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Abstract 
Enhanced streamflow forecasting has always been an important task for researchers and 

water resources managers. However, streamflow forecasting is often challenging owing 

to the complexity of hydrologic systems. The accuracy of streamflow forecasting 

mainly depends on the input data, especially rainfall as it constitutes the key input in 

transforming rainfall into runoff. This emphasizes the need for incorporating accurate 

rainfall input in streamflow forecasting models in order to achieve enhanced 

streamflow forecasting. Based on past research, it is well-known that an optimal rain 

gauge network is necessary to provide high quality rainfall estimates. Therefore, this 

study focused on the optimal design of a rain gauge network and integration of the 

optimal network-based rainfall input in artificial neural network (ANN) models to 

enhance the accuracy of streamflow forecasting. The Middle Yarra River catchment in 

Victoria, Australia was selected as the case study catchment, since the management of 

water resources in the catchment is of great importance to the majority of Victorians. 

 

The study had three components. First, an evaluation of existing kriging methods and 

universal function approximation techniques such as genetic programming (GP) and 

ANN were performed in terms of their potentials and suitability for the enhanced 

spatial estimation of rainfall. The evaluation confirmed that the fusion of GP and 

ordinary kriging is highly effective for the improved estimation of rainfall and the 

ordinary cokriging using elevation can enhance the spatial estimation of rainfall. 

 

Second, the design of an optimal rain gauge network was undertaken for the case study 

catchment using the kriging-based geostatistical approach based on the variance 

reduction framework. It is likely that an existing rain gauge network may consist of 

redundant stations, which have no contribution to the network performance for 

providing quality rainfall estimates. Therefore, the optimal network was achieved 

through optimal placement of additional stations (network augmentation) as well as 

eliminating or optimally relocating of redundant stations (network rationalization). In 

order to take the rainfall variability caused by climatic factors like El Niño Southern 

Oscillation into account, the network was designed using rainfall records for both El 
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Niño and La Niña periods. The rain gauge network that gives the improved estimates of 

areal average and point rainfalls for both the El Niño and La Niña periods was selected 

as the optimal network. It was found that the optimal network outperformed the 

existing one in estimating the spatiotemporal estimates of areal average and point 

rainfalls. Additionally, optimal positioning of redundant stations was found to be highly 

effective to achieve the optimal rain gauge network. 

 

Third, an ANN-based enhanced streamflow forecasting approach was demonstrated, 

which incorporated the optimal rain gauge network-based input instead of using input 

from an existing non-optimal network to achieve the enhanced streamflow forecasting. 

The approach was found to be highly effective in improving the accuracy of streamflow 

forecasting, particularly when the current operational rain gauge network is not an 

optimal one. For example, it was found that use of the optimal rain gauge network-

based input results in the improvement of streamflow forecasting accuracy by 7.1% in 

terms of normalized root mean square error (NRMSE) compared to the current rain 

gauge network based-input. Further improvement in streamflow forecasting was 

achieved through augmentation of the optimal network by incorporating additional 

fictitious rain gauge stations. The fictitious stations were added in sub-catchments that 

were delineated based on the digital elevation model. It was evident from the results 

that 18.3% improvement in streamflow forecasting accuracy was achieved in terms of 

NRMSE using the augmented optimal rain gauge network-based input compared to the 

current rain gauge network-based input. The ANN-based input selection technique that 

was employed in this study for streamflow forecasting offers a viable technique for 

significant input variables selection as this technique is capable of learning problems 

involving very non-linear and complex data. 
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Chapter 1 

Introduction 

 

 

1.1 Background 

Accurate forecasting of streamflow is essential for many of the activities associated 

with the effective planning and operation of the components of risk-based water 

resources systems. Particularly, streamflow forecasting is of vital importance to flood 

control and mitigation, and water resources planning and management systems. The 

analysis and design of hydraulic structures such as dams and bridges, management of 

extreme events including floods and droughts, optimal operation of reservoir for 

activities including irrigation water requirement, hydropower generation, domestic and 

industrial water supply objectives are a few examples wherein streamflow forecasting 

provides crucial information (Jain and Kumar, 2007; Londhe and Charhate, 2010). The 

purpose of forecasting is to minimize the risk in a decision taken, at any given point of 

interest, in various water engineering applications. Hence, there is a growing need for 

both short-term and long-term forecasting of future streamflow in order to optimize the 

water resources systems in an efficient way (Akhtar et al., 2009). According to Ruiz et 

al. (2007), a reliable and improved forecasting of streamflow ensures rational regulation 

of river runoff, which ultimately results in the enhanced flood control and protection. 

