher rainfall probability. 
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The brightness temperature over catchment areas varies accordance latitude and time of 

the year rather than physical factors. Therefore, the threshold of 235 K for rainfall 

estimation may not be applicable in all geographical areas. As such, BT of rain clouds was 

tested with TRMM rainfall data to select the best threshold from several options. The mean 

seasonal BT, mean monthly BT and 235 K over the catchments were considered as 

thresholds. The rain clouds of BT less than these thresholds were considered as ‘rainy’ and 

the other clouds as ‘no-rainy’ (Arkin, 1979; Del Beato, 1981; Arkin and Meisner, 1987; 

Huffman et al., 1997). 

 

The performances of all above mentioned thresholds were assessed separately with TRMM 

rain data to find out the best threshold. This assessment was done using the following 

indices. They are; (i) the Heidke skill score (HSS), (ii) the Probability of Detection (POD), 

(iii) the False Alarm Ratio (FAR), and (iv) the bias. 

 

HSS measures the optimal fit between BT below the threshold and TRMM rainfall; POD 

determines the fraction of MODIS pixels that were correctly classified as rainy; FAR 

represents the incorrect number of pixels classified as rainy when they are no-rainy; and 

the bias represents the ratio of the correctly estimated number of pixels in MODIS as rainy 

compared to total rainy pixels in TRMM. Therefore, all the pixels less than the threshold 

were classified as rainy and others as no-rainy for this assessment. This classification 

together was crossed with TRMM rain and no-rain to produce four combinations that were 

used to calculate the above mentioned indices. 

Table 3.3 shows the number of pixels in all four combinations of both MODIS BT and 

TRMM producing rain and no-rain. In the table, c1 represents the number of pixels when 

both MODIS and TRMM have no rain, c2 represents the number of pixels when MODIS 

provides rain but TRMM has no-rain, c3 represents the number of pixels when MODIS has 

no-rain but TRMM has rain, and c4 represents the number of pixels when both MODIS and 

TRMM give rain. 

 

Table 3.3 Contingency matrix of the rain/no-rain combinations of MODIS BT and TRMM 

 TRMM no-rain TRMM rain 

MODIS BT no-rain c1 c3 

MODIS BT rain c2 c4 
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HSS is calculated as follows (Kuligowski, 2002), 

 

��� = 2��� × �� − �! × �"	
��� + �!	 × ��! + ��	 + ��" + ��	 × ��� + �"																																																 �3.2	 

 

POD, FAR and bias are calculated using Equations (3.3), (3.4) and (3.5) respectively 

(Kuligowski, 2002). 
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+,-. = ��! + ��	��" + ��																																																																																																																			�3.5	 
 

The best performing threshold was selected based on the above indices. The results are 

discussed in Chapters 4 and 5 for the first and second case study catchments respectively. 

Then the BT difference from the best threshold was used to estimate rainfall in this study 

(Section 3.5.1.3). 

 

3.5.1.3 Rainfall estimation using gamma function 

The BT difference from the threshold (i.e. the difference between the threshold and BT) 

was then converted to rainfall. This was done by modelling both BT difference and 

TRMM rainfall through gamma distribution function. The gamma distribution function 

was used in this study since climatological variables with zeroes are fitted well with a 

gamma distribution (Thom, 1966). This was the case for the BT difference and rainfall. 

The gamma probability density function as applicable to this study with respect to BT 

difference is given below: 
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where x is the BT difference from its threshold (brightness temperature higher than and 

equal to the threshold are considered as 0), α is the shape parameter (and α > 0), β is the 

scale parameter (and β >0), )(αΓ is the ordinary gamma function of α, and e is the natural 

logarithm (2.71828). 

 

The gamma function can be written as: 
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The following equations were used to determine optimum α and β (Thom, 1966): 
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where z is the number of observations. 

 

The cumulative probability can be written as: 
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Equation (3.11) is valid only when x > 0. When x is equal to 0 in Equation (3.11), the 

equation becomes an incomplete gamma function, since gamma function is undefined at x 

= 0. Thus the cumulative probability (H(x)) can be written as: 

 

	x�G	p1�p	x�H ×−+=          (3.12) 
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where, p is the fraction of x = 0 to the total number of observations: 

z
tp =                      (3.13) 

 

where, t is the total number of x = 0 and z is the total number of observations. 

 

This calculation process produced the cumulative probability function of BT difference for 

each pixel (which is of 1 km2 spatial resolution, but in daily temporal resolution) in the 

study area. 

 

Equations 3.6 to 3.13 were also used to calculate the cumulative distribution of the daily 

TRMM rainfall at each pixel in the study area. As mentioned in Section 3.5.1, TRMM 

rainfall data are available as hourly values for every three hours. Therefore, these hourly 

rates were converted into daily rainfall amount before calculating the cumulative 

probability. 

 

The cumulative probability distributions of MODIS BT difference data (with high spatial 

resolution – 1 km2, but low temporal resolution - daily) and TRMM rainfall data (with low 

spatial resolution – 625 km2 but high temporal resolution) were used to estimate higher 

spatial resolution (i.e. 1 km2) daily rainfall data (which are considered to be high 

resolution). The process is explained in Figure 3.12. 

 

In this process, it was assumed that BT difference is responsible for rainfall, and that 

higher BT difference results in higher rainfall as explained earlier. This was considered 

through matching the probability of MODIS BT difference and the probability of TRMM 

rainfall. This assumption was justified from the findings of Del Beato (1981): that the 

lower the cloud-top temperature the higher the probability of rainfall. 

 

Figure 3.12 has four separate plots. Plot I shows the daily time series of MODIS BT 

difference, while plot II contains its cumulative probability. Plot IV shows the TRMM 

daily rainfall time series while plot III contains its cumulative probability. Plot IV also 

contains the rainfall estimates at high spatial resolution (1km2) derived from combining 

BT difference data and TRMM rainfall data. Note that plots III and IV are for pixels of 

625 km2, while plots I and II are for 1 km2 pixels. Hence, plots I and II are used 625 times 
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to cover the pixels of plots III and IV. The estimation process is explained below. The 

arrows between the plots explain the process involved in converting MODIS BT difference 

data into high spatial resolution daily rainfall data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rainfall estimation starts with calculating cumulative probability of BT difference and 

TRMM rainfall separately for the study area. Then, for a particular BT difference of a day 

in plot I, the corresponding cumulative probability is selected from plot II (i.e. cumulative 

probability of BT difference). Assuming that the cumulative probability of MODIS BT 

difference is equal to the cumulative probability of TRMM rainfall, the same cumulative 

probability as BT difference is assigned for rainfall from plot III. This rainfall is 

considered as the estimated rainfall on that day in plot IV. This process is continued for all 

days for entire pixels in the BT time series. 

 

I II 

III 

IV 

Figure 3.12 Rainfall estimation procedure used in this study 
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3.5.2 Estimation of potential evapotranspiration  

Potential Evapotranspiration (PET) is a vital input in streamflow estimation. Recently, RS 

data have been widely used to estimate PET as well as actual evapotranspiration (AET) 

(Bastiaanssen et al., 1998a; Camargo et al., 1999; Zhou et al., 2006; Guerschman et al., 

2009; Gamage et al., 2011b). Bastiaanssen et al. (1998a) and Su (2002) used RS data in the 

surface energy balance method to estimate AET by respectively using their Surface Energy 

Balance Algorithm for Land (SEBAL) and Surface Energy Balance System (SEBS). The 

surface energy balance method is popular in estimating evapotranspiration due to its low 

dependency on ground measured data and better representation of evapotranspiration to 

ground heterogeneity. The surface energy balance method was partly modified and was 

then used in this study to estimate daily PET. 

 

In the surface energy balance method, the actual evapotranspiration is estimated using both 

net energy available to evapotranspiration (i.e. net radiation) and sensible heat flux. Net 

radiation serves as the source of power to drive evapotranspiration, whereas sensible heat 

flux determines the magnitude of the actual evapotranspiration through its evaporative 

fraction. Accordingly, actual evapotranspiration (AET24) on any given day can be 

estimated under SEBAL and SEBS (Bastiaanssen et al., 1998a; Su, 2002) using Equation 

(3.14): 

 

)7�!� =
86400 × 10"
: ×	;< × �=!� × Λ																																																																															�3.14	 

 

where Rn24 is the daily averaged net radiation (Wm-2), λ is the latent heat of vaporization 

(Jkg-1), ρw is the density of water (kgm-3) and Λ is the evaporative fraction. 

 

In SEBAL and SEBS, the evaporative fraction is calculated as: 

 

Λ = :7
�= − G																																																																																																																									�3.15	 

 

where Rn is the instantaneous net radiation (Wm-2), G is the soil heat flux (Wm-2) and Eλ

is the latent heat flux (Wm-2). According to Bastiaanssen et al. (1998a), the evaporative 
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fraction is 0 in dry areas where there is no water for evapotranspiration. On the other hand, 

the evaporative fraction equal to 1 in wet areas where there is sufficient water available for 

evapotranspiration to take place at its maximum rate (i.e. potential evapotranspiration 

rate). Hence Equation (3.14) can be modified to estimate the daily potential 

evapotranspiration PET24 (mmday-1) as: 

 

%7�!� =
86400 × 10"
: ×	;< × �=!�																																																																																							�3.16	 

 

As can be seen from Equation (3.16), the estimation of PET24 requires the calculation of 

net average radiation (Rn24). Rn24 is calculated differently in this study for non-cloudy days 

and cloudy days. 

 

3.5.2.1 Estimation of Rn24 for non-cloudy days 

Rn24 for non-cloudy days is calculated using Equation (3.17) below (Bastiaanssen et al., 

1998a; Su, 2002): 

 

�=!� = �1 − ∅	 × @ABC ↓× EF × GABC ↓ −GABC ↑ 																																																					 �3.17	 
 

where ↓dayK
 
is the incoming short wave radiation (near the vegetation surface) (Wm-2), 

↓dayL is the incoming long wave radiation (near the vegetation surface) (Wm-2), ↑dayL
 
is 

the outgoing long wave radiation (near the vegetation surface) (Wm-2), ∅ is the surface 

albedo, and 
sε  is the surface emissivity. In Equation (3.17), the �1 − ∅	 × @ABC 

component represents the net short wave radiation, while the remaining components 

represent the net long wave radiation. PET24 can be estimated using Equation (3.16) with 

Rn24 estimated from Equation (3.17) for non-cloudy days. 

 

Liang et al. (2002) explained the difficulties involved with the estimation of surface albedo 

using traditional techniques. Pyranometers or albedometer readings were used to calculate 

surface albedo under these methods. However, they are site specific, and those readings 

are not widely available. Therefore, Liang (2001) proposed, and Liang et al. (2002) tested 

a surface albedo estimation formula with MODIS data using a narrow band to broad band 
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conversion technique. Using (Equation 3.18): 

 

∅ = 0.16:� +	0.291:! + 0.243:" + 0.116:� + 0.112:K +	0.081:L
+ 0.0015																																																																																																							�3.18	 

 

where, :�, :!, :", :�, :K and :L are the reflectance values of band 1, 2, 3, 4, 5 and 7 of 

MODIS data.  

 

The incoming short wave radiation, ↓dayK  of Equation (3.17) is calculated using 

Bastiaanssen et al. (1998a): 

 

 @ABC ↓= @MNO × P																																																																																																						�3.19	 
 

where Kexo is the extraterrestrial radiation (Wm-2), and τ  is the atmospheric transmissivity. 

Kexo can be calculated from Iqbal (1983): 

 

 @MNO = 1367 × Q� × RS.T																																																																																						�3.20	 
 

where e0 is the eccentricity correction factor and θ is the solar zenith angle in radian. 

 

The incoming long wave radiation ( ↓dayL ) component of Equation (3.17) can be calculated 

using Equation (3.21) below (Bastiaanssen et al., 1998a; Su, 2002): 

 

 GABC ↓= U × EB × �B�																																																																																																	�3.21	 
 

where σ  is the Stephan-Boltzmann constant (5.67x10-8 Wm-2K-4), aε is the emissivity of 

the air as defined by Campbell and Norman (1998) and given by 
26 )(102.9 aa T××= −ε , 

and aT  is the atmospheric temperature (K) at the reference height. Ta is obtained from 

ground measured data. 

 

The outgoing long wave radiation ( ↑dayL ) component of Equation (3.17) can be calculated 
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using Equation (3.22) below (Bastiaanssen et al., 1998a; Su, 2002): 

 

 GABC ↑= U × EF × �F�																																																																																																	�3.22	 
 

where sε is the surface emissivity (unit less) and sT is the surface temperature (K). Surface 

emissivity and surface temperature are calculated in this study using RS based vegetation 

indices and radiance data respectively. 

 

The surface emissivity can be calculated using Equation (3.23) (Bastiaanssen et al., 

1998a): 

 

 
EF = 1.009 + 0.047 × ln��'��																																																																												�3.23	 

 

where NDVI is the Normalized Difference Vegetation Index. NDVI is calculated using red 

and near infrared reflectance of satellite images (Tucker, 1979): 

 

 �'�� = XYZ[\X[]^
XYZ[_X[]^ 																																																																																																				�3.24	 

 

where NIRλ  is the reflectance of near infrared band and 
REDλ  is the reflectance of red band. 

Theoretically, NDVI values vary from -1 to +1. NDVI values which are less than 0 

represent water bodies or clouds, while NDVI values within the range from 0 to 1 represent 

various LULC classes such as bare soil, sparse vegetation and dense vegetation. 

 

The surface temperature (Ts) in Equation (3.22) can be calculated using MODIS radiance 

data as: 

 

 �F = `abc
def.gh 																																																																																																																						�3.25	 

 

where Trad is the radiant temperature of the surface, which can be calculated using: 

 

   �iBA = j�0.5 × k%l + 3.1	 × ��"� + �−0.51 × k%l − 2.1	 × ��"! +
�3.1 − 5.5 × k%l	m + 0.00627 × �																																																																																			�3.26		 
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where zPv is the NDVI fraction (unit less), BT31 is the brightness temperature of band 31 in 

MODIS (K), BT32 is the brightness temperature of band 32 in MODIS (K) and H is the 

altitude (m). The altitude value (H) can be obtained from the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) over the study area. 

 

zPv of a day can be calculated from NDVI using Equation (3.27) (Valor and Caselles, 

1996): 

 

 
k%l = �no�\�no�pqr

�no�pbs\�no�pqr 																																																																																												�3.27	 
 

where NDVImin and NDVImax are the minimum and maximum NDVI values of the day 

respectively. 

 

The brightness temperature of bands 31 and 32 (BT31 and BT32) of MODIS can be 

calculated using the Planck’s Equation (i.e. Equation (3.1)). 

 

3.5.2.2 Estimation of Rn24 for cloudy days 

Although the ET process is driven by net radiation, cloud cover reduces the amount of 

energy reaching the land surface, thereby reducing ET. Young and Sabburg (2006) argued 

that cloud cover reduces solar radiation (both short and long wave) entering the 

atmosphere, resulting in a reduction in air temperature and an increase in humidity, 

irrespective of the time of the day. Reduced air temperature and increased humidity have a 

direct impact on net long wave radiation. 

 

The Rn24 of a cloudy day is calculated in this study using the Slob equation, which is given 

as Equation (3.28) (De Bruin and Stricker, 2000). This equation is similar to Equation 

(3.17) which was used to estimate Rn24 for non-cloudy days. Since the Slob equation yields 

a higher accuracy than other methods such as FAO (Smith et al., 1991; Allen et al., 1998) 

and KNMI (De Bruin, 1987) in estimating net radiation (De Bruin and Stricker, 2000), it 

was used in this study. 

 

 �=!� = �1 − ∅	 × @ABC ↓ − ���×tcbu↓
tvsw 																																																																�3.28	 
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where ∅ is the surface albedo, and @MNO 
is the extraterrestrial radiation (estimated using 

Equation (3.20)). ↓dayK  for a cloudy day is generally computed using the pyranometer 

readings, which give an indication of cloud cover. If pyranometer readings are not 

available, as is the case in many areas, the cloud cover can be estimated from RS data. 

Infrared Global Geostationary Composite (IGGC) images were used in this study to 

estimate cloud cover with a cloud mask (based on brightness temperature). The duration of 

cloud cover is calculated from daytime images (every 30 minutes) for each cloudy day. 

This duration is subtracted from the maximum duration of sunshine hours per day (N), to 

estimate the actual duration of sunshine hours per day (n). Then, ↓dayK  for a cloudy day 

is calculated using Equation (3.29) (Allen et al., 1998): 

 

@ABC ↓= x- + +
y
�z × @MNO																																																																																								�3.29	 

 

where a and b are constants and are respectively equal to 0.25 and 0.5. 

 

The maximum duration of sunshine hours per day (N) is calculated using Equation (3.30) 

(Allen et al., 1998): 

 

� = 24{ × |F 																																																																																																																�3.30	 

where sω  is the sunset hour angle. 

 

Albedo �∅	 can be calculated only for non-cloudy days using Equation (3.20). The 

estimation of surface albedo over cloudy days is not possible with reflectance (optical) 

data since these data do not penetrate through clouds. Assuming that the change of albedo 

is negligible during a short time (the period of consecutive cloudy days), the nearest non-

cloudy day surface albedo is used as surface albedo of the cloudy day to estimate Rn24. 

 

3.5.3 Classification of landuse/landcover 

Landuse/landcover (LULC) is a key factor that affects evapotranspiration, soil moisture, 

runoff and groundwater recharge in a catchment (Wegehenkel et al., 2006). RS data have 

been widely used to produce thematic maps of LULC in field, catchment, regional, country 
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and global levels (De Fries et al., 1995; Bastiaanssen, 1998; Oetter et al., 2000; Thenkabail 

et al., 2005; Gamage et al., 2007). The process of making such thematic maps using RS 

data is called image classification. Two main approaches have been used for image 

classification. They are: unsupervised classification and supervised classification 

(Lillesand and Kiefer, 1999). The supervised classification approach was used in this study 

since it has many advantages over the unsupervised classification approach, as explained 

in Section 2.4.1.4. 

 

To apply supervised classification on an image, one should have knowledge of existing 

LULCs over the catchment area. The literature provides ample information on existing 

LULCs and Table 3.4 shows a broad summary of such LULCs (Lillesand and Kiefer, 

1999). Level-I in Table 3.4 describes the broader LULC classes. The initial categorization 

of available LULC in both catchments (Chapters 4 and 5) shows that all LULC classes in 

both catchments represent the six classes in Table 3.4. This is contrary to Lillesand and 

Kiefer (1999) who tabled nine such classes in their original table. Each of these (Level-I) 

classes can be further divided into sub-classes. This division is important hydrologically 

since each sub-class responds differently to the runoff generation process. A variety of 

sub-classes are available in Lillesand and Kiefer’s original table, but only relevant sub-

classes to both study catchments were extracted and presented under the column labelled 

Level-II in Table 3.4. A separate field study (or ground-truth data collection) was 

conducted in each catchment to identify the locations and the signatures of Level-II LULC. 
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Table 3.4 Landuse/landcover classes 
(Adapted from Lillesand and Kiefer, 1999) 

Level-I Level-II 

Agriculture 

  

  

  

Crop fields 

Pasture (Grasslands) 

Orchards 

Other Agricultural lands (vineyards and nurseries) 

Forest 

  

  

Deciduous forest  

Evergreen forest  

Mixed forest  

Urban/buildup 

  

  

  

Residential 

Commercial services 

Industrial 

Transportation 

Water bodies 

  

Rivers/streams 

Lakes/reservoirs 

Wetland 

  

Forested wetland 

Bays/estuaries 

Bare/barren  

  

  

Dry salts 

Beaches 

Dry agriculture 

 

The Landsat 5 TM data (Section 3.3.1.1), which is freely available, were used as RS data 

for the classification of LULC in the Macalister catchment. Landsat 7 ETM+ (Section 

3.4.1.1) data which is gap filled and also freely available were used as RS data for the 

classification of LULC in the Ribb catchment because of the absence of Landsat 5 TM 

data. A single image which is free of clouds, haze and distortion was selected for each 

catchment, since no major changes occurred in LULC during the study period (2003 to 

2008). 

 

A methodology slightly different to the one used by Gamage et al. (2007) and Panda et al. 

(2009) was employed in this study for image classification. The two above mentioned 

studies used the supervised image classification technique to develop LULC maps for 

hydrological and agricultural applications respectively. Gamage et al. (2007) used the 

Principal Component Analysis (PCA) to develop a new, reduced number of variables from 

the original bands. These new variables were used in LULC classification. In addition to 
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PCA, they used the Normalized Difference Vegetation Index, (NDVI) (Tucker, 1979) to 

separate vegetation areas from non-vegetation areas. In this study, NDVI was used as an 

additional variable to classify the image, since it can reduce the mountain shadows and 

improve the sensitivity to vegetation. Furthermore, Feature Space Images (FSI) were used 

to identify and cluster the signature of each given LULC class. The feature space image is 

a two-dimensional representation of an image. It is a scatter graph of all pixel values of an 

image, with different colors representing histogram frequencies of pixels. The main steps 

of image classification, which were used in this study, are summarized below. 

 

3.5.3.1 Ground-truth data collection 

The knowledge of existing ground situation on the catchment is essential for image 

classification, which includes training, class identification, naming of classes and accuracy 

assessment (Thenkabail et al., 2008). To achieve this, ground information of the 

catchments were collected through two separate ground–truth data collection surveys for 

each catchment. These surveys covered sample areas of each LULC available in those two 

catchments. Vegetation type, growth stage, soil condition and terrain conditions were 

collected through these surveys; the survey form used is included in Appendix B. Initially 

a sample area which was large enough and homogenous in its LULC was selected. Then 

sample points (i.e. ground-truth data points) within a sample area were carefully selected 

to represent the different signatures of the particular LULC class. 

 

3.5.3.2 Training of satellite image 

The training stage of image classification involved the pre-processing of the satellite image 

as well as signature identification. As mentioned earlier, the Landsat 5 TM image was used 

to classify the Macalister catchment’s LULC, while the Landsat 7 ETM+ image was used 

to classify the Ribb catchment’s LULC. 

 

The Landsat 5 TM image is georeferenced, and consists of 7 bands. These bands represent 

visible, infrared, mid infrared and thermal infrared windows of the electromagnetic 

spectrum. The thermal infrared band (i.e. band 6) of the Landsat TM images was not 

considered for the classification. This is mainly due to the mismatching of spatial 

resolutions in thermal and other bands. Indeed, the spatial resolution of the thermal band is 
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120 m while it is 30 m in all other bands. The remaining 6 bands consist of blue, green, 

red, near infrared and two mid infrared bands. 

 

The Landsat 7 ETM+ image is also georeferenced, but consists of 8 bands. These bands 

represent visible, infrared, mid infrared, thermal infrared and panchromatic windows of the 

electromagnetic spectrum. The thermal infrared band (i.e. band 6) of the Landsat 7 ETM+ 

images was not considered for classification since its spatial resolution mismatches with 

the other bands: the spatial resolution of the thermal band is 60 m while it is 30 m in all 

other bands. The panchromatic band was also eliminated in LULC classification due to its 

spatial resolution mismatching (15 m). There is some consistency in using TM and ETM+ 

data which are used to classify LULC over the Macalister and the Ribb catchments 

respectively, in terms of the 6 bands used (namely the blue, green, red, near infrared and 

the two mid infrared bands). 

 

Due to the availability of many bands (6 bands in this study), some of the ground 

information could be repetitive in each band, and may hence adversely affect the 

classification. Therefore, the Principal Component Analysis (PCA), a mathematical 

transformation which is based on the linear combination of the band measurements, was 

used to reduce the number of bands. PCA was used in this study to reduce the number of 

bands without making useful information redundant (Panda et al., 2009). It was argued that 

the variables selected using PCA are not correlated, and are often more interpretable with 

respect to ground information than source data (Faust, 1989); (Jensen, 1996). 

 

In this study, half of the ground-truth data (i.e. half of the sample areas) which was 

collected through field work was used to train the image for its classification. These data 

were randomly selected from the ground-truth data. It should be note that there is no strict 

rule for the allocation of the number of training samples out of the total samples for 

classification, with various proportions being found in literature. For example, Shupe and 

Marsh (2004) and Gamage et al. (2007) respectively used 70 and 50% of ground-truth data 

for image training. However, the author hereby intends that training samples should fully 

represent the signatures of each LULC class, irrespective of the above percentages. 

 

One LULC class in a sample area may have a number of different signatures in the image 

for various reasons. As an example, the signature within the class of pasture could be 
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different from place to place due to water availability, the soil conditions and management 

practices. These different signatures within one class could overlap with another class and 

could lead to a faulty classification. The Feature Space Image (FSI), which is a graphical 

representation of the band values, was used to avoid such situations, since FSI helps to 

identify the variation in the signature of a particular LULC class (Gamage et al., 2007). 

Different signatures which were identified within one class were not merged together, to 

form one signature since such a merging process can cause inaccuracies in the LULC 

classification. The output of this stage, which is the trained image for its existing LULC 

classes, was used as input for the classification stage (Section 3.5.3.3). 

 

3.5.3.3 Classification stage 

After the training stage, all pixels of the image are categorized into the LULC classes they 

mostly resembled. This is the classification stage (Lillesand and Kiefer, 1999). For 

classification, numerous mathematical approaches such as the maximum distance to mean, 

the parallelepiped and the maximum likelihood are available, and out of those, the 

maximum likelihood method was used in this study. This method was specially selected as 

the accuracy with which it classifies all pixels in an is higher than the other approaches  

(Lillesand and Kiefer, 1999). 

 

The maximum likelihood classifier assumes that NDVI and the PCA component’s for each 

pixel are normally distributed. Under this assumption, the distribution of the pixel values 

in a given LULC class can be defined with its mean vector and covariance matrix 

(Lillesand and Kiefer, 1999). Based on these two parameter matrices, the statistical 

probability of each pixel is computed for a member of the particular LULC class. This 

process is done for all pixels by taking into account all LULC classes, thereby producing 

different probabilities of the likelihood of a particular LULC class in each pixel. Then each 

of the pixel in the image is assigned to the most appropriate LULC class based on the 

higher probability. 

 

3.5.3.4 Accuracy assessment 

The outcome of the classification stage is simply a model of the ground reality based on 

the LULC signature (Loveland et al., 1999). Therefore, these image classifications have 

model errors. These errors are due to the loss of information resulting from the 
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rasterization or simplification of complex ground reality in the model (Maling, 1989). 

These errors should be considered in identifying the quality of the map, and its suitability 

and implications to any given application. For this purpose, the remaining half (i.e. sample 

areas) of the ground-truth data (first half of the ground-truth data was used to train the 

image) was used to estimate the classification accuracy. Once again, there are no clear 

guidelines on the required sample size for testing data in the case of estimating the 

classification accuracies. Congalton (1991) mentioned that a minimum of 50 samples for 

each class can be used for testing. However, this minimum sample size varies with the size 

of the study area, homogeneity of LULC classes, and the number of classes in the 

classification (Gamage et al., 2007). 

 

The accuracy assessment of LULC has been discussed in detail by Congalton (1991), 

Foody (2002) and Wegehenkel et al. (2006). According to these academics, the accuracy 

of both individual classes and overall classification is important to understand the strength 

of the classification. Congalton (1991) stated that the classification accuracy measurement 

techniques can be categorized into two types: descriptive techniques and analytical 

techniques. 

 

Descriptive techniques are defined as simple ratios of correctly classified sample points to 

class total. They give a general idea about the accuracy level, in the producer’s and the 

user’s perspective as well as in the overall view of all the classes. The producer’s accuracy 

is the probability of correctly classifying an LULC class relevant to its reference total, and 

the user’s accuracy is the probability of correctly classifying an LULC class in the image 

that actually represents the same LULC class on the ground. The overall accuracy is the 

number of correctly classified samples in the total number of samples. These accuracies 

are further explained in Figure 3.13 (Congalton, 1991). 

 

A particular class can be classified with a higher level of accuracy on a purely random 

basis, which is not a correct classification. Therefore, analytical techniques are used to 

address this issue. Both descriptive and analytical techniques were used in this study for 

both catchments to estimate the level of accuracy of individual LULC classes as well as 

the overall accuracy of all classes together (i.e. the overall LULC accuracy). 
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The process of estimating accuracies using test data can be explained using the error 

matrix of Figure 3.13. This figure shows a matrix of a classified image with a number of 

classes labelled A, B, C and D. Each blue cell represents the number of pixels that has 

been classified under a certain class with respect to its actual or reference class. For 

example NBB refers to the number of pixels that has been classified as class B, from the set 

which is actually in class B. The total of each class under each row and column are 

represented by ∑ in the matrix. The diagonal view of this figure shows the correctly 

classified number of points (pixels) of each class. The statistics known as the producer’s 

accuracy, the user’s accuracy and the overall classification accuracy (Foody, 2002; 

Wegehenkel et al., 2006; Gamage et al., 2007) can be estimated based on this matrix. 
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Actual (reference) Classes 

 A B C D ∑ 

A NAA NAB NAC NAD NA+ 

B NBA NBB NBC NBD NB+ 

C NCA NCB NCC NCD NC+ 

D NDA NDB NDC NDD ND+ 

∑ N+A N+B N+C N+D N 

 

The producer's accuracy (or omission error) measures the probability of correctly 

classifying an individual class with regard to its reference total (i.e. column total). It gives 

an indication of how accurately an LULC map is produced. The producer's accuracy (PA) 

is found by dividing the number of correctly classified samples in an individual class (e.g. 

NAA) by the total of that class (e.g. N+A). It is calculated using Equation (3.31) by taking 

class A as an example: 

 

																	%) = �}}�_} × 100																																																																																																		�3.31	 
 

The user's accuracy (or commission error) indicates whether the LULC of a given location 

in the classified image actually represents that LULC class on the ground. Therefore, this 

accuracy is an important indication for subsequent users of the LULC. The user's accuracy 

Figure 3.13 Error matrix of classified image in terms of number of pixels 
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(UA) is calculated by dividing the number of correctly classified samples in an individual 

class (e.g. NAA) by predicted total of that class (e.g. NA+). 

 

Once again while taking class A as example, UA is calculated using Equation (3.32): 

 

		~) = �}}�}_ × 100																																																																																																				�3.32	 
 

The overall classification accuracy (OA) is calculated by dividing the number of correctly 

classified pixels (sum of the diagonal) by the total number of pixels (N). This is calculated 

using Equation (3.33): 

 

		&) = ��}} + ��� + ��� + �nn	� × 100																																																										�3.33	 
 

Even though the accuracy of the image classification can be high in terms of PA, UA and 

OA, there is a possibility of having such a high accuracy by classifying particular pixels 

into a particular class, purely by chance (Congalton, 1991). This is caused to reduce the 

faithfulness of the image classification process, leading to incorrect classification and 

hence adverse effect on applications. In order to account for this chance, the kappa 

coefficient which is described as an analytical tool (Cohen, 1960; Congalton, 1991; Smits 

et al., 1999; Foody, 2002), can be used. The Kappa coefficient is calculated using Equation 

(3.34): 

 

		@� = �∑ ����
��� − ∑ ��_�_��

���
�! − ∑ ��_�_��

���
																																																																							�3.34	 

 

where @� is the Kappa coefficient, N is the total number of pixels, Nkk is the total of 

diagonal (total of correctly classified), Nk+ is the row total in Figure 3.13, N+k is the 

column total in Figure 3.13, and q is the total number of classes. 

Although the accuracy assessment has been widely accepted as a standard practice for 

image classification, the accepted levels of accuracy (or thresholds) to a given LULC 

classification vary depending on applications and the scale of the application (Thomlinson 
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et al., 1999). Considering the scale of the application and spatial resolution of the satellite 

data used in this study, the following thresholds were used. They are:  

 

(i) An overall classification accuracy of no less than 85%, 

(ii) An individual class accuracy (both PA and UA) of no less than 70% (i.e. 

class A, B, C, or D in Figure 3.13). These thresholds were proposed and used 

by Thomlinson et al. (1999). 

(iii)  The kappa coefficient of less than 0.4 is deemed to be poor classification, 

0.4 – 0.75 is treated as a good classification and above 0.75 is considered as 

an excellent classification. These thresholds were proposed and used by 

Bharatkar and Patel (2013). 

 

Both the accuracy thresholds and the kappa thresholds were used in this study to evaluate 

the accuracy of the LULC classification. 

