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Abstract—Information gathered from the Smart Grid (SG) devices located in end user premises provides a valuable resource that 

can be used to modify the behavior of SG applications. Decentralized and distributed deployment of neighborhood area network 
(NAN) devices makes it a challenge to manage SG efficiently. The NAN communication network architecture should be designed to 
aggregate and disseminate information among different SG domains. In this paper, we present a communication framework for NAN 
based on wireless sensor networks using the software defined networking paradigm. The data plane devices, such as smart meters, 
intelligent electronic devices, sensors, and switches are controlled via an optimized controller hierarchy deployed using a separate 
control plane. An analytical model is developed to determine the number of switches and controllers required for the NAN and the 
results of several test scenarios are presented. A Castalia based simulation model was used to analyze the performance of modified 
NAN performance. 
 

Index Terms— Advanced metering infrastructure, neighborhood area network, smart grid, software defined networking, wireless 
sensor network 

1. INTRODUCTION 

he conventional power grids are on the verge of being upgraded to become Smart Grids (SG). Any changes in power grids 
are challenging due to its diversified and enormous network size, functionality, and standard specifications. The power grids 
need to accommodate state of the art SG applications and implement the applications for the benefit of consumers, business, 

industry, utility service providers and other stakeholders. Challenges remain before the development and implementation of SG 
applications will proceed apace, including selecting the appropriate communication technologies, network architecture, security, 
and regulation. SGs will be capable of transmitting electrical power both in forward and reverse direction in the distribution 
domain [1]. Large scale projects to generate power from renewable sources [2][3] are increasing the motivation to upgrade the 
power grid into a SG. Adding more renewable energy sources with synchronization with the existing power generators may 
reduce the substantial domestic and commercial demand load and decrease costs over time. Smart distribution grid applications 
[4] such as advanced meter infrastructure (AMI) [5], demand response (DR) [6], distributed energy resources (DER) [7] and 
vehicle to grid (V2G) [8] have the potential to contribute to the day-to-day fluctuating power demands. With modeling of the SG 
applications it is becoming evident there is a need for new technologies to be used to facilitate increased communications 
capability. 
 
The SG transformation process will be focused on the design of the communications network. Real-time monitoring and control 
of the large-scale intelligent device implementation requires improved traffic engineering and data management, with latency 
becoming a critical factor. Also, to improve security, efficiency, and the reliability of the power network, a robust 
communication network that enables autonomous system operations is a necessity. Developing a communications network and 
systems for SGs could be facilitated by the emergence of the software defined networking (SDN) paradigm. 
 
Networking devices in the current power grids are generally designed to serve an individual or selected number of applications. 
The primary objective of the networking devices is to enable machine to machine (M2M) communication, using an approach 
known as hardware-centric networking. Hardware-centric networking faces scalability and controllability challenges because the 
devices are generally static and cannot be dynamically updated with changed or new features. In an emergency scenario for 
example, it is difficult to re-configure network settings in a timely and effective manner. Over time, the non-adaptive network 
configuration of large M2M networks is prone to security degredation. The lack of a real-time grid monitoring capacity 
contributes to poor quality of service (QoS). The limited network control capability has driven the move towards SG 
communication networks utilizing SDN because it offers improved network control and programmability. SG communication 
networks that are based on SDN provide a more efficiently, flexible and dynamic environment for M2M communications [9]. 
The SDN based communications network separates the control and data planes to improve the control mechanism whilst 
                                                           

Nazmus S. Nafi is a PhD candidate with the School of Engineering, RMIT University, Melbourne, Australia (e-mail: nazmusshaker.nafi@rmit.edu.au). 
Khandakar Ahmed is with the College of Engineering and Science, Victoria University, Melbourne, Australia (e-mail: khandakar.e.ahmed@ieee.org ). 
Mark A. Gregory is with the School of Engineering, RMIT University, Melbourne, Australia (e-mail: mark.gregory@rmit.edu.au). 
Manoj Datta is with the School of Engineering, RMIT University, Melbourne, Australia (e-mail: manoj.datta@rmit.edu.au). 
 