Improving the accuracy and performance of streamflow forecasting has, therefore, 

always been an absolute necessity for researchers and hydrologists.  
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While floods contribute to a greater loss of life and property damage leading to huge 

economic loss, droughts induced water scarcity limits water uses across the world 

(Makkeasorn et al., 2008). In Australia, floods and droughts have also affected many 

regions of several states (van den Honert and McAneney, 2011; National Climate 

Centre, 2011; van Dijk et al., 2013; Low et al., 2015). Australia is often referred to as 

the land of ‘drought and flooding rains’ (Pittock and Connell, 2010). This contrast was 

more evident than ever in the last two decades, when an extensive period of drought 

(the 1997-2009 Millennium Drought) was followed by a series of large-scale floods 

occurring in 2010-2011, which caused havoc in many parts of southeastern and eastern 

Australia (Bureau of Meteorology, 2011; Victorian Government, 2011). For example, 

floods that affected eastern Australia in January 2011 caused extensive damage worth 

approximately $A126 Million (AIDR, 2015). Floods are usually Australia’s most 

expensive natural hazard with the average annual cost of flooding being about $A377 

Million (BITRE, 2008). Likewise, severe drought in 2002–2003 caused a $A7.4 Billion 

drop in Australia’s agricultural production and for that year, economic losses were 

equivalent to 1.6 percent of country’s gross domestic product (Lu and Hedley, 2004). 

Floods and droughts induced water management problems have thus become the 

important concerns, especially in southeastern Australia, which require immediate 

action. Australia’s population and agricultural production are highly concentrated in the 

southeastern part of the country (Murphy and Timbal, 2008). Water resources play a 

key role in the economic development of the region. The region’s growing population 

and resulting new demands on limited water resources require efficient management of 

existing water resources as well as identifying alternative sources of water. In order to 

address these water management challenges, it is widely recognized that maximizing 

water management efficiency based on streamflow forecasting is vital. 

 

Due to the importance of hydrologic forecasting, a large number of forecasting models 

and methodologies have been developed and applied in streamflow forecasting. These 

streamflow forecasting models can be categorized as process-driven models and data-

driven models (Wang, 2006). The process-driven models depend on the underlying 

physical processes, which require a large amount of data and huge computational 

efforts. Various forms of lumped, semi-distributed and distributed rainfall-runoff 

models are included in this category. Data-driven models, on the other hand, are based 
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on a limited knowledge of the internal physical mechanism of the catchment and rely 

on data describing input and output characteristics. They are essentially black-box 

models that characterize the relationships between input and outputs without explicit 

simulation of the underlying physical processes. They may include regression and time 

series models as well as machine learning-based models like artificial neural networks 

(ANN) and genetic programming (GP) models. Recently, data-driven models have 

gained widespread popularity in streamflow forecasting due to the data availability 

from monitoring stations, real-time data retrieval, and availability of advanced 

computing facilities (Wang, 2006). These models usually perform better than others in 

situations where the underlying interactions and dependencies of physical processes are 

unknown or only partially understood (Maier and Dandy, 2000). These models are easy 

to set up and are able to produce acceptable results with minimum input data (rainfall 

and discharge) (e.g., Talei et al., 2010; Londhe and Charhate, 2010; Yilmaz and Muttil, 

2014). Due to this simplicity, data-driven models, particularly ANN have been widely 

used for streamflow forecasting across the word (e.g., Zealand et al., 1999; Dibike and 

Solomatine, 2001; Birikundavyi et al., 2002; Huang et al., 2004; Wu et al. 2005; 

Srinivasulu and Jain, 2009; Sivapragasam et al., 2014; Taormina et al., 2015). 

 

Generally, streamflow forecasting is challenging due to the complexity of hydrologic 

systems. However, the key challenge of achieving enhanced accuracy of streamflow 

forecasting remains. This is by no means an easy task because there is no single 

streamflow forecasting method that provides optimum forecast results for all types of 

catchments and under all circumstances (Shamseldin, 2004). Furthermore, there is 

always uncertainty when it comes to forecasting because it is unlikely to forecast the 

exact future conditions. As a result of these difficulties, it is necessary to devise a viable 

streamflow forecasting approach for improved estimation of future streamflows with 

ease and better accuracy. The accuracy of streamflow forecasting primarily depends on 

the input data, especially rainfall data as it constitutes the key input in transforming 

rainfall into runoff (Maskey et al., 2004; Jones et al., 2006; Ekström and Jones, 2009). 

Hence, rainfall is one of the most important inputs to develop streamflow forecasting 

models. Since streamflow is a consequence of rainfall, uncertainty associated with 

rainfall causes uncertainty in estimated streamflow and adversely affects the accuracy 

of streamflow forecasting (Faurès et al., 1995; Tsintikidis et al., 2002; Moulin et al., 
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2009). This emphasizes the importance of using accurate rainfall data in streamflow 

forecasting models to meet the challenge of enhanced streamflow forecasting. Thus, it 

can be expected that the enhanced accuracy in streamflow forecasting can be achieved 

if catchment rainfall is estimated accurately and fed into streamflow forecasting 

models.  