 

3.6 Catchment process modelling 

The Soil and Water Assessment Tool (SWAT) was used to estimate daily streamflow of the 

two study catchments. Initially, daily streamflow estimation was done with ground 

measured data. Then, the ground measured data of input variables were replaced with 

those estimated from RS data, one variable at a time. When setting up the SWAT model 

with ground measured input variables, all hydrological components such as precipitation, 

canopy storage, infiltration, redistribution, evapotranspiration, lateral subsurface flow, 

surface runoff, ponds, tributary channels and return flow were considered. 

 

3.6.1 Brief description of SWAT 

SWAT is a deterministic and semi-distributed software tool that can be used for 

continuous streamflow estimation. SWAT can be used not only to estimate surface flow, 

but also to estimate subsurface flow, sediment generation, chemical concentration, 

vegetation growth and the effects of pesticide use. SWAT is freely available to the user 

community (i.e. it is a public domain software tool), which is supported by the Agricultural 

Research Service (ARS) Division of the United States Department of Agriculture (USDA) at 

the Grassland, Soil and Water Research Laboratory in Temple, Texas, USA. SWAT operates 

in catchment scales, and has the capability of processing data efficiently over large areas, 
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of supporting spatially distributed catchment details and of simulating land-management 

scenarios (Arnold et al., 1998). The model can run with various time scales such as daily, 

monthly and annual. SWAT was used in this study with the daily time step. 

 

SWAT is a water balance model, which is expressed below, when it is used as a daily 

model (Arnold et al., 1998): 

 

														SWt=SW0+���	-	Qsurf	-	Ea	-	Wseep	-	Qret��
i=1 																																																									(3.35) 

 

where, SWt is the soil water content at the end of day i, SWo is the initial soil water content 

on day i, t is the time in days from the start of the simulation, R is the amount of 

precipitation on day i, Qsurf is the amount of surface runoff on day i, Ea is the amount of 

actual evapotranspiration on day i, Wseep is the amount of water entering the vadose zone 

from the soil profile on day i, and Qret is the amount of return flow on day i. All units are 

in mm. 

 

Surface runoff (Qsurf) is the major component of the water balance in Equation (3.35) and 

is estimated using the SCS curve number method given below (USDA-SCS, 1972; Arnold 

et al., 1998): 

 

�F�i� = (� − 0.2�)!(� + 0.8�) 																																																																																															(3.36) 
 

where R is the rainfall depth for day i and S is the retention parameter. The retention 

parameter is defined as: 

 

              � = 254 ������ − 1�																																																																																																			(3.37) 
 

where CN is the curve number. More details on the curve number method can be found in 

USDA-SCS (1972). 
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The return flow is generated by considering a shallow aquifer (Arnold et al., 1998), and the 

lateral flow element of the model is estimated using the kinematic storage model. A 

detailed explanation of all steps and equations used in the estimation of evapotranspiration, 

seepage, return flow, and their routing techniques together with the model structure can be 

found in Arnold et al. (1998), Setegn (2010) and Tibebe and Bewket (2011). The model set 

up and calibration steps are briefly explained in Section 3.6.2. 

 

3.6.2 Model set up and calibration  

The setting up of the SWAT model to any catchment begins with “watershed delineation”, 

and it uses the Digital Elevation Model (DEM). For modelling purposes, SWAT delineates 

the catchment into several subcatchments with the help of DEM. The size of the 

subcatchment is automatically determined by SWAT initially. However the user has the 

freedom to change the subcatchment size. 

 

Once the watershed is demarcated, spatially distributed LULC and soil types are entered as 

inputs into the model in the grid format. Based on the input percentage of the LULC, soil 

type and slope (based on DEM) of each subcatchment, SWAT generates several working 

elements called Hydrological Response Units (HRUs) within each subcatchment (Zhang et 

al., 2009a). 

 

The next step of the model setup is to enter meteorological data. Measured climate data 

such as rainfall, minimum and maximum temperature, relative humidity, wind speed and 

sunshine hours are entered as input variables to the SWAT model. All the above input 

variables together with their spatial locations are required to be fed into the model (Arnold 

et al., 1998). The acceptable format and other specifications of these data are explained in 

the SWAT user manual (Neitsch et al., 2002). In the absence of daily data for the above 

meteorological input variables (fully or partially), SWAT has the power to generate 

missing climatic data of a time series. This is based on its weather generator, which uses 

statistical procedures to fill the gaps of missing data. 

 

The SWAT weather generator uses different models to fill/generate missing data of input 

variables. In the case of rainfall, it uses the Markov chain-skewed (Nicks, 1971) or the 

Markov chain-exponential (Williams, 1995) models to fill/generate missing rainfall data. 
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The user has the option to select either model while running the SWAT model. The 

maximum and minimum temperatures and solar radiation estimations are based on the 

weakly stationary generating process by Matalas (1967). The Daily average relative 

humidity values are estimated from a triangular distribution using average monthly relative 

humidity (Sharpley and Williams, 1990), while mean daily wind speed is generated by the 

modified exponential equation (Neitsch et al., 2005). More details of the weather generator 

can be found at SWAT theoretical documentation (Neitsch et al., 2005). 

 

SWAT can estimate potential evapotranspiration (PET) using meteorological data that 

have been fed into the model. Three prominent PET estimation methods i.e. the Penman-

Monteith (PM) method (Allen et al., 1998), the Hargreaves method (Hargreaves et al., 

1985) and Priestley-Taylor method (Priestley and Taylor, 1972) are available as in-built 

options. There is also an option to enter a PET time series that has been computed outside 

of the SWAT model. 

 

The SWAT model was initially calibrated with 2/3 of the streamflow data. The remaining 

1/3 of the measured streamflow data was used to validate the estimation model. 

Accordingly, data corresponding to years 2003 – 2006 and 2007 – 2008 were respectively 

used for calibration and validation. Initially, the model calibration was done by manually 

adjusting various model parameters within the appropriate range. Thus initial manual 

calibration was then fine-tuned with the auto calibration and validation tool available 

within the SWAT software tool. The parameter solution (PARASOL) method (van 

Griensven et al., 2006) available within the SWAT software tool was used as the auto-

calibration method in this study. 

 

The accuracy of the daily streamflow estimation (i.e. for calibration and validation 

separately) was evaluated with Root Mean Square Error (RMSE) and Nash-Sutcliffe 

efficiency (Ef) (Nash and Sutcliffe, 1970; Pala, 2003). The calculation procedures of 

RMSE and Ef are explained in Section 3.9. 
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3.7 Estimation of remote sensing based indices for statistical modelling 

This section will explain the methods of calculating RS based indices (i.e. vegetation and 

thermal indices) that were used in statistical modelling. The existing literature was 

carefully studied before selecting indices for statistical modelling purposes. 

 

3.7.1 Selection of remote sensing based indices 

Various RS based indices, which are surrogates to hydrometeorological variables, were 

considered as possible inputs for statistical modelling in this study. Vegetation indices 

such as the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation 

Index (EVI) and the Normalized Difference Water Index (NDWI), and the brightness 

temperature at band 31 (BT31) and the brightness temperature at band 32 (BT32), and 

thermal indices such as the brightness temperature difference (BTdiff) (BT31 – BT32) and 

the brightness temperature gradient (BTgrad) were used as RS based indices in statistical 

modelling. 

 

NDVI is the most common and simple RS based vegetation index that has been used in 

many applications, such as hydrological applications, ET estimation and LULC 

classification. It represents vegetation density, vigor, vegetation stage and their seasonality 

(Jackson et al., 2004; Thenkabail et al., 2004). Furthermore, it has been used to estimate 

the Leaf Area Index (LAI), which is a vital variable in hydrological process modelling. 

Even though NDVI is a representative index of vegetation, it does not reflect the vegetation 

water content. Among various vegetation indices, NDWI is simple and sensitive to the 

vegetation water content (Jackson et al., 2002). Since the vegetation water content is 

sensitive to moisture availability of the top soil (i.e. the root zone area), NDWI is also a 

surrogate of soil moisture content for that zone. Therefore, NDWI was considered in this 

study as a surrogate to vegetation water content and soil moisture. 

 

NDVI is sensitive to atmospheric noise (Jackson et al., 2004), and can adversely affect on 

streamflow estimation undertaken through statistical modelling. Therefore, EVI was used 

to overcome this disadvantage of NDVI. EVI has been developed to overcome atmospheric 

noise and to optimize the vegetation signal in order to improve the sensitivity to vegetation 

variability (Huete et al., 2002). 
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The above mentioned indices are surrogates for vegetation and soil moisture. Thus 

radiance based BT31, BT32, BTdiff and BTgrad were used as surrogates to rainfall. The 

brightness temperature has been used as an input to estimate rainfall since the late 1970s 

(Arkin, 1979; Grimes et al., 1999; Grimes and Diop, 2003; Huffman et al., 2007). The 

band width of the brightness temperature data which are used in the above studies are 

equivalent to MODIS band 31. In addition to this band, MODIS includes band 32. Band 32 

of MODIS is adjusted to band 31 in electromagnetic spectrum. This is also a thermal band, 

and thus was considered in this study as a possible input to streamflow estimation using 

statistical modelling. 

 

In prior studies, rainfall from a cloud cover (observed from the top of the cloud) was 

estimated by assigning a constant rain rate to the brightness temperature below a certain 

threshold. Whilst this constant rate is not the best representation of rainfall yielded from a 

cloud, Kuligowski (2002) noted that cloud-top textural information can be used better in 

rainfall estimation. Therefore, BTdiff and BTgrad, which are representative indices to cloud-

top texture, were used as possible input variables in this study. 

 

3.7.2 Equations used to generate remote sensing based inputs for statistical 

modelling 

MODIS reflectance data were used to calculate vegetation indices (i.e. NDVI, NDWI and 

EVI), and MODIS radiance data were used to calculate brightness temperatures (BT31 and 

BT32) and thermal indices (i.e. BTdiff and BTgrad). Vegetation indices were calculated only 

on no-cloudy images, while BT and thermal indices were calculated on cloudy images. 

Cloudy images (or cloudy days) were separated from non-cloudy images (or non-cloudy 

days) using MODIS cloud mask product. 

 

The calculation procedure and equation for NDVI are explained in Section 3.5.2.1 and 

Equation (3.24). The calculation of NDWI is similar to the NDVI, except bands used in 

NDWI. Indeed, while short-wave infrared was used in NDWI calculations, the red band 

was used for calculating NDVI.  

 

NDWI was calculated using Equation (3.38) (Gao, 1996; Jackson et al., 2004): 
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�'�� = :��� − :����:��� + :���� 																																																																																												(3.38) 
 

where SWIRλ  is the reflectance of the short-wave infrared (band 5 of MODIS), and NIRλ  is 

the reflectance of the near infrared (band 2 of MODIS). 

 

EVI on a non-cloudy day was calculated using MODIS reflectance of band 1, 2 and 3 

(Huete et al., 2002): 

 

7�� = � × :��� − :��n:��� + R�:��n − R!:���� + G																																																								(3.39) 
 

where :��n is the reflectance of MODIS band 1, BLUEλ  is the reflectance of MODIS band 

3, G is the gain factor (2.5), L is the canopy background adjustment (for full canopy, L = 

1), and C1 and C2 are the coefficients of the aerosol resistance term, which uses the blue 

band (i.e. band 3) to correct for aerosol influences in the red band (i.e. band 1). C1 and C2 

are respectively equal to 6 and 7.5 respectively, as suggested by Huete et al. (2002). 

 

As explained in Section 3.7.1, BT31, BT32, BTdiff and BTgrad were considered as surrogates 

for rainfall in this study. BT31 and BT32, which were calculated from Equation (3.1) for 

rainfall estimation purposes (Section 3.5.1.1), were used in statistical modelling. These 

BT31 and BT32 were used to calculate BTdiff. BT31 was also used to calculate BTgrad. 

 

BTdiff was calculated using Equation (3.40): 

 ��A��� = ��31 − ��32																																																																																									(3.40) 
 

The BTgrad was initially introduced by Adler and Negri (1988) and has been used by 

Kuligowski (2002) for rainfall estimation. They calculated BTgrad by calculating the 

difference of the average temperature and the minimum temperature of a 5×5 pixel 

window, and dividing it by the pixel resolution. The use of the average can result in 

reducing the gradient, which in turn has the potential of identifying the cloud as a cirrus 

cloud which produces no-rain. Therefore, the difference between the minimum and 
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maximum values divided by the pixel resolution of a 3×3 pixel window was considered as 

BTgrad in this study. 

 

3.8 Statistical modelling 

Artificial neural networks (ANN) were used in this study as the statistical modelling 

technique to estimate daily streamflow in both study areas. ANN were used in this study 

since the relationship between vegetation and thermal indices as well as BT with 

streamflow is very complex, and ANN have the capability to address complex 

relationships between inputs and output (Govindaraju and ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology, 2000; Maier and Dandy, 2000; 

Samarasinghe, 2006; ASCE Task Committee on Application of Artificial Neural Networks 

in Hydrology, 2000). 

 

Possible input variables, which were outlined in Section 3.7.1, were considered in daily 

streamflow estimation using statistical modelling. Catchment average value of each 

variable was considered in this study for streamflow estimation rather than at a particular 

pixel. This was mainly to avoid errors in streamflow estimation with noisy pixels. 

Furthermore, the catchment average gives a better representation for the varying 

landuse/landcover conditions in the catchment.  

 

The current day, several past days and 8-day average of possible input variables (Section 

3.7.1) were considered in statistical modelling. The lagged variables were considered 

because of the lagged response of rainfall to streamflow, and rainfall to vegetation. On this 

basis, vegetation indices of seven lag days, and thermal indices and BT of three lag days 

were considered in this study. In addition to those variables, the previous 8-day average of 

NDVI, NDWI and EVI were also considered as input variables to model the current-day 

streamflow. The missing values of previous days are excluded in estimating 8-day average. 

By doing so, a seamless time series of 8-day average NDVI, NDWI and EVI was generated. 

Eight day averages were specifically considered since there is no significant difference in 

vegetation indices within the 8-day period and that is sufficient enough to fill the gaps 

caused by the clouds. 
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There are 43 variables present as potential input variables for daily streamflow estimation 

using statistical modelling by considering the current day, lag times and the average of 

variables. All those 43 variables are shown in Tables 3.5 (for vegetation indices) and 3.6 

(for BT and thermal indices). 

 

Table 3.5 Vegetation indices of current day, lag days and 8-day average 

Vegetation indices  

NDVI NDWI EVI 

1-day lag NDVI 1-day lag NDWI 1-day lag EVI 

2-day lag NDVI 2-day lag NDWI 2-day lag EVI 

3-day lag NDVI 3-day lag NDWI 3-day lag EVI 

4-day lag NDVI 4-day lag NDWI 4-day lag EVI 

5-day lag NDVI 5-day lag NDWI 5-day lag EVI 

6-day lag NDVI 6-day lag NDWI 6-day lag EVI 

7-day lag NDVI 7-day lag NDWI 7-day lag EVI 

8-day avg NDVI 8-day avg NDWI 8-day avg EVI 

 

 

Table 3.6 BT and thermal indices of current day and lag days 

BT and thermal indices 

BT31 BT32 BTdiff BTgrad 

1-day lag BT31 1-day lag BT32 1-day lag BTdiff 1-day lag BTgrad 

2-day lag BT31 2-day lag BT32 2-day lag BTdiff 2-day lag BTgrad 

3-day lag BT31 3-day lag BT32 3-day lag BTdiff 3-day lag BTgrad 

 

The increased number of input variables (43) can cause input replication in ANN 

modelling. All the indices outlined in Tables 3.5 and 3.6 are based on seven key indices, 

and these seven indices are based five bands of MODIS. In addition, the introduction of 

lag time and the average of indices can further enhanced the issue of ANN input 

replication to ANN modelling. Since replication and the increased number of input 

variables can made the ANN model very complex (Bowden et al., 2005a), an input 

variable selection procedure was followed to identify the most influential input variables 

that should be used in the ANN model for both catchments. 
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3.8.1 Influential inputs 

Several input variable selection methods have been used with ANN modelling in the recent 

past (Sharma, 2000; Maier and Dandy, 2000; Bowden et al., 2005a; Maier et al., 2010), 

especially in water resources applications. They vary from the use of correlation 

coefficient to the use of genetic algorithms. The calculation of correlation coefficients 

between independent variables and dependent variables is a direct approach, but may not 

be suitable to many water resources applications due to the complex non-linear 

relationship between independent and dependent variables. Accordingly, Sharma (2000) 

outlined that Mutual Information (MI) could be used to identify influential variables for 

ANN applications, particularly water-related ones. 

 

The MI criterion is a measure of dependence between any two variables (Sharma, 2000). 

MI has the ability of capturing all dependencies (linear and/or nonlinear) between 

independent and dependent variables. With MI, no prior assumption is required to consider 

the relationship between the dependencies of the variables. More importantly, MI is 

insensitive to noise of the data and is strong in data transformation (Battiti, 1994; 

Darbellay, 1999; Soofi and Retzer, 2003; May et al., 2008). The higher the value of MI, 

the higher the dependence between the variables. The calculation of MI takes place 

iteratively: as such one disadvantage of MI is the lack of suitable analytical method to 

decide when the optimal set of variables has been selected. To overcome this disadvantage, 

Sharma (2000) developed the concept of Partial Mutual Information (PMI) which provides 

an additional criterion to assist on making decision of when to stop the iteration and select 

influential variables. PMI can be written as (Sharma, 2000); 

 

%�� = 1y� S¡M=
��� ¢ �£�¤¥¤(£�¤, ¥�¤)�£¤(£�¤)�¥¤(¥�¤)§																																																																					(3.41) 

 

where �£�¤¥¤(£�¤, ¥�¤), �£¤(£�¤) and �¥¤(¥�¤) are the respective marginal and joint probability 

densities of independent and dependent variables. n denotes the sample size of the data. 

 

PMI applies the partial dependency between independent and dependent variables to the 

existing prediction model (based on MI). This partial dependency is calculated for each 

and every potential input variable individually. However, a necessary part of the PMI 

based input selection method is a criterion that signals which input is influential. Sharma 
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(2000) has used the 95th percentile of randomized sample PMI as the confidence measure 

to determine the influential input variables from a pool of input variables. By selecting the 

95th percentile, he argued that there is a 5% chance of the input variable to be truly 

independent. Considering that, the limit that can be truly independent was further reduced 

to 1% in this study by choosing 99th percentile of a randomized sample PMI as the 

confidence measure. This step was followed to reduce number of influential variables to its 

minimum. 

 

3.8.2 Artificial neural networks modelling  

Various ANN model architectures have been used in the past for applications in water-

related research (Mas and Flores, 2007; Maier et al., 2010). They were discussed Section 

2.6. According to the literature, model selection and model construction are the two 

important steps in developing an ANN model for any application. Model selection 

involves finding an appropriate model for a given application. Model construction deals 

with the selection of input variables, and the selection of the number of hidden layers and 

their nodes, as well as the selection of transfer functions and objective functions to 

calibrate and validate the model. 

 

The widely used three-layer feed-forward neural networks with back propagation was used 

in this study. It has the capacity to handle complex relationship between inputs and outputs 

with sufficient degree of freedom with regards to weights and biases (Maier and Dandy, 

2000). Furthermore, it was noted that feed-forward multilayer perceptron models have 

been widely used in different RS based applications including water resources research 

(Maier et al., 2010). An illustration of a three-layer feed-forward neural networks model is 

shown in Figure 3.14. The three layers are the input layer (I), the hidden layer (H) and the 

output layer (O). 
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In Figure 3.14, the input nodes are denoted as Ii (i = 1, 2, 3,…., n) in the input layer, and 

the hidden nodes are denoted as Hj (j = 1, 2, 3, …, m) in the hidden layer. n represents the 

number of nodes in the input layer (this is equal to the number of input variables in this 

study), while m represents the number of hidden nodes (determined by trial and error 

during the calibration of the model). The output node in this study is denoted as Ok. A 

single node is considered (i.e. estimated streamflow) in the output layer. The weights of 

the feed-forward process are denoted with Wij (input layer to hidden layer) and Wjk (hidden 

layer to output layer), while the new weights at each iteration results from the back 

propagation process are denoted as W*ij (input layer to hidden layer) and W*jk (hidden 

layer to output layer). Similar to the weights, the biases of the feed-forward process are 

denoted as bij (input layer to hidden layer) and bjk (hidden layer to output layer), and new 

biases in each new iteration resulting from the back propagation process are denoted as b*ij 

(input layer to hidden layer) and b*jk (hidden layer to output layer). There is only one bias 

between the input and hidden layers, and between the hidden and outputs layers. However, 

there are (n x m) weights between the input and hidden layers, and m weights between the 

hidden and output layers. 

 

Learning rate provides the step size during the gradient descent in updating neural network 

weights. This controls the rate that weights are allowed to change at any given training 

Figure 3.14 Three layer feed-forward ANN used in this study  

(Adapted from Kim and Valdes, 2003) 
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cycle (Raman and Sunilkumar, 1995). It has been observed that higher learning rate 

increases the convergence process in learning, causing results to be unrealistic. The slower 

learning rate produces more reliable results (Raman and Sunilkumar, 1995; Maier and 

Dandy, 1996; Isik et al., 2013) however, such slower learning rate requires high computing 

power to update the neural network weights. Therefore, an optimum value of 0.3 that had 

been used in previous studies was used as the learning rate in this study (Maier and Dandy, 

1996; Isik et al., 2013). 

 

Figure 3.14 shows that any particular layer is connected to its subsequent layer by 

relationships whose strengths rely on the magnitudes of the weights (i.e. Wij and Wjk) and 

biases (i.e. bij and bjk) (Sahoo and Ray, 2006). These weights and biases are optimized 

through the training procedure to obtain the best simulation result against the output. 

Nonlinear transfer functions are generally used to transfer the values of the input layer 

nodes to the hidden layer nodes, whereas the linear transfer functions are generally used to 

transfer the values from the hidden layer nodes to the output layer nodes (Maier et al., 

2010). Among various non-linear transfer functions, Maier et al. (2000), and Sahoo and 

Ray (2006) stated that TRANSIG was the best function that can be used to transfer the 

values of the input layer nodes to the hidden layer nodes, particularly in water related 

applications. Dorofki et al. (2012) tested the performance of several linear transfer 

functions to transfer the values of the hidden layer nodes to the output layer nodes in 

runoff estimation and found better performance with the PURELIN transfer function. 

Sahoo and Ray (2006) in their flow forecasting application also used PURELIN. 

Therefore, in this study, a non- linear (TANSIG) transfer function combined with the 

values of the input layer nodes and corresponding weights and biases were used to produce 

the values of the hidden layer nodes, and a linear (PUERLIN) transfer function combined 

with the values of the hidden layer nodes and corresponding biases were used to produce 

the values of the output layer node (Gamage et al., 2011a). The mathematical relationship 

between input and output can be written as Equation (3.42) (Kim and Valdés, 2003). 

 

�(̈ = �� ©��ª� × �« ¬���ª£� + +�ª=
��� ­ + +ª�®

ª�� ¯																																																	 (3.42) 
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where, �(̈ is the estimated streamflow, f0 is the transfer function of the output neuron, fh is 

the transfer function of the hidden neuron, xi is the input of the input neuron, and i 

represents an input variable. 

 

It is a general practice that data of all input variables are converted into a standard range 

(generally 0 to 1) before they are used in an ANN model. This will facilitate the building 

of more efficient weights between the input layer nodes and the hidden layer nodes (Tran 

et al., 2009; Maier et al., 2010). The reflectance (vegetation) based input variables of NDVI 

and NDWI mostly vary on this range, however, EVI and radiance based input variables do 

not. Therefore, all input variables were standardized into the range of 0.1 to 0.9 (instead of 

0 to 1) to avoid the extreme limits of the nonlinear transfer function used to transfer the 

values of the input layer nodes to the hidden layer nodes (Barua, 2010). 

 

All influential input variables which resulted from the PMI calculation, were used as input 

variables for ANN modelling. It should be note that the training/testing/validation 

procedure has become a standard practice in ANN model development. This procedure has 

two purpose: first to calibrate the model parameters without over fitting, and second to 

evaluate the calibrated model parameters with a data set that was not used in calibration 

(i.e. training and testing). Both training and testing were considered as calibration in this 

study. Of the data collected for the study period from 2003 to 2008, 53.4% was used for 

training, 13.3% was used for testing, and the remaining 33.3%was used for validation. 

This is in consistent with the standard practice of ANN modelling which uses 2/3 of the 

data for calibration (both training and testing) and 1/3 for validation. Accordingly data 

from 2003 to 2006 were used for calibration, and the remaining years (2007 and 2008) 

were used for validation. 

 

The suitable number of nodes in the hidden layer, the connection weights and the biases in 

the network are the parameters to be determined during the calibration process. This is 

done by minimizing the mean square error (MSE) by considering the difference between 

the estimated and measured values at the output node (called the error in modelling). The 

MSE in the ANN model is minimized through back propagation training that is 

rearranging weights and biases for another run. 
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The input data of the back propagation neural networks (which was used in this study), are 

passed forward through the network with appropriate weights and biases, and then the 

error between the output and the measured values is calculated. This error is thereafter 

back propagated towards the input layer to adjust the weights. One complete cycle of the 

forward and backward propagation is called an iteration (epoch). Several such iterations 

are used to get the optimum MSE (or minimum MSE) during calibration (i.e. both training 

and testing). The initial weights and biases of the current iteration are considered as the 

adjusted weights and biases of the previous iteration. Figure 3.15 shows a typical example 

of how MSE changes with respect to iterations in both training and testing. This figure 

shows that MSE is reduced with the increasing number of iterations during the training 

phase, while MSE drops initially and then increases as the number of iterations increases 

during the testing period. In other words, during the initial stage, MSE goes down with an 

increase in the number of iterations for both training and testing. However, after several 

iterations, the MSE of testing starts to increase, while the MSE of training continues to 

decline. This point is called the early stopping point. Beyond the early stopping point, 

further training will likely cause over-fitting (Bishop, 1995). Therefore, the weights and 

biases of that iteration (at the early stopping point) are considered as the optimum weights 

and biases for the calibration of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The process of finding the appropriate number of hidden nodes was carried out by the trial 

and error calibration method. This process was initiated by considering half the number of 

nodes of the input variables. The output of this model was compared with the measured 

Figure 3.15 MSE of training and testing phases in each iteration 
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streamflow based on the performances indices explained in Section 3.9. Thereafter the 

number of hidden nodes was gradually increased. The output of each model was compared 

with measured streamflow as it was done with the first model output. The number of 

hidden nodes in the model which gives the best performance was selected to estimate 

streamflow with influential input variables. 

 

3.9 Performance assessment 

Indices that were used to assess the performance of estimated rainfall, potential 

evapotranspiration (PET) and streamflow using RS data will be discussed in this section. 

The performance of estimated rainfall was calculated using TRMM rainfall data. The 

performance of estimated PET was calculated using Penman-Monteith (PM) PET data, 

since observed PET were not available. The required PM based PET were obtained from 

the SILO database for the Macalister catchment. The required PM based PET for the Ribb 

catchment was calculated using ground measured data (Allen et al., 1998). The accuracy 

assessment of LULC was different in the case of rainfall and PET, and was thus explained 

separately in Section 3.5.3.4. The performance of estimated daily streamflow using both 

catchment process modelling and statistical modelling was conducted and was compared 

with observed daily streamflow. 

 

The performance assessment was performed using the Root Mean Square Error (RMSE) 

and Nash-Sutcliffe efficiency (Ef) (Nash and Sutcliffe, 1970; Pala, 2003). Both RMSE and 

Ef were used in this study, since they represent different measures. RMSE is representing 

error with units, while Ef is used to measure the agreement between measured and 

estimated values. 

 

RMSE and Ef were estimated using Equations (3.43) and (3.44): 

  

 

2

1

)(
1

t

N

t

t yx
N

RMSE ∑
=

−=                           (3.43) 

 



3-64 
 

 2

1

1

2

)(

)(

1

∑

∑

=

=

−

−
−=

N

t

t

N

t

tt

f

xx

yx

E
                                              (3.44) 

 

where xt is the observed variable, x is the mean value of the observed variable for the total 

period, and yt is the simulated or estimated variable, N is the number of days during the 

study period. In these equations, the observed variable refers to TRMM rainfall, Penman-

Monteith PET, and ground measured streamflow. 

  

RMSE gives the error in terms of units of the variables. A zero (0) value for RMSE 

indicates that the estimates have a perfect fit with observations. The main difficulty 

attached to RMSE is to assign the margin of RMSE (or low RMSE) for the estimates to be 

sufficiently accurate. This was overcome by treating values of RMSE which were less than 

half of the standard deviation of observed data as ‘low’ RMSE (Singh et al., 2004; Moriasi 

et al., 2007; Singh et al., 2005). 

 

Nash-Sutcliffe efficiency (Ef) ranges from - ∞ to +1, where a value close to +1 indicates a 

higher level of agreement between the estimates and the observations (Krause et al., 2005). 

When Ef is less than 0, the mean of the observed variable can be considered as a better 

estimate for the estimated variable than the simulated or estimated variable. 

 

3.10 Summary 

This chapter described the study area details for both case studies, particularly in terms of 

data used (ground measured and satellite data). The methodology used in the estimation of 

input variables (i.e. rainfall, potential evapotranspiration and LULC) and daily streamflow 

using RS data was also discussed. The chapter started with a general description of both 

study areas, followed by catchment climate, hydrology and geomorphology. Whilst both 

study areas are approximately similar in size, they have different climatic conditions as 

well as LULC classes. 

 

This chapter proceeded with the description of the data that were used in this study. The 

first case study area, the Macalister catchment, was a data rich catchment. Thus, the 
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required meteorological and hydrological data were available for the Macalister catchment. 

The second case study area, the Ribb catchment, is located in a in a developing country 

which has very limited ground measured data. The required RS data for both catchments 

were available free of charge. 

 

The estimation methodologies of rainfall, potential evapotranspiration and LULC, which 

were used as input variables for catchment process modelling, were explained in detail. 

These input variables were estimated using RS data. Rainfall estimation is based on the 

brightness temperature of the clouds and its distribution, while potential evapotranspiration 

uses the surface energy balance method. Both these variables were estimated using 

MODIS data, while LULC was estimated using Landsat data which have higher spatial 

resolution compared to MODIS data. The SWAT model was used to estimate daily 

streamflow data for both catchments. Initially, model calibration was done with ground 

measured meteorological data. Then ground measured data were gradually replaced by 

data which were estimated using RS data, one input variable at a time. 

 

In addition to catchment process modelling using SWAT, statistical modelling was 

considered in this study to estimate daily streamflow in both catchments. Vegetation 

indices, the brightness temperature and indices based on the brightness temperature were 

considered as input variables for statistical modelling. The characteristics of these indices 

and their calculation procedures were also explained. They are all calculated with MODIS 

reflectance and radiance data. The artificial neural networks modelling approach was 

proposed as a better tool for statistical modelling, as this approach performs well in 

modelling complex nonlinear relationships of the rainfall-runoff process. 

 

In the last section of the chapter, indices that were used for accuracy assessment were 

explained. For this purpose, the Root Mean Square Error (RMSE) and the Nash-Sutcliffe 

efficiency (Ef) were discussed. These indices were used to assess the accuracy of rainfall 

and potential evapotranspiration estimated using RS data as well as estimated streamflow. 
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4 CHAPTER 4: THE MACALISTER CATCHMENT 

 

4.1 Introduction 

Streamflow data are immensely important for water resource investigations. However, the 

limited availability of these data, particularly streamflow measured through streamflow 

gauges, is a serious impediment to the successful implementation of these water resource 

investigations (Grimes and Diop, 2003). In the absence of such measured streamflow data, 

streamflow estimation using measured meteorological data is an alternative. Nonetheless, 

this alternative is not possible if all required measured meteorological data are unavailable, 

which is currently the case for most catchments. In the absence of such data, Lakshmi 

(2004) suggested that the use of RS data could be the answer to generating the required 

streamflow data. The theories and methodology whereby RS data could be used as such 

were described in Chapter 3. 

 

A data rich environment, where the appropriate hydro-meteorological ground measured 

data are available, was selected as the first case study area to test the proposed 

methodology for daily streamflow estimation using RS data. The selected data rich 

catchment was the Macalister catchment in Victoria, Australia. The first case study and its 

results are discussed in this chapter. Then a second case study is conducted with a data 

poor catchment. The second case study and its results are presented in Chapter 5. 