Software Defined Neighborhood Area Network 
for Smart Grid Applications 

Nazmus S. Nafi, Student Member, IEEE, Khandakar Ahmed, Member, IEEE, Mark A. Gregory, 
Senior Member, IEEE, Manoj Datta, Member, IEEE 

T



 2

reducing the data plane dependence on vendor specific networking devices in the SG [10][11]. Smart meters and sensors nodes 
installed in the neighborhood area networks (NANs) would be connected to SDN enabled switches that provide the data layer 
traffic forwarding. Implementing SDN in a wireless environment consisting of a large number of wireless sensor nodes or smart 
meters is a significant challenge. For example, identifying the communications framework, the network architecture, and the 
number of switches and controllers required in the wireless NAN is an important step. This paper focuses on managing a 
network of wirless sensor devices utilizing an SDN enabled NAN. According to [12] network control is fully programmable in 
SDN and it is isolated from the packet forwarding mechanism. An SDN controller usually has the functionality to be the 
centralized network controller or part of a hierarchy of distributed controllers and can deploy multiple packet forwarding 
schemes or flows via the managed SDN enabled switches [13][14][15]. SDN has the potential to support information-centric 
networks (ICNs) where the network complexity could be reduced and network manageability increased based on identifying 
information flows and aggregation points [16]. Thus, SDN becomes an appropriate candidate for SG communication networks, 
where a huge number of M2M devices are controlled, monitored, and smart data aggregation is mandatory to run the delay 
sensitive applications. Moreover, inter-domain communication within the SG would require a sophisticated packet classifier and 
network address translators or firewalls which could be managed and configured using an SDN switch [17]. SDN could exploit 
the features of ICNs [18] such as content query, content-id based routing or in-network content retrieval to form groups of 
similar traffic sets and disseminate data through the cross-domain devices of the SG [19][20]. Another advantage of using SDN 
in SGs would be with virtual networking. SDN overcomes the limitations of a conventional virtual local area network (VLAN) 
or a virtual private network (VPN) due to its improved feture set, capabilities and ability to be reconfigured quickly. The concept 
of a virtual power plant (VPP) [21] could be one outcome of the virtualization capabilities provided by SDN. 
 
According to Gungor et. al. [22] WSNs could be a potential technology that could be used in any subdomain of the power grid. 
Other wireless technologies such as WiMax and Wi-Fi could be incorporated to build a robust heterogeneous network (HetNet). 
To keep the scope within the bounds of the design of an SDN based WSN for SG NAN, no further discussion on SDN based SG 
HetNet has been included in this paper, it is left for future work. The most common applications within a NAN are smart 
metering, DR, and distributed automation [23]. To deploy these applications, a large number of end user devices or smart meters 
and several data concentrators or aggregators are required. In a SG NAN, the data rate varies between 100 Kbps to 10 Mbps and 
data is expected to travel to network boundary points over distances of up to 10 Km (max) [23]. Among the available wireless 
sensor technologies ZigBee mesh networks are widely accepted. The IEEE standards association has released standards through 
the IEEE802.15.4g task group (TG4g) [24] that provide specifications to support a large number of smart devices deployed in 
diverse geographical topologies using minimal infrastructure. The system design for our proposed framework considers the 
specifications released by TG4g. Figure 1 shows a conceptual network architecture of a heterogeneous communication network 
for SGs based on the SDN paradigm. As shown in the Figure 1, the different SG domains such as Generation, Distribution or 
customer premises could be modeled with SDN cross domain content-based networking properties. Distributed controllers 
manage the data plane devices in the different domains of the SG. In the NAN, data related to the power grid will be retrieved 
using sensor devices, smart meters and intelligent electronic devices. A well designed SDN would utilize the retrieved data to 
deploy useful SG applications such as Automatic Meter Reading (AMR), outage management and distribution automation. In 
the distribution grid, SG applications like vehicle to grid (V2G), Grid to vehicle (G2V) or substation automation could be 
deployed via SDN based SG wide area networks. 
 
Figure 2 shows the conceptual architecture of the SDN based NAN. The sensor nodes are deployed in the customer premises to 
create home area networks (HAN), building area networks (BAN) or industrial area networks (IAN) and when combined a 
single NAN is created. Within a NAN, the sensor nodes and smart meters are connected to the SDN enabled switches (SDSWs) 
as shown in Figure 2. The switches are managed by a hierarchy of controllers, with the NAN controller/gateway forming the 
control plane entry point to the NAN. The switches are associated with SDN controllers that manage traffic flows by providing 
traffic flow packet forwarding instructions. Packet forwarding instructions received from the controller are stored in a flow table 
within a switch. 
 