 

Rain gauge networks are usually installed to get direct measurements of rainfall. 

However, many of the water resources systems are large in spatial extent and often 

consist of a rain gauge network that is very sparse due to financial, logistics and 

geological factors. This results in considerable uncertainty in the rainfall data that are 

available (Zealand et al., 1999). Rainfall often shows significant spatial variations 

within a catchment or region (Faurès et al., 1995; Krajewski et al., 2003). As an 

example, rainfall variability in eastern Australia is mainly caused by the dominant 

influence of El Niño Southern Oscillation (ENSO) effect (Murphy and Ribbe, 2004; 

Pittock et al., 2006), which also cause uncertainty in rainfall data. As a result, existing 

standard rain gauge networks established in the past in Australian catchments often fail 

to adequately address the rainfall variability. Therefore, the design and establishment of 

an optimal rain gauge network is an important task in this study to obtain high quality 

rainfall estimates. An essential advantage of having such an optimal network is to 

achieve improved streamflow forecasting. The optimal network improves the accuracy 

in streamflow forecasting by providing accurate estimates of rainfall data with little or 

no uncertainty (Tsintikidis et al., 2002) that are used as the input to streamflow 

forecasting models.  

 

Rainfall is often considered independent of streamflow simulation and forecasting such 

as estimation of areal average rainfall over a catchment (e.g., Bastin et al., 1984; Seed 

and Austin, 1990; Mishra, 2013) or the design of rain gauge networks (e.g., 

Papamichail and Metaxa, 1996; Pardo-Igúzquiza, 1998; Tsintikidis et al., 2002; Cheng 

et al., 2008; Aziz et al., 2016; Feki et al., 2017). However, this does not allow one to 

focus on the strength and weakness of an established optimal rain gauge network that 

really matter when rainfall data from the optimal network are fed into streamflow 

forecasting models. Therefore, it is logical to design an optimal rain gauge network for 

providing a satisfactory solution to the specific requirement of enhanced streamflow 
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forecasting for which the network is being established. In the past, rainfall data were 

used in streamflow forecasting models directly from the existing rain gauge network 

(which may not be an optimal network) rather than using improved rainfall data from 

an optimally designed rain gauge network (e.g., St-Hilaire et al., 2003; Dong et al., 

2005; Anctil et al., 2006; Xu et al., 2006; Bárdossy and Das, 2008; Ekström and Jones, 

2009; Moulin et al., 2009; Xu et al., 2013; Tsai et al., 2014). This ultimately results in 

the less accurate forecasting of streamflow. Thus, it can be hypothesized that the 

integration of rainfall input from an optimal rain gauge network with streamflow 

forecasting models is expected to improve the accuracy of streamflow forecasting. 

Therefore, this thesis focused on the optimal design of a rain gauge network in order to 

improve the accuracy of streamflow forecasting. The results of this thesis would 

contribute to the development of appropriate water management plans and optimal 

reservoir operation strategies for effective flood control and drought management 

specifically in southeastern Australia. 

1.2 Aims of the Study 

The main aim of this study was to improve the performance of streamflow forecasting 

at the outlet of a catchment by incorporating the optimal rain gauge network-based 

input (instead of incorporating input from the existing non-optimal rain gauge network) 

to artificial neural network (ANN)-based streamflow forecasting models. The research 

framework of this study consists of two integral parts, which have been linked together 

to establish an enhanced data-driven modelling framework in order to improve the 

accuracy of streamflow forecasting. In the first part, the aim was to analyze the spatial 

variability of rainfall and re-design the existing non-optimal rain gauge network using 

the kriging-based geostatistical approach to achieve the optimal rain gauge network. In 

the second part, the aim was to use rainfall data from an optimally designed rain gauge 

network (obtained from the first part) in addition to streamflow records as the input to 

the ANN-based streamflow forecasting models to forecast the streamflow values at the 

catchment outlet. The following specific aims were considered under the above 

mentioned main aim of the study: 
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x Assessment of the potential of incorporating universal function 

approximation-based variogram models under the kriging-based 

geostatistical framework for improved estimation of rainfall. 

x Evaluation of the performance of different conventional and universal 

function approximation-based kriging methods for spatial interpolation of 

rainfall. 

x Analysis of the potential of using supplementary information (elevation) 

along with primary variable (rainfall) in the kriging-based geostatistical 

framework for enhanced estimation of rainfall. 

x Development of a simple and effective rain gauge network design 

methodology under the variance reduction framework using the kriging-

based geostatistical approach for optimal design of a rain gauge network 

through optimal positioning of additional rain gauge stations (network 

augmentation) as well as removing and/or optimally relocating of existing 

redundant rain gauge stations (network rationalization). 

x Assessment of the effectiveness of incorporating rainfall input from an 

optimal rain gauge network (instead of using input from an existing non-

optimal rain gauge network) in the ANN-based streamflow forecasting 

models to achieve the enhanced accuracy in streamflow forecasting. 