 

A detailed description of the Macalister catchment (i.e. first case study catchment) was 

presented in Section 3.3. In this first case study, two streamflow estimation procedures 

were used, namely: catchment process modelling and statistical modelling. Before using 

the catchment process modelling procedure, the required data for meteorological variables 

(i.e. rainfall and potential evapotranspiration) were estimated using RS data. In addition to 

the above two variables, the LULC of the catchment was classified using RS data. The 

theory involved in estimating these variables was discussed in Section 3.5. The estimation 

of these variables for the Macalister catchment is described in Section 4.2, together with 

the description of the results. These variables were then used in catchment process 

modelling using the SWAT modelling tool (Section 4.3). The theory behind catchment 

process modelling was discussed in Section 3.6. 
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Indices which are based on the reflectance and radiance data, and the brightness 

temperature were used as inputs in artificial neural networks (ANN) modelling which is 

the statistical modelling approach in this study. The estimation procedures relating to these 

input variables were discussed in Section 3.7. The results of the input variable selection 

and ANN modelling are discussed in Section 4.4. 

 

The study period considered in this study was from 2003 to 2008. Both streamflow 

estimation approaches were calibrated from data relating to the period of 2003 to 2006, 

and validated from data pertaining to the period of 2007 to 2008. The performance of 

estimated rainfall, potential evapotranspiration (PET), streamflow using the catchment 

process model, and streamflow using the statistical model are presented and discussed in 

Sections 4.2.1.3, 4.2.2.4, 4.3 and 4.4 respectively. The accuracy of landuse/landcover 

classification is discussed in Section 4.2.3.3, and finally the performance of the catchment 

process model was compared with that of the statistical model in Section 4.5. 

 

4.2 Estimation of remote sensing based variables for catchment process 

modelling 

This section presents the results of the estimation of daily rainfall and daily potential 

evapotranspiration, and the classification of LULC using RS data. These variables were 

used in estimating daily streamflow with catchment process modelling. Whilst the methods 

of estimating each variable were discussed in detail in Chapter 3, the results in relation to 

the Macalister catchment and the performances of these results are discussed in this 

section. 

 

4.2.1 Rainfall estimation 

The methodology outlined in Section 3.5.1 was followed in order to estimate the required 

rainfall data using RS data. Since this methodology aims at estimating rainfall over areas 

where ground measured rainfall data are not available, a Tropical Rainfall Measuring 

Mission (TRMM) based data product, which is called TMPA 3B42 (TRMM rainfall data), 

was used. These data represent rainfall at near ground level, and are available in high 

temporal resolution (3-hour). However, the spatial resolution of these data is very low 

(approximately 625 km2). Therefore, the application of this data directly to daily 

streamflow estimation, especially for medium and small size catchments, is questionable 
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(Collischonn et al., 2008). The methodology described in Section 3.5.1 aimed at 

converting this low spatial resolution (625 km2) and high temporal resolution (3 hour) data 

into high spatial resolution (1 km2) of daily rainfalls (considered to be high resolution), 

thereby making such converted data ideal for daily streamflow estimation in small and 

medium size catchments. This was done by combining TRMM rainfall data with the 

brightness temperature (BT) data obtained from the high spatial resolution (1 km2) MODIS 

radiance data of band 31. This process is briefly explained below, but detailed explanations 

together with results follow in subsequent sub-sections (of Section 4.2.1). 

 

• TRMM rainfall data, which represent hourly rain rates for every three hour period, 

were converted into equivalent daily rain amounts. These daily rain amounts were 

used as input data to estimate the high spatial resolution of daily rainfall data.  

• Assuming that there is no rain on no-cloudy days, MODIS satellite data which have 

clouds were used in rainfall estimation. There were 1886 cloudy days within the 

study period, and according to Mount Tamboritha rain gauge, only 626 days rained 

within that period in the Macalister catchment. This shows that two third of the 

total cloudy day number did not yield any rain within the catchment. Since all 

clouds do not yield rainfall, MODIS BT data of bands 27, 31 and 32 were used in 

the separation of rain/no-rain clouds in cloudy images (Section 3.5.1.1). 

• All rain clouds identified under the above step do not produce rain. Therefore, a BT 

threshold was defined for using MODIS BT data to separate ‘real’ rain clouds 

(‘rainy clouds’) that produce rain from rain clouds. No-rain clouds and those clouds 

which failed with the BT threshold were not further considered in rainfall 

estimation (Section 4.2.1.1). 

• High spatial resolution rainfall was estimated using BT difference and low spatial 

resolution TRMM daily rainfall by employing a gamma function (Section 4.2.1.2). 

 

4.2.1.1 Brightness temperature threshold 

All rain images that were screened through the rain/no-rain cloud mask (i.e. based on BT 

differences) were further refined with a BT threshold. Del Beato (1981) revealed that 

clouds with low BT have a higher probability of rain. Some of the rain clouds selected 

through BT differences may have high BT, which may not yield rain according to Del 

Beato (1981). Therefore, it is essential to remove such rain clouds with high BT to acquire 
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accurate rainfalls, as they do not produce rain. To facilitate this, another criterion, (i.e. 

other than BT differences used in separation of rain/no-rain clouds) based on BT was used 

to identify clouds that produce rain. A similar criterion has been used in previous studies 

(Arkin, 1979; Arkin and Meisner, 1987; Grimes et al., 1999; Kuligowski, 2002). In order 

to remain consistent with those studies, MODIS BT of band 31 (BT31) was used to define 

the BT threshold that separated rainy clouds from the rain clouds. 

 

Data related to ground measured rainfall (at Mount Tamboritha station), BT31 and 235 K 

threshold line of BT are shown in Figure 4.1. The BT of 235 K is specially shown in 

Figure 4.1, since it has been used as the threshold level of BT in estimating rainfall in 

some previous studies (e.g. Arkin and Meisner, 1987; Huffman et al., 1997). Mount 

Tamboritha ground station is used as a representative meteorological station as it is located 

approximately in the middle of the Macalister catchment. 

 

Figure 4.1 indicates that BT31 follows a sinusoidal pattern over the catchment with low 

BT31 in winter (June to August) and high BT31 in summer (December to February). 

Winter is the main rain period in the catchment, while rainfall is intermittently distributed 

in the other seasons. As can be seen from Figure 4.1, rainfall of Mount Tamboritha station 

varies between 0 to 50 mm during the study period (i.e. 2003 to 2008), and the BT31 

values over Mount Tamboritha vary from 190 K to 250 K. 

 

Figure 4.1 demonstrates that BT31 is less than 235 K during most of the study period 

except during summer months. Therefore, the use of 235 K as a threshold in the Macalister 

catchment could cause an unwarranted increase in the number of rainy days, which could 

ultimately overestimate the amount of rain. This could happen particularly in winter since 

BT31 is always less than 235 K (Figure 4.1). This finding, together with the seasonal 

pattern of BT31, highlight the notion that the threshold for rainfall estimation should be 

adjusted seasonally. Hence, in order to achieve a better threshold for local rainfall 

estimation, two options were tested in this study. They are: (i) the mean seasonal value of 

BT31 and (ii) the mean monthly value of BT31. The mean annual value of BT31 over the 

catchment was not considered in this study since it is identical to the 235 K threshold. 
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The values of mean seasonal BT31 and mean monthly BT31 are shown in Table 4.1. This 

table shows that the mean seasonal BT31 values and the mean monthly BT31 values are 

always less than 235 K. In this table, summer is defined as December-February, autumn as 

March-May, winter as June-August, and spring as September-November. Table 4.1 shows 

that the mean monthly values slightly vary from their mean seasonal value. However, 

during winter months (Jun-Aug) the mean BT31 is approximately equal to its mean 

seasonal value. 

 

Table 4.1 Mean seasonal BT and mean monthly BT over the Macalister catchment 

Season 
Mean 

BT31 (K) 

 

Month 

Mean 

BT31 (K) Month 

Mean 

BT31 (K) Month 

Mean 

BT31 (K) 

Summer  231.7 Dec  228.7 Jan  232.7 Feb  233.4 

Autumn  229.0 Mar  232.5 Apr  228.5 May  225.9 

Winter  223.1 Jun  223.2 Jul  222.7 Aug  223.4 

Spring  227.4 Sep  225.5 Oct  227.9 Nov  228.8 

 

In order to determine the best threshold that should be used in this study from the proposed 

two thresholds (i.e. mean seasonal and mean monthly) and BT of 235 K, the following 

indices were used: (i) the Heidke skill score (HSS), (ii) the Probability of Detection (POD), 

(iii) the False Alarm Ratio (FAR), and (iv) the bias. Pixels of BT which are less than these 

thresholds were considered as ‘rainy’. The estimation procedures of these indices are 

explained in Section 3.5.1.2. 

 

The estimated HSS, POD, FAR and bias for the Macalister catchment with regards to 235 

K, mean seasonal and mean monthly values as thresholds are presented in Table 4.2. In 

Figure 4.1 Ground measured rainfall and BT of MODIS band 31 at Mount 

Tamboritha 
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addition to these calculated indices, the ‘perfect’ value of each index is shown in the table. 

The best performing value of these three thresholds compared to the perfect index value is 

also highlighted (in grey) for each index. 

 

Table 4.2 HSS, POD, FAR and bias values for the different thresholds – Macalister 

catchment 

  

BT 235 K as 

threshold 

Mean seasonal BT31 as 

threshold 

Mean monthly BT31 

as threshold 

Perfect value of 

index 

HSS 0.25 0.34 0.31 1 

POD 0.87 0.62 0.59 1 

FAR 0.44 0.34 0.35 0 

Bias 1.57 0.93 0.90 1 

 

Table 4.2 shows that the calculated HSS value for BT 235 K as threshold is the lowest in 

all three thresholds. A detailed observation shows an overestimation of MODIS BT pixels 

marked as ‘rainy’ when 235 K is used as threshold. This appears to be the main reason to 

have the lowest HSS value with BT 235 K as threshold. This observation is in agreement 

with Figure 4.1, as there are many days below the 235 K threshold, which are considered 

as rainy when using BT 235 K as threshold. In turn, this has resulted in a higher number of 

rain days compared to the actual rain days. Except for POD, all evaluation indices of BT 

235 K as threshold show poor performance compared to both mean seasonal and mean 

monthly thresholds. Table 4.2 shows that the mean seasonal BT as threshold performed 

slightly better than the mean monthly BT as threshold. Given those findings, the mean 

seasonal BT31 was used as the appropriate threshold for rainfall estimation in this study. 

 

4.2.1.2 Rainfall estimation function and results 

All rainy clouds of BT less than the relevant seasonal BT threshold were considered for 

rainfall estimation (Section 4.2.1.1). Initially, BT and TRMM rainfall data were separated 

into their relevant seasons. Then, the BT difference on a given day was calculated as the 

difference of the mean seasonal BT31 (as the threshold) and BT of MODIS band 31. 

 

The above BT difference and corresponding TRMM rainfall data of these days were then 

used as inputs to estimate rainfall in this study. The theory behind this estimation process 

was explained in Section 3.5.1.3. The application of this theory to estimate rainfall is 
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summarized in the following steps and in Figure 4.2 (which is reproduced from Figure 

3.12); 

1. The cumulative gamma probability function for the BT differences and for TRMM 

rainfall data was calculated on a seasonal basis (plots II and III). The optimum 

scale and shape parameters (Equations 3.9 and 3.10) were calculated separately for 

each season. The calculation of the cumulative probability function was then done 

for each pixel. 

2. The cumulative gamma probability value of the BT difference was selected for a 

particular day (plots I and II). 

3. The corresponding cumulative gamma probability of TRMM rainfall was obtained 

(plot III). 

4. The rainfall corresponding to this cumulative gamma probability to the day under 

consideration was assigned as the rainfall for that day. 

5. Steps 2 – 4 were repeated for all days in the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Rainfall estimation procedure using BT difference and TRMM rainfall 

(Reproduced from Figure 3.12) 
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The results of rainfall estimated using RS data in this study (hereafter estimated rainfall in 

this thesis) for a selected day (13 June 2004) are explained below by taking into 

consideration the spatial distribution of BT and rainfall. This will be followed by a 

quantitative analysis of estimated rainfall against TRMM rainfall on annual and seasonal 

bases. 

 

Figures 4.3, 4.4 and 4.5 show the calculated BT on 13 June 2004, TRMM rainfall and 

estimated rainfall (from MODIS BT data) over the Macalister catchment and its 

surrounding areas (surrounding catchments). The areas surrounding the Macalister 

catchment were included to show patterns of the MODIS data and the TRMM data in these 

figures. 

 

Figure 4.3 shows that BT has decreased from east and southeast to north and northwest. 

Figure 4.4 shows TRMM rainfall on the same day for the same area. Rainfall in this figure 

has increased from east and southeast to north and northwest; i.e. in the same direction 

where BT has decreased. This shows that the rainfall amount has increased (Figure 4.4) 

when BT has decreased (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 BT of band 31 (BT31) on 13 June 2004 
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Figure 4.5 shows the estimated rainfall using MODIS BT data on 13 June 2004. This 

figure shows that the north and west parts of the Macalister catchment received large 

amounts of rainfall on that day, but less rain within the Macalister catchment area. A 

comparison of Figures 4.4 and 4.5 shows that there is a similar pattern (i.e. over all from 

southeast to northwest) of rainfall between MODIS BT based rainfall estimates and 

TRMM data. In general, in the southeast area of the Macalister catchment, there has been 

zero millimeter rainfall, while the northwest area has experienced the highest amount of 

rainfall. The rainfall amount gradually increases from southeast to northwest in Figure 4.5, 

which is also the case of TRMM data on that day (Figure 4.4). 

 

 

 

 

 

 

 

 

 

Figure 4.4 TRMM rainfall on 13 June 2004 
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Figure 4.6 shows the annual values of estimated rainfall and TRMM rainfall data over the 

Macalister catchment. It should be noted that in this figure, annual rainfall values were 

calculated based on the spatial mean values of daily TRMM and estimated rainfall data. In 

general, the estimated rainfall is lower than the TRMM rainfall, except in 2006 which 

shows the lowest rainfall. The differences are higher in 2007 and 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Estimated rainfall on 13 June 2004 

Figure 4.6 Estimated annual rainfall and TRMM annual rainfall – Macalister catchment 
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In addition to the annual rainfall investigation, seasonal rainfall was also investigated over 

the catchment. Seasonal rainfall of TRMM and estimated rainfall are shown in Figure 4.7. 

During the summer seasons of the study period, estimated rainfall over the Macalister 

catchment yielded mixed results. The summers of 2006/07 and 2007/08 were highly 

underestimated, while for the majority of the summer seasons estimated rainfalls were 

underestimated. However, this figure also shows that the summer of 2005/06 was 

significantly overestimated. In general, during the study period estimated rainfalls for all 

autumn seasons (except the autumn of 2007) were overestimated. The wettest period of the 

year in this catchment was winter, and the figure shows that estimated rainfall matched 

fairly well with TRMM rainfall during the winters of 2003 and 2004. However, the other 

winter seasons were underestimated. All spring seasons, except in 2006, showed an 

underestimation in estimated rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Estimated seasonal rainfall and TRMM seasonal rainfall - Macalister 

catchment 
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4.2.1.3 Performances of rainfall estimation 

The estimated rainfall using MODIS BT data were compared with TRMM rainfall data. 

Figure 4.8 shows a scatter plot of TRMM rainfall and estimated rainfall, averaged over the 

catchment area. This figure shows three distinguishing features of rainfall estimation: (i) a 

reasonable match between TRMM and estimated rainfalls, (ii) zero TRMM rainfall but 

non-zero estimated rainfall (which means rainfall was not reported under TRMM, but 

rainfall has been estimated with MODIS radiance data) and (iii) zero estimated rainfall but 

non-zero TRMM rainfall (which means rainfall was reported with TRMM data but failed 

to estimate with MODIS radiance data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the methodology described in Section 4.2.1.2 with the aid of Figure 4.2, the major 

assumption was that there was a good relationship between TRMM rainfall and BT 

difference for each season of the year. Analysis of TRMM rainfall and BT difference data 

for different seasons found that these relationships are strong, and even with linear 

relationships correlation coefficients of 0.45, 0.62, 0.52 and 0.66 were found for Summer 

(December to February), Autumn (March to May), Winter (June to August) and Spring 

(September to November) respectively. As can be seen from these correlation coefficients, 

there are still mismatches between TRMM rainfall and BT difference data. The reason for 

the above distinguishing features (ii) and (iii) is due to these mismatches which were not 

explained by the correlation coefficients. 

 

Figure 4.8 Scatter plot of estimated daily rainfall and TRMM daily rainfall  
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The number of days with no-rain and rain with respect to estimated and TRMM rainfalls 

are presented in Table 4.3. This table shows that there are 1324 no-rain days during the 

study period under TRMM rainfalls, and 1250 no-rain days under estimated rainfalls. The 

table also shows that 448 days have been recorded as rainy days in TRMM within the total 

1250 no-rainy days of estimated rainfall. Similarly, 522 days have been recorded as rainy 

days in estimated rainfall within the total 1324 no-rainy days of TRMM. This shows that 

only half of the rainy days are correctly detected by the estimated rainfalls approach. As 

this could lead to miscalculations in streamflow, all mismatch rainfall days (i.e. where 

there is a mismatch between estimates and TRMM calculations) were investigated further 

and are presented in Figure 4.8. 

 

Table 4.3 Rain/no-rain days under TRMM and estimated rainfalls during the study period 

  TRMM no-rain days TRMM rain days Total days 

Estimated no-rain days 802 448 1250 

Estimated rain days 522 420 942 

Total days 1324 868 2192 

 

According to Table 4.3, there are 522 days classified as rainy under estimated rainfall, 

while there is no rain under TRMM rainfall for these days. Figure 4.9 shows the rainfall 

amount of these 522 days under estimated rainfall. This figure shows that the majority 

(more than 300 days) of these 522 rain days in this category (i.e. TRMM no-rain but 

estimated rain) has less than 1 mm rainfall. Approximately little less than 100 days out of 

the remaining days have rain in the range of 1 to 2 mm, which means that around 80 % of 

rain days identified as rainy days under estimated rainfall and no-rainy days under TRMM 

had rainfall less than 2 mm. Furthermore, Table 4.3 shows that 448 days are recorded with 

TRMM rain but no-rain under estimated rainfall. This could be the result of either rain 

clouds not being detected in MODIS data or rain occurring while BT temperature is higher 

than the particular seasonal threshold. This figure shows that the majority of rainfall under 

this category is less than 2 mm. 
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Other than rain and no-rain counts, Nash-Sutcliffe efficiency (Ef) and Root Mean Square 

Error (RMSE), which were explained in Section 3.9, were calculated by taking into 

consideration the TRMM rainfall magnitudes and the estimated rainfall magnitudes. The 

daily rainfall spatially averaged over the Macalister catchment was considered in the 

calculation of these performance indices. The Ef value between estimated and TRMM 

rainfall over the catchment is 0.43. The RMSE is 2.9 mm. 

 

4.2.2 Potential evapotranspiration estimation 

The energy balance method, which was explained in Section 3.5.2, was used to estimate 

potential evapotranspiration (PET) using RS data over the Macalister catchment. As was 

the case for rainfall estimation, the study period was considered as January 2003 to 

December 2008. 

 

In estimating PET using the energy balance method, the surface albedo plays an important 

role. Generally, the pyranometer or albedometer was used to measure the albedo. 

However, such measurements are site specific and unique to the atmospheric conditions in 

which the measurement was taken. To avoid these disadvantages, Liang (2001) proposed 

the RS based narrow band to broad band albedo estimation method. This method, which 

was explained in Section 3.5.2.1, was used in this study. 

Figure 4.9 Cumulative distribution of mismatching days of rain/no-rain under TRMM and 

estimated rainfall 
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The surface albedo values were calculated using RS data by considering non-cloudy day 

images, and were then compared with the surface albedo values obtained from the 

literature (Bastiaanssen, 1998; Zhou et al., 2006). Only non-cloudy images were 

considered in this calculation, since the reflectance of those images originated from ground 

surface. This comparison was done for different LULC classes within the catchment, and 

is summarized in Table 4.4. This table shows the minimum, maximum, mean and standard 

deviation (STD) of the calculated surface albedo values for all non-cloudy days during the 

study period. The mean surface albedo value was used for comparison purposes. As can be 

seen in this table, the mean values of calculated surface albedo on shrubs, crop and 

crop/grassland are similar to those values obtained from the literature. However, the mean 

value of calculated surface albedo in the evergreen forest areas is low compared to the 

literature value. These lower values of surface albedo consequently led to an 

overestimation of net energy available for evapotranspiration, which, in turn, resulted in 

higher estimates for PET using RS data. 

 

Table 4.4 Comparison of surface albedo of the Macalister catchment 

  
Evergreen Forest Shrubs Crop Crop/Grassland 

Calculated 

values 

Min 0.06 0.09 0.09 0.00 

Max 0.70 0.64 0.56 0.65 

Mean 0.12 0.16 0.17 0.24 

STD 0.05 0.06 0.05 0.08 

Literature 

values* 

 
0.18 0.15 

0.15 
0.24 

0.20** 

    *(Bastiaanssen, 1998) ** Water stressed crops 

 

The estimation of PET for the Macalister catchment during the study period was done 

separately for cloudy and non-cloudy days. This is because the estimation methods are 

slightly different for cloudy and non-cloudy days. The theory behind the estimation of PET 

over cloudy and non-cloudy days using RS data was explained in Sections 3.5.2.1 and 

3.5.2.2 respectively. 

 

 



4-16 
 

4.2.2.1 PET of non-cloudy days  

On average, 14 % of the days per year in the Macalister catchment were non-cloudy days 

during the study period. This represents nearly one non-cloudy day a week, but during 

winter (i.e. June to August) the gap between non-cloudy days was generally longer and 

during summer it was shorter. 

 

In this study, PET estimated using RS data (hereafter estimated PET) took place spatially 

at each grid point of the catchment. However, the four test locations in the catchment, each 

having a different LULC class, were selected in order to compare estimated PET with 

Penman Monteith (PM) based PET estimates. The PM based PET was considered as the 

base PET against which estimated PET was to be compared, since it is widely used (Allen 

et al., 1998; Utset et al., 2004; Allen et al., 2011) and readily available for the study area. 

The four test locations considered in this comparison process are Mt. Howitt, Mt. 

Tamboritha, Licola and Barkley River point. The required PM based PET was acquired 

from the SILO dataset for the selected locations. These selected test locations for the 

Macalister catchment are shown in Figure 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Test locations within the Macalister catchment 
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The selected test locations have differing LULC classes, which markedly affect 

evapotranspiration, and it is therefore important to specify the ground conditions to fully 

appreciate the detailed analysis. Evergreen forest is the predominant LULC class in 

Barkley River point and Mt. Tamboritha, while grassland and forest are predominant in 

Mt. Howitt. Grassland (pasture) is the dominant LULC class at Licola, but it is mixed with 

bushes and farmhouses. 

 

Figure 4.11 shows the comparison of estimated and PM based PET for non-cloudy days. 

This figure also shows that the estimated PET for non-cloudy days is in reasonable 

agreement with PM based PET. The estimated PET shows a better agreement in the range 

of 3.0 – 6.5 mm day-1 compared to 0.0 – 3.0 mm day-1. A detailed examination of the PET 

in the 3.0 – 6.5 mm day-1 range shows that there was better agreement between estimated 

PET and PM based PET during spring (September to November) and the first two months 

of summer (December and January). Although there are different LULC classes in these 

test locations, Figure 4.11 shows that for all test locations, the same pattern of PET is 

followed during the study period. However, slight differences in the magnitude of PET are 

observed at different locations due to the change of LULC and elevation. 

 

Figure 4.11 also shows that the maximum PET values estimated with RS data in all test 

locations are less than 6.5 mm day-1. This maximum value arises from Equation (3.16) 

during summer days. Furthermore, this figure shows that there are a few days of PM based 

PET which are greater than 6.5 mm day-1, and which appear to have been underestimated 

using the RS method. A detailed analysis of the results showed that these underestimated 

days were warmer (air temperature was mostly above 30 0C) than usual. Although the PET 

is affected by both net available energy and advective effect, the advective effect was not 

considered in the RS method in this study (since the relevant data to compute the advective 

effect cannot be obtained from RS data). The advective effect is higher on warmer days 

with high wind speed, thereby leading to an underestimation in estimated PET. The 

advective effect is considered in the PM method. 

 

Figure 4.11 further shows that the estimated PET was slightly underestimated compared to 

the PM based estimates, when PET is less than 3.0 mm day-1 in all test locations. A 

detailed analysis of these values showed that this occurred mostly in later part of autumn 

(late April to May) and winter (June to August). These are cooler days, and on such cool 
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days, as Barton and Meyer (2008) noted, the PM based PET is slightly overestimated, 

although net radiation is low and advective effect is less.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, Figure 4.11 shows a few highly underestimated days at each of the test 

locations. A day was defined as highly under or over-estimated in this chapter if the 

estimated PET deviates from PM based PET by at least one standard deviation of the PM 

based PET. This definition was used for both the Macalister and Ribb catchments and for 

both non-cloudy and cloudy days. Licola, Mt. Tamboritha, Barkley River Point and Mt. 

Figure 4.11 A comparison of estimated PET and PM-based PET for non-cloudy days - 

Macalister catchment 
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Howitt show 9.4, 5.3, 3.3 and 5.3 % of highly underestimated days respectively. As can be 

seen from the above values, Licola has the highest percentage of highly underestimated 

days. The detailed examination of calculated surface albedo in the region represented by 

Licola showed that the calculated albedo values were also higher than the literature values. 

It is thought that this higher calculated surface albedo value could be a result of the mixed 

LULC class around Licola. Estimated higher albedo values produce low available net 

radiation energy evapotranspiration, thus reducing the magnitude of evapotranspiration. In 

contrast, these low albedo values when used in PM based estimates produce higher 

evapotranspiration values. Highly overestimated days were not observed in any test 

location in the Macalister catchment. 

 

4.2.2.2 PET of cloudy days  

Similar to non-cloudy days, the estimated PET was computed at every grid point of the 

catchment for cloudy days, and these values were compared with the PM based PET 

values at the same test locations. These comparisons are shown in Figure 4.12. This figure 

illustrates that on some cloudy days, the estimated PET are nearly zero as a result of very 

low net energy available to PET. Mostly they represent either the total or the partial cloudy 

days during the winter season. During these days, the estimated cloud cover was 

overestimated, and as such reduced the actual sunshine hours. The reduced number of 

sunshine hours was directly related to the net energy available for evapotranspiration. 

Therefore, the RS based estimates produced PET which were of lesser magnitude than 

those of PM based PET. 

 

Similar to PET for non-cloudy days (Section 4.2.2.1), it was seen that the maximum PET 

estimated from RS data had not exceeded 6.5 mm/day, while the PM based estimates had a 

maximum of around 8 mm/day. As explained in Section 4.2.2.1, the PET is affected by 

both net available energy and advective effect. The advective effect was not considered in 

the RS method in this study (since the relevant data to compute the advective effect cannot 

be obtained from RS data). The advective effect is higher on warmer days with high wind 

speed, thereby leading to an underestimation in estimated PET. The advective effect is 

considered in the PM method. In estimating PET from RS data, the net available energy is 

computed from solar radiation and the maximum amount of solar radiation produces a 

maximum PET of 6.5 mm/day.  
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It is also observed in Figure 4.12 that some of the estimated PET during cloudy days were 

overestimated especially with the PM based PET ranging between 1.0 to 5.0 mmday-1. 

These days are mostly during mid and late spring (October and November) and the early 

days of summer (in December). An examination of the results during this overestimated 

period showed that the actual net radiation (measured by BOM) was significantly less 

compared to the values calculated from the RS based method. The actual net radiation was 

used to generate PM based PET in the SILO database; thus these PET values were found 

to be lower than estimated PET. The measured low net radiation values may be associated 

with localized haze which was not accounted for in the medium spatial resolution RS data 

used in this study. Furthermore, the low net radiation could have been measured as a result 

of smaller clouds which are not sensitive to the medium spatial resolution of the RS data 

used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.12 PM based PET and estimated PET for cloudy days - Macalister catchment 
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All test locations show a similar pattern in the comparison of PET estimation on cloudy 

days. A detailed analysis of the test locations revealed that Licola, Mt. Tamboritha, Mt. 

Howitt and Barkley River Point have 5.1%, 2.8%, 1.9% and 3.2% highly underestimated 

days respectively, whilst the percentages of highly overestimated days were 4.6%, 11.2%, 

13.3% and 7.6%. These values show that highly overestimated days are greater than the 

highly underestimated ones during cloudy day PET estimation. 

 

4.2.2.3 Mean annual PET 

Mean annual PET values (calculated by considering both non-cloudy and cloudy days 

together) at each test location are shown in Table 4.5. Considering the percentage 

difference, this table shows that the estimated PET on the mean annual basis at Mt. Howitt 

and Mt. Tamboritha are slightly higher compared to the PM based estimates. In contrast, 

the estimated PET is slightly lower than the PM based PET at Barkley River Point. The 

difference at Licola is considerably high. This large difference at Licola may be due to the 

existing mix class of LULC, (i.e. bushes and farm houses) which may have led to 

overestimated surface albedo values in estimated PET, which in turn underestimated the 

estimated PET compared to the PM based PET. 

 

Table 4.5 Estimated and PM based mean annual PET-Macalister catchment 

Test Location 
Mean Annual PET (mm)  

Difference (mm) 

 

% difference RS PM 

Barkley River 1001.3 1051.8 -50.5 - 4.8 

Mt. Tamboritha 1070.5 1036.4 34.1 3.3 

Licola 940.1 1098.2 -158.1 - 14.4 

Mt. Howitt 978.9 928.6 50.2 5.4 

 

4.2.2.4 Comparison of PET estimates for total period and seasons 

The potential evapotranspiration is mostly affected by physical factors such as net 

radiation (i.e. net available energy for PET), air temperature, pressure deficit and wind 

speed in the environment. RS data and air temperature were used as input data to compute 

net radiation in estimated PET estimation. However, wind speed and pressure deficit were 

not considered, and this may have caused differences in the estimated PET for both non-

cloudy and cloudy days compared to the PM based estimates, which specifically accounted 

for wind speed and pressure deficit. Similarly, the net short wave radiation is the most 
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significant component in estimating net available energy, which was calculated using the 

surface albedo in the estimated PET estimation, and hence the surface albedo is the most 

significant single variable in determining PET (Liang, 2001). The surface albedo was 

calculated from RS data which accounted for actual LULC on the surface. These 

calculated surface albedo values showed a difference from those values available in the 

literature corresponding to different LULC classes (Table 4.4). This difference may also 

have contributed to differences in the estimated PET compared to the PM based estimates 

which used literature values for surface albedo uniformly across the catchment. Allen et al. 

(2011) also noted that each PET estimation procedure has deficiencies because of the way 

these procedures model the complexity of the ET process, but the difference between 

estimated PET and real PET should be minimized for applications. They also reported that 

the range of this difference depends on the estimation procedure, and that the typical range 

for RS based estimates varies from 10 to 40 %. The mean annual PET comparison in Table 

4.5 for the Macalister catchment showed that the differences of estimated PET were within 

this range. 

 

The estimated PET and PM based PET estimates were considered as base values in 

comparing the estimated PET; however the accuracy of the PM based PET has been 

questioned especially on days with extreme PET values (Barton and Meyer, 2008). The 

PM method uses a uniform surface albedo value to estimate net available energy spatially 

and temporally. However, the RS based surface albedo considered the actual spatio-

temporal changes in the catchment. Furthermore, the PM method uses uniform values for 

soil heat flux and slope of saturation pressure curve for the entire catchment, which were 

not considered at all in RS based estimates. Therefore, the handling of surface albedo, soil 

heat flux and slope of the saturation curve in the two methods were different, and 

consequently produced different results. 

 

The RS based and PM based estimates were compared in statistical terms at the selected 

four test locations of the Macalister catchment (in Figure 4.10), and are shown in Table 

4.6. The comparison is shown for both the total period and the seasons. Winter, spring, 

summer and autumn are defined in this table by their monthly blocks of June-August, 

September-November, December-February and March-May respectively. Winter is the 

wettest period during the year followed by spring, while summer and autumn are drier. 
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*RMSE is expressed in mm day-1 

 

The performance measures used in this table – Root Mean Square Error (RMSE) and Nash-

Sutcliffe efficiency (Ef) – were explained in Section 3.9. 