The research presented was motivated by the observation that there is a need for SDN based SG NANs to facilitate devices 
connected by wireless or wired communication technologies. Particularly, the motivation of this work is to enable SDN based 
M2M communication in the NAN using WSN. This paper highlights the controller distribution within the NAN domain to 
optimize efficiency and reduce costs. The research presented in this paper includes: 
 

 A novel SDN based NAN communication framework for WSN connected devices 
 Consideration of delay sensitive and delay tolerant SG applications 
 Analysis of the network performance 
 A novel algorithm that improves traffic flows over the WSN 
 An analysis of the number of controller and switches required in the NAN to support the WSN connected devices 
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2. SDN BASED SG NAN COMMUNICATION FRAMEWORK 

2.1 Overview 

SG NAN and Field Area Network (FAN) applications that are AMI or smart meter based are typically semi-periodic. For 
example, AMR, DM, electric vehicle (EV) charging and discharging and micro-grid management. DR is responsible for load 
balancing between the power generator and consumers by utilising load control programs. The load control could be based on 
dynamic energy unit pricing or based on a more advanced technique like remote load control (RLC). Examples of well know 
dynamic price programs are time-of-use (TOU), real-time pricing (RTP), critical peak pricing (CPP) and peak time rebates 
(PTR). The characteristics of an RLC program can vary based on properties such as interruptible loads, reducible loads, partially 
interruptible loads. More details on the DR programs could be found in [25]. Distribution automation (DA) [26] should be 
designed for near real-time information about the grid operation and is used to improve distribution network monitoring and 
control by utilizing power distribution control, monitoring and management devices such as voltage regulators, fault detectors, 
capacitor bank controllers, and reclosers. A DA system can enable useful applications like Volt/VAR control, fault detection, 
isolation and restoration and distribution system monitoring and maintenance. Volt/VAR control adjusts the voltage and 
balances the load factor to reduce energy loss. In distribution monitoring and maintenance, sensor data is used to monitor the 
status (open/closed) of various distribution network equipment. With fault detection isolation and restoration, a section of the 
grid could be isolated if there is an occurrence of a fault and automatic restoration systems can be used to minimize the service 
interruption. 
 
Meter reading applications send scheduled meter data to the meter data management system (MDMS) via smart meters installed 
in the customer premises. Both MDMS and clients could use the data for billing inquiries, and verify outage and restoration 
events. Also, meter data could be used to monitor the health of the smart meter (e.g., connection status, hardware 
configurations), on grid events (e.g., software upgrades), or to generate event alarms (voltage distortions, outage, scheduled 
maintenance). In the case of an outage event, an outage management application needs to send the ‘last gasp’ alarm from the 
affected smart meters to the control center. As there might be no power available except the charge stored in the capacitor of the 
affected smart meter, outage alarms are required to be transmitted within few 10s of milliseconds [27]. It is crucial to meet the 
reliability requirements when a large number of smart meters are trying to access the network simultaneously. Based on [28], in 
rural, suburban and urban areas the meter density could be 100, 800 and 2000 per Km2 respectively. Table I summarizes the 
properties of four major SG applications in the NAN domain and shows their communication requirements. Based on the delay 
variability of these applications, we have categorized existing SG AMI applications in two groups -  delay sensitive and delay 
tolerant applications. Application characteristics and requirements [29][30] are also summarized. 
 

2.1 Communication Model 

The OpenFlow protocol is the functional open standard protocol for controller to switch communications that is acknowledged 
by the SDN research community [31]. OpenFlow provides the linkage between the programmable control plane and switches 
used to connect the data plane together. OpenFlow can be used to design test facilities for centralized and distributed control 
mechanisms in large networks. Usually, the communication devices in an SDN serve different functions depending on whether 
the devices are part of the control plane or the data plane. The control plane is used to facilitate network services and 
applications, flow management, monitoring and maintenance. The network devices in the data plane provide flow transport 
between the end point devices and up stream systems that today might be found in the Cloud. The SDN paradigm is appropriate 
for SGs as it facilitates connecting end point devices using WSN in a NAN, provides the flexibility to adjust to an increasing 
number of M2M devices being added to the NAN and can be quickly upgraded to support new or enhanced SG applications. 
The proposed communication framework presented in this paper can be used to implement a SG NAN. The communications 
model permits the flexible deployment of innovative SG applications. The authors in [32] focused on developing an SDN based 
routing protocol for AMI applications in a wireless environment. This work provides an interesting early insight into how an 
SDN based SG NAN using WSNs might route traffic. 
 