1.3 Research Methodology in Brief  

In order to achieve the aforementioned aims as stated in Section 1.2, the following tasks 

were undertaken in this research project. 

 

1. Review of rain gauge network design and its impact on the accuracy of 

streamflow simulation. 

2. Development of a universal function approximation-based kriging for 

improved estimation of rainfall. 

3. Evaluation of different univariate and multivariate kriging methods for 

enhanced spatial interpolation of rainfall. 
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4. Optimal design of a rain gauge network using the kriging-based 

geostatistical approach. 

5. Improvement of streamflow forecasts using optimal rain gauge network-

based input. 

 

The aforementioned tasks under the methodological framework of this research project 

were demonstrated through a case study area, which comprises the middle segment of 

the Yarra River catchment in Victoria, Australia. The study area is referred to as the 

‘Middle Yarra River catchment’ in this thesis. A brief description of the study area 

along with its selection and importance for the effective management of water 

resources is given in Section 1.4. It is important to note that the methodological 

framework that is proposed and demonstrated in this thesis can be used for any other 

study area or catchment. Brief description of each of the aforementioned tasks is given 

in the following. 

1.3.1 Review of rain gauge network design and its impact on the 

accuracy of streamflow simulation 

There are several methods that have been used in the past for the design and evaluation 

of a rain gauge network (Mishra and Coulibaly, 2009). Among those, two basic 

methods namely kriging-based geostatistical approach (e.g., Shamsi et al., 1988; 

Kassim and Kottegoda, 1991; Loof et al., 1994; Papamichail and Metaxa, 1996; Pardo-

Igúzquiza, 1998; Ghahraman and Sepaskhah, 2001; Tsintikidis et al., 2002; Nour et al., 

2006; Barca et al., 2008; Chen et al., 2008; Cheng et al., 2008; Chebbi et al., 2011; Yeh 

et al., 2011; Putthividhya and Tanaka, 2013; Shaghaghian and Abedini, 2013; Shafiei et 

al., 2014; Adib and Moslemzadeh, 2016; Aziz et al., 2016; Haggag et al., 2016; Chang 

et al., 2017; Feki et al., 2017) and information theory-based entropy approach (e.g., 

Husain, 1989; Krstanovic and Singh, 1992a,b; Al-Zahrani and Husain, 1998; Yoo et al., 

2008; Karimi-Hosseini et al., 2011; Ridolfi et al., 2011; Vivekanandan and Jagtap, 

2012; Li et al., 2012; Xu et al., 2015; Werstuck and Coulibaly, 2016; Xu et al., 2017) 

are mostly used for optimal design of a rain gauge network by researchers and 

professionals around the world.  
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A number of issues was considered for selecting the rain gauge network design method, 

including understanding of the concept and simplicity of use (i.e., time and effort 

required to arrive at a conclusion), strength and weakness of the approach (i.e., quantity 

and quality of necessary data, data availability, and ability to handle uncertainty), and 

availability of user-friendly software packages to accomplish the analysis. Based on the 

above-mentioned issues and factors, the kriging-based geostatistical approach was 

selected for optimal design of rain gauge network in this research project. Thus, a 

review of the kriging-based geostatistical approach for analyzing the spatial variability 

of rainfall and optimal design of a rain gauge network was undertaken, at first, to 

understand the concepts, applicability, existing gaps of the approach and likely 

modifications for further improvement. In addition, there are several studies that have 

been explored in the past to study the spatial rainfall variability and impact of rain 

gauge network density on streamflow estimation and forecasting (e.g., Faurès et al., 

1995; Arnaud et al., 2002; St-Hilaire et al., 2003; Dong et al., 2005; Anctil et al., 2006; 

Xu et al., 2006; Bárdossy and Das, 2008; Ekström and Jones, 2009; Moulin et al., 2009; 

Volkmann et al., 2010; Xu et al., 2013; Tsai et al., 2014; Kar et al., 2015; Zeinivand, 

2015; Chen et al., 2017). Hence, a detailed review of those studies was also carried out 

to identify the existing gaps and likely modifications in order to formulate an effective 

approach to achieve the enhanced accuracy in streamflow forecasting. 