 

Table 4.6 Performance indices of estimated PET and PM based PET - Macalister 

catchment 

Location Day Condition  
Total Period 

Seasons 

Winter Spring Summer Autumn 

RMSE* Ef RMSE Ef RMSE Ef RMSE Ef RMSE Ef 

Barkley 

River 

  

Non-cloudy days 0.99 0.68 0.89 -0.85 0.73 0.42 1.19 -0.66 0.79 0.52 

Cloudy days 1.02 0.61 0.63 -1.61 1.14 0.04 1.40 -0.30 0.98 0.28 

Both 1.02 0.64 0.66 -1.40 1.09 0.12 1.36 -0.23 0.82 0.50 

Mt. 

Tamboritha 

  

Non-cloudy days 0.93 0.72 0.74 -0.19 0.70 0.51 1.08 -0.49 0.90 0.42 

Cloudy days 1.10 0.56 0.48 -0.63 1.31 -0.22 1.49 -0.51 1.04 0.26 

Both 1.08 0.60 0.51 -0.47 1.24 -0.08 1.43 -0.37 0.92 0.42 

Licola 

  

Non-cloudy days 1.15 0.56 1.04 -1.94 0.81 0.24 1.41 -1.28 1.02 0.16 

Cloudy days 1.08 0.57 0.77 -2.82 1.01 0.23 1.39 -0.31 1.15 -0.13 

Both 1.09 0.58 0.80 -2.57 0.98 0.25 1.39 -0.33 1.04 0.13 

Mt. Howitt 

  

Non-cloudy days 0.86 0.73 0.87 -0.59 0.71 0.48 0.98 -0.22 0.76 0.53 

Cloudy days 1.11 0.48 0.50 -0.95 1.33 -0.38 1.53 -0.63 0.89 0.38 

Both 1.09 0.53 0.52 -0.76 1.26 -0.20 1.44 -0.45 0.78 0.52 

 

 

Table 4.6 shows that the calculated RMSE for the total period varies from 0.86 mm day-1 to 

1.15 mm day-1 for all day conditions (i.e. non-cloudy, cloudy, and both cloudy and non-

cloudy). All locations except Licola showed slightly lower RMSE during non-cloudy days 

compared to the cloudy days. Table 4.6 also shows that the magnitude of RMSE changes 

with season, with the highest RMSE occurring during summer. Spring shows the highest 

variation in seasonal RMSE (0.70 to 1.33) and autumn shows the lowest (0.76 to 1.15), 

irrespective of the day conditions. The RMSE of non-cloudy days is less than in other day 

conditions in all seasons except winter. 

 

Table 4.6 shows that Ef over the Macalister catchment during the total period represents 

higher values irrespective of the day conditions, but is reduced with seasons. The Nash-

Sutcliffe efficiency values vary from 0.48 to 0.72 during the total period over all test 

locations. Generally, Ef of non-cloudy days at all test locations show higher values 

compared to cloudy days and both non-cloudy and cloudy day conditions during the total 

period, due to more accurate estimates of surface albedo and net available energy on non-
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cloudy days than on cloudy days. The highest Ef value was observed for non-cloudy days 

at Mt. Tamboritha and the lowest at Licola for the same day condition. The findings in 

terms of RMSE and Ef values are consistent at each location, showing the expected inverse 

correlation of RMSE and Ef. 

 

The seasonal analysis shows a mixed result in Ef values. Autumn shows highest Ef value in 

all test locations irrespective of the day condition. Spring has comparatively higher Ef than 

winter and summer, and both winter and summer seasons show negative Ef under all day 

conditions. Table 4.6 shows that non-cloudy day Ef values perform better than those of the 

other day conditions during seasons. When Ef values for the total period are compared with 

those of the seasons, it was found that the total period Ef values were not within the range 

of seasonal Ef values. This has also been observed by Wang et al. (2006) and Sachindra et 

al. (2013). This is because of the significant difference between the total period mean 

(which was used to calculate Ef for the total period) and the seasonal mean of the particular 

seasons (which was used to calculate for the seasonal Ef). 

 

Mt. Tamboritha and Mt. Howitt show better results than the other locations for both total 

period and seasons. Both these locations have relatively homogenous LULC class, while 

the other two locations have mixed LULC classes. This show that the estimated PET are 

relatively closer to the PM based PET over homogenous LULC classes during the total 

period as well as the seasons. This is mainly due to the similarity and consistency of 

surface albedo values computed from RS data for the catchment (used in estimated PET) 

and obtained from literature (used in PM based PET estimates). Furthermore, Licola shows 

the poorest performance with both RMSE and Ef compared to the other locations during the 

total period as well as the seasons. This is because Licola has mixed LULC, which has 

been considered in the RS based method in estimating surface albedo. Mixed LULC 

information is, however, not considered in the PM method in estimating surface albedo. 

 

4.2.3 Landuse/landcover classification 

The spatial distribution and the extent of the landuse/landcover (such as forests, meadows, 

agricultural land, urban, bare and water bodies) in a catchment influence the spatio-

temporal dynamics of evapotranspiration, surface runoff, soil moisture and ground water 

recharge. Therefore, related landuse/landcover (LULC) information in a catchment is 
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essential to successfully estimate streamflow using a catchment process model 

(Wegehenkel et al., 2006). In order to classify LULC, the RS based image classification 

approach was proposed in Section 3.5.3. A single image (Landsat 5 TM image taken on 

23rd November 2006) which is free of clouds, haze and distortion, was selected for the 

LULC classification of the Macalister catchment. A single image was used in this study 

since no major changes occurred in the LULC in the Macalister catchment during the 

study period (2003 to 2008). 

 

Seven bands of Landsat TM (Table 4.7), except the thermal band (band 6), were 

considered in the classification process. The thermal band was not considered in this study 

since its spatial resolution is considerably different (120 m) to the other bands (30 m). The 

remaining six non-thermal bands were used in the Principal Component Analysis (PCA) to 

produce a reduced number of variables to use in the LULC classification. PCA produces a 

reduced number of variables without losing information of the original variables. This step 

was followed, since LULC classification is difficult with many variables. 

 

Table 4.7 Band information of the Landsat 5 TM sensor 

Band number Band name Band width (µm) Spatial resolution (m) 

1 Blue 0.45~0.52 30 

2 Green 0.52~0.60 30 

3 Red 0.63~0.69 30 

4 NIR* 0.76~0.90 30 

5 MIR** 1.55~1.75 30 

6 Thermal 10.4~12.50 120 

7 MIR 2.08~2.35 30 

* NIR – Near infrared, ** MIR- Mid infrared 

 

4.2.3.1 Principal Component Analysis 

Principal Component Analysis can be used to transform correlated image bands in to a 

new set of uncorrelated variables that are arranged based on the magnitude of variance 

explained in the original data (Eastman and Fulk, 1993). Therefore, PCA has been used in 

image classification to reduce the number of bands and to enhance the information on the 

image (Gamage et al., 2007; Madugundu et al., 2014). As outlined in Section 4.2.3, PCA 

employed six bands of the Landsat 5 TM image. The results of the PCA are presented in 
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Figure 4.13. This figure represents the cumulative variance of each Principal Component 

(PC), with the x-axis showing the PCs. Note that Σ%R� = %R� + %R!+. . . #%R� in the x-

axis, where i = 2, 3, 4, 5 and 6. It shows that the first PC represents almost 85% of the 

image variability, and the first three PCs represent more than 99% of its variability. This 

implies that first three PCs can be used to adequately represent all the bands of the original 

image without losing content information. Therefore, the first three PCs were selected to 

classify LULC over the catchment. In addition to these three PCs, NDVI which was 

calculated separately to PCA, was used in the classification. NDVI was used in the 

classification, since it facilitates the identification of vegetation information and reduces 

the effect of mountain shadows. Hence, a final image with four variables (i.e. the above 

first three PCs and NDVI) was used in the LULC classification. 

 

 

 

 

 

 

 

 

 

4.2.3.2 Results of landuse/landcover classification 

The above mentioned final image was used to classify the LULC classes in the Macalister 

catchment. The available LULC classes were identified during the field data collection 

survey (ground-truth data collection). The survey covered sample areas of each LULC 

available within the catchment area. Half of the field data (i.e. ground-truth data) was used 

in image training (Section 3.5.3.2). Then, all pixels of the trained image were categorized 

into LULC classes they mostly resemble using the maximum likelihood classifier. The 

remaining half of the ground-truth data (i.e. sampling areas) was used to assess the 

Figure 4.13 PCA components and their cumulative variance 
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classification accuracy (Section 3.5.3.4). A detailed description of the methodology of 

LULC classification was given in Section 3.5.3.3. 

 

The results of the LULC classification of the Macalister catchment are shown in Figure 

4.14. The area covered by each LULC class is presented in Table 4.8. As can be seen from 

Figure 4.14 and Table 4.8, forests represent the majority of LULC. Forest in the Macalister 

catchment can be divided into three classes based on the area covered by its crown canopy 

(i.e. top canopy cover). They are: closed forest (81%-100% crown canopy); open forest 

(50%-80% crown canopy); and woodland forest (20%-50% crown canopy) (Bureau of 

Rural Sciences, 2009). 

 

According to the classification results (Figure 4.14), 51.1% of the catchment area is 

covered with closed forest, which can be seen from north to south of the catchment along 

its west and east borders. Open forest covers 33.7% of the catchment area and is mostly 

located in the middle part of catchment. Woodlands forest is the least within all forest 

classes and is scattered all over the catchment. Eucalyptus is the dominant plant species in 

all three classes of forest in this catchment, and represents nearly 93% of the catchment 

area. 
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Following the forest cover (i.e. closed forest, open forest and woodlands forest), pasture 

and grasslands are the next dominant LULC classes. They cover approximately 6% of the 

catchment area. A magnified view of the classified LULC image shows that they are 

mixed with each other. This is mainly because of the similar signature of these LULC 

classes. Whilst pasture is dominant along the Macalister River, grasslands are scattered 

throughout the catchment. The remaining areas represent bushes, bare/barren lands and 

Figure 4.14 Landuse/landcover classes of the Macalister catchment (after 

image classification) 
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water bodies, which cover a little more than 1% of the catchment area. Rivers, streams and 

a few farm ponds represent the water bodies, but they cover a negligible area. Other than 

these classes of vegetation, roads and houses are present but in insignificant proportions. 

Therefore, a great attention was not paid to classify these classes. 

 

Table 4.8 Areas of the catchment covered by different LULC classes (after image 

classification) 

LULC class Area (ha) Percentage 

Closed forest 76931.8 51.1 

Open forest 50713.2 33.7 

Woodland forest 12297.0 8.2 

Pasture land 4258.2 2.8 

Water bodies 1.7 0.0 

Grasslands 4646.2 3.1 

Bare/barren land 526.1 0.3 

Bushes 1201.8 0.8 

Total 150576.0  100.0 

 

4.2.3.3 Accuracy assessment of the landuse/landcover classification 

Both descriptive and analytical techniques which were described in Section 3.5.3.4, were 

used to assess the accuracy of LULC classification using the half of the data that was not 

used for image training purposes. They are discussed separately in the following 

subsections. 

 

(a) Descriptive techniques 

With regards to the descriptive techniques, the producer’s accuracy (the probability of 

correctly classifying an LULC class relevant to its reference total), user’s accuracy (the 

probability of correctly classifying an LULC class in line with the image that actually 

represents that LULC class on the ground) and overall accuracy (the number of correctly 

classified samples in the total number of samples), notions of which have been explained 

in Section 3.5.3.4, were calculated. These accuracy figures were compared using that half 

of the ground-truth data (i.e. sample area) that was not used for training purposes (i.e. for 

identifying the signature of each LULC class in the satellite image) of the LULC 
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classification. The results of the LULC classification accuracy are traditionally presented 

as a matrix (which is called the contingency matrix), and is shown in Table 4.9. 

 

Even though Congalton (1991) mentioned that each LULC class should have a minimum 

of 50 samples for accuracy assessment (as a rule of thumb), it is believed that the number 

of sample points used in this study is sufficient to accurately represent the study area 

because of its relative size, less heterogeneity and less number of LULC classes. Table 4.9 

shows that the number of sample points which was used to assess the LULC accuracy is 

higher than 50 in all forest classes and pasture lands (refer to producer’s total), while 

grasslands were close to that margin. The number of sample points which was used for 

accuracy assessment is significantly less in the remaining LULC classes, but they represent 

an insignificant area in the catchment. Thomlinson et al. (1999) have suggested setting the 

individual LULC class accuracy threshold as 70% and the overall accuracy threshold as 

85%. 



4-31 
 

Table 4.9 Contingency matrix of the landuse/landcover classification – the Macalister catchment 

 

 

 

 

 

 

 

 

 

 

 

 

*Producer’s total represent the number of samples used in accuracy assessment  

  
1 2 3 4 5 6 7 8 9 10 

Closed 
forest 

Open 
forest 

Woodland 
forest 

Pasture 
land 

Water 
bodies 

Grasslands 
Bare/barren 

land 
Bushes 

User's 
total 

User's 
accuracy 

1 Closed forest 61 3 5 0 0 3 0 2 74 82.4 

2 Open forest 3 59 6 3 0 2 0 1 74 79.7 

3 Woodland forest 2 4 51 1 0 4 1 2 65 78.5 

4 Pasture land 1 3 2 51 0 1 2 0 60 85.0 

5 Water bodies 0 0 0 0 3 0 0 0 3 100.0 

6 Grasslands 0 1 1 4 0 37 0 2 45 82.2 

7 Bare/barren land 0 0 0 2 0 0 16 2 20 80.0 

8 Bushes 0 0 0 6 0 0 2 20 28 71.4 

9 Producer's total* 67 70 65 67 3 47 21 29 369   

10 
Producer's 
accuracy 

91.0 84.3 78.5 76.1 100.0 78.7 76.2 69.0   80.8 
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Table 4.9 shows that the individual accuracy level of all three forest classes (which cover 

about 93% of the catchment area) is more than 78.5% in both producer’s perspective of 

accuracy and user’s perspective of accuracy. For example, the producer’s accuracy and user’s 

accuracy of closed forest is 91% and 82.4% respectively. This can be explained by the fact 

that although 91% of closed forest areas have been correctly identified as closed forest, only 

82.4% of the areas called closed forest are actually closed forest. 

 

Closed forest shows the highest producer’s and user’s accuracy in all three forest classes 

followed by open forest and woodland forest. This table also shows that the samples used to 

assess the accuracy of a given class can falsely be found in some other classes. A high 

proportion of such false classification in a given forest class falls under the remaining two 

forest classes (cells covered by the first three columns and the three rows in the table). This is 

especially due to the similar signatures of these classes in the image used to for classification 

purposes. Other than that, this table shows that all forest types (the first three rows) signatures 

are mixed with grasslands (column 5) which is the main reason to have less user’s accuracy in 

comparison with producer’s accuracy. 

 

The producer’s accuracy of the pasture is approximately 76% (Table 4.9). Table 4.9 also 

shows that the samples of this particular class of LULC is also classified with open forest, 

grasslands, bare/barren lands and bushes (column number 4). This is mainly because the 

pasture lands have a diverse signature which overlaps with those classes. Pasture lands are 

more similar to grasslands in vegetation structure (grass height, density and seasonality), 

thereby making it difficult to separate the signature of those two classes. It is also observed 

that bushes are more vulnerable to be classified as pasture lands as bushes are located at the 

edges of pasture lands. User’s accuracy of the pasture is as high as 85% whilst signature is 

mixing with other LULC classes such as open forest, grasslands and bare/barren lands. 

 

Water bodies represent a negligible area in the catchment, being represented only by the 

Macalister River, its tributaries and farm ponds. Grassland shows 78.7% and 82.2% of 

producer’s accuracy and user’s accuracy respectively (Table 4.9). The table also shows that 

the signature of grassland is mixed with all three forests classes (column number 6). This is 
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possible since grasslands can depict a very bright signature (higher NDVI value) which is 

equivalent to dense forest during its growth stage (especially during late winter to early 

summer). Furthermore, grassland is erroneously classified with pasture, since both classes 

share a common grass signature. 

 

The results show that bare/barren LULC class represents a small percentage (0.3%) of land in 

the Macalister catchment. The levels of accuracy in both producer’s and user’s classification 

are higher in this LULC class than the recommended level (Thomlinson et al., 1999). 

 

Table 4.9 shows that the overall accuracy, which represents the correctly classified samples 

(i.e. the sum of the diagonal values in the contingency matrix) in relation to the total number 

of samples, of the LULC classification is 80.8%. This figure is marginal to the threshold 

highlighted by Thomlinson et al. (1999). 

 

(b) Analytical techniques 

The kappa coefficient, an analytical measurement of the classified LULC map accuracy is 

calculated, and presented in Table 4.10, together with user’s accuracy. This is presented with 

user’s accuracy since user’s accuracy is important in further applications. This coefficient is 

an indicator for measuring the significance of the contingency metrics (in Table 4.9) against 

the chance agreement which arises due to a given LULC class randomly classified to correct 

LULC class. The kappa coefficient value varies from 0 to 1. 1 means that observed 

classification accuracy (user’s accuracy) in the classified map is 100 times better than the one 

resulting from chance. At most times, the kappa coefficient (converted to a percentage) is a 

little less than the observed classification accuracy value due to the fact that both contingency 

calculations and the kappa coefficient use different forms of information from the Table 4.9. 

However, a large difference between the contingency matrix and the kappa coefficient reveals 

that the classification is not reliable. Table 4.10 shows that differences between those two 

accuracy indices are small. 
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Table 4.10 Kappa statistics and user’s accuracy of the landuse/landcover classification 

 LULC class Kappa coefficient User’s accuracy 

Closed forest 0.79 82.4 

Open forest 0.75 79.7 

Woodland forest 0.74 78.5 

Pasture land 0.82 85.0 

Water bodies 1.00 100.0 

Grasslands 0.80 82.2 

Bare/barren land 0.79 80.0 

Bushes 0.69 71.4 

Overall 0.77 80.8 

 

According to Bharatkar and Patel (2013), a kappa coefficient less than 0.4 represents a poor 

classification, 0.4 to 0.75 represents a good classification, and more than 0. 75 represents an 

excellent classification.  

 

Table 4.10 shows that the kappa coefficients of all individual LULC classes are either good or 

excellent based on Bharatkar and Patel (2013). The kappa coefficient of open forest, woodland 

forest and bushes can be rated as ‘good’ while that of closed forest, pasture lands, grasslands, 

water bodies and barren lands can be rated as ‘excellent’. The overall kappa coefficient is 

0.77, and can thus be rated as ‘excellent’. 

 

Both the descriptive and analytical techniques used in this study for the accuracy assessment 

of image classification showed that the results of the classification are reliable and suitable for 

further applications. On this basis, this LULC classification results were subsequently used as 

input data for the catchment process model to estimate streamflow in the Macalister catchment 

(Section 4.3). 

 

4.3 Catchment process modelling 

As outlined in Section 3.6, the Soil and Water Assessment Tool (SWAT) was used to estimate 

daily streamflow in catchment process modelling. Several SWAT models of the Macalister 

catchment were developed with different data to investigate how RS based input data perform 
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on daily streamflow estimation. Initially, ground measured meteorological data with LULC 

data (Section 4.2.3) and FAO-based soil data were used to set up the model. 

 

Daily rainfall, minimum and maximum temperature, solar radiation, wind speed and relative 

humidity were used as ground measured meteorological variables for this study. All variables 

except rainfall were used to compute PET within the SWAT model. The Penman-Monteith 

method which is an in-built option of SWAT was used in this regard. The SWAT model set up 

with these ground measured data (including SWAT derived PET data) was considered as the 

base model in this study. 

 

The objective of the base model is to calibrate the model parameters. Then these calibrated 

model parameters were used with later models which had used RS based variables as inputs. 

Estimated rainfall and estimated PET from RS data were used as RS based input variables in 

this process. RS based LULC and FAO-based soil data were kept unchanged throughout the 

modelling process. The sequence below was used for replacing ground measured inputs with 

RS based inputs. 

 

(1) PET which was computed internally by SWAT model (hereafter SWAT derived PET) 

using ground measured data was replaced with PET estimated using RS data, while 

keeping ground measured rainfall data unchanged in the model. 

(2) Ground measured rainfall data were replaced with estimated rainfall, while keeping 

SWAT derived PET unchanged. 

(3) Both ground measured rainfall and SWAT derived PET were replaced with estimated 

rainfall and estimated PET. 

 

The setting up of a SWAT model to a catchment was discussed in Section 3.6.2. The 

hydrological response unit (HRU) is the basic element which generates runoff in a 

subcatchment of the SWAT model. Defining HRUs in a subcatchment is based on that 

subcatchment LULC, soil class and slope (Neitsch et al., 2002). There are three options 

available to define HRUs with LULC, soil class and slope. They are: 
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I. Through the use of dominant LULC, soils or slope – One HRU is created to represent 

a subcatchment. This HRU will represent the dominant LULC, soil, and slope class in 

the subcatchment. 

II. The dominant HRU – One HRU is created to represent a subcatchment. However, this 

HRU represents the dominant unique combination of LULC, soil, and slope class in 

the subcatchment. 

III. Multiple HRUs – Multiple HRUs are created in the subcatchment, based on the user’s 

defined percentage of LULC, soil, and slope class. 

 

The third option was used in this study to define HRUs, since the catchment elevation and 

LULC of the Macalister catchment vary significantly from upstream (north) to downstream 

(south). In the case of the Macalister catchment, 30% of LULC over subcatchment, 20% of 

soil class over LULC, and 20% of slope class over soil area were used to define HRUs. LULC 

was given a higher weight since this variable has more effect on the SCS curve number. As 

explained in Section 3.6.1, surface runoff is the major component of water balance in the 

SWAT model (Equation 3.35) and is estimated through the SCS curve number method. 

 

The results and performances of each of the aforementioned models are discussed in the 

following sub sections. This performance comparison shows the effectiveness of the 

catchment models which used RS based input data of rainfall and PET. 

 

4.3.1  Model calibration and validation with ground measured data 

The procedures outlined in Section 3.6.2 was followed to set up the SWAT model of the 

Macalister catchment with ground measured data. Then the model was calibrated for the 

period 2003 - 2006 and validated for the period 2007 - 2008. Observed streamflow data of the 

Macalister River at Stingybark Creek were used during the calibration period to optimize the 

calibration parameters. Then, the model was run with those optimum parameters for the period 

of validation. The theoretical ranges which are allowed in the SWAT model and the optimum 

value of the most sensitive parameters obtained at the end of auto-calibration are given in 

Table 4.11. The existing literature shows that many of those parameters listed on Table 4.11 
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are the most sensitive parameters in streamflow estimation with SWAT (Sther et al., 2008; 

Setegn, 2010; Betrie et al., 2011a; Bastiaanssen et al., 1998a). 

 

CN2 varies according to different LULC, hydrologic condition (poor or good) and Hydrologic 

Soil Group (i.e. A, B, C, D) (Chow, 1959; Neitsch et al., 2002). The Hydrologic Soil Group 

(HSG) in this modelling exercise was determined based on FAO soil class over the catchment 

area. The hydrologic condition depends on various ground conditions such as the density and 

canopy of vegetative areas, the amount of year-round vegetation cover, the percentage of 

residue vegetation cover on the land surface and the degree of surface roughness (USDA, 

1986). The hydrological condition is categorized as poor if these conditions impair infiltration 

and cause higher runoff, and as good if these conditions encourage infiltration and reduce 

runoff. The LULC generated with RS data imply that the Macalister catchment is in ‘good’ 

hydrologic condition throughout the year. Different CN2s were used to represent different 

LULC within this study. The remaining parameters in Table 4.11 were considered to have a 

single value for the entire catchment. This is due to the unavailability of data at a finer spatial 

scale in the catchment. These parameters are also more relevant to the entire catchment than 

for individual subcatchments, HRUs or different LULC classes. 
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Table 4.11 SWAT model parameters used for calibration purposes 

Parameter Description Range* 

Optimum 

value 

Parameters the govern surface water response  

CN2 Curve Number II 35-98 
481, 552, 603, 
584, 855, 656 

ESCO Soil evaporation compensation factor 0‐1 0.2 

SOL_AWC Available soil water capacity 0-1 0.57 

Parameters that govern subsurface water response  

GW_REVAP Groundwater re evaporation coefficient 0.02‐0.2 0.16 

REVAPMN 
Threshold depth of water in the shallow aquifer for re 
evaporation to occur (mm) 0‐500 90.9 

GWQMN 
Threshold depth of water in the shallow aquifer required 
for return flow to occur (mm) 0‐5000 605.16 

GW_DELAY Groundwater delay (days) 0‐50 5.38 

ALPHA_BF Base flow recession constant 0‐1 0.44 

RCHRG_DP Deep aquifer percolation fraction 0‐1 0.83 

Parameters that govern catchment response 

CH_K2 
Effective hydraulic conductivity in main channel 
alluvium (mm h‐1) 0.01‐150 13.8 

SURLAG Surface runoff lag coefficient (day) 0‐10 6.78 

1closed forest, 2open forest and woodlands, 3pasture, 4grasslands, 5bare/barren and 6bushes 

*(Neitsch et al., 2010) 

 

Figure 4.15 shows measured streamflow and the results obtained from the base model (i.e. 

estimated daily streamflow for the model developed with ground measured data including 

SWAT derived PET data) of the Macalister catchment for the period 2003 to 2008 (i.e. both 

calibration and validation periods). Measured streamflow of the Macalister catchment (i.e. the 

gauge near Stringybark Creek) shows that streamflow is high during the ‘July to November’ 

period of every year. The lowest streamflow in a given hydrological year is recorded during 

the ‘March to May’ period. According to these observations, a hydrological year can be 

divided into two main seasons: wet (i.e. winter and spring) and dry (i.e. summer and autumn). 

Out of measured streamflow during the study period, years 2003 to 2005 reveal the average 

streamflow conditions. The streamflow of year 2007 is above average (extremely high flow) 

while years 2006 and 2008 are below average. 

 

 

 



4-39 
 

It was observed (Figure 4.15) that streamflow estimation over the Macalister catchment with 

the base model is in good agreement with the measured streamflow, both for the calibration 

and validation periods. However, estimated daily streamflow is overestimated in the wet 

season of year 2006 which is the driest year in the catchment within the study period. Figure 

4.16 shows the scatter plots of estimated streamflow versus measured streamflow with their 

coefficient of determination, separately for calibration and validation periods. The scatter plot 

of the calibration period shows a slight overestimation in low flows, while a slight 

underestimation in high flows. The coefficient of determination of estimated and measured 

streamflows in the validation period is slightly better than that of the calibration period. 

 



4-40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calibration 

Validation 

Figure 4.15 Measured and estimated streamflow of the Macalister catchment – base model 

 

(a) Calibration period (b) Validation period 

Figure 4.16 Scatter plots of the measured and estimated streamflow of the Macalister catchment – base model 
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Figure 4.17 shows the same result as the base model with measured streamflow for the 

seasons during the study period. It should be noted that December–February, March–May, 

June–August and September - November are considered as summer, autumn, winter and 

spring respectively in this study. The seasons during calibration period and validation period 

are shown separately in this figure. 

 

In general, Figure 4.17 shows that the streamflow of the dry season (i.e. summer and autumn 

seasons) is mostly overestimated, especially during the calibration. SWAT does not allow 

different parameters for different months or seasons, and therefore the parameter set obtained 

from calibration was the best in modelling streamflows in all seasons, which include both dry 

and wet seasons.  

 

The streamflow of the wet season (i.e. winter and spring) is well estimated in both the 

calibration and validation periods. It is noted that the magnitude of streamflow during the 

calibration period of winter is much lower than that of the validation period. This is in line 

with the observation of Figure 4.15, with very high flows in year 2007. 

 

The estimated streamflow of the base model was further analyzed with the Root Mean Square 

Error (RMSE) and the Nash-Sutcliffe efficiency (Ef), other than the coefficients of 

determination which were shown in Figures 4.16 and 4.17. The estimation procedure of RMSE 

and Ef were explained in Section 3.9. Table 4.12 summarizes all performance indices for both 

the total period (both calibration and validation separately) as well as individual seasons (both 

calibration and validation separately for each season). 
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Figure 4.17 Scatter plots of the measured and estimated streamflow for different seasons of the 

Macalister catchment – base model 

Summer (calibration) 

Autumn (calibration) 

Winter (calibration) 

Spring (calibration) 

Summer (validation) 

Autumn (validation) 

Winter (validation) 

Spring (validation) 
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The performance indices of the total period show slightly better streamflow estimation during 

the validation period compared to the calibration period. However, the seasonal performance 

indices are different to the total period values and they are different in different seasons. The 

performance indices of Table 4.12 show that streamflow estimation during the wet season (i.e. 

winter and spring) is better than that of the dry season (i.e. summer and autumn). Among all 

seasons, autumn is estimated with a negative Ef. It was observed that the magnitude of 

measured streamflow of autumn seasons is either very low or zero during the calibration 

period. During these extremely low streamflow periods, the SWAT model overestimated the 

streamflow, thereby producing a negative Ef. The streamflow of autumn of 2007, which is wet 

compared to other autumn seasons during the study period, has modeled well. This has had a 

favourable impact on the performance of the validation period during the autumn season. 

 

Table 4.12 RMSE (in Ml/day) and Ef values of the streamflow estimation using measured data 

- base model 

Period Performance Index Calibration Validation 

Total 

  

Ef 0.73 0.76 

RMSE 469 487 

Spring 

  

Ef 0.74 0.62 

RMSE 584 677 

Summer 

  

Ef 0.35 0.75 

RMSE 214 313 

Autumn 

  

Ef -17.25 -2.66 

RMSE 365 482 

Winter 

  

Ef 0.65 0.78 

RMSE 562 1005 

 

4.3.2 Streamflow estimation with remote sensing based input variables 

After setting up and calibrating the SWAT model with ground measured data (i.e. the base 

model in Section 4.3.1), the ground measured rainfall, and SWAT derived evapotranspiration 

were replaced with estimated rainfall (Section 4.2.1) and estimated PET (Section 4.2.2). These 

substitutions were initially done one at a time, and then together. The results of these different 

SWAT configurations are discussed in the subsections below. The different configurations 

are: 
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• A model with estimated PET and ground measured rainfall 

• A model with estimated rainfall and SWAT derived PET 

• A model with estimated rainfall and estimated PET 

In these models, there were no separate calibrations and validations, thus the models were run 

from 2003 to 2008. The calibrated model parameters of the base model were used as model 

parameters (Section 4.3.1) in these model runs. 

 

4.3.2.1 Model with estimated PET and ground measured rainfall  

The PET of the base model which were computed using ground measured meteorological data 

(SWAT derived PET) were replaced with estimated PET to generate daily streamflow in this 

model. The results of the model run are shown in Figures 4.18 and 4.19. The calibration and 

validation periods are shown in Figure 4.18 to maintain the consistency with the base model 

(Figure 4.15). Figure 4.18 shows that the estimated daily streamflow is in a good agreement 

with the measured streamflow, which is similar to Figure 4.15. Figure 4.19 shows the same 

results in scatter plots separately for calibration and validation periods of the base model; this 

is consistent with Figure 4.16. This figure shows that the coefficients of determinations of 

calibration and validation periods are also similar to those of base model. 
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Calibration 

Validation 

Figure 4.18 Measured and estimated streamflow of the Macalister catchment – model with estimated PET and ground measured rainfall 

(a) Calibration period (b) Validation period 

Figure 4.19 Scatter plots of the measured and estimated streamflow of the Macalister catchment with estimated PET and ground 

measured rainfall 
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The output of the model run was used with observed (or measured) streamflow to assess the 

performance of this version of the model. They are presented in Table 4.13. A comparison of 

Table 4.12 and Table 4.13 shows similar results in both estimations, not only for the total 

period but also for individual seasons. 

 

Table 4.13 Performance indices of the streamflow estimation – model with estimated PET and 

ground measured rainfall data  

Period Index Calibration period Validation period 

Total period 

  

Ef 0.66 0.77 

RMSE (Ml/day) 538 477 

Spring 
Ef 0.74 0.62 

RMSE (Ml/day) 582 677 

Summer 
Ef -0.24 0.74 
RMSE (Ml/day) 409 314 

Autumn 
Ef -17.5 -3.24 

RMSE (Ml/day) 367 519 

Winter 
Ef 0.46 0.78 

RMSE (Ml/day) 699 1005 

 

The scatter plots of seasons in Figure 4.18 (the model with estimated PET and ground 

measured rainfall) were not considered since the estimated daily streamflow of the base model 

and the model with estimated PET are almost similar. 