Table I Major SG application within NAN domain 

AMI applications Characteristics Data Sending 
Interval 

Data Rate Data Size 
(bytes) 

Delay Reliability 

Outage 
management 

Event based, Delay 
Tolerant 

1 per meter per 
power lost 

56kbps 25 2s >98% 

Demand response 
(DR) 

Semi periodic (Delay 
tolerant)/Event based 

(Mission Critical) 

1 per device per 
Broadcast request 

14-100kbps 
per node 

100 500ms-1min >99.5% 

Distribution 
automation  

 

Semi-Periodic, Delay 
Sensitive 

1 per 
device per 12 h 

9.6-56kbps 150-200 25 _ 100 ms >99.5% 
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Meter reads Periodic, Delay 
Tolerant 

5min, 10min, 
15min, 30min, 1Hr 

10Kbps to 
128Kbps 

200 2-15s >98% 

 
To develop a framework for the SDN-based SG NAN using WSN, the first task is to determine the control and data plane 
characteristics. At the time of network initialization, flows are defined via the controller and stored in the NAN switches. The 
flow commands are stored in all switches whilst the corresponding applications are active in the network, and might be replaced 
or removed if there was no demand for the flow table entries. As shown in Figure 3 (a), there are two delay tolerant SG 
application packets generated from IEDs and smart meters. Upon arriving at the switch, packets are placed into a flow lookup 
queue. If the flow is matched with a flow entry stored in the flow table, the corresponding switch forwards the packet to the 
desired destination by placing the packet into a queue called the immediate buffer (shown in Figure 3(b)). If the flow is not 
matched, information from the packet is sent to the nearest controller with a request for a flow instruction to be provided for the 
packet type. After retrieving a flow command for the packet, the packet is placed into a buffer responsible for handling delayed 
packets, which are then forwarded at the earliest opportunity. Note that, flow commands could be modeled in such a way that 
switches can unicast, multicast or broadcast the packet based on the SG application specifications. 
 
Data from the smart meters is sent to the switch via unicast packet transmission. The packet format of the unicast packets is 
shown in Figure 3 (c). Upon receiving this packet, the switch uses an application classification module to determine the 
application name and identification number (shown in Figure 3 (d)). Next, the switch looks for a flow match with an entry in the 
flow table. If the flow is found, the related action corresponding to this flow instruction is performed. The packet is treated as 
resolved and sent to the network layer. In the case of a table miss event, at first, the switch inserts the packet into the queue of an 
unresolved packet buffer. Next, a control packet is generated which contains the preamble fields of the SG application packet. 
This packet is called ‘Packet_In Request’ and sent to the controller containing only the packet header fields (shown in Figure 3 
(e) ). Only the header fields of the packet are sent to avoid overloading the control channel. Upon receiving the control packet, 
‘Packet_In Request’ (Figure 3 (e)), the controller replies to the corresponding switch with a new flow command by attaching a 
field in the acknowledgment packet. This packet is called ‘Packet_out Response’ and contains the flow command being sent to 
the switch. The SG application packet with the new flow command is shown in Figure 3 (f). At this stage, the switch updates its 
flow table and forwards the packet. Algorithm 1 and Algorithm 2 summarized the process. 
 
Algorithm 1: Application classifier module at the application layer of the cluster switch 
 

input: Read SDSGgen pk 

1. if pkval < 0 then 
 A1, A2, … , An   ← ࢇ࢜   .2
  	ࢋࢍࡳࡿࡰࡿ →		ࢊ	ࢇ	࢝ࢋ   .3

 	ࢋࢍࡳࡿࡰࡿ →		ࢋࢇ	ࢇ	࢝ࢋ   .4

 	ࢋࢍࡳࡿࡰࡿ =			ࢇ	࢝ࢋ	࢚ࢋ࢙   .5

  pk forward buffer →	ࢇࡳࡿࡰࡿ   .6

7. else pk destination → Controller  
8. end if 
9. initialize flow table query 
10. move ࢇࡳࡿࡰࡿ	 from queue 

11. read ࢊࢇ and ࢋࢇࢇ 
12. if ࢊࢇand ࢋࢇࢇ = true then 
13.   Get Action 
14.   if int i then 
15.    for i=0, i < action, i++ do 
16.     set pk destination 
17.    end for 
18.   end if 
19.   if int j then 
20.    for j=0, j < action, j++ do 
21.    set pk destination ‘-1’ 
22.    end for 
23.   else ࢚࢘ࢉࡳࡿࡰࡿ	 = Preamble + ࢇࡳࡿࡰࡿ  