1.3.2 Development of a universal function approximation-based 

kriging for improved estimation of rainfall 

Based on the literature survey of the different kriging-based geostatistical approaches 

for optimal design of a rain gauge network (Section 1.3.1), it was found that traditional 

kriging has a major weakness because it requires a priori definition of the mathematical 

function for a variogram model. The variogram model represents spatial correlations 

among data points, which plays a vital role in the kriging process and thus significantly 

impacts the performance of the kriging method (Wackernagel, 2003; Webster and 

Oliver, 2007). Thus, the robustness of kriging method heavily depends on the fitting 

and estimation of a correct variogram model. Furthermore, selection of an appropriate 

variogram model, finding the optimal variogram parameters (i.e., nugget, sill and 
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range) and the computational burdens involved are some of the difficulties associated 

with the traditional kriging (Teegavarapu, 2007; Oliver and Webster, 2014).  

 

As a solution to those issues, a new universal function approximation-based kriging 

was developed in this research project where genetic programming (GP) was used as a 

universal function approximator to derive the variogram model. This new variant of 

kriging is referred to as the genetic programming-based ordinary kriging (GPOK) in 

which the standard parametric variogram models (i.e., exponential, gaussian, spherical 

models) in traditional ordinary kriging were replaced by the GP-derived variogram 

model. The GPOK was developed in this research project in order to overcome the 

limitations associated with the traditional ordinary kriging. The performance of the 

GPOK was then tested against the performance of traditional ordinary kriging as well 

as artificial neural network (ANN)-based ordinary kriging for improved estimation of 

rainfall at desired unsampled locations in the case study catchment. 

1.3.3 Evaluation of different univariate and multivariate kriging 

methods for enhanced spatial interpolation of rainfall 

The literature survey undertaken in Section 1.3.1 indicated that a wide variety of 

deterministic and stochastic (kriging-based geostatistics) interpolation methods have 

been used in the past for spatial interpolation of spatially distributed point rainfall 

values and production of high quality continuous rainfall datasets in a range of different 

regions and climates around the world (e.g., Hevesi et al., 1992; Dirks et al., 1998; 

Goovaerts, 2000; Lloyd, 2005; Hsieh et al., 2006; Moral, 2010; Di Piazza et al., 2011; 

Mair and Fares, 2011; Chen and Liu, 2012; Feki et al., 2012; Delbari et al., 2013). It is 

often challenging to select the suitable interpolation method arbitrarily, which performs 

best for estimating the spatial distribution of rainfall for a particular study area. The 

reason is that the performance of an interpolation method depends on a number of 

factors including catchment size and characteristics, sampling density and its spatial 

distribution, surface type, data variance, interpolation grid resolution, quality of 

available auxiliary information (Li and Heap, 2011).  
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There had been also a number of spatial rainfall interpolation studies undertaken at a 

regional or national scale in Australia (e.g., Hutchinson, 1995; Hancock and 

Hutchinson, 2006; Jones et al., 2009; Li and Shao, 2010; Woldemeskel et al., 2013; 

Yang et al., 2015). However, none of these studies was conducted at a local or 

catchment scale. Furthermore, elevation and rainfall relationship locally have been 

relatively little studied in Australia. As a solution to the aforementioned issues, 

comparative evaluation of a range of selected univariate and multivariate interpolation 

methods was carried out to identify the most appropriate interpolator for spatial 

interpolation of rainfall and generation of continuous rainfall maps for the case study 

catchment. The GPOK approach was also evaluated for spatial interpolation of rainfall 

and generation of continuous rainfall maps for the case study catchment, which was 

found to be the best interpolation method for rainfall estimation (Section 1.3.2). Based 

on the rainfall-topography relationship of the case study catchment, the elevation was 

used as an auxiliary variable in addition to rainfall (i.e., primary variable) for the 

adopted multivariate or cokriging methods in this research project. A number of cross-

validation criteria were used for the evaluation of the adopted univariate and 

multivariate interpolation methods in order to select the best interpolation methods for 

the case study catchment. 

1.3.4 Optimal design of a rain gauge network using kriging-based 

geostatistical approach 

As was mentioned in Section 1.3.1, several rain gauge network design methods were 

developed in the past for rain gauge network design and evaluation around the world 

(Mishra and Coulibaly, 2009). The kriging-based geostatistical approach was found to 

be the most suitable rain gauge network design technique across the world (Section 

1.3.1) (e.g., Shamsi et al., 1988; Kassim and Kottegoda, 1991; Loof et al., 1994; 

Papamichail and Metaxa, 1996; Pardo-Iguzquiza, 1998; Ghahraman and Sepaskhah, 

2001; Tsintikidis et al., 2002; Cheng et al., 2008; Shaghaghian and Abedini, 2013; Adib 

and Moslemzadeh, 2016; Aziz et al., 2016; Haggag et al., 2016; Feki et al., 2017), 

which was also used in this research project for optimal design of a rain gauge network 

in the case study catchment. Network expansion with additional stations (network 

augmentation) for variance reduction has been the underlying criterion to achieve the 
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optimal network in most of the past studies. However, an existing rain gauge network 

may consist of redundant stations, which have little or no contribution to the network 

performance for providing the high quality rainfall estimates (St-Hilaire et al., 2003; 

Mishra and Coulibaly, 2009).  