 

4.3.2.2 Model with estimated rainfall and SWAT derived PET 

Daily rainfall which is estimated using RS data were used as input in this model. Daily values 

of the estimated rainfall were spatially averaged within each subcatchment and fed into the 

SWAT model at the centroid of the subcatchment. PET derived by the SWAT model was not 

replaced in this model. The estimated streamflow from this model and measured streamflow 

are shown as a line plot in Figure 4.20. The same results are shown as scatter plots for the 

calibration and validation periods (although calibration and validation were not done 

separately for this model) separately in Figure 4.21. 
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Figures 4.20 shows a poor estimation of streamflow with estimated rainfall. Streamflow 

during the wet season is more poorly estimated than the dry season with estimated rainfall. 

Figure 4.21 shows that most of the streamflow greater than 3000 Ml/day are underestimated in 

both the calibration and validation periods. When comparing Figures 4.20 and 4.21 with their 

counterpart figures of the base model (i.e. figures 4.15 and 4.16), it is seen that the estimation 

of streamflow from this version of the model is not as good as that of the base model or the 

model with estimated PET (Section 4.3.2.1). Note that the model with the estimated PET had 

produced similar results to these of the base models (Section 4.3.2.1). 

 

Figure 4.22 is based on the same model results, but they are shown separately for seasons and 

calibration and validation periods. This figure also shows that streamflow is poorly estimated 

with estimated rainfall. Streamflow was mostly overestimated during the dry season (i.e. 

summer and autumn). Similar overestimation was also observed in the dry season of the base 

models. Estimated streamflow of this model was mostly underestimated during the wet season 

(i.e. winter and spring). 
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Validation 

Calibration 

Figure 4.20 Estimated and measured streamflow of the Macalister catchment – model with estimated rainfall and SWAT derived PET 

(a) Calibration period (b) Validation period 

Figure 4.21 Scatter plots of the estimated and measured streamflow of the Macalister catchment - model with estimated rainfall and 

SWAT derived PET 
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Summer (validation) 

Spring (validation) 

Winter (validation) 

Autumn (validation) 

Winter (calibration) 

Spring (calibration) 

Autumn (calibration) 

Summer (calibration) 

Figure 4.22 Seasonal scatter plots of measured and estimated streamflow of the Macalister 

catchment – model with estimated rainfall and SWAT derived PET 
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4.3.2.3 Model with estimated rainfall and estimated PET 

Both estimated rainfall and estimated PET were used together to estimate daily streamflow 

data in the SWAT model. This was done by replacing both ground measured rainfall and 

SWAT derived PET by the above mentioned estimated rainfall and estimated PET. Similar to 

Sections 4.3.2.1 and 4.3.2.2, the calibrated model parameters of the base model were used in 

this model run. Results of the model run are shown in Figures 4.23 and 4.24. The calibration 

and validation periods were shown in these figures, as it was done with the previous model 

results (Sections 4.3.2.1 and 4.3.2.2) to maintain consistency. A comparison of Figures 4.23 

and 4.24 with the corresponding figures of the model with estimated rainfall in Section 4.3.2.2 

(i.e. Figures 4.20 and 4.21) show that the results of both models are similar (which is also poor 

relative to those of the base model and the model with estimated PET, which are similar). The 

same results were plotted on a seasonal basis, and are shown in Figure 4.25. This figure shows 

that streamflow during the wet season is fairly well estimated compared to streamflow during 

the dry season.  
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Validation 

Calibration 

Figure 4.23 Measured and estimated streamflow of the Macalister catchment - model with estimated rainfall and estimated PET  

(a) Calibration period (b) Validation period 

Figure 4.24 Scatter plots of the measured and estimated streamflow – model with estimated rainfall and estimated PET 
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Summer (calibration) Summer (validation) 

Spring (calibration) 

Winter (calibration) 

Autumn (calibration) 

Spring (validation) 

Winter (validation) 

Autumn (validation) 

Figure 4.25 Seasonal scatter plots of the measured streamflow and estimated streamflow using 

estimated rainfall and estimated PET 
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The performance indices calculated for the models run under Sections 4.3.2.2 and 4.3.2.3 are 

summarized in Table 4.14. This table shows that the performance indices are almost identical 

in both models. The Ef values of the total period and the wet season (i.e. winter and spring) 

show some confidence in streamflow estimation with estimated rainfall and estimated PET, 

but poor results during the dry season (i.e. summer and autumn). The poor result in the dry 

season (especially in calibration) is mainly due to the overestimation of rainfall during this 

period (as can be seen Figure 4.7). If the estimated rainfall from RS data can be improved, 

then the performance of these catchment models will be improved. 

 
Table 4.14 Performance indices of estimated streamflow using a model with estimated 

rainfall, and a model with both estimated rainfall and PET 

 
Model with estimated 

rainfall 

Model with both estimated 

rainfall and estimated PET 

Period Index Calibration Validation Calibration Validation 

Total 

period 

  

Ef 0.40 0.39 0.39 0.38 

RMSE (Ml/day) 712 785 717 785 

Spring 

  

Ef 0.36 0.12 0.36 0.10 

RMSE (Ml/day) 917 1007 919 1009 

Summer 

  

Ef -1.13 -0.60 -1.24 -0.60 

RMSE (Ml/day) 535 747 549 1033 

Autumn 

  

Ef -41.85 -2.53 -43.11 -2.52 

RMSE (Ml/day) 562 463 570 463 

Winter 

  

Ef 0.40 0.33 0.39 0.32 

RMSE (Ml/day) 741 1772 739 1771 

 
4.3.2.4 Flow duration curves for all models 

The results of all models were further analyzed with flow duration curves (FDCs). The notion 

of a flow duration curve can be explained as a relationship between any given streamflow 

value and the percentage of time that the streamflow is equaled or exceeded (Smakhtin, 2000). 

Furthermore, the FDC is capable of summarizing the streamflow variability in a given 

catchment and is recognized as an informative method of displaying a complete range of 

streamflow from low flows to high flows (Smakhtin, 2000). 

 

The FDC with 17 fixed percentage points was generated using measured and estimated 

streamflow, and is shown in Figure 4.26. The 17 points describe the probability range from 
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0.1% (representing rare events) to 99.9% (representing frequent streamflow values). It should 

be noted that the streamflow of this plot is in log scale. Figure 4.26 shows that high flows are 

underestimated with the models of estimated rainfall from RS data. All models estimate 

streamflow well during the exceedance range of 1 to 50%, and they all overestimate 

streamflow in the range of 50% to 99.90% of exceedance. Among all models, the model with 

estimated rainfall and estimated PET shows the highest overestimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4.4 Streamflow estimation using statistical modelling 

This section discusses the estimation of streamflow using statistical modelling, through the 

use of Artificial Neural Networks (ANN), with RS-based (RS based) variables as inputs. Both 

RS-based vegetation and thermal indices were used as input variables in the estimation of 

streamflow. The Normalized Different Vegetation Index (NDVI), the Normalized Difference 

Water Index (NDWI) and the Enhanced Vegetation Index (EVI) were used as vegetation 

indices. These variables were selected because they represent some features of surface 

vegetation such as vegetation vigor, vegetation water content and leaf area index (Teillet et al., 

1997; Huete et al., 2002; Thenkabail et al., 2004) which are linked to the physical processes of 

streamflow generation. The brightness temperature of band 31 (BT31), band 32 (BT32), and 

brightness temperature difference (BTdiff) and brightness temperature gradient (BTgrad) were 

Figure 4.26 Flow duration curves – Macalister catchment 
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also used as potential input variables for streamflow estimation. BTdiff and BTgrad were 

considered as thermal indices in this study. All BT and thermal indices were considered as 

surrogate for rainfall since the brightness temperature was central to rainfall estimation using 

RS data (Arkin, 1979; Del Beato, 1981; Diop and Grimes, 2003; Huffman et al., 2007). 

 
4.4.1 Remote sensing based input variables and streamflow 

Before commencing streamflow estimation using ANN, all potential input variables outlined 

in Section 4.4 were analyzed to understand their patterns and relationship with measured 

streamflow. This was done using time series plots of each RS-based variable with respect to 

streamflow of the Macalister catchment. Catchment averages of daily RS-based indices for the 

period of 2003 to 2008 were used in this analysis. However, there were some small gaps (e.g. 

December 2006) in the time series of these indices as the quality of the RS data was 

insufficient to calculate these indices. 

 
The 8-day average of NDVI, NDWI and EVI are displayed in Figures 4.27 to 4.29. These 

vegetation indices are available only for non-cloudy days. Considering that non-cloudy days 

lead to gaps in the time series of these indices, an 8-day average (considering the values of the 

present day and the previous seven days) of the indices was used to fill the gaps. This 8-day 

interval was specially selected since it was sufficient enough to cover most of the gaps during 

the cloudy days. 

 
The catchment average of 8-day average NDVI and daily streamflow are shown in Figure 

4.27. As demonstrated in this figure, streamflow starts to rise in May of each year and reaches 

its peak during August and September. It then gradually recedes until January. During the 

period between January and May, streamflow remains low and steady because of the 

prevailing dry conditions. Compared to streamflow, the 8-day average NDVI shows a different 

response in the Macalister catchment. This is shown in Figure 4.27, where the 8-day average 

NDVI starts to increase in early spring (September to November) and continues to increase 

until January-February in the following year. This pattern of the influence of vegetation on 

streamflow demonstrates that vegetation is more sensitive to the effects of seasonality rather 

than simply the amount of rainfall over the catchment, which is responsible for streamflow. 
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Figure 4.27 Streamflow and 8-day average NDVI - Macalister catchment 

 

 

 

 

 

 

Figure 4.28 Streamflow and 8-day average NDWI - Macalister catchment 
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Figure 4.28 shows the catchment average time series plot of 8-day average NDWI and daily 

streamflow for the study period over the Macalister catchment. NDWI is a representative 

index of the vegetation water content (Jackson et al., 2004), and indirectly represents the 

amount of water available in the root zone of the soil. In general, this figure shows that the 

fluctuation of NDWI is less than that of NDVI (Figure 4.27). As such, it can be assumed that 

the soil moisture content of the root zone of the catchment is mostly unchanged. 

 

The time series of catchment average 8-day average EVI and streamflow are laid out in Figure 

4.29. According to this figure, the 8-day average EVI follows the same trend of the 8-day 

average NDVI (Figure 4.27). This may be a result of both indices being dependent on the 

measured quantity of energy emerging in the near infrared and red bands from the vegetation. 

However, as an index, the 8-day average EVI shows less fluctuation when compared to 8-day 

average NDVI. 

 

Figure 4.30 shows the time series plot of catchment average daily BT31 with streamflow. 

Daily brightness temperature of clouds over the Macalister catchment varies from 190 K to 

250 K, and it can be seen from this figure that the daily brightness temperatures over the 

catchment have a strong seasonality. The mean brightness temperature during winter (June to 

August) drops below approximately 230 K, while in summer (December to February) it 

increases to approximately 240 K. Additionally, Figure 4.30 shows the brightness temperature 

of the clouds over the Macalister catchment can unpredictably drop at any time of the year for 

a day or two. Finally, it is also found from Figure 4.30 that streamflow is high during the 

winter and spring seasons when brightness temperature of clouds is low. 

 

Figure 4.31 demonstrates the relationship between the brightness temperatures of both band 

31 and band 32. It was found that the estimated temperatures using each band differ slightly. 

These temperature differences are mainly based on the manufacturing features of the bands. 

Although there is correlation between two bands, both were used in this study to estimate 

streamflow. 
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Figure 4.29 Streamflow and 8-day average EVI - Macalister catchment 

 

 

 

 

 

 

 

 

 

Figure 4.30 Streamflow and brightness temperature of band 31 (BT31) - Macalister catchment 
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Figure 4.31 Brightness temperature of band 31 and band 32 

 

Figure 4.32 shows the time series plots of BT difference (BTdiff) and streamflow. The BT 

difference varies between the range of 3 to 5 K. However, the variation of BTdiff is generally 

higher in summer (December to February) and autumn (March to May) seasons compared to 

winter (June to August) and spring seasons (September to November). According to Inoue 

(1987), the difference in BT between these bands (Band 31 and 32) is greater for thin clouds 

(cirrus clouds) than for cloud-free areas and for thicker clouds (cumulonimbus). The thin 

clouds such as cirrus do not produce any rain, but are dominant in summer and autumn. As 

such, streamflow during these seasons shows its lowest values, even though the BT difference 

is comparatively high. 

 

The plot of BT gradient (BTgrad) and streamflow over the catchment is demonstrated in Figure 

4.33. The BTgradshows a higher variability than the BTdiff. According to Kuligowski (2002), 

higher values of BT gradient are an indication of convective rains. 
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Figure 4.33 Streamflow and BT gradient - Macalister catchment 

Figure 4.32 Streamflow and BT difference (BT31-BT32) - 
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4.4.2 Determination of influential variables 

The current day of RS based vegetation and thermal indices, and BT (Section 4.4.1) together 

with their lagged days were considered as potential variables for Artificial Neural Networks 

(ANN) modelling of daily streamflow. In the case of vegetation variables (i.e. NDVI, EVI and 

NDWI), a lag time up to seven days was considered. In contrast, for the BT and thermal 

indices (i.e. BT31, BT32, BTdiff and BTgrad), a lag time of up to three days was considered. The 

reason for the difference in lag time between vegetation and thermal variables is that the 

vegetation indices are slower to respond to water availability than those related brightness 

temperature and thermal indices. After considering the lag time of each variable and the 

average of vegetation indices, it was found that altogether there are 43 variables present as 

potential input variables for ANN modelling. Tables 3.5 and 3.6 show those variables 

separately on the vegetation and thermal bases. 

 

As outlined in Section 3.8, the use of all 43 variables for ANN modelling can cause various 

issues. Amongst them, feature input data replication, complexity of the ANN model and high 

demand for computational memory. Since those issues can ultimately contribute to difficulties 

in understanding and interpreting model results (Bowden et al., 2005a), a variable selection 

approach was followed to determine influential input variables from these 43 potential 

variables for use in the ANN model. 

 

Several authors (Maier and Dandy, 2000; Sharma, 2000; Bowden et al., 2005a; Maier et al., 

2010) have highlighted the importance of the input selection in water related applications, and 

Bowden et al. (2005a) have given a comprehensive description of the available input variable 

selection methods. Among those input selection methods, the calculation of Pearson 

correlation coefficient between potential dependent variables and independent variables is the 

simplest and most efficient approach. Hence, the Pearson correlation coefficients between 

streamflow and all potential RS-based variables were computed with the intention of selecting 

the influential input variables for the ANN model (Section 4.4.3). An analysis of Pearson 

correlation between streamflow and potential RS-based variables was carried out separately 

for the total study period and individual seasons, because most of the RS-based input variables 

revealed a high seasonality (Figures 4.27, 4.29, 4.30 and Figures 4.32 – 4.33). 
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The results of the Pearson correlation coefficient analysis of streamflow with all potential 

input variables (including their lags) are shown in Table B1 of Appendix B. This table also 

shows the level of significance of each coefficient. The Pearson correlation coefficient 

analysis between potential input variables and streamflow revealed that all correlation 

coefficients were similar in magnitude. This makes the selection of highly influential variables 

for streamflow estimation somewhat difficult. According to Sharma (2000), such kind of 

similar correlation coefficients adversely affect the purpose of selecting input variables. 

Therefore, the Partial Mutual Information (PMI) method was used in selecting influential 

input variables. A detailed explanation of the calculation procedure of the PMI has been 

provided in Section 3.8.1. 

 

The results of the PMI calculations are shown in Table 4.15. This table shows the calculated 

PMI values and their 99th percentile values. The potential input variable column is arranged 

according to the category of input variable. The influential input variables (PMI > 99th 

percentile) are highlighted in this table. According to Table 4.15, there are 17 influential input 

variables, and they were used as input variables for ANN modelling. 

 

The majority of influential variables are derived from the reflectance based indices. Among all 

of influential input variables (i.e. both vegetation and thermal based), the 8-day average NDVI 

shows the highest level of dependency to streamflow. 

 

 

 

 

 

 

 

 

 

 

 



4-63 
 

Table 4.15 RS-based input variable, PMI and their 99th percentile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential input variable PMI 99
th

 percentile 

NDVI 0.0573 0.0514 

1-day lag NDVI 0.0511 0.0458 

2-day lag NDVI 0.0584 0.0493 

3-day lag NDVI 0.0644 0.0433 

4-day lag NDVI 0.0451 0.0471 

5-day lag NDVI 0.0459 0.0349 

6-day lag NDVI 0.0532 0.0758 

7-day lag NDVI 0.0487 0.0543 

8-day avg NDVI 0.1314 0.0365 

NDWI 0.0486 0.0467 

1-day lag NDWI 0.0405 0.0594 

2-day lag NDWI 0.0512 0.0684 

3-day lag NDWI 0.0422 0.0400 

4-day lag NDWI 0.0372 0.0323 

5-day lag NDWI 0.0515 0.0695 

6-day lag NDWI 0.0404 0.0531 

7-day lag NDWI 0.0489 0.0483 

8-day avg NDWI 0.0641 0.0407 

EVI 0.0446 0.0624 

1-day lag EVI 0.0303 0.0537 

2-day lag EVI 0.0561 0.0719 

3-day lag EVI 0.0495 0.0605 

4-day lag EVI 0.0380 0.0615 

5-day lag EVI 0.0463 0.0697 

6-day lag EVI 0.0410 0.0466 

7-day lag EVI 0.0430 0.0655 

8-day avg EVI 0.0563 0.0654 
BT31 0.0503 0.0564 

1-day lag BT31 0.0544 0.0689 

2-day lag BT31 0.0598 0.0755 
3-day lag BT31 0.0619 0.0423 

BT32 0.0548 0.0563 
1-day lag BT32 0.0474 0.0465 

2-day lag BT32 0.0601 0.0571 

3-day lag BT32 0.0453 0.0489 
BTdiff 0.0595 0.0361 

1-day lag BTdiff 0.0634 0.0674 
2-day lag BTdiff 0.0526 0.0479 

3-day lag BTdiff 0.0459 0.0515 
BTgrad 0.0390 0.0600 

1-day lag BTgrad 0.0501 0.0478 

2-day lag BTgrad 0.0445 0.0529 
3-day lag BTgrad 0.0327 0.1458 

*Influential variables are highlighted in the table 
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4.4.3 Artificial Neural Networks modelling 

The Artificial Neural Networks (ANN) modelling approach which was discussed in detail in 

Section 3.8.2, was used to estimate streamflow. Model selection and model construction are 

the two basic important steps in developing an ANN model. The widely used three layer (i.e. 

input, hidden and output) feed-forward neural networks with back propagation was selected in 

this study to estimate streamflow, since it has the capacity to handle complex relations 

between inputs and output with a sufficient degree of freedom with regards to weights and 

biases (Maier and Dandy, 2000). A full description of the three-layer feed-forward neural 

networks was given in Section 3.8.2. 

 

Model construction (or building) of the model deals with the selection of input variables, and 

the selection of a number of neurons in the hidden layer, as well as the selection of the transfer 

function and the objective function to calibrate and validate the model. The selection of input 

variables was discussed in detail in Section 4.4.2. The influential input variables which were 

highlighted in Table 4.15 were used as input variables. The trial and error calibration method 

was applied to determine the optimum number of hidden neurons in the hidden layer of 

model. A non-linear (TANSIG) transfer function was used to compute the value of the hidden 

layer nodes from the values of input layer nodes, and a linear (PUERLIN) transfer function 

was used to compute the values of the output layer node from the values of hidden layer 

nodes. The mean square error (MSE) was used as the objective function in this study (Gamage 

et al., 2011a). A detailed description of the model selection and construction was given in 

Section 3.8.2. 

 

The ANN models were developed separately for the total period and each season. The ANN 

model for the total period was configured using data of the entire study period. In the seasonal 

model, a separate ANN model was configured for each season (summer – December to 

February, autumn – March to May, winter – June to August and spring – September to 

November). Particular seasons of each year (from 2003 to 2008) were combined to have 

seasonal time series of RS-based indices (independent variables) and streamflow (dependent 

variable) in the seasonal model. 
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ANN modelling involves a standard procedure of model training, testing and validation. 

Training and testing periods were considered together as model calibration in this study. The 

data from 2003 to 2006 data were used to calibrate the ANN models, while 2007 and 2008 

were used to validate the models. These periods were also used for calibration and validation 

under the catchment process modelling approach in Section 4.3. 

 

4.4.3.1 Streamflow estimation - total period model 

Data of seventeen significant input variables (Table 4.15) were used as input data (which 

means 17 input nodes) for the trial and error calibration method to determine the optimum 

number of hidden neurons. The degree of agreement between measured streamflow and output 

(i.e. estimated streamflow) was assessed using the performance indices outlined in Section 

3.9. 

 

The trial and error calibration method showed that the model with 26 hidden neurons gives the 

best results in daily streamflow estimation. The result of this ANN model is shown in Figures 

4.34, 4.35 and 4.36. In Figure 4.34, the line graph shows measured streamflow and estimated 

streamflow time series for both the calibration and validation periods. Figure 4.35 shows the 

same result in scatter plots separately for the calibration and validation periods with a 1:1 line, 

while Figure 4.36 shows the flow duration curves of measured and estimated streamflows. 

 

Both Figures 4.34 and 4.35 show poor results in streamflow estimation. A detailed analysis of 

the results showed that most of the underestimation occurred during the winter and spring 

seasons with high flows, and overestimation occurred during summer and autumn with low 

flows. A careful observation of the results of the ANN model for the total period revealed that 

most of this overestimation occurred during summer and autumn seasons. These two seasons 

are recorded as dry seasons in which streamflow is significantly less than its mean value. As 

such, it shows that the ANN model for the total period does not model the effects of 

seasonality in streamflow well in the Macalister catchment. Therefore, separate ANN models 

for each season were developed. 
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Calibration 

Validation 

Figure 4.34 Measured streamflow and estimated streamflow using ANN model for total period – Macalister catchment 

(a) Calibration period (b) Validation period 

Figure 4.35 Scatter plots of measured, and estimated streamflow using ANN model for the total period – Macalister catchment 
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Figure 4.36 shows that the extreme high flows (i.e. streamflows of % time exceeded less than 

5%) are underestimated (this was also shown in Figures 4.34 and 4.35). Furthermore, it shows 

that the streamflows exceeded 50% of the time are overestimated, and the degree of 

overestimation is increased with lower flows. Note that the vertical axis of Figure 4.36 is in 

logarithmic scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3.2 Streamflow estimation with seasonal ANN models 

The results of Section 4.4.3.1 show that the ANN model developed for the total period does 

not model adequately the hydrological behaviors of the Macalister catchment. Therefore, 

seasonal ANN models were developed to represent each season. This was carried out with the 

same input variables which were used in Section 4.4.3.1. The trial and error calibration 

method was used to develop the ANN models for each season to obtain the optimum number 

of hidden neurons. 

 

Initially, the total time series (i.e. data of selected input variables in Section 4.4.2) was 

separated into four seasons (winter, spring, summer and autumn), and a time series for 

observed streamflow and for the 17 input variables corresponding to each season was 

Figure 4.36 Flow duration curve of the measured and estimated streamflow – Macalister 

catchment 
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constructed. Then, the same range of hidden neurons (8 to 34) that was considered in the ANN 

model for the total period, was tested in seasons to determine the optimum number of hidden 

neurons for seasonal models. As in Section 4.4.3.1, a non-linear (TANSIG) transfer function 

was used in computing the values of hidden layer nodes from the values of input layer nodes, 

and a linear (PUERLIN) transfer function was used for computing the values of the output 

layer node from the values of hidden layer nodes. The mean square error (MSE) was used as 

the objective function, and the calibration and the validation periods were also maintained as 

in Section 4.4.3.1 (calibration period – 2003 to 2006 and validation period – 2007 to 2008). 

Performance indices were calculated with estimated and measured streamflow, and the ANN 

model which gives the best performances was considered as the final model for a given season 

with the optimum number of hidden neurons. 

 

The trial and error calibration method yielded different number of hidden neurons for the final 

model in different seasons. Models with 13, 24, 18 and 24 hidden neurons yielded the best 

performance for summer, autumn, winter, and spring seasons respectively. 

 

The scatter plots of the measured and estimated streamflow for each season are shown in 

Figure 4.37 for the calibration and validation periods. This figure shows a reasonably good 

agreement between measured and estimated streamflow in autumn and spring seasons during 

the calibration period. The results of the calibration period in summer and winter show weak 

agreement between measured and estimated streamflow. High flows in all seasons except 

autumn are highly underestimated during the calibration period, while low flows show a 

mixed result. The results of the validation period during summer and winter show better 

results than those of the calibration period. Even though autumn shows the best result in the 

calibration period, spring shows overall best results in both the calibration and validation 

periods. 
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Calibration period - autumn Validation period - autumn 

Calibration period -summer Validation period - summer 

Calibration period - winter Validation period - winter 

Validation period - spring Calibration period - spring 

Figure 4.37 Scatter plots of measured and estimated streamflow for calibration and validation 

periods during each season – Macalister catchment 
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In addition to separating seasonal model results, all of estimated streamflow from seasonal 

models were combined to compile a single time series. The outcome (seasonal-combined) is 

shown in Figure 4.38 as a line graph and Figure 4.39 as a scatter plot separately for the 

calibration and validation periods. In general, Figure 4.38 shows a better estimation of 

streamflow during both calibration and validation, compared to Figure 4.34 which is based on 

the ANN model for the total period. This is further explained in the scatter plots between 

measured and estimated streamflow in Figure 4.39. The calibration period in Figure 4.39 

shows less underestimation compared to the calibration period in Figure 4.35. This 

observation is also the same in the validation periods in Figure 4.39 and Figure 4.35. 
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Calibration 

Validation 

Figure 4.38 Measured streamflow and estimated streamflow (based on seasonal-combined results) - Macalister catchment 

(a) Calibration period (b) Validation period 

Figure 4.39 Scatter plot of the measured streamflow and estimated streamflow (based on seasonal-combined results) – Macalister 

catchment 
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Figure 4.40 shows the flow duration curve of measured and estimated streamflow which is 

based on the seasonal-combined results. This figure shows a better agreement between 

measured and estimated streamflows. It also shows that high flows are still underestimated, 

however the magnitude of the underestimation of high flows is less on the seasonal-combined 

results than that of the ANN model for the total period (Figure 4.36). Figure 4.40 shows slight 

overestimation of estimated streamflow beyond 85% of exceedance level. This is a significant 

improvement in streamflow estimation with the seasonal ANN models compared to the ANN 

model for the total period, which showed large overestimations beyond the exceedance level 

of 50% (Figure 4.36). Note that the vertical axis of Figure 4.40 is in logarithmic scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3.3 Performance assessment of ANN models 

Table 4.16 shows all performance indices which have been calculated for estimated 

streamflow using ANN models. This table shows performance indices calculated separately 

for the model outputs of total period, seasonal and seasonal-combined. In general, this table 

reveals that the results of seasonal models are mixed, while the results of seasonal-combined 

are better than the results of the total period model. This is consistent with the line plots, 

Figure 4.40 Flow duration curve of observed and estimated (with the seasonal ANN model) 

streamflow – Macalister catchment 
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scatter plots and flow duration curves of Sections 4.4.3.1 and 4.4.3.2. The weak performance 

even with the seasonal-combined ANN model (which has performed better than all other 

ANN models) is due to less number of year’s data used both in calibration and validation. The 

performance of these models can be improved with additional data. 

 

Table 4.16 Performance indices of the estimated streamflow from various ANN models – 

Macalister catchment 

Estimation type    RMSE (Ml/day) Ef 

ANN model for 

total period  

Calibration  730 0.35 

Validation 1255 0.18 

Seasonal models  

Summer 

  

Calibration 306 0.31 

Validation 456 0.09 

Autumn 

  

Calibration 51 0.64 

Validation 204 0.34 

Winter 

  

Calibration 863 0.17 

Validation 1602 0.45 

Spring 

  

Calibration 790 0.52 

Validation 809 0.43 

Seasonal-combined 

  

Calibration 607 0.55 

Validation 932 0.55 

 

4.5 Comparison of catchment process modelling and statistical modelling 

The aim of this section is to compare the outcomes of both catchment process modelling and 

statistical (ANN) modelling which represent approaches used to estimate daily streamflows in 

the Macalister catchment. Flow duration curves and performance indices of both modelling 

techniques were used in this comparison. 

 

Figure 4.41 shows the flow duration curves of measured streamflow, streamflow estimated 

using the catchment process models (the base model and the model with estimated rainfall and 

estimated PET) and streamflow estimated with seasonal ANN models. Note that the results of 

seasonal ANN models were combined together to have a total time series. All streamflow 

values plotted in this figure are in logarithmic scale. This figure shows that high flows with 
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exceedance probability less than 1% are underestimated in streamflows estimated with 

estimated rainfall and estimated PET and with the seasonal ANN models that used influential 

RS-based indices as inputs. However, it shows that estimated streamflow with ground 

measured data matches well with measured streamflow for these high flows, but are 

overestimated with low flows. All the estimated streamflows match well with the measured 

streamflow in the probability exceedance range of 1 to 50%. Then figure shows that all 

estimated streamflow (except under seasonal-combined) are overestimated in various amounts 

when the percentage of time exceeded is larger than 50. It shows that the seasonal-combined 

model starts its overestimation after 80% of time exceeded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure also shows that the highest overestimation is with the model with estimated 

rainfall and estimated PET. Importantly, after combining all the results of the seasonal 

models, the figure shows slightly better results than both the base model and the model with 

the estimated rainfall and estimated PET when it comes to the low flow section of the FDC. 

 

Figure 4.41 Comparison of flow duration curves of measured and estimated streamflow 

from catchment process and statistical models 
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In contrast to this figure, the calculated performances indices of the above discussed models 

are also summarized in Table 4.17. According to Table 4.17, streamflow estimated with 

ground measured data shows highest performances. In contrast to this, streamflow estimates 

with estimated rainfall and estimated PET shows the weakest performances. Importantly, this 

table shows that the performance indices of the dry seasons (i.e. Summer and Autumn) in the 

seasonal-combined ANN model are better than the remaining two models. This indicates that 

seasonal calibration addresses catchment behaviors more precisely than total period in ANN 

modelling. 

 

Table 4.17 Performance indices of estimated streamflow-model with ground measured data, 

model with both estimated rainfall and PET, and seasonal-combined ANN 

  
Base model (model with 

ground measured data) 

Model with estimated 

rainfall and estimated PET 

 

Seasonal-combined 

ANN 

 

 Period   Ef 
RMSE 

(Ml/day) 
Ef 

RMSE 

(Ml/day) 
Ef 

RMSE 

(Ml/day) 

Total period 
Calibration 0.73 469 0.39 717 0.55 607 

Validation  0.76 487 0.38 785 0.55 932 

Spring 
Calibration 0.74 584 0.36 919 0.52 790 

Validation  0.62 677 0.1 1009 0.43 809 

Summer 
Calibration 0.35 214 -1.24 549 0.17 863 

Validation  0.75 313 -0.6 1033 0.45 1602 

Autumn 
Calibration -17.25 365 -43.11 570 0.64 51 

Validation  -2.66 482 -2.52 463 0.34 204 

Winter 
Calibration 0.65 562 0.39 739 0.31 306 

Validation  0.78 1005 0.32 1771 0.09 456 

 

As can be seen from Table 4.17, the Ef values for both calibration and validation for the 

catchment process models with ground measured data and estimated rainfall/PET data 

(estimated from RS data) in autumn and in some cases with summer have negative values. 

These poor results in autumn and summer are because SWAT does not allow different 

parameters for different months or seasons. If different parameters for different seasons are 
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allowed, then individual seasons can be better modelled, which allows autumn and summer to 

be better modelled. This has been discussed in Section 4.3.1. 

 

4.6 Summary 

This chapter described the results which were generated for the Macalister catchment based on 

the methodology explained in Chapter 3. Two separate modelling methods, catchment process 

modelling and statistical modelling, were used in estimating streamflow in the Macalister 

catchment using RS data.  

 

The appropriate input variables (rainfall, potential evapotranspiration and LULC) for 

catchment process modelling were estimated using RS data. High spatial resolution rainfall 

data were estimated in this study using MODIS brightness temperature and TRMM data. The 

cumulative gamma probability distribution was employed to estimate rainfall using those 

inputs. Estimated rainfall shows a reasonable agreement with TRMM rainfall data. Potential 

evapotranspiration (PET) over the catchment was estimated using the energy balance method. 