24.   end if 
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3 OPTIMIZATION: DISTRIBUTED CONTROLLERS AND SWITCHES 

As mentioned earlier, in the proposed framework, a group of IEDs and smart meters will form clusters and a single switch will 
be responsible for each cluster. In this context, it will be a basic requirement to determine the appropriate number of switches 
and controllers for large NANs with WSNs. It’s important to identify the number of switches that will be deployed in the 
distribution grid to maximize the network throughput and efficiency (e.g. packet success rate). Also, to establish robust 
communication infrastructure and achieve full control via SDN controllers, intelligent implementation of distributed controllers 
in the control plane is essential. Furthermore, a novel mathematical model is proposed to determine the minimum number of 
controllers and switches that can serve the proposed framework with maximum efficiency. 
 
Let’s assume, ߙ	is the total processing time of a single controller to resolve an incoming flow request and to disseminate the 
traffic to the appropriate destinations. The total processing time depends on three parameters: (a) flow request delay, (b) 
associated communication delay, and (c) flow request-response delay. Flow request delay is the period consumed by the switch 
whilst identifying that flow instructions are not in the flow table for a new flow and sending the flow information to the 
controller. The communication delay is a summation of the switch store and forwarding delay and the propagation delay. Lastly, 
the flow request response time is consumed as the controller processes the flow information for the incoming instruction request 
packets. This can be written as: 
 

 ∝ൌ∝ிோ∝ிோோ∝ଵ∝ଶ (1) 
 

Where,  ∝ிோ, ∝ிோோ, ∝ଵ and ∝ଶ represents flow request delay, flow request response time, communication delay from 
switch to controller, and controller to switch, respectively. Considering,  
 

 ∝ଵ≅∝ଶ≅∝ (2) 
 
Thus, 

 ∝ൌ∝ிோ∝ிோோ 2 ∝ (3) 
 
Now, assume ߙ is the propagation delay and ߙௌி	is the store and forwarding delay of the switches. The store and forwarding 
delay is the time period taken by the switch to place the packet into the queue of immediate buffer and to transmit the packet at 
the earliest opportunity. Thus, the total communication delay can be represented as  
 

 ∝ൌ ߙ    (4)	ௌிߙ
If there are h number of hops between a switch and a controller then,  
 

 ∆ൌ ∑ ߙ

ୀଵ  (5) 

 ∆ௌிൌ ∑ ௌிߙ

ୀଵ  (6) 

 
Therefore, (4) can be re-written as  
 

 ∝ൌ ∑ ሺߙ

ୀଵ   ௌிሻ (7)ߙ

 
For, simplification consider ߙ ≅ ାଵߙ ≅ ⋯ ≅ ାߙ ௌிߙ  andߙ ≅ ≅ ௌிାଵߙ ≅ ⋯ ≅ ௌிାߙ  ௌி. Therefore, (7) canߙ ≅
be expressed as 
 

 ∝ൌ ሺߙ   ௌிሻ*h (8)ߙ
 

To determine the value of ∝ிோோ in (3), consider that ξ is the flow resolve rate per controller and η is the number of switch 
assigned per controller. Then, the ∝ிோோ can be written as 
 

 ∝ிோோൌ
ఎఉ

క
 (9) 

Now, by replacing (8) and (9) in (3) 
 

 ∝ൌ∝ிோ
ఎఉ

క
 2ሺߙ   ௌிሻ*h (10)ߙ

Hence, 

ߟ  ൌ 	 ሾఈି∝ಷೃିଶሺఈುವାఈೄಷሻሿక
ఉ

 (11) 
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Thus, the average number of hops from a switch to controller would be  
 

 ݄ ൌ ߟ/ܪ ≅ ඥ(21) 2/ߟ 
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 A novel SDN-based NAN framework built upon WSN 
 Five different types of SG applications have been considered based on their traffic characteristics to model the SDN-

based NAN 
 Performance of the network has been analyzed to validate the feasibility of the framework.  
 Smart algorithms have been developed and introduced in the properties of WSN at the application layer to 

accommodate the SDN features.  
 Additionally, to drag a solution specifying the optimal number of controller and switches, a novel analytical model has 

been developed based on the communication traffic cost.  
 
 