 

As a solution to the aforementioned issue, both additional and redundant stations were 

considered to achieve the optimal rain gauge network design in this research. The 

optimal rain gauge network for the case study catchment was thus achieved through 

optimal positioning of additional rain gauge stations (network augmentation process) in 

addition to removing and/or optimally relocating of existing redundant rain gauge 

stations (network rationalization process). The spatial variability of rainfall in 

southeastern Australia (where the case study catchment is located) is usually caused by 

the El Niño and La Niña processes of the ENSO effect (Murphy and Ribbe, 2004; Dutta 

et al., 2006; Pittock et al., 2006). As a solution to this issue, the rain gauge network was 

designed independently based on rainfall records obtained for both El Niño and La 

Niña periods. The rain gauge network that gave the enhanced estimates of areal average 

and point rainfalls for both El Niño and La Niña periods was then selected as the 

optimal rain gauge network for the case study catchment.    

1.3.5 Improvement of streamflow forecasting using optimal rain 

gauge network-based input 

As was stated in Section 1.1, streamflow forecasting models in most of the past studies 

generally used the rainfall data directly obtained from the existing rain gauge network 

(e.g., Kumar et al., 2004; Kişi, 2007; Londhe and Charhate, 2010), which might exhibit 

high variance and hence not be the optimal rain gauge network. Since streamflow is a 

consequence of rainfall, uncertainty associated with the rainfall input propagates 

through the streamflow simulation (Faurès et al., 1995; Arnaud et al., 2002; St-Hilaire 

et al., 2003; Dong et al., 2005; Ekström and Jones, 2009; Moulin et al., 2009), which 

may ultimately lead to the less accurate forecasting of streamflows. As a solution to this 

issue, an enhanced streamflow forecasting approach was developed in the current 

research using the rainfall input from an optimal rain gauge network (achieved through 

Section 1.3.4) instead of using the input from an existing rain gauge network (which 
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may not be an optimal network) for enhanced streamflow forecasting. The GPOK 

approach, which was found to be the best interpolation method for rainfall estimation at 

ungauged locations (Section 1.3.2) was used to estimate rainfall data at the identified 

optimal locations (ungauged points) for the corresponding additional and redundant 

rain gauge stations in the optimal rain gauge network (Section 1.3.4). 

 

Streamflow forecasting models were developed using the rainfall input from both 

current and optimal rain gauge networks in addition to streamflow records. The 

forecasting performance of those models was then evaluated and compared to test the 

robustness of the proposed streamflow forecasting approach. The artificial neural 

network (ANN), which was found to be the best suitable technique for streamflow 

forecasting in many past studies (e.g., Zealand et al., 1999; Dibike and Solomatine, 

2001; Birikundavyi et al., 2002; Huang et al., 2004; Wu et al. 2005; Akhtar et al., 2009; 

Srinivasulu and Jain, 2009; Sivapragasam et al., 2014; Yilmaz and Muttil, 2014; 

Linares-Rodriquez et al., 2015; Taormina et al., 2015), was also used in the current 

study to formulate streamflow forecasting models. Since the streamflow-rainfall 

relationship is highly non-linear and ANN is able to capture such highly non-linear 

relationship between the input and the output of a system, the ANN-based input 

selection approach was used to select significant input variables for developing the 

ANN-based streamflow forecasting models. Furthermore, based on the ANN-based 

input variable selection approach, an indirect way of identifying the optimal locations 

of rain gauge stations in the final operational optimal rain gauge network was carried 

out in order to achieve the best streamflow forecasting performance of the network. 

Finally, the robustness and efficacy of the proposed approach was investigated through 

a several quantitative standard statistical performance evaluation measures.  

1.4 The Study Area 

1.4.1 Background and selection of the study area  

As was stated in Section 1.3, the Middle Yarra River catchment (the middle segment of 

the Yarra River catchment) located in Australian state of Victoria was selected as the 

case study area in the current research study. The location of the study area is shown in 
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Figure 1-1. The Middle Yarra River catchment covers an area of 1511 km2, which is 

mainly characterized by the rural floodplains and valleys with limited urban 

developments. The study area is notable as the only part of the Yarra River catchment 

with an extensive flood plain, wherein most of the lands are used for agricultural 

activities (Gardner, 1994; Carty and Pierotti, 2010).  