Both, MODIS reflectance and radiance data were used in PET estimation. Estimated PET 

shows higher agreement with the Penman-Monteith (PM) PET estimates. Landsat TM data 

were used to classify LULC of the Macalister catchment. The supervised image classification 

approach was followed with ground-truth data to classify LULC in this study. A single image 

was used to classify LULC, since there is no major change in LULC during the study period. 

 

The SWAT modelling tool was used for catchment process modelling to estimate streamflow. 

The SWAT model was initially set up with ground measured data to calibrate the model 

parameters, and this was considered as the base model. Then, ground measured rainfall and 

SWAT derived PET of the base model were replaced with RS based estimated rainfall and 

estimated PET, which produced three models (i) a model with estimated PET and ground 

measured rainfall (ii) a model with estimated rainfall and SWAT derived PET, and (iii) a 

model with estimated rainfall and estimated PET. It was found that the base model is the 

closest to measured streamflow and the performance of the models was gradually reduced 

from the base model to the model with estimated rainfall and estimated PET using RS data. 

 



4-77 
 

Both vegetation and thermal indices were used as inputs in the statistical modelling approach. 

The Normalized Difference Vegetation Index, the Normalized Difference Water Index and the 

Enhance Vegetation Index were used as vegetation based indices. Not only the current day 

values of those indices, but also the values of lag days (i.e. up to seven days) as well as the 8-

day average of these indices were considered as potential inputs for statistical modelling. The 

brightness temperature of MODIS bands 31 and 32 on cloudy days, the brightness temperature 

difference between bands 31 and 32 on cloudy days, and the brightness temperature gradient 

of band 31 on cloudy day, with lag time up to three days were used as thermal indices. A 

detailed examination shows that all of these indices are highly seasonal and have varying 

degrees of relationship to streamflow in the catchment. The consideration of current day, lag 

days and 8-day average of variables accumulated 43 input variables for statistical modelling. 

Since accumulated input variables can complicate the ANN modelling, the Partial Mutual 

Information method was used to obtain influential variables to estimate daily streamflow.  

 

Artificial neural networks (ANN) models were used as statistical models in this study. The 

trial and error calibration method was used to obtain the optimum number of hidden neurons 

in each model. The same calibration and validation periods as the catchment process 

modelling were also maintained in the statistical modelling. The seasonal ANN models 

showed better results in streamflow estimation than the single ANN model developed for total 

study period. 

 

The results of both catchment process modelling and statistical modelling were then 

compared. This comparison shows that results of seasonal ANN models combined to a 

complete time series were as good as the results of the base model, used in the catchment 

process modelling. 

 

The overall results of the chapter showed that RS data can be used in streamflow estimation 

successfully. Therefore, both catchment process modelling and statistical modelling 

approaches were used in the Ribb catchment to estimate streamflow data. 
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5 CHAPTER 5: THE RIBB CATCHMENT 

5.1 Introduction  

The methodologies tested in the first case study (study area – the Macalister catchment) were 

applied in the second study. The Ribb catchment was selected as the second study area, where 

ground measured data are limited for streamflow estimation. The limitations are not only 

restricted to inadequate observation points in both meteorological and stream gauges, but also 

to the poor quality of the recorded data. In some stations, data are not available to have a 

continuous time series.  

 

The rationale behind the selection of the Ribb catchment as the second case study area was 

explained in Section 3.2.2. As tested in the first case study, both catchment process modelling 

and statistical modelling techniques were used in this case study. Catchment process 

modelling was undertaken using the SWAT model, while the artificial neural networks 

modelling technique was used as the statistical modelling approach. The same study period as 

the first case study (i.e. 2003 - 2008) was considered in the second case study. The period of 

2003 – 2006 was considered as the calibration period, while the period of 2007 - 2008 was 

considered as the validation period, for both catchment process and statistical modelling. 

 

For catchment process modelling, first rainfall and potential evapotranspiration (PET) data of 

the catchment were estimated using RS data (Sections 3.5.1 and 3.5.2 respectively). 

Furthermore, landuse/landcover (LULC) was classified using RS data (Section 3.5.3). The 

results of rainfall and PET estimation, and LULC classification are discussed in Sections 

5.2.1, 5.2.2 and 5.2.3 respectively. Catchment process modelling of the Ribb catchment 

including the calibration and validation, and the model results with RS based input data (i.e. 

rainfall, potential evapotranspiration and LULC) are discussed in Section 5.3. 

  

As practised in the first case study, the RS based input variables for statistical modelling 

approach were calculated for the Ribb catchment (Section 5.4.1). The results of the statistical 

modelling approach together with the performances of streamflow estimation in calibration 

and validation periods are discussed under Section 5.4.3. 
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A comparison of the results of catchment process modelling and statistical modelling of the 

Ribb catchment is presented in Section 5.5, followed by the summary of the chapter in Section 

5.6. 

 

5.2 Estimation of remote sensing based variables for catchment process 

modelling 

5.2.1 Rainfall estimation  

The main steps of the rainfall estimation procedure were outlined in Section 4.2.1. These steps 

were followed for the Ribb catchment, and briefly described below under various sub-

sections. 

 

5.2.1.1 Separation of rain and no-rain clouds 

As was the case for the Macalister catchment, the MODIS based brightness temperature (BT), 

was calculated using MODIS bands 27, 31 and 32 to separate rain clouds from no- rain 

clouds. These brightness temperatures were used to calculate the brightness temperature 

difference of band 27 and 31, and the brightness temperature difference of band 31 and 32. 

The median values of these differences were used as thresholds to separate rain clouds from 

no-rain clouds (Kuligowski, 2002). Clouds with BT difference of bands 27 and 31 equal and 

higher than its median value and/or clouds with BT difference of bands 31 and 32 equal and 

less than its median value were considered as rainy clouds. 

 

5.2.1.2 Brightness temperature threshold 

As explained in Section 4.2.1.1, the brightness temperature of band 31 was used in the rainfall 

estimation of the Macalister catchment using rainy clouds, and the same approach was used 

for the Ribb catchment. Figure 5.1 shows the brightness temperature of band 31 (mean value 

for the catchment) of rain clouds and ground measured rainfall (i.e. Addis Zemen station) over 

the Ribb catchment for the study period. It is noted that the magnitude of rainfall in the 

catchment varies from north to south (Figure 3.8), but temporal rainfall pattern of the 

catchment is same as in the Addis Zemen station. BT31 values in the figure are not continuous 

since there are many no-rain cloud days in a given year in the Ribb catchment. This figure 
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indicates that the rainfall over the Ribb catchment is limited to the monsoon season which is 

from June to September (Setegn, 2010). This is a clear difference from the Macalister 

catchment which receives rainfall throughout a year. This situation in the Ribb catchment 

depicts clear wet (June to September) and dry (October to May) seasons. The BT of the Ribb 

catchment also shows a sinusoidal pattern, same as was in the Macalister catchment. The 

lowest BT of the Macalister catchment was counted in winter (June to August). Almost the 

same period (i.e. June to August) extended to September, and records the lowest BT in the 

Ribb catchment, causing monsoonal rains. 

 

 

 

 

 

 

 

 

 

 

 

The Heidke skill score (HSS), Probability of Detection (POD), False Alarm Ratio (FAR) and 

bias were used as skill indices to identify the ability of proposed thresholds in producing 

rainfall in the Macalister catchment. These skill indices were calculated with TRMM rainfall 

pixels and ‘rainy’ pixels in rain clouds. TRMM rainfall data were used in this study as a 

substitute for the observed rainfall data due to their availability, accessibility and accuracy 

(Section 3.3.1). The mean seasonal BT values yielded the best results on the skill indices in 

the Macalister catchment. Therefore, the mean seasonal BT value was considered as the 

threshold for rainfall estimation in the Ribb catchment considering four seasons; since BT 

profile is the same in both catchments. Four seasons considered were: summer – June to 

August, autumn – September to November, winter - December to February and spring – 

March to May. Note that the terminology of summer, autumn, winter and spring are arbitrary 

in the case of the Ribb catchment, since the concept of seasons does not strongly exist in 

Figure 5.1 Ground measured rainfall and brightness temperature of the Ribb catchment 
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Ethiopia. The calculated mean seasonal brightness temperature as thresholds for the Ribb 

catchment are shown in Table 5.1. 

 

Table 5.1 Mean seasonal brightness temperature over the Ribb catchment 

Season Months Mean seasonal BT (K) 

Summer Jun-Aug 231.3 

Autumn  Sep-Nov 239.6 

Winter Dec-Feb 246.0 

Spring Mar-May 245.4 

 

Table 5.1 shows that the mean seasonal BT values are higher than 235 K in all seasons except 

summer, when monsoon prevails. Summer in the Ribb catchment shows the lowest mean 

seasonal BT. Furthermore, this table shows the mean seasonal BT of winter and spring (i.e. 

prominent dry periods) are approximately equal. 

 

5.2.1.3 Rainfall estimation function and results 

Rainfall over the Ribb catchment for the study period was estimated following the procedure 

applied to estimate rainfall in the Macalister catchment (Section 4.2.1). The cumulative 

gamma probability functions were first calculated for the brightness temperature differences 

and TRMM rainfall data on a seasonal basis. Then, for a particular day, the brightness 

temperature difference and its cumulative gamma probability value was selected. The TRMM 

rainfall which had the same cumulative gamma probability was then obtained. This rainfall 

was then considered as the rainfall for that day. These steps were repeated for all days in the 

study period. This step-wise procedure was explained in Sections 3.5.1.3 and 4.2.1.2. The 

estimated rainfall data were compared with TRMM rainfall data to assess the accuracy of 

estimates, as was done in Section 4.2.1.2. 

  

As an example, Figure 5.2 shows TRMM rainfall over the Ribb catchment and its surrounding 

areas on 07 August 2006. It shows that TRMM rainfall vary from 0 to 14 mm mainly from 

northeast to southwest in that figure, and 0 to 2 mm in the Ribb catchment. The estimated 

rainfall data on the same day are presented in Figure 5.3. This figure shows the same pattern 
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of rainfall from northeast to southwest as in Figure 5.2, but the magnitude of the estimated 

rainfall is slightly higher than the TRMM rainfall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 TRMM rainfall data over catchment area and its surrounding areas  

Figure 5.3 Estimated rainfall over the Ribb catchment and its surrounding areas 
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Figure 5.4 shows the annual estimated rainfall and TRMM rainfall in the Ribb catchment. 

This figure shows that year 2005 is the wettest year, while year 2007 is the driest within the 

study period. It is also observed in general that the estimated rainfall matches reasonably well 

with the TRMM rainfall on an annual basis except in year 2005.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated rainfall were further analysed with respect to its wet and dry seasons to 

understand how well estimated rainfall matches with the TRMM rainfall. The results of 

estimated and TRMM rainfall are shown in Figure 5.5. 

 

The estimated rainfall during the wet season shows a slight overestimation compared to 

TRMM rainfall except year 2003. However, the estimated rainfall during the dry season of the 

study period shows a mixed result. The estimated rainfall during the dry season of 2003 is 

highly overestimated, while it is highly underestimated during the dry season of 2005. Note 

the scale difference of the vertical axis of the two figures in Figure 5.5. 

 

 

 

 

Figure 5.4 Annual rainfall of the Ribb catchment – TRMM and estimated rainfall 
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5.2.1.4 Performance of rainfall estimation 

The estimated rainfall data were further analysed with respect to TRMM rainfall data. Rain 

and no-rain days were counted separately in both estimated and TRMM rainfall data, and are 

presented in Table 5.2. 

 

Table 5.2 Rain/no-rain days under TRMM and estimated rainfall during the study period 

TRMM no-rain 

days 

TRMM 

rain days 

Total 

days 

Estimated no-rain days 1249 144 1393 

Estimated rain days 191 608 799 

Total days 1440 752 2192 

 

This table reveals that there are 752 days of rain and 1440 days no-rain in TRMM data in the 

Ribb catchment during the study period. In contrast, there are 799 days of rain and 1393 days 

no-rain under estimated rainfall. It shows that the number of rain days in estimated rainfall is 

slightly higher than TRMM rain days. The close match of rain days between estimated and 

TRMM (80%) in the Ribb catchment is significantly better than that of the Macalister 

catchment as was shown in Table 4.3 (48%). These statistics show that the rate of detection of 

rain and no-rain is higher in the Ribb catchment than in the Macalister catchment. 

 

Figure 5.5 Seasonal rainfall (estimated and TRMM) over the Ribb catchment 

(a) Wet season (b) Dry season 
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It is observed that there are 191 days with estimated rainfall when there was no rain recorded 

in TRMM data. Similarly, there are 144 days with no rainfall estimates, when TRMM had 

recorded rainfall. Figure 5.6 shows the mismatching of rainfall days with respect to several 

classes of magnitudes of rainfall. This figure shows that the magnitude of the majority 

(approximately 70%) of days estimated of having rainfall when TRMM did not record rainfall 

are less than 2 mm. This was also observed in the Macalister catchment. On the other hand, 

the magnitude of the majority (approximately 52%) days estimated of having no rain when 

TRMM showed rainfall are less than 2 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Nash-Sutcliffe efficiency (Ef) and Root Mean Square Error (RMSE), which were 

explained in the Section 3.9, were also calculated with TRMM and estimated rainfall. TRMM 

rainfall data were considered as observed rainfall in these calculations. The Ef was 0.34 and 

RMSE was 5.3 mm in estimating rainfall over the Ribb catchment.  

 

5.2.2 Potential evapotranspiration estimation  

Potential evapotranspiration (PET) data were estimated using RS data as an input to catchment 

process modelling. The proposed method used minimum ground measured variables to 

Figure 5.6 Cumulative distribution of mismatching days of rain/no-rain under TRMM and 

estimated 
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estimate PET, and was tested in the Macalister catchment (Section 4.2.2). The same method 

was applied to the Ribb catchment to estimate PET. The estimated PET in the Macalister 

catchment was compared with Penman-Monteith (PM) based PET which was obtained 

through the SILO database. However, such database or calculated PM based PET data are not 

available for the Ribb catchment. Therefore, the PM based PET was estimated using ground 

measured data for the meteorological stations shown in Figure 5.7. 

 

The collected ground measured data (i.e. minimum and maximum temperature, wind speed 

and sunshine hours) for those stations have missing information. Minimum and maximum 

temperature were available for all stations with a small percentage of missing data for the 

study period. Wind speed and sunshine hours are available only for the Debra Tabor 

meteorological station but with a very small percentage of missing data. Therefore, these data 

of Debra Tabor were used for the other stations assuming that there are no significant 

differences in these data in the catchment. The days which data were absent (i.e. missing or 

not collected) were not considered in the PM based PET estimation. Required saturated 

vapour pressure to calculate PM based PET was estimated using air temperature (Allen et al., 

1998). The actual vapour pressure or relative humidity over the study area was absent, and 

therefore relative humidity data were obtained from the IWMI Climate and Water Atlas. 

 

Figure 5.7 Meteorological stations and test locations over the Ribb catchment 
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Surface albedo values which are most important in estimation of PET using RS data were 

calculated, and compared against the values listed in the literature, and are shown in Table 5.3. 

In Section 4.2.2, the calculated surface albedo and existing literature values were compared 

for the Macalister catchment considering the existing LULC classes at test locations. Although 

the Macalister catchment is largely covered with evergreen forest, the dominant LULC class 

in the Ribb catchment was cultivation lands. The Afro-alpine forest can be seen as evergreen 

forest in the upper part of the Ribb catchment. Table 5.3 shows that mean value of the 

estimated surface albedo is less than the existing literature value in all LULC classes except 

the shrubs where it is equal. 

 

Table 5.3 Comparison of estimated surface albedo values for different LULC of the Ribb 

catchment with literature values 

 

 

 

Calculated values 

  Afro-alpine forest Shrubs Crop Crop/Grassland 

Min 0.01 0.00 0.05 0.00 

Max 0.66 0.45 0.28 0.69 

Mean 0.10 0.15 0.13 0.16 

STD 0.05 0.04 0.02 0.05 

Literature values*  0.18** 0.15 0.20*** 0.24 

*Values are not site specific 

**Stressed crop 

***(Bastiaanssen, 1998) 

 

The estimated PET values of the Ribb catchment were computed separately for non-cloudy 

days and cloudy days as explained in Section 3.5.2. The results and their performance are 

discussed separately for non-cloudy days and cloudy days. 

 

5.2.2.1 PET of non-cloudy days 

Surface albedo, surface emissivity and surface temperature values were calculated using RS 

data for the Ribb catchment for non-cloudy days. These variables were used to estimate PET 

for the catchment. On average, the Ribb catchment had 23 percent of non-cloudy days per 

year during the period of study, which is significantly higher than the non-cloudy days of the 
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Macalister catchment (14%). Most of these non-cloudy days were evenly distributed during a 

given year except in June to September when the monsoon is active. 

 

The estimated PET and PM based PET for the selected test locations (in Figure 5.7) of non-

cloudy days are shown in Figure 5.8. This figure shows that the estimated PET on non-cloudy 

days is in the range of 4.0 to 9.0 mmday-1. Also, the estimated PET are overestimated in most 

days compared to the PM based PET at all four test locations. This overestimation is due to 

the low values of surface albedo (Table 5.3) when they are computed with RS data during 

non-cloudy days; sparse vegetation produces low values of estimated surface albedo from RS 

data. 

 

A difference in the pattern and magnitude of the estimated PET is seen across locations as a 

result of different LULC. Point A represents cultivation lands, while Point B is predominantly 

shrubs and forest. Addis Zemen has mix LULC class with cultivation land and urban. Debra 

Tabor is highly mixed with cropping, urban and riparian lands. 

 

The underestimation and overestimation of the PET was further analysed using the same 

procedure applied in the Macalister catchment. A day was defined as highly under or over-

estimated if the estimated PET deviates from PM based PET by at least one standard deviation 

of the PM based PET. Accordingly, the percent of highly overestimated days for Point A, 

Addis Zemen, Point B and Debra Tabor are 26.7, 29.8, 23.2 and 18.8 respectively. 

Furthermore, few highly underestimated days (i.e. 0.8, 0.8, 1.9 and 2.9 percent respectively) 

are also observed. 

 

 

 

 

 

 

 

 



5-12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2.2 PET of cloudy days 

The PET of cloudy days were estimated using the methodology explained in Section 3.5.2.2, 

and this methodology was applied in the Macalister catchment (Section 4.2.2.2). These 

estimated PET and PM based PET over the Ribb catchment for cloudy days are shown in 

Figure 5.9 for the same test locations. 

 

 

Figure 5.8 PM based PET and estimated PET for non-cloudy days at selected test locations 

in the Ribb catchment 
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According to Figure 5.9, the minimum estimated PET of cloudy days is around 2.0 mmday-1 

(fully cloudy day). It shows that most PET which are greater than 4 mmday-1, are 

underestimated with estimated PET. Detailed analysis shows Point A, Addis Zemen, Point B 

and Debra Tabor have 12.8, 9.9, 13.3 and 15.0 percent of cloudy days as highly 

underestimated. In addition, 6.6, 4.5, 4.3 and 4.3 percent days are highly overestimated in the 

Ribb catchment on cloudy days. 

 

Figure 5.9 PM based PET and estimated PET for cloudy days at selected test locations 

in the Ribb catchment 
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5.2.2.3 Mean annual PET 

Mean annual values of the estimated PET for the study period over the Ribb catchment were 

calculated and are shown in Table 5.4. This table shows that estimated PET are slightly 

underestimated compared to PM based PET estimates in all test locations. However, this 

underestimation is less than 5% in all test locations. The performance of PET estimates in the 

Ribb catchment is well within the general guidelines stated by Allan et al. (2010), which 

stated that the estimated PET can be accepted for further applications if they are within the 

range of 10% - 40% of measured PET. When measured PET is not available, the PET 

estimated through Penmann-Monteith method can be used for ground measured PET. Non-

cloudy days in Figure 5.8 show overestimation over the catchment and cloudy days in Figure 

5.9 show a mixed results with more underestimations. However, the percentage of non-cloudy 

and cloudy days in the Ribb catchment are 23% and 77% respectively. Therefore, the slight 

underestimation in annual estimated PET values in Table 5.4 is due to the effect of 

underestimations in cloudy days. 

 

Table 5.4 Mean annual PET over selected test locations 

 Test Location 

 

Annual PET (mm) 

RS PM Difference (mm) % of Difference 

Point A 1792.2 1826.1 -33.9 -1.8 

Addis Zemen 1705.0 1762.9 -57.9 -3.3 

Point B 1756.6 1800.6 -44.1 -2.4 

Debra Tabor 1678.1 1756.5 -78.4 -4.5 

 

5.2.2.4 Performance of PET estimates for total period and seasons 

Similar to the Macalister catchment (Section 4.2.2.4), the performance of PET estimation was 

calculated for the Ribb catchment. As explained in Section 5.2.1, wet (i.e. June to September) 

and dry (i.e. October to May) seasons were considered for this analysis. Wet season and early 

months of dry season are the main cultivation period in the catchment. Crops such as paddy 

and maize are cultivated predominantly during this period. As such, the PET during this 

period is higher than that of the dry period. The main cultivation season of wet period is 

followed by a minor cultivation season during December to February depending on water 
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availability. Cultivation lands are turned into bare lands during latter part of the dry season 

due to the lack of water. Results of the performance in relation to the Ribb catchment are 

shown in Table 5.5 for the selected test locations (Figure 5.7). 

 

Table 5.5 shows that RMSE values are significantly lower during the non-cloudy days 

compared to the cloudy days in the total period for all test locations. The RMSE values for the 

non-cloudy days of the wet season also less than those of the cloudy days. However, there is 

no significant difference in RMSE of cloudy days. 

 

As can be seen from Table 5.5, the Ef values of the Ribb catchment vary with respect to 

seasons and day condition. Higher Ef values were observed for non-cloudy days, during the 

total period. Seasonal Ef values show a mix result from very high to negative. 

 

Table 5.5 Performance of PM-based PET and estimated PET for non-cloudy days at selected 

test locations in Ribb catchment 

 Location 

  

 Day condition 

  

Total period Wet season Dry season 

RMSE* Ef RMSE Ef RMSE Ef 

Point A 

  

  

Non-cloudy days 0.37 0.49 0.27 0.28 0.62 0.15 

Cloudy days 1.02 0.04 1.13 0.24 0.68 -0.09 

Both 0.56 0.44 0.35 0.27 0.64 0.08 

Addis Zemen 

  

  

Non-cloudy days 0.38 0.55 0.36 0.73 0.66 0.18 

Cloudy days 1.07 0.23 0.47 0.51 0.69 0.05 

Both 0.58 0.51 0.39 0.54 0.67 0.15 

Point B 

  

  

Non-cloudy days 0.49 0.46 0.31 0.48 0.84 0.73 

Cloudy days 1.37 0.21 0.38 0.46 0.97 0.15 

Both 0.75 0.41 0.38 0.46 0.88 0.48 

Debra Tabor 

  

  

Non-cloudy days 0.53 0.47 0.28 0.78 0.98 -0.08 

Cloudy days 1.51 -0.14 0.39 0.71 0.97 -0.34 

Both 0.82 0.40 0.38 0.78 0.97 -0.15 

           * Units of RMSE is mm day-1 

 

5.2.3 Landuse/landcover classification 

Landuse/landcover (LULC) classification over the Ribb catchment was done using the 

methodology explained in Section 3.5.3. This was also applied to the Macalister catchment for 
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its LULC classification Landsat 7 ETM+ image, acquired on 23 October 2005 was used to 

classify LULC classes in the Ribb catchment. This particular day was specially selected since 

image on that day was cloud free, and gives a better representation of the existing LULC 

classes in the Ribb catchment. 

 

The classification process that was used can be summarized as follows. Initially, the Landsat 

ETM+ bands were used to generate the principal component of the bands, which reproduced 

the number of bands used in the classification. The same Landsat ETM+ image was then used 

to calculate NDVI. The selected principal components (layers) and NDVI (layer) were stacked 

as an image to classify existing LULC classes in the Ribb catchment. This image was used as 

the final image in the classification. 

 

A field survey was conducted in the Ribb catchment to identify the existing LULC classes. 

During this survey, several sample points were considered to define LULC classes. These are 

called ground-truth data. One half of the ground-truth data that were collected in the field 

survey was used to train the final image. The trained image was then used to classify into 

LULC classes in the catchment using the maximum likelihood classifier. Finally, the 

remaining half of ground-truth data were used to calculate the accuracy of classified LULC. 

 

5.2.3.1 Principal Component Analysis 

Landsat 7 ETM+ consists 8 bands and the first 7 bands of Landsat 7 ETM+ are similar (i.e. in 

terms of band widths) to Landsat 5 TM. The eighth band of the Landsat 7 ETM+ is the 

panchromatic band (0.52 ~ 0.90 µm). Six bands, out of eight of Landsat 7 ETM+, (i.e. 

excluding the thermal band - band 6 and panchromatic band - band 8) were considered in the 

image classification. The panchromatic and thermal bands were not considered due to the 

mismatching of their spatial resolution (15/60 m) with other bands (30 m). This was also the 

case with the thermal band of Landsat 5 TM that was used in LULC classification of the 

Macalister catchment. As mentioned in the classification summary (Section 5.2.3), PCA was 

used to further reduce the number of bands. The results of PCA are presented in Figure 5.10. 

This figure represents the cumulative variance explained by principal components of Landsat 

7 ETM+ bands, except thermal and panchromatic. Note that Σ%R� = %R� + %R!+. . . +%R� in 
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the x-axis, where i = 2, 3, 4, 5 and 6. The Figure 5.10 shows that the first principal component 

represents almost 97% of the image variability, and the first three principal components of the 

image represent more than 99% of its variability. Therefore, the first three principal 

components and NDVI (which represents vegetation information) were used to classify the 

LULC over the Ribb catchment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3.2 Results of landuse/landcover classification 

As outlined in Section 5.2.3, the train image was classified into LULC classes using the 

maximum likelihood classifier. Figure 5.11 shows the classified image of the Ribb catchment. 

This figure shows that the cultivated area which is covered by teff (a cereal crop) is the 

dominant LULC class in the lower catchment area (close to the catchment outlet). The 

signatures of grasslands and grassland/shrubs in the catchment are mixed with teff, since teff 

also a type of grass. LULC of the middle part of the catchment is a mix of cultivation lands 

and natural vegetation. Moderately slope lands are common in this area, and most of them are 

under teff cultivation during the main cultivation season. Marginal land (i.e. land close to 

natural vegetation) are used as grasslands or sometimes for teff cultivation. However, these 

lands are highly eroded (Betrie et al., 2011b), as such unfertile for cropping. The afro-alpine 

Figure 5.10 Principal components of the selected six bands of Landsat 7 ETM+ 

and their cumulative variability 
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forest is the dominant LULC class in upper catchment area, and this area is not suitable for 

cultivation because of slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.6 shows the areas of each LULC class that covers the Ribb catchment. The table 

shows, teff covers little less than half of the Ribb catchment. The Afro-alpine forest which is 

mostly located in mountains, grassland/shrubs and grasslands cover approximately in equal 

areas in the Ribb catchment.  

 

 

 

 

 

Figure 5.11 Landuse/landcover classes of the Ribb catchment 
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Table 5.6 Extent and percentage of each LULC class obtained through classification 

LULC class Area (ha) Percentage 

Teff 60638.4 47 

Afro-alpine forest 23189.9 17.9 

Grassland/shrubs 20848.6 16.2 

Grasslands 20800.8 16.1 

Bare land 2036.8 1.6 

Wetlands 249.9 0.2 

Water bodies 1360.7 1 

Total 129125.1 100 

 

Table 5.6 shows bare lands are less than 2 percent of the total land area of the catchment. 

There are no major water bodies in catchment other than the Ribb River. However, some of 

the lowlands which are close to Lake Tana, become wetlands during the monsoon period. 

Again, they are seasonal and prevails a short period. 

 

5.2.3.3 Accuracy assessment of the landuse/landcover classification 

Both descriptive and analytical techniques were used in the accuracy assessment as in the 

Macalister catchment. The remaining half of the ground-truth data which was not used in the 

image training was used in calculation of accuracy indices (which were described in Section 

3.5.3.4). 

 

(a) Descriptive technique 

Table 5.7 shows the calculated contingency matrix for existing LULC classes in the Ribb 

catchment. This table shows the sample size (i.e. Producer’s total) of the LULC classes of teff, 

afro-alpine and grassland/shrubs used in classification accuracy calculation is higher than the 

threshold (i.e. minimum 50 sample points per class) outlined by Congalton (1991). Less 

number of samples in grasslands, bare land, wetlands and water bodies were noted even 

during the ground-truth data collection survey. An effort was made to increase these numbers, 

however, this was not achieved due to inaccessibility with difficult terrain conditions in the 

upper catchment areas. 
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The contingency matrix shows both producer’s accuracy (9th row) and user’s accuracy (9th 

column), as well as overall accuracy (in the cell of 9th row and column). As explained in 

Section 4.2.3.3 (a), the producer’s accuracy is used to assess the accuracy of image 

classification, and the user’s accuracy is used to assess the accuracy of LULC in classified 

image for further applications (i.e. water resources planning, urban planning and agricultural 

applications). 

 

In the contingency matrix, teff shows 77.8 and 88.5 percent of producer’s and user’s accuracy 

respectively. Producer’s accuracy is less than the user’s accuracy in teff as its signature mixed 

with afro-alpine forest, grassland/shrubs and bare land. A magnified view of the classified 

image shows that mostly these signature mixings occur near to the edges of all three LULC 

classes. In user’s perspective, the teff signature can be mixed with grassland/shrubs which 

their signatures are almost similar. Teff itself is a type of a grass which is not much different 

to ordinary grass types. 
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Table 5.7 Contingency matrix of the landuse/landcover classification of the Ribb catchment 

  1 2 3 4 5 6 7 8 9 

Teff 
Afro-alpine 

forest Grassland/shrubs Grasslands Bare land Wetlands 
Water 
bodies 

User's 
total 

User's 
accuracy 

1 Teff 77 0 4 1 2 2 1 87 88.5 

2 Afro-alpine forest 5 54 0 2 0 0 2 63 85.7 

3 Grassland/shrubs 7 2 46 5 2 1 0 63 73.0 

4 Grasslands 2 3 5 31 2 2 1 46 67.4 

5 Bare land 7 0 0 0 24 0 0 31 77.4 

6 Wetlands 0 0 0 0 0 15 1 16 93.8 

7 Water bodies 1 0 0 0 0 0 9 10 90.0 

8 Producer's total 99 59 55 39 30 20 14 316   

9 Producer's accuracy 77.8 91.5 83.6 79.5 80.0 75.0 64.3   81.0 
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The afro-alpine forest, which is second to teff in its coverage, shows 91.5 and 85.5 percent of 

producer’s accuracy and user’s accuracy respectively. The producer’s accuracy is higher in 

this LULC class with its clear signature but slightly mixed with grasslands and 

grassland/shrubs, as can be seen in Table 5.7. A similar situation occurs with the user’s 

accuracy, in terms of mixed signature, but mixed with the signature of teff (Table 5.7). 

Grasslands shows the producer’s accuracy of 83.6% while it signature is mixing with teff and 

grasslands. The user’s accuracy (67.4%) of this class is relatively less than teff and afro-alpine 

forest, mainly due to the mixing with teff and grasslands. The producer’s accuracies of 

grasslands and bare land are equal. The contingency matrix shows that signature of grasslands 

is mixed with Afro-alpine forest and grasslands/shrub, while bare land signature is mixed with 

grasslands/shrub and grasslands. The user’s accuracy of the grasslands is the lowest user’s 

accuracy among all classified classes. The table shows that grasslands can found in any LULC 

of the classified image. The user’s accuracy of bare land mostly affected by teff. The overall 

accuracy of the LULC classification is 81 percent. Thomlinson et al. (1999) stated that the 

LULC classification can be accepted for further application, if it has an overall accuracy and 

individual accuracies not less than 85 percent 70 percent respectively. This was the case for 

the Ribb catchment in most LULC classes, as seen in Table 5.7. 

 

(b)  Analytical technique 

The kappa coefficients were calculated to measure the validity of the observed classification 

accuracy to the random classification accuracy due to chance agreement of classification 

(Lillesand and Kiefer, 1999), and then are shown in Table 5.8. The author of this thesis 

outlined the threshold for kappa coefficient based on the existing literature in Section 3.5.3.4 

(Bharatkar and Patel, 2013). According to those thresholds grasslands and grassland/shrubs 

classes can be rated as ‘good’ while all other classes as ‘excellent’. Kappa coefficient of the 

overall classification can also be rated as ‘excellent’ according to these thresholds. As 

explained in Section 3.5.3.4, small difference between user’s accuracy and kappa coefficient 

for individual LULC class and for overall classification reveal that the classification is 

reliable. 
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Table 5.8 Kappa statistics of the landuse/landcover classification 

LULC class Kappa coefficient User's accuracy 

Teff 0.83 88.5 

Afro-alpine forest 0.82 85.7 

Grassland/shrubs 0.67 73.0 

Grasslands 0.63 67.4 

Bare land 0.75 77.4 

Wetlands 0.93 93.8 

Water bodies 0.90 90.0 

Overall 0.77 81.0  

* Kappa coefficient less than 0.4 is considered ‘poor’, 0.4 – 0.75 is considered ‘good’ and above 0.75 is 

considered ‘excellent’ (Bharatkar and Patel, 2013). 

 

The accuracy of the classified LULC which are presented in the contingency matrix (Table 

5.7) and Table 5.8 show that LULC classification over the Ribb catchment is reliable enough 

for further applications, and used in catchment process modelling (Section 5.3). 

 

5.3 Catchment process modelling 

The methodology which was explained in Section 3.6 with regard to catchment process 

modelling, and tested in the first case study (Section 4.3) was applied to the second case study 

area (i.e. Ribb catchment). The SWAT model was used in catchment process modelling to 

estimate streamflow. As was explained in Section 4.3, the model was calibrated for 2003-2006 

and validated for 2007-2008. Initially, the model was calibrated with available ground 

measured data. This was analysed as the base model. Then, keeping calibrated model 

parameters of the model unchanged, the ground measured rainfall and model derived PET 

were replaced with the estimated rainfall and estimated PET using RS data, and the model was 

run. 

 

The results of the model run with ground measured rainfall and estimated PET, and the model 

run with estimated rainfall and model derived PET are not described in this section since the 

results of these two model runs were identical to those of the base model and the model run 
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with estimated rainfall and estimated PET. This behavior of results was the same with the 

Macalister catchment. 

 

5.3.1 Model calibration and validation using ground measured data 

The SWAT model setting up, calibration and validation processes were discussed in detail in 

Section 3.6. These processes were used up for the Macalister catchment, and the results were 

discussed in Section 4. 3. The same procedure was applied to set up, calibrate and validate the 

SWAT model for the Ribb catchment. The LULC information obtained from the LULC 

classification (Section 5.2.3) and the FAO-based soil data were used to set up the SWAT 

model. 

 

The model calibration and validation were done using the available ground measured 

meteorological data. As stated earlier, this model was considered as the base model for the 

Ribb catchment. The purpose of this step was to obtain a set of calibrated model parameters. 

Major parameters that were used in the calibration are listed in Table 5.9 together with the 

software defined ranges of the model parameters and the optimum values obtained after the 

auto-calibration. This table shows that different CN2 values were used for different LULC 

classes in the model. This was possible with the available information, however, single 

parameter values were used in each of the remaining parameters for the entire catchment, 

because of lack of data available to calibrate these parameters at subcatchment level. This was 

also the case with the Macalister catchment. 

 

Figures 5.12 and 5.13 show the results of the base model of the Ribb catchment. Figure 5.12 

shows measured streamflow and estimated daily streamflow as line graphs. Measured 

streamflow of the catchment reveals that high flow prevails during the wet period from July to 

late September in almost every year. Streamflow is in its low flow phase from early October 

to late June. The base model has estimated daily streamflow well during both calibration and 

validation periods, except the early part of the wet season in 2008. 
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Table 5.9 SWAT model parameters used for calibration purposes – Ribb catchment 

Parameter Description Range* 
Optimum 

value 

Parameters the govern surface water response  

CN2 Curve Number II 35-98 
721, 652, 813, 

864, 855  

ESCO Soil evaporation compensation factor 0-1 0.86 

SOL_AWC Available soil water capacity 0-1 0.8 

Parameters that govern subsurface water response  

GW_REVAP Groundwater re evaporation coefficient 0.02-0.2 0.14 

REVAPMN 
Threshold depth of water in the shallow aquifer 

for re evaporation to occur (mm) 
0-500 282 

GWQMN 
Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 
0-5000 577 

GW_DELAY Groundwater delay (days) 0-50 8 

ALPHA_BF Base flow recession constant 0-1 0.28 

RCHRG_DP Deep aquifer percolation fraction 0-1 0.05 

Parameters that govern catchment response 

CH_K2 
Effective hydraulic conductivity in main channel 

alluvium (mm h-1) 
0.01-150 14.2 

SURLAG Surface runoff lag coefficient (day) 0-10 3 

1Teff, 2Afro-alpine forest, 3Grasslands/shrubs, 4Grasslands and 5Barelands 

*(Neitsch et al., 2010) 

 

Figure 5.13 shows the same results as scatter plots, separately for calibration and validation 

periods. Additionally this figure shows the high values of the coefficient of determination (R2) 

between measured and estimated streamflow. However, the calibration period of Figure 5.13 

shows more overestimations, while the validation period shows both overestimations and 

underestimations. 
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(a) Calibration period (b) Validation period 

Figure 5.13 Scatter plots of the measured and estimated streamflow of the Ribb catchment – base model 

Calibration 

Validation 

Figure 5.12 Measured and estimated streamflow of the Ribb catchment – base model 
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These results are separately presented for wet and dry seasons in Figure 5.14, again for 

calibration and validation periods. This figure shows that streamflow has mostly 

overestimated at the calibration period of the wet season. Estimated streamflow during 

validation period during the wet season shows a mixed result. However, their coefficients of 

determination remain very high. Compared to the wet period, the model results are different 

during the dry period. Estimated streamflow of the dry season during the calibration is mostly 

overestimated. In comparison to the calibration period, the validation period shows very poor 

performance in streamflow estimation. This figure shows the base model was significantly 

underestimated the streamflow during the validation period of the dry season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Scatter plots of the measured and estimated streamflow of wet and dry seasons in 

the Ribb catchment – base model 

Wet season - calibration Wet season - validation 

Dry season - calibration Dry season - validation 
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5.3.2 Model with estimated rainfall and estimated PET 

As was done in the first case study, the estimated rainfall and estimated PET (Sections 5.2.1 

and 5.2.2) were extracted on a subcatchment basis, and replaced the ground measured rainfall 

and the model derived PET in the base model. As explained in Section 4.3.2, the model with 

estimated rainfall and estimated PET was not calibrated, but run with the calibrated model 

parameters obtained from the base model (Section 5.3.1). 

 

Figure 5.15 shows the results of the model run with estimated rainfall and estimated PET 

(from RS data). Although there were no separate calibration and validation done in this model 

run, they are marked in the figure to maintain the consistency with Figure 5.12. This figure 

shows that the estimated streamflow is highly underestimated during all wet seasons except 

the wet season of 2005. Estimated streamflow during the wet season shows that the model was 

delayed to response to rainfall. However, this figure also shows that the model has responded 

quickly to recession of streamflow. The same results are presented as scatter plots in Figure 

5.16, separately for the calibration and validation periods with coefficient of determination. 

Figure 5.16 shows that estimated streamflow is mostly underestimated though the coefficient 

of determination is high during the validation period. 
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Calibration 

Validation 

Figure 5.15 Measured streamflow, and estimated streamflow with both estimated rainfall and PET – Ribb catchment 

Calibration period Validation period 

Figure 5.16 Scatter plots of the measured and estimated streamflow of the Ribb catchment with both estimated rainfall and PET 
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The results of the model run with estimated rainfall and estimated PET were plotted separately 

on seasonal basis, for calibration and validation periods, and are shown on Figure 5.17. 

Estimated daily streamflow of during calibration period of the wet season shows a mixed 

result. However, the estimated daily streamflow is highly underestimated during the validation 

period of the wet season, though the coefficient of determination is reasonably good. 

Furthermore, figure shows that streamflow estimation during dry season is weaker than that of 

wet season. The coefficients of determination are further low in dry season compared with wet 

season. Additionally, the estimated streamflow of the validation period during the dry season 

shows a significant underestimation compared to calibration period of the same season. 

Comparing the results in Figure 5.17 with those of Figure 5.14, it is seen that overestimations 

during the calibration period have reduced, but still producing a lower coefficient of 

determination for both wet and dry seasons. Similar observation is made for the validation 

period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wet season - calibration Wet season - validation 

Wet season - calibration Wet season - validation 

Dry season - calibration Dry season - validation 

Figure 5.17 Scatter plots (seasonal) measured and estimated streamflow of the Ribb catchment 

– model with both estimated rainfall and PET 
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5.3.3 Comparison of results of base model and model with estimated rainfall and 

estimated PET 

The performance indices (Nash-Sutcliffe efficiency and Root Mean Square Error) were also 

calculated for both base model and model with estimated rainfall and estimated PET. The 

calculation procedures of these indices were explained in Section 3.9, and the calculated 

indices for the Ribb catchment are shown in Table 5.10. This table shows the performance 

indices calculated separately for the total period as well as for seasons, for both calibration 

and validation periods. 

 

Table 5.10 shows that the performances of the calibration period are consistency higher than 

those of the validation period for both models except the RMSE of the total period in the base 

model. This is consistent with the discussion in Section 5.3.1 and 5.3.2. It is also seen from 

this table that the performance of the model with estimated rainfall and estimated PET is 

consistency lower than that of the base model. Similarly it is seen that the wet period is 

modelled better than the dry period. These findings are consistent with the discussion in 

Sections 5.3.1 and 5.3.2. 

 

Table 5.10 Performance indices of the estimated streamflow with catchment process 

modelling 

  
Model based on 

ground measured data 

Model based on 

estimated rainfall and 

estimated PET 

Period Index Calibration Validation Calibration Validation 

Total 

period 

Ef 0.83 0.78 0.77 0.61 

RMSE* 833 784 975 1536 

Wet period 
Ef 0.68 0.51 0.53 0.10 

RMSE* 1354 1783 1639 2437 

Dry period 
Ef -0.03 -0.06 0.37 -0.31 

RMSE* 341 548 267 608 

  *units are in Ml/day 

 

Figure 5.18 shows the flow duration curves of measured streamflow and estimated daily 

streamflow using the base model and model with estimated rainfall and estimated PET. This 
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figure shows that the high flows in estimated streamflow using the base model slightly 

overestimated (streamflows with an exceedance probability greater than 80%). The estimated 

daily streamflow using the model run with estimated rainfall and estimated PET shows 

underestimations for very low flows. Note the logarithmic scale of the y-axis of Figure 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Streamflow estimation using statistical modelling 

This section discusses the behaviours of streamflow, vegetation indices and brightness 

temperature of the Ribb catchment. Then the discussion is focused on estimation of 

streamflow using artificial neural networks (ANN) (which is the statistical modelling 

technique used in this study). 

 

Vegetation indices of Normalized Different Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI) and Enhanced Vegetation Index (EVI) were used as potential input 

variables, in developing the ANN models. The rationale behind the use of these variables was 

discussed in Sections 3.7.1 and 4.4.1. Current day seven lag days and 8-day average of these 

indices were considered as it was practised in the first case study area. The radiance-based 

brightness temperature of band 31 (BT31), band 32 (BT32), brightness temperature difference 

Figure 5.18 Flow duration curves of measured and estimated streamflows – Ribb catchment 
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(BTdiff) and brightness temperature gradient (BTgrad) were used as surrogate variables for 

rainfall in ANN modelling. Current day and three lag days of BT and thermal indices were 

also considered as potential inputs in statistical modelling. Partial Mutual Information (PMI) 

method which was explained in Section 3.8.1, and applied in the Macalister catchment to 

obtain influential input variables (Section 4.4.2) were also used in the Ribb catchment to 

obtain the influential input variables for the statistical modelling. 

 

5.4.1 RS based input variables and streamflow 

Before developing the ANN models, the 8-day average NDVI, 8-day average NDWI and 8-day 

average EVI were carefully analysed to understand their behaviours in relation to streamflow 

of the Ribb catchment, and they are shown in Figure 5.19. 

 

Figure 5.19 shows that the streamflow is in its peak during the period from June to October in 

each year. Monsoon rain occurs during this period. As can be seen form the figure, the peak 

flow could reach as high as 6000 Ml/day. This figure also shows that all vegetation indices 

follow the same pattern. Vegetation indices show their lowest values during April and May. 

Water availability to vegetation during April and May is very low. The figure also shows that 

the Ribb River also records its minimum streamflow during this period. After May, the 

vegetation indices start to increase and peaks around August and September because of 

available water from monsoon rains. Then they gradually recede until early April/May next 

year. A clear lag between streamflow and NDVI is shown in Figure 5.19 in the Ribb 

catchment. However, this lag is shorter than the lag observed in the Macalister catchment 

(Section 4.4.1). This could be because of the dominant agricultural crops (such as teff, maize 

and vegetables) and grasslands in the Ribb catchment that respond faster to rainfall than forest 

and bushes which are dominant LULC in the Macalister catchment. 
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Figure 5.19 Streamflow and 8-day average of EVI, NDWI and NDVI in the Ribb catchment 
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Figure 5.19 shows that 8-day average NDWI respond quicker to streamflow (i.e. rainfall) than 

the 8-day average NDVI and 8-day average EVI. This shows the higher sensitivity of NDWI to 

the soil moisture than EVI and NDVI. 

 

Similar to the vegetation indices, the brightness temperature and its derivatives were analysed 

with respect to streamflow to examine the behaviours of these variables. The time series plot 

of streamflow and BT31 is shown in Figure 5.20. This figure shows BT31 is lower in the 

monsoon period compared to the non-monsoon period. August and September records the 

lowest brightness temperature over the catchment area. After September, the brightness 

temperature gradually increases until the April of next year, and then decreases until 

September. Even though, the wet season is the period of peak solar energy available to the 

catchment area, the monsoonal clouds which are rich with super cooled water/ice particles 

could reduce the brightness. 

 

Similar to the brightness temperature, BTdiff (difference between brightness temperature of 

band 31 and band 32) was plotted with streamflow and is shown in Figure 5.21. The 

brightness temperature difference over the catchment shows a similar pattern to BT31. The 

lowest BTdiff can be seen during the monsoon period with some noise in the data, while the 

highest BTdiff is seen before the monsoon starts. Furthermore, this figure shows that BTdiff 

highly fluctuates before the start of the monsoon period. 

 

The time series plot of BTgrad and streamflow is shown in Figure 5.22. This figure shows that 

BTgrad is highly varying over time and in general BTgrad is higher before the start of the 

monsoon. Then it gradually reduces; however, remains highly variable. 
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Figure 5.20 Streamflow and BT31 of MODIS in the Ribb catchment 

Figure 5.21 BTdiff and streamflow in the Ribb catchment 



5-37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 BTgrad and streamflow in the Ribb catchment 
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5.4.2 Determination of influential input variables 

As was practised in the Macalister catchment, the PMI method was used to obtain the 

influential input variables for use in ANN modelling. Potential 43 input variables which were 

outlined in Tables 3.5 and 3.6.were used in this selection. The results of the PMI calculation 

are shown in Table 5.11. This table shows that only two variables (highlighted) out of 43, are 

significant in relation to streamflow in the Ribb catchment. They are the 8-day average NDVI 

and the 8-day average NDWI. Therefore, these two variables were used as input variables for 

ANN modelling of the Ribb catchment.  

Table 5.11 PMI results of input variables 

Potential input variable PMI 99
th

 percentile 

NDVI 0.0963 0.1931 

1-day lag NDVI 0.0647 0.3398 

2-day lag NDVI 0.0971 0.1473 

3-day lag NDVI 0.1034 0.1952 

4-day lag NDVI 0.0755 0.2047 

5-day lag NDVI 0.0825 0.1928 

6-day lag NDVI 0.0570 0.2797 

7-day lag NDVI 0.0820 0.1811 

8-day avg NDVI 0.2322 0.1680 

NDWI 0.0771 0.3349 

1-day lag NDWI 0.0577 0.2813 

2-day lag NDWI 0.0492 0.2949 

3-day lag NDWI 0.0448 0.2795 

4-day lag NDWI 0.0588 0.3560 

5-day lag NDWI 0.0587 0.2795 

6-day lag NDWI 0.0376 0.1798 

7-day lag NDWI 0.0404 0.2879 

8-day avg NDWI 0.3477 0.1999 

EVI 0.0885 0.1433 

1-day lag EVI 0.0782 0.3194 

2-day lag EVI 0.0692 0.2067 

3-day lag EVI 0.0621 0.1958 

4-day lag EVI 0.0772 0.3492 

5-day lag EVI 0.0641 0.3631 

6-day lag EVI 0.0840 0.2043 

7-day lag EVI 0.0509 0.2902 

8-day avg EVI 0.2673 0.3357 
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BT31 0.0291 0.2732 

1-day lag BT31 0.0295 0.1120 

2-day lag BT31 0.0164 0.2443 

3-day lag BT31 0.0171 0.2108 

BT32 0.0281 0.0877 

1-day lag BT32 0.0202 0.2671 

2-day lag BT32 0.0327 0.1170 

3-day lag BT32 0.0337 0.0901 

BTdiff 0.0151 0.1915 

1-day lag BTdiff 0.0187 0.0984 

2-day lag BTdiff 0.0143 0.2026 

3-day lag BTdiff 0.0127 0.1046 

BTgrad 0.0111 0.1105 

1-day lag BTgrad 0.0177 0.1042 

2-day lag BTgrad 0.0192 0.0930 

3-day lag BTgrad 0.0047 0.3861 

 

5.4.3 Artificial Neural Networks modelling 

The significant input variables (i.e. 8-day average NDVI and the 8-day average NDWI) which 

were obtained from the Partial Mutual Information analysis (Section 5.4.2) were used as input 

variables to estimate daily streamflow with ANN modelling for the Ribb catchment. The ANN 

modelling in the Macalister catchment (Section 4.4.3) showed that seasonal models performed 

better than the model of total period. There are no four distinguishable seasons in the Ribb 

catchment as explained in Section 5.2.1, but two seasons with respect to rain availability. 

These two seasons (i.e. wet and dry) were considered for building the ANN models in the 

Ribb catchment. The same procedure which was explained in Section 3.8.2 was followed for 

building these models. Similar to catchment process modelling, the period from 2003 to 2006 

was considered as the calibration period, while years 2007 and 2008 were considered as the 

validation period. 

 

5.4.3.1 Streamflow estimation with seasonal ANN models  

The ANN models were built using a trial and error calibration method by systematically 

changing the number of hidden neurons. This trial and error calibration method revealed that 

the best results can be obtained with 8 hidden neurons for both wet and dry season ANN 

Table 5.11 Continuation… 
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models. The results of seasonal ANN modelling in the Ribb catchment are shown in Figure 

5.23 as scatter plots. This figure shows the calibration and validation periods separately for 

each season with their coefficients of determination. 

 

Figure 5.23 shows that seasonal ANN models estimate streamflow moderately well in the 

calibration period with respect to the coefficients of determination. The wet season model 

shows higher coefficient of determination in both calibration and validation. However, high 

flows (>6000 Ml/day) are underestimated in both calibration and validation periods. This 

shows that the model is not sensitive to the higher flows during the wet season. The reason for 

not capturing these high flows during the wet season well in the ANN model could be the less 

high flows used in the calibration of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wet season - validation  Wet season - calibration  

Dry season - calibration  Dry season - validation  

Figure 5.23 Scatter plots of the measured and estimated streamflows – Ribb catchment 
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The result of the dry season shows that streamflow in the calibration period is estimated 

slightly better than the calibration period of wet season. However, streamflow of dry season in 

validation period is poorly estimated. It also shows that higher flows in the dry season are 

underestimated both calibration and validation periods. 

 

To facilitate the calculation of performances indices and comparison, the results of the two 

seasonal models were combined to have a single time series, and this time series is shown in 

Figure 5.24. Scatter plots of these time series data separately for the calibration and validation 

periods are shown in Figure 5.25. Figure 5.24 reveals that estimated streamflow match well 

with the measured streamflow during its calibration period, and high flows are highly 

underestimated during both calibration and validation periods. This is also seen in Figure 5.25. 

 

Similar to Figure 4.40 in the Macalister catchment, a flow duration curve was drawn using the 

streamflow data obtained from the seasonal model of the Ribb catchment for the period of 

2003 to 2008, and is shown in Figure 5.26. Note that the streamflow axis in Figure 5.26 is in 

logarithmic scale. This figure shows that the estimated streamflow matches well with 

measured streamflow, especially when the flow exceedance is less than 70%, and higher than 

10%. This figure also shows that the estimated streamflow of exceedance level is more than 

70% is overestimated, and the streamflow with exceedance level less than 10% is 

underestimated. 
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Calibration 

Validation 

Figure 5.24 Estimated (combined) and measured streamflows with their calibration and validation periods – the Ribb catchment 

Figure 5.25 Scatter plots of the measured streamflow and estimated streamflow – Ribb catchment 
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5.4.3.2 Performances of ANN based streamflow estimation 

The models performances were evaluated in this study using Root Mean Square Error 

(RMSE) and Nash-Sutcliffe efficiency (Ef) and the results are shown in Table 5.12. The 

table shows that the performance of both calibration and validation period is better in the 

wet season than in the dry season in terms of Ef. Furthermore, the performances of 

calibration during the dry season is much better than that of the validation period. Both wet 

and dry seasonal model outcomes were combined to have a time series of the total period, 

and the performance indices were also calculated for the total period time series, which are 

shown in Table 5.12. The table shows, that Ef of both calibration and validation periods are 

very high for the total period. 

 

Table 5.12 Performance indices of the estimated streamflow using ANN models – Ribb 

catchments 

Estimation type    RMSE (Ml/day) Ef 

Wet 

  

Calibration 1447 0.62 

Validation 1823 0.50 

Dry 

  

Calibration 199 0.64 

Validation 548 -0.15 

Total period 

  

Calibration 868 0.81 

Validation 1101 0.79 

 

Figure 5.26 Flow duration curve of the seasonal ANN models 
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5.5 Comparison of results from catchment process modelling and 

statistical modelling 

Figure 5.27 (redrawn using Figures 5.18 and 5.26) shows the flow duration curves (FDCs) 

of both catchment process modelling (i.e. the base model and the model with Estimated 

rainfall and estimated PET) and statistical modelling (i.e. seasonal ANN models), and 

measured streamflow. The figure shows that the base model is the closest to measured 

streamflow, and then estimated streamflow using estimated rainfall and estimated PET. 

Estimated streamflow using ANN models shows the most underestimation and 

overestimations. This figure shows that high flows estimated using the seasonal ANN 

models has slightly underestimated compared to estimated streamflow using estimated 

rainfall and estimated PET. With increasing percentage of exceed time, the seasonal ANN 

model estimates show an improvement. According to this figure, the estimated streamflow 

using seasonal ANN models shows almost same result of estimated streamflow using 

ground measured data. All models deviate from the measured streamflow with respect to 

very low flows (note the logarithmic scale of y-axis and the deviation is highest with 

seasonal ANN modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 FDCs of catchment process models and statistical model 
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Table 5.13 is a combination of Tables 5.10 and 5.12 for the purpose of comparison. This 

table shows that the performance of seasonal ANN model is as good as base model. 

However, validation period of the dry season is poorly estimated by all models. 

 

Table 5.13 Performance indices of all the models 

  
Model based on ground 

measured data (base 

model) 

Model based on estimated 

rainfall and estimated PET 

 

Model based on 

seasonal ANN 
 

Period Index Calibration Validation Calibration Validation Calibration Validation 

Total 

period 

Ef 0.83 0.78 0.77 0.61 0.81 0.79 

RMSE* 833 784 975 1536 868 1101 

Wet 

period 

Ef 0.68 0.51 0.53 0.1 0.62 0.50 

RMSE* 1354 1783 1639 2437 1447 1823 

Dry 

period 

Ef -0.03 -0.06 0.37 -0.31 0.64 -0.15 

RMSE* 341 548 267 608 199 548 

 

5.6 Summary 

This chapter discussed the results obtained in the second case study i.e. the Ribb 

catchment. Both catchment process modelling and statistical modelling were used to 

estimate daily streamflow using the methods followed in the first case study. Period of 

2003 to 2008 were also considered in the second case study to maintain the consistency 

with the first case study. The period of 2003 to 2006 were considered as the calibration 

period while 2007 to 2008 were considered as the validation period in both modelling 

processes. 

 

Before commencing daily streamflow estimation, rainfall and PET data were estimated 

using RS data. Almost similar level of accuracy as of rainfall estimation in the Macalister 

catchment was obtained in the Ribb catchment. Estimated PET using RS data showed a 

slight overestimation on non-cloudy days, while slight underestimation on cloudy days. In 

addition, LULC of the Ribb catchment was also derived using a RS image over the second 

case study area. The results of LULC classification showed that the individual LULC class 

accuracy is satisfy the accuracy thresholds available in the literature. 

 

Estimated rainfall and PET, and classified LULC were then used to estimate daily 

streamflow of the Ribb catchment with the catchment process model. The SWAT model 
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(which was used as catchment process model in the Macalister catchment) was also used 

in this catchment. Before estimating streamflow using estimated rainfall and estimated 

PET, a base model was develop to obtain best calibration parameters on the Ribb 

catchment with limited ground measured data. Then these parameters were used with 

estimated rainfall and estimated PET to estimate daily streamflow in the Ribb catchment. 

The results revealed that the base model perform better than the model with estimated 

rainfall and estimated PET. 

 

RS based vegetation and thermal indices, and BT were calculate for the Ribb catchment, 

same as it was done in the Macalister catchment. Current day, seven lag days and 8-day 

average of indices were considered from vegetation indices, while current day and 3 lag 

days were considered from BT and thermal indices. Partial Mutual Information method 

was used in this study area as well to obtain influential variables. The influential variables 

(i.e. 8-day average NDVI and 8-day average NDWI) were then used as input variables to 

ANN modelling. The seasonal ANN models were developed for the second case study, 

since the seasonal ANN models showed the best results with statistical modelling in the 

Macalister catchment. 

 

The comparison of catchment process modelling and statistical modelling results showed 

that seasonal ANN models are as good as catchment process model, in fact equal 

performance with model based on ground measured data. This is a significant achievement 

in daily streamflow estimation with available limited ground measured streamflow data. 
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6 CHAPTER 6: SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Summary  

The aim of this study was to investigate the use of Remote Sensing (RS) data to estimate 

daily streamflow, especially when ground measured data are scarce. This study was carried 

out in two different catchments. They are the Macalister catchment in Victoria - Australia 

and the Ribb catchment in Ethiopia. The Macalister catchment had sufficient ground 

measured data, such as rainfall, air temperature, wind speed and sunshine hours to estimate 

streamflow, while the Ribb catchment had least ground measured data to analyse the 

performance of estimates Catchment process modelling and statistical modelling were 

used with input variables computed using RS data, to estimate daily streamflows in both 

catchments. 

 

The Soil and Water Assessment Tool (SWAT) was used as the catchment process model in 

this study. SWAT is a semi-deterministic hydrological model. It uses ground measured 

meteorological data such as rainfall, surface temperature, relative humidity and wind 

speed. SWAT has the power to fill the gaps of meteorological variables caused by missing 

data and interpolate data through its in-built weather generator despite model and data 

uncertainties.  

 

Model uncertainties are common in hydrological modelling. SWAT was selected in this 

study to estimate streamflows as it supports the remote sensing based variables (e.g. 

rainfall, potential evapotranspiration and landuse/landcover) on grid scales as input to 

SWAT. In addition, the in-build weather generator of SWAT is an added advantage that 

can immensely benefit the data scarce catchments. All standard procedures were taken in 

to account while calibrating the SWAT model for both catchments to reduce the model 

parameter uncertainties. This was carefully done with the assistance of existing literature. 

The manual calibration approach was first used to calibrate the most sensitive model 

parameters, and then the auto-calibration was used to fine-tune the manually calibrated 

parameters. This procedure helps to reduce model uncertainty. Data uncertainty arises 

from inadequate gauging stations especially in data-poor catchments. In addition, 

equipment calibration issues\sensor malfunctioning for the existing gauge locations can 
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hinder the quality of data that had been collected. The data uncertainty affects the mode 

parameter uncertainty, since the model parameters are determined using the available data. 

Data uncertainty was minimized by quality checking of data before they were used in 

modelling. 

 

Daily rainfall and potential evapotranspiration were estimated with RS data in this study to 

run SWAT models of the two catchments. In addition to these two variables, 

landuse/landcover (LULC) of both catchments were classified using RS data. 

 

The Artificial Neural Networks (ANN) modelling technique was used as the statistical 

modelling tool in this study. The vegetation and thermal indices together with brightness 

temperature (BT) computed from RS data were used as inputs in this study. These indices 

were especially selected as they can be treated as surrogates for meteorological variables 

that are responsible for streamflow generation. The summary and conclusions related to 

the estimation of input variables (for both catchment process modelling and statistical 

modelling), and the estimation of daily streamflow resulting from catchment process 

modelling and ANN modelling are briefly presented in following sections, followed by 

recommendations for future work. 

 

6.1.1 Catchment process modelling using remote sensing data  

Rainfall and potential evapotranspiration were estimated, and LULC were classified using 

RS data as inputs to catchment process modelling in both catchments. They were then used 

with the SWAT models to estimate streamflows in both catchments. 

 

6.1.1.1 Rainfall estimation using remote sensing data 

Although the Tropical Rainfall Measuring Mission (TRMM) rainfall data (3B42) are 

available at a global scale at finer (3 hours) temporal resolution, their spatial resolution is 

coarse (approximately 625 km2), and do not represent the heterogeneity of rainfall in small 

and medium scale catchments. However, the MODIS BT, which can be used as surrogate 

for rainfall, is available at finer spatial resolution (approximately 1 km2), but has a coarser 

temporal resolution (1 day). Therefore, the TRMM rainfall data and the BT of band 31 

were combined in this study to estimate daily rainfall data with a spatial resolution of 1 

km2. 
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All non-cloudy images were considered to represent no-rain, and therefore all cloudy 

images of MODIS were considered in the rainfall estimation. However, all clouds do not 

yield rain. A cloud mask based on the BT difference was used in the initial separation of 

rain/no-rain clouds. Brightness temperatures of band 27, 31 and 32 were used in this 

masking process. All of the images passed on these cloud masks were further refined using 

a BT threshold, since warm clouds do not yield rain.  

 

Three thresholds were tested in identifying rain making clouds. The thresholds were the 

BT of 235 K (traditional threshold), the mean seasonal BT, and the mean monthly BT. The 

results showed that the mean seasonal threshold captured rain producing clouds better than 

the other two thresholds. The BT difference with respect to the mean seasonal threshold 

and TRMM rainfall data were combined through their cumulative gamma distribution 

functions to estimate high spatial daily rainfall. 

 

The Macalister catchment receives rainfall throughout the year, with winter and spring 

being the wettest periods. It was found that these two wet seasons were marginally 

underestimated in the rainfall estimation using RS data. Compared to these wet seasons, 

the dry seasons (i.e. summer and autumn) showed a mixed result. The majority of the 

estimated rainfall during summer showed both over- and under-estimation, while the 

majority of the estimated rainfall during autumn was overestimated. 

 

In contrast to the four seasons of the Macalister catchment, the Ribb catchment is 

characterised by two strong seasons (i.e. the wet season – monsoon period and the dry 

season – non-monsoon period). The same procedure that was applied to the Macalister 

catchment was used to estimate rainfall in the Ribb catchment. The results showed that the 

estimated rainfall was slightly underestimated during the wet season, but yielded a mixed 

result during the dry season.  

 

The performance analysis showed that the method used in this study to estimate rainfall 

using RS data has worked well for both catchments. However, the Macalister catchment 

shows a slightly better performance than the Ribb catchment in daily rainfall estimation 

via high spatial resolution data. 
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6.1.1.2 Estimation of potential evapotranspiration using remote sensing data 

In the absence of ground measured data, RS data and globally available climate datasets 

were used in this study to estimate daily PET (estimated PET). These data were used to 

calculate the available energy for latent heat, which was used to convert liquid water to 

water vapour. On that basis, the surface energy balance method was modified to estimate 

PET over both catchments. The PET estimates computed from RS data were compared 

against the Penman-Monteith (PM) estimates for both catchments to assess the accuracy of 

the PET estimates computed from RS data. The PM method is still the most widely 

accepted method to produce the best estimates of PET especially in the absence of direct 

measurements of PET. 