 

 

Figure 1-1. Location map of the Middle Yarra River catchment (the study area in this 

study) with rain gauge and streamflow measuring stations 

 

The Yarra River catchment is an important water resources catchment of Victoria 

because majority of Victorians depends on the water resources of this catchment. The 

catchment is home to more than one-third of Victoria’s population (approximately 1.8 

million) and native plant and animal species, where the Yarra River acts as the only 

lifeline. The water resources management in the Yarra River catchment is of great 

importance considering the diverse water use activities and high variability of rainfall 

(Muttil et al., 2009; Barua et al., 2012). The catchment water resources support a wide 

range of water uses valued by the Melbourne’s community, including urban water 

supply, agricultural, horticultural industries and downstream user requirements as well 
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as flow requirements for maintaining environmental flows. The Yarra River catchment 

covers an area of 4044 km2, which is shown in Figure 1-2. The Yarra River flows from 

east to west and travels about 245 km from its source, on the southern slopes of the 

Great Dividing Range in the forested Yarra Ranges National Park, and runs through the 

catchment into the end of its estuary, at Port Phillip Bay (EPA Victoria, 1999). 

 

 

Figure 1-2. Details of the Yarra River catchment in Victoria, Australia 

 



 
 

Chapter 1: Introduction  

 15  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting          

Although the Yarra River catchment is not large with respect to other Australian 

catchments, it produces the fourth highest water yield per hectare of the catchment in 

Victoria, making it a very productive catchment (Melbourne Water, 2015). Melbourne 

city is located in the lower part of the Yarra River catchment. There are seven major 

storage reservoirs (Upper Yarra, O’Shannassy, Maroondah, Silvan, Sugarloaf, Yan 

Yean and Greenvale) located within the catchment as shown in Figure 1-2. These 

reservoirs are mainly used for urban water supply to Melbourne and storage purposes. 

In addition, flows from Thomson reservoir, which is located outside the catchment, is 

transferred to the Upper Yarra reservoir mainly for urban water supply purposes. There 

are many farm dams and licensed water extraction points in the Yarra River and its 

tributaries within the catchment (Melbourne Water, 2013). A range of recreational 

activities, metropolitan parks and biodiversity conservation is also located around the 

catchment waterways. The Yarra River, being the main river of the catchment, has thus 

played a key role in the way Melbourne has developed and grown. 

 

Rainfall is the main source of water resources in the Yarra River catchment like many 

other catchments in Australia. The average annual rainfall varies across the catchment 

from about 1100 mm in the Upper Yarra segment to 600 mm in the Lower Yarra 

segment (Daly et al., 2013), contributing to higher flows in the Yarra River during 

winter and spring (Melbourne Water, 2015). However, the annual average rainfall has 

declined during the last decade compared to the long-term historical average (Muttil et 

al, 2009). Figure 1-3 shows the annual average rainfall based on the 22 rain gauge 

stations in the Yarra River catchment for the period of 1960 to 2008 as analyzed by 

Barua (2010). As can be seen from the figure, the average annual rainfall was 831.1 

mm after 1997 whereas it was 1031.9 mm before 1997. As a result of such high spatial 

and temporal variability of rainfall and diverse water use activities across the 

catchment, the water resources management in the Yarra River catchment remains an 

important and challenging task for the water managers. 
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Figure 1-3. Annual average rainfalls in the Yarra River catchment (Barua, 2010) 

 

The Yarra River catchment is characterized by three major land use types: forest, 

agricultural, and urban areas (Sokolov and Black, 1996). Approximately 21 percent of 

the catchment retains its natural vegetation, 57 percent is agricultural and 22 percent is 

urbanized (Victorian Government Department of Sustainability and Environment, 

2006). Based on different land use patterns and natural sub-divisions, the Yarra River 

catchment is divided into three distinctive sub-catchments, namely Upper Yarra, 

Middle Yarra, and Lower Yarra segments (EPA Victoria, 1999; Barua et al., 2012). 

Each segment has its own distinct characteristics. The Upper Yarra segment of the 

catchment, beginning from the Great Dividing Range to the Warburton Gorge at 

Millgrove, consists of mainly dense and extensive forested area with minimum human 

settlement. Major tributaries of the upper segment flow through these forested and 

mountainous areas, which have been reserved for water supply purposes for more than 

100 years (Barua et al., 2012). This segment is used as a closed water supply catchment 

for Melbourne and about 70 percent of Melbourne’s drinking water supply comes from 

this pristine upper segment (Barua et al., 2012; Melbourne Water, 2013).  

 

The Middle Yarra segment of the catchment (the study area as shown in Figure 1-1), 

from the Warburton Gorge to Warrandyte Gorge, consists of mainly rural floodplains 

and valleys with limited urban development. The river gradient decreases and valley 

widens as the river approaches downstream. There are several gorges in this area, 

particularly the Yering Gorge, which restrict flows in the river. The Middle Yarra 
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segment is notable as the only part of the catchment with an extensive flood plain area. 