 

Surface albedo is a significant variable in PET estimation since it determines the amount 

of net energy available to PET, and it accounts for spatially and temporally non-uniform 

LULC in the catchment. The two way surface albedo estimation procedure was used in this 

study to compute surface albedo with RS data on non-cloudy days. The estimated surface 

albedo values for a given LULC class were compared with the corresponding surface 

albedo values used in the PM method to estimate PET, which were obtained from the 

literature. The results in both catchments showed that the mean value of surface albedo 

computed from RS data matched well with the literature values in the majority of LULC 

classes. Furthermore, the results showed that the range of surface albedo computed from 

RS data was significantly larger. However, the standard deviation of the surface albedo 

computed from RS data was very small; thus the effect of extreme values of surface albedo 

on PET estimation was negligible. 

 

The PET estimation was done separately for non-cloudy and cloudy days. The estimated 

PET and PM based PET were compared at selected locations that have different LULC. 

The overall agreement between estimated PET and PM based PET was higher in the total 

period of non-cloudy days. This was common for both catchments in all LULC classes. 

The nearest non-cloudy day surface albedo values were used to estimate PET on cloudy 

days in both catchments, since surface albedo was able to be computed only for non-

cloudy days. The estimated PET data on cloudy days showed an overestimation in the 

Macalister catchment. This was mostly due to localized issues such as haze not being 

accounted for with the RS based method. Meanwhile, the estimated PET data of the Ribb 
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catchment on cloudy days were mostly underestimated. Extreme PET values during cloudy 

days were always underestimated in both catchments, as a result of not accounting for the 

advection effect in the RS based method. However, these differences were within the 

accepted range. The results show that the methodology used in this study worked very well 

in estimating PET on non-cloudy days and reasonably well on cloudy days. 

 

The seasonal comparison of estimated PET results did not vary much in the Ribb 

catchment irrespective of cloudiness; however they produced mixed results in the 

Macalister catchment. More localized climatological conditions (inherent to the seasons of 

winter and spring in the Macalister catchment) such as haze and heat waves could have 

reduced the accuracy of the estimated PET data compared to the Ribb catchment. 

However, the seasonal results of the non-cloudy days were strong in both catchments. 

Furthermore, the highest accuracy was noted during the vegetation season (spring in the 

Macalister catchment and wet in the Ribb catchment). The vegetative seasons in both 

catchments were relatively free from extreme climate events, producing high accuracy in 

PET estimates computed from RS data, and were comparable to PM based estimates. 

 

The results also revealed that the estimated PET data agreed well with the PM based PET 

estimates within the range of 3.0 to 6.5 mmday-1 for both catchments. It was also noted in 

the literature that the PM based PET tends to overestimate low PET values (on cooler 

days). The PET estimates computed from RS data on cooler non-cloudy days in the 

Macalister catchment showed a lower value than the PM based PET estimates, which 

could be an indication that the RS based PET estimation method had produced more 

accurate PET values. 

 

6.1.1.3 Landuse/landcover classification using remote sensing data 

Since RS data provide rapid and continuous temporal and spatial information of the land 

surface, they were used in this study to develop the LULC maps that can be used in 

catchment process modelling, and various other applications. 

 

A Landsat 5 TM image and a Landsat 7 ETM+ image were used to classify LULC in the 

Macalister catchment and the Ribb catchment respectively. The Principal Component 

Analysis (PCA) was used in pre-image processing together with the Normalized 
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Difference Vegetation Index, (NDVI) to prepare the final images for classification 

purposes. The supervised classification approach was used in image classification, with the 

maximum likelihood method as classifier. 

 

Separate ground-truth data collection surveys were conducted for each catchment to 

identify existing LULC class signatures. Each catchment was found to be unique in terms 

of LULC and weather patterns. The Macalister catchment is dominant with forest classes, 

while the remaining areas are mainly pasture and grasslands. These are permanent LULC 

classes. Though the biomass amount of grasslands and pasture changes according to 

seasonal effects, their extent in the catchment remains constant over time. Compared to the 

Macalister catchment, the Ribb catchment is dominated by cultivation lands. As a result, 

the vegetation cover in the Ribb catchment changes significantly over the seasons. The wet 

season (monsoon) is the main cropping season; thus the entire catchment is fully covered 

during the wet season with agricultural crops (in the lower and middle parts of the 

catchment) and natural vegetation (mainly in the upper part of the catchment). 

 

The first half of the collected ground-truth data was used in image training and the 

remaining half was used in classification accuracy assessment. Both descriptive (user’s 

accuracy, producer’s accuracy and overall accuracy) and analytical (kappa statistics) 

techniques were used to assess the accuracy of classified LULC. The results of both 

catchments showed that the individual classification accuracy was better in terms of the 

threshold used in this study for almost all LULC classes. The overall classification 

accuracy of the LULC classification was also at a satisfactory level. The calculated kappa 

statistics also showed higher level of accuracy in the classified maps. The accuracy 

estimation of LULC classification showed that the methodology used in this study in 

classifying LULC worked well for both catchments, although each catchment had different 

LULC classes. 

 

6.1.1.4 Catchment process modelling 

The SWAT was used as a catchment process modelling tool to estimate daily streamflow. 

Initially, ground measured data (such as rainfall and air temperature) were used to calibrate 

the model. Other than meteorological data, the Digital Elevation Model, the FAO-soil 

map, and classified LULC information were used in calibrating this model. Initially the 
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model was manually calibrated. Thereafter, this manually calibrated model was auto-

calibrated for fine tuning. The calibrated model was considered as the base model. Three 

further SWAT models were considered by replacing ground measured data with 

corresponding data computed from RS. The calibrated model parameters of the base model 

were used in these three models. The three models were: 

 

(1) PET which was derived by the SWAT model using ground measured data, was 

replaced with estimated PET data, while keeping ground measured rainfall data 

unchanged in the model. 

(2) Ground measured rainfall data were replaced with estimated rainfall, while keeping 

SWAT derived PET unchanged. 

(3) Both ground measured rainfall and SWAT derived PET were replaced with 

estimated rainfall and estimated PET. 

 

From the four models (including the base model), it was found that the base model 

performed better than the rest of the models in daily streamflow estimation. The seasonal 

analysis of the results (of the base model) showed that estimated daily streamflow has been 

accurately estimated during the winter and spring seasons in the Macalister catchment and 

the wet season in the Ribb catchment, but has been underestimated during extreme events 

in both catchments. Moreover, estimated daily streamflow during summer and autumn has 

been overestimated. 

 

It was further observed that streamflow estimation in the Macalister catchment remained 

largely unchanged when the SWAT model derived PET was replaced with estimated PET. 

However, the model run with estimated rainfall and estimated PET led to a significant 

change in estimated streamflow in comparison to measured streamflow. The calculated 

performance indices revealed that performance was significantly reduced from the base 

model to the model with estimated rainfall and SWAT derived PET. Similar results were 

observed with the model run with estimated rainfall and estimated PET. This model run 

yielded the poorest performance in all three options that aimed to estimate streamflow 

through the use of estimated rainfall and estimated PET. 

 

For the Ribb catchment, a base model, which was developed with existing limited ground 

measured data, provided the calibrated model parameters. The results showed a very high 
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performance in the base model for the total period. The seasonal analysis of the results 

indicated that estimated streamflow was accurately estimated during the wet season, but 

was underestimated during extreme events. Estimated daily streamflow during the dry 

season was overestimated. These results are identical to the results of the Macalister 

catchment for the base model. 

 

The calibrated model parameters of the Ribb catchment were then used with estimated 

rainfall and estimated PET to estimate streamflow. Intermediate models (the first two 

models of the previously mentioned models) were not considered in the case of the Ribb 

catchment, since the results of the intermediate models in the Macalister catchment were 

found to be identical to the base model and the model with estimated rainfall and estimated 

PET. The base model showed the best performance in the Ribb catchment also. 

 

Estimated daily streamflow using the above mentioned model options were compared 

using the Flow Duration Curves (FDC) in both catchments, other than performance 

indices. In the Macalister catchment, it was found that extreme flows such as the 

percentage of exceedance less than 1 %, were underestimated by the model with estimated 

rainfall. This was mainly due to the fact that estimated rainfall figures failed to reflect 

extreme rainfall events properly. On other side of the FDCs, it was found that streamflow, 

which percentage of time exceeds more than 50 was overestimated with estimated rainfall. 

This observation was common in the case of the base model which was developed to 

calibrate model parameters. Compared to the Macalister catchment FDCs, the Ribb 

catchment FDCs showed a continuous underestimation of daily streamflow after 5 % of 

exceedance level. However, this underestimation was less when compared to the 

underestimation of the Macalister catchment. 

 

6.1.2 Statistical modelling using remote sensing data 

As mentioned in Section 6.1, the artificial neural networks (ANN) model was used as a 

statistical modelling tool. RS based vegetation and thermal indices, and BT were 

considered as inputs for this modelling approach. 
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6.1.2.1 Calculation of vegetation and thermal indices 

Both RS based vegetation, thermal indices, and BT were considered as input variables in 

the statistical modelling approach to estimate daily streamflow. The Normalized 

Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and 

the Enhanced Vegetation Index (EVI) were used as vegetation indices and brightness 

temperature difference (BTdiff) and brightness temperature gradient (BTgrad) were used as 

thermal indices. In addition to those, brightness temperatures of band 31 (BT31) and band 

32 (BT32) were also considered as potential input variables. These variables were selected 

because they represent some features of hydrometeorological variables that contribute to 

generating streamflow. The vegetation based indices were calculated only for non-cloudy 

days (since cloud cover arrests ground features fully or partially while stopping light 

penetration through clouds), while thermal based indices were calculated only for cloudy 

days (since radiance data were only used to capture cloud features in this section of the 

study). 

 

Since meteorological variables have a lag effect on streamflow, a lag time of up to 7 days 

was introduced to vegetation indices, and a lag time of up to 3 days was introduced to 

thermal indices. A lengthier lag time was catered for in vegetation indices than in thermal 

indices because vegetation has longer response on streamflow. In addition to those, 8-day 

averages of vegetation indices were used in this modelling to cover all the gaps in 

vegetation indices arising from cloud cover. 

 

6.1.2.2 Determination of influential input variables 

After considering current day, lagged days and average days, there were 43 potential input 

variables for statistical modelling. As mentioned earlier in Section 3.8.1, several issues, 

such as data redundancy, replication and complex model structure can potentially arise 

with an increased number of input variables. In that regard, it is crucial to accurately 

identify the influential input variables for streamflow estimation using statistical 

modelling. In this study, such an identification process was undertaken through the Partial 

Mutual Information (PMI) method. This method generated seventeen influential variables 

and two influential variables for the Macalister catchment and the Ribb catchment 

respectively. 
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6.1.2.3 Artificial Neural Networks modelling 

All seventeen influential variables were used as input variables for daily streamflow 

estimation with ANN modelling in the Macalister catchment. The use of an adequate 

number of hidden neurons is of utmost importance in ANN modelling, since too many 

neurons can cause their weight to control the model, while too few neurons can reduce the 

effect of input variables on outputs. Therefore, the trial and error calibration method was 

used in this study to find out the best number of hidden neurons. Performance indices were 

used to evaluate results in the trial and error calibration method. Accordingly, the model 

with 26 hidden neurons yielded the best results. These results were compared with 

measured streamflow data of the Macalister catchment. The dissimilarity between 

estimated and measured streamflow indicated that the model was not effective when 

applied singlehandedly for all seasons. Therefore, a separate model for each season was 

derived using the trial and error calibration method. The best results were obtained with 

models adopting 13, 24, 18 and 24 hidden neurons for summer, autumn, winter, and spring 

respectively. 

 

After combining the results of the seasonal models into a total time series, a higher 

performance of the model was noted in the Macalister catchment. This approach (i.e. 

seasonal ANN modelling) was replicated to the Ribb catchment by using the two 

influential variables that resulted from the PMI method. It was found that 8 neurons gave 

the best performance for both the wet and dry seasons. 

 

6.1.3 Comparison of catchment process modelling and statistical modelling 

The results of catchment process modelling were compared with those of ANN modelling 

for the base models, the model run with RS based inputs and the ANN model (seasonal-

combined). Visual comparison was done with flow duration curves, while more analytical 

comparison was carried out with performance indices. Such a comparison revealed that the 

base model yielded the best estimates in both catchments. On the other hand, ANN 

modelling provided better results than catchment process modelling with RS based 

variables. 
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6.2 Conclusions 

The following conclusions were drawn from this study: 

• The proposed methodology to separate rain clouds from no-rain clouds and rainy 

clouds from rain clouds work well in identifying the majority of rainy clouds. 

• The combined use of the TRMM rainfall data and MODIS BT data in generating 

daily rainfall data via a higher spatial resolution worked reasonably well for both 

catchments. Majority (80%) of the mismatches in rainfall estimation are less than 2 

mm, which means almost all large rainfall events were correctly captured and well 

estimated. This methodology is particularly suited for estimating rainfall for small 

and medium scale catchments.  

• The surface albedo computed from RS data compared well with the literature 

values. The RS data give albedo values on grid basis and results revealed that mean 

value of grids slightly vary, but standard deviation of surface albedo estimated 

using RS data over uniform LULC is less than 0.1. 

• The method used to estimate PET with RS data produced comparable results to the 

Penman-Monteith based PET, especially for non-cloudy days using the computed 

surface albedo (of non-cloudy days). The nearest non-cloudy day surface albedo 

values were used for cloudy days, and they were used with RS data to estimate 

PET for cloudy days, and they produced reasonable agreement with the Penman-

Monteith based PET. The accuracy of PET estimated using RS data for both cloudy 

and non-cloudy days is within the acceptable range of accuracy (10-40%).  

• The methodology used to classify LULC had given sufficient accuracy in 

individual and overall (of the order of 81%) classification accuracies. Higher kappa 

coefficient (of the order of 0.77) shows that the LULC classifications are reliable. 

Thus, this methodology can be used for further applications such as catchment 

modelling.  

• Catchment process modelling showed that the base model which used ground 

measured rainfall and SWAT model derived PET data performed the best. The 

performance of catchment models with rainfall and PET computed from RS data 

was not as good as that of the base model. The catchment model performance with 

either the SWAT model derived PET using ground measured metrological data or 

PET estimated from RS data produced similar results in streamflow estimation.  
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• Replacing ground measured rainfall with rainfall computed from RS data in the 

catchment process models had a significant effect on the streamflow estimation in 

both catchments. Streamflows of the wet season were modelled better than those of 

the dry season.  

• The vegetation indices, thermal indices and BT strongly followed the seasonal 

changes of both catchments.  

• The PMI method showed that many vegetation and thermal variables (altogether 17 

variables) were influential to streamflow when seasonality is strong. The same 

method showed that the average of a few vegetation variables (2) were influential 

when wetness and dryness are strong. 

• The ANN modelling revealed that a single non-seasonal model did not sufficiently 

address the variability of streamflow estimation. However, the seasonal ANN 

models with the same inputs produced better streamflow estimates.  

• A comparison of the results of catchment process modelling and statistical 

modelling showed that extreme events (such as those having a probability of 

occurrence less than 1%) were underestimated under both approaches. In addition, 

low flows were overestimated. 

• The streamflow estimates of ANN modelling were as good as the results of the 

base model (with ground measured rainfall and SWAT model derived PET). 

Therefore it can be said that ANN modelling had produced better streamflow 

estimates than catchment process modelling with RS data. 

 

6.3 Limitations and directions for future research 

Based on the methodologies and the findings of this study, several limitations were 

identified. Since these limitations serve as opportunities for future research, a few 

recommendations for future research are set out in the last paragraph. 

 

The major limitation of streamflow estimation using RS data is the need for a few ground 

measured data to calibrate both catchment process models and statistical models. 

Statistical modelling needs only streamflow data; however, the catchment process 

modelling approach needs streamflow data as well as some meteorological data.  
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The processing and calculations of this study (i.e. image processing, estimation of rainfall 

and PET, index calculation) need high level of skills and computer power, which prohibit 

the use of this method of streamflow estimation by general hydrologists and engineers. 

 

Rainfall, excess moisture, cloud shadow and haze could in reality change the surface 

albedo during cloudy days, and their effect on PET during cloudy days was not accounted 

for in this study. In addition, the estimation of cloud cover during cloudy days was difficult 

(especially during winter in the Macalister catchment), and as such introduced further 

differences between RS based PET estimates on cloudy days and the PM based PET 

estimates. Moreover, localized ground conditions such as haze and small clouds could not 

be recognized because of the cloud mask employed and because of the medium spatial 

resolution of the RS data used in this study. 

 

In summary. an investigation of the use of microwave data (that has the ability to penetrate 

clouds to a certain level) to estimate PET is recommended, and then the use of  this PET 

for streamflow estimation with catchment process modelling. It is further recommended to 

investigate sub-daily rainfall estimation using TRMM rainfall data and IGGC thermal data 

which is available on an hourly basis. This sub-daily estimates may have a better 

representation to the temporal variation rainfall, and it could thus improve the accuracy of 

streamflow estimation. Additionally, since statistical modelling was found to yield 

promising results, it is also worth investigating how this methodology could be applied to 

ungauged catchments or neighboring catchments. 
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8 APPENDICES 

Appendix A 

Table A.1 of Appendix A is tabled all the information used in first case study area selection process. These data were obtained from 

Department of Primary Industries – Victoria, and they are available on web with free of charge. Latest data available (senses on 1996/1997) 

were used in this process. 

 

Table A.1 Relevant details of selecting the first case study area - All Victorian catchments* 

  

Total 
catchment 
area (ha) 

Non-
agricultural 

area (ha) 
Agricultural 

area (ha) 

Irrigated 
agricultural 
area (ha) in 

1996/97 

Dry land 
agricultural 
area (ha) in 

1996/97 

Percentage 
of 

Agriculture 
area 

Percentage 
of regulated 

area 

Non-
agricultural 
area > 1500 

km2 

Percentage 
of 

Agriculture 
area < 33.3 

Avoca 1,420,274 125,682 1,294,592 46,287 1,248,305 91.2 3.3 0 0 

Brown 381,527 64,458 317,069 3,213 313,856 83.1 0.8 0 0 

Broken 709,505 133,877 575,628 108,314 467,313 81.1 15.3 0 0 

Bunyip 407,605 134,721 272,884 10,306 262,578 66.9 2.5 0 0 

Campaspe 405,815 55,020 350,796 32,269 318,526 86.4 8.0 0 0 

East Gippsland 565,327 554,715 10,612 785 9,827 1.9 0.1 1 1 

Glenelg 1,212,339 353,521 858,818 2,837 855,981 70.8 0.2 1 0 

Goulburn 1,685,502 619,278 1,066,224 118,564 947,659 63.3 7.0 1 0 

Hopkins 1,009,399 50,584 958,815 3,217 955,598 95.0 0.3 0 0 

Kiewa 190,748 109,051 81,696 1,494 80,203 42.8 0.8 0 0 

Lake Corangamite 407,996 65,865 342,132 3,698 338,434 83.9 0.9 0 0 

Latrobe 467,132 236,445 230,687 11,869 218,818 49.4 2.5 1 0 

Loddon 1,564,051 244,384 1,319,667 211,907 1,107,760 84.4 13.5 1 0 

Mallee 4,148,063 1,479,394 2,668,668 39,239 2,629,429 64.3 0.9 1 0 

Maribyrnong 144,735 36,395 108,340 295 108,045 74.9 0.2 0 0 

Millicent 3,437,879 671,499 2,766,380 58,907 2,707,473 80.5 1.7 1 0 

Mitchell 487,699 414,266 73,433 2,542 70,892 15.1 0.5 1 1 
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Moorabool 223,272 47,191 176,081 1,760 174,322 78.9 0.8 0 0 

Marray-Riverina 1,504,147 122,267 1,381,880 214,593 1,167,287 91.9 14.3 0 0 

Otway Cost 388,764 179,336 209,428 3,193 206,235 53.9 0.8 1 0 

Ovens River 797,588 434,102 363,486 8,851 354,636 45.6 1.1 1 0 

Portland Coast 396,773 68,681 328,092 3,894 324,198 82.7 1.0 0 0 

Snowy 1,578,416 1,009,280 569,137 1,180 567,957 36.1 0.1 1 0 

South Gippsland 679,783 230,919 448,864 8,627 440,237 66.0 1.3 1 0 

Tambo 420,117 330,811 89,306 782 88,523 21.3 0.2 1 1 

Thomson 657,902 470,703 187,200 25,148 162,051 28.5 3.8 1 1 

Upper Murray 521,020 309,908 211,112 601 210,511 40.5 0.1 1 0 

Werribee 197,135 72,040 125,094 4,104 120,990 63.5 2.1 0 0 

Wimmera 3,036,540 513,320 2,523,220 4,874 2,518,346 83.1 0.2 1 0 

Yarra 410,577 263,160 147,416 5,673 141,743 35.9 1.4 1 0 

 

 

 

Table A.1 continuation…. 
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Table A.2 and Table A.3 show information of the Blue Nile catchment subcatchments. Blue Nile is originates from the mountains of Ethiopia, 

and covers a large extent of the country. It provides approximately 80% of flow to the Nile River, thus a vital blood line in regional 

livelihood. 

  

Table A.2 Hydrometeorological information of the Blue Nile subcatchments* 

No. 
Subcatchment 

Name 
Catchment 
Area (km2) 

Mean 
Annual 
Rainfall 
(mm) 

Mean Annual Potential 
Evapotranspiration (mm) 

Mean annual 
runoff (mm) 

Mean annual 
flow (Mm3) 

Coefficient 
of runoff 

1 Guder 7,011 910 1,307 312 2,187 0.34 

2 Dabus 21,030 2,276 1,112 297 6,246 0.13 

3 Finchaa 4,089 1,766 1,290 438 1,719 0.25 

4 South Gojam 16,762 1,633 1,183 299 5,012 0.18 

5 Anger 7,901 1,813 1,318 298 2,355 0.16 

6 Beles 14,200 1,655 1,274 306 4,345 0.18 

7 Didessa 19,630 1,816 1,308 289 5,673 0.16 

8 Muger 8,188 1,347 1,210 298 2,440 0.22 

9 North Gojam 14,389 1,336 1,242 305 4,389 0.23 

10 Jemma 15,782 1,105 1,059 304 4,798 0.28 

11 Lake Tana 15,054 1,313 1,136 253 3,809 0.19 

12 Welaka 6,415 1,072 1,263 323 2,072 0.3 

13 Beshilo 13,242 982 1,140 296 3,920 0.3 

14 Wombera 12,957 1,660 N/A 299 3,874 0.18 

15 Dinder 14,891 N/A N/A 188 2,797 N/A 

16 Rahad 8,269 N/A N/A 133 1,102 N/A 
*Source: IWMI working report 131 
N/A means data are not available 
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Table A.3 Subcatchment information of the Blue Nile catchment* 

*Source: IWMI working report 131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subcatchment 
Name 

Area 
(km2) Elevation (m) 

Annual 
rainfall 
(mm) 

Min-max 
temperature 

(0C) 
Annual PET 

(mm) LULC 

Didessa 19,943 630-3130 1200-2200 20-33 1340-1980 woodlands 

South Gojam 17,029 725-300 800-2000 14-33 1100-2100   

Guder 7,123 950-3300 1000-1650 18-31 1300-2000 mostly cultivated 

Anger 8,027 860-3200 1200-2030 20-31 1300-1900 woodlands and forest 

Lake Tana 15,294 1800-3700 946-2000 14-27 1200-1900 cultivated 

North Gojam 14,618 1000-4000 800-1800 13-31 1000-1900 cultivated 

Dabus 21,367 485-3150 970-1900 20-35 1300-2100 uncultivated 

Beshilo 13,453 1170-4160 825-1470 13-30 1060-1920 mostly cultivated 

Fincha 4,154 880-3200 960-1900 20-30 1300-1900 cultivated 

Muger 8,318 1000-3500 780-1200 16-31 1200-1700 mostly cultivated 

Jemma 16,033 1100-3800 780-1200 15-31 1200-1900 mostly cultivated 

Welaka 6,517 1700-4200 800-1300 18-31 1000-1900 mostly cultivated 

Wombera 13,163 575-2590 1000-1965 22-34 1470-2000 wood and bush 

Beles 14,426 529-2700 1000-2000 21-35 1400-2000 mixed 

Rahad 8,401 
crossing 
Sudan         

Dinder 15,128 
crossing 
Sudan         
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Appendix B 

This is an example sheet of the ground-truth data collection sheet which is used in the 

Macalister and Ribb catchments  
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Appendix C 

Table C.1 shows the calculated Pearson correlation coefficient between streamflow and 

potential input variables. In addition to that, this table also shows the level of significance 

in the calculation. 

 

Table C.1 Pearson correlation coefficient of RS based potential variables with streamflow 

Variable   
Total 

Period Autumn Spring Summer Winter 

NDVI Pearson Correlation -.134
**
 -.071 -.161

**
 -.024 -.071 

Sig. (2-tailed) .000 .096 .000 .583 .098 

lag_1_NDVI Pearson Correlation -.183
**
 -.099

*
 -.238

**
 -.077 -.151

**
 

Sig. (2-tailed) .000 .020 .000 .080 .000 

lag_2_NDVI Pearson Correlation -.205
**
 -.152

**
 -.273

**
 -.049 -.196

**
 

Sig. (2-tailed) .000 .000 .000 .270 .000 

lag_3_NDVI Pearson Correlation -.201
**
 -.143

**
 -.268

**
 -.066 -.185

**
 

Sig. (2-tailed) .000 .001 .000 .137 .000 

lag_4_NDVI Pearson Correlation -.194
**
 -.123

**
 -.279

**
 -.091

*
 -.143

**
 

Sig. (2-tailed) .000 .004 .000 .039 .001 

lag_5_NDVI Pearson Correlation -.170
**
 -.138

**
 -.247

**
 -.130

**
 -.068 

Sig. (2-tailed) .000 .001 .000 .003 .112 

lag_6_NDVI Pearson Correlation -.158
**
 -.167

**
 -.222

**
 -.106

*
 -.052 

Sig. (2-tailed) .000 .000 .000 .016 .227 

lag_7_NDVI Pearson Correlation -.149
**
 -.165

**
 -.182

**
 -.095

*
 -.055 

Sig. (2-tailed) .000 .000 .000 .032 .200 

8-day_avg_NDVI Pearson Correlation -.312
**
 -.245

**
 -.451

**
 -.137

**
 -.248

**
 

Sig. (2-tailed) .000 .000 .000 .002 .000 

NDWI Pearson Correlation .041 -.065 -.069 .062 .084
*
 

Sig. (2-tailed) .056 .126 .109 .156 .049 

lag_1_NDWI Pearson Correlation .074
**
 -.106

*
 -.003 .106

*
 .115

**
 

Sig. (2-tailed) .001 .012 .940 .015 .007 

lag_2_NDWI Pearson Correlation .092
**
 -.099

*
 .067 .130

**
 .107

*
 

Sig. (2-tailed) .000 .021 .119 .003 .012 

lag_3_NDWI Pearson Correlation .055
*
 -.088

*
 .005 .149

**
 .037 

Sig. (2-tailed) .011 .038 .903 .001 .392 

lag_4_NDWI Pearson Correlation .041 -.078 -.025 .160
**
 .015 

Sig. (2-tailed) .055 .066 .561 .000 .730 

lag_5_NDWI Pearson Correlation .064
**
 -.043 .002 .169

**
 .059 

Sig. (2-tailed) .003 .310 .972 .000 .171 

lag_6_NDWI Pearson Correlation .051
*
 -.063 -.038 .123

**
 .061 

Sig. (2-tailed) .018 .139 .372 .005 .155 

lag_7_NDWI Pearson Correlation .055
*
 -.096

*
 -.063 .151

**
 .087

*
 

Sig. (2-tailed) .010 .024 .142 .001 .043 

8-day_avg_NDWI Pearson Correlation .108
**
 -.155

**
 -.069 .178

**
 .156

**
 

Sig. (2-tailed) .000 .000 .109 .000 .000 

EVI Pearson Correlation -.098
**
 -.118

**
 -.251

**
 .205

**
 .166

**
 

Sig. (2-tailed) .000 .005 .000 .000 .000 

lag_1_EVI Pearson Correlation -.116
**
 -.128

**
 -.278

**
 .142

**
 .160

**
 

Sig. (2-tailed) .000 .003 .000 .001 .000 

lag_2_EVI Pearson Correlation -.133
**
 -.153

**
 -.297

**
 .155

**
 .125

**
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Sig. (2-tailed) .000 .000 .000 .000 .003 

lag_3_EVI Pearson Correlation -.135
**
 -.158

**
 -.283

**
 .151

**
 .124

**
 

Sig. (2-tailed) .000 .000 .000 .001 .004 

lag_4_EVI Pearson Correlation -.139
**
 -.152

**
 -.292

**
 .135

**
 .143

**
 

Sig. (2-tailed) .000 .000 .000 .002 .001 

lag_5_EVI Pearson Correlation -.143
**
 -.142

**
 -.297

**
 .099

*
 .172

**
 

Sig. (2-tailed) .000 .001 .000 .025 .000 

lag_6_EVI Pearson Correlation -.147
**
 -.161

**
 -.303

**
 .114

*
 .167

**
 

Sig. (2-tailed) .000 .000 .000 .010 .000 

lag_7_EVI Pearson Correlation -.151
**
 -.158

**
 -.299

**
 .123

**
 .181

**
 

Sig. (2-tailed) .000 .000 .000 .006 .000 

8-day_avg_EVI Pearson Correlation -.145
**
 -.188

**
 -.391

**
 .286

**
 .203

**
 

Sig. (2-tailed) .000 .000 .000 .000 .000 

BT31 Pearson Correlation -.161
**
 -.057 -.108

*
 -.168

**
 -.007 

Sig. (2-tailed) .000 .179 .013 .000 .872 

lag_1_BT31 Pearson Correlation -.217
**
 -.086

*
 -.155

**
 -.229

**
 -.138

**
 

Sig. (2-tailed) .000 .044 .000 .000 .001 

lag_2_BT31 Pearson Correlation -.255
**
 -.146

**
 -.225

**
 -.216

**
 -.212

**
 

Sig. (2-tailed) .000 .001 .000 .000 .000 

lag_3_BT31 Pearson Correlation -.242
**
 -.141

**
 -.189

**
 -.203

**
 -.204

**
 

Sig. (2-tailed) .000 .001 .000 .000 .000 

BT32 Pearson Correlation -.154
**
 -.053 -.102

*
 -.164

**
 -.003 

Sig. (2-tailed) .000 .213 .018 .000 .946 

lag_1_BT32 Pearson Correlation -.209
**
 -.082 -.150

**
 -.224

**
 -.133

**
 

Sig. (2-tailed) .000 .056 .000 .000 .002 

lag_2_BT32 Pearson Correlation -.248
**
 -.144

**
 -.221

**
 -.211

**
 -.208

**
 

Sig. (2-tailed) .000 .001 .000 .000 .000 

lag_3_BT32 Pearson Correlation -.237
**
 -.138

**
 -.187

**
 -.200

**
 -.202

**
 

Sig. (2-tailed) .000 .001 .000 .000 .000 

BT_Diff Pearson Correlation -.255
**
 -.134

**
 -.196

**
 -.162

**
 -.127

**
 

Sig. (2-tailed) .000 .002 .000 .000 .003 

lag_1_BT_Diff Pearson Correlation -.279
**
 -.153

**
 -.208

**
 -.224

**
 -.202

**
 

Sig. (2-tailed) .000 .000 .000 .000 .000 

lag_2_BT_Diff Pearson Correlation -.275
**
 -.111

**
 -.225

**
 -.219

**
 -.168

**
 

Sig. (2-tailed) .000 .009 .000 .000 .000 

lag_3_BT_Diff Pearson Correlation -.241
**
 -.129

**
 -.133

**
 -.191

**
 -.101

*
 

Sig. (2-tailed) .000 .002 .002 .000 .019 

BT_Grad Pearson Correlation -.014 -.044 -.060 .042 -.003 

Sig. (2-tailed) .525 .305 .163 .339 .948 

lag_1_BT_Grad Pearson Correlation .000 .008 -.049 .043 .032 

Sig. (2-tailed) .999 .858 .261 .328 .460 

lag_2_BT_Grad Pearson Correlation .005 .037 -.022 .019 .033 

Sig. (2-tailed) .820 .385 .606 .669 .437 

lag_3_BT_Grad Pearson Correlation .021 .042 -.007 .037 .074 

Sig. (2-tailed) .323 .322 .866 .409 .084 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

Note: lag_1 means 1-day lag and lag_2 means 2-day lag and so on… 

 

Table C.1 continuation…. 