Most of the land in this segment is mainly used for agricultural activities (Gardner, 

1994; Carty and Pierotti, 2010). The Lower Yarra segment of the catchment, located 

downstream of Warrandyte, mainly consists of the urbanized floodplain areas of 

Melbourne city. Large areas of this segment comprises hard surfaces such as paved 

roads, roofs, car parks, concrete channels, etc. (EPA Victoria, 1999). Most of the land 

along the rivers and creeks in the middle segment (where the study area is located) and 

the urbanized lower segment (where the Melbourne city is located) of the Yarra River 

catchment has been cleared for agricultural or urban development (Melbourne Water, 

2013).  

 

The extensive clearing of lands in the middle and lower segment often results in high 

flows in rivers during intense storms, causing frequent flash flooding within the study 

area (Middle Yarra River catchment) and the urbanized lower segment located 

immediate downstream of the study area (Melbourne Water, 2013). Furthermore, 

increasing rainfall patterns and the occurrence of extreme rainfall events due to the 

impact of potential climate change (as reported in Whetton et al., 1993; Yilmaz and 

Perera, 2014; Yilmaz et al., 2014) will result in excess amount of streamflows that may 

cause intense flash floods in the middle segment (the study area) and the urbanized 

lower segment of the catchment. This has a direct impact on the urbanized lower 

segment of the Yarra River catchment, making it vulnerable and risk-prone due to 

potential flash flood problems. For example, Australian rainfall in 2009–2010 was 13 

percent greater than the long-term (1911-2010) average (Bureau of Meteorology, 

2011). This eventually caused the 2010-2011 devastating floods that affect three eastern 

states of Australia including Victoria (where the study area is located), Queensland and 

New South Wales (van den Honert and McAneney, 2011; Victorian Government, 

2011). The urbanized Lower segment of the catchment also depends on the water 

supply from the storage reservoirs (shown in Figure 2-1) mainly located in the middle 

and upper reaches of the catchment (Barua et al., 2012). The main intention of reservoir 

operation in Australia is to store as much water as possible for satisfying the water 

demand during shortage of streamflows caused by droughts while keeping provision for 

flood control during excess streamflows caused by floods (Melbourne Water, 2013). 
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The study area has three storage reservoirs, namely Maroondah, Silvan and Sugarloaf 

reservoirs (shown in Figure 1-2), which support urban water supply systems of 

Melbourne. However, several major droughts occurred over the Australian state of 

Victoria in the past (Keating, 1992; Tan and Rhodes, 2008), particularly the 1997-2009 

Millennium Drought (Grant et al., 2013; Chiew et al., 2014) have caused the substantial 

reduction in rainfall, inflows and storage volumes of major water harvesting reservoirs 

of Victoria (Low et al., 2015). For example, in the period 1998-2007, the annual 

average rainfall in Victoria declined by approximately 13 percent from the long-term 

average (Victorian Government Department of Sustainability and Environment, 2008). 

As a result of this rainfall declination, the inflows to Melbourne’s main water supply 

reservoirs located within the Yarra River catchment declined by about 38 percent from 

the long-term average of the period 1913-1996 (Wallis et al., 2009). This substantial 

reduction in rainfalls and inflows has affected the overall water availability within the 

catchment (Melbourne Water, 2013). Hence, accurate rainfall information and 

improved estimation of future streamflows particularly in the middle and upper 

segments of the catchment could be beneficial for optimal operation of reservoirs 

mainly in the drought periods, and effective flood control particularly in the urbanized 

lower segment of the Yarra River catchment. Therefore, the Middle Yarra River 

catchment (as shown in Figure 1-1) was selected as the case study area for this study. 

1.4.2 Topography 

A digital elevation model (DEM) of the study area was collected from Geoscience 

Australia to produce the topographic map of the study area. Figure 1-4 shows the 

topographic map of the study area. As can be seen from the figure, the study area is 

characterized by a relatively flat to mountainous topography. The elevation of the study 

area varies from 25 to 1243 m with a mean elevation of 621 m (above mean seal level) 

from west to east. The lower regions are found mainly across in the central, north-

western and western part while the higher regions are located mainly in the northern, 

north-eastern and eastern part of the study area. The river gradient decreases and valley 

widens as the river approaches downstream. Surface relief of the catchment converges 

from the east, north and south towards the central portion of the catchment, which 

finally meets the outlet of the study area at west. 
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Figure 1-4. DEM of the study area with a cross-sectional elevation profile A-B  
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The figure also shows that the elevation difference is approximately 1165 m along the 

cross-sectional profile A-B extending about 40 km from the eastern side of the 

catchment to its outlet. Several studies have revealed that rainfall usually exhibits a 

high correlation with elevation and hence tends to increase with higher elevations due 

to the orographic effects of mountainous topography (e.g., Hevesi et al., 1992; Dirks et 

al., 1998; Goovaerts, 2000; Lloyd, 2005; Moral, 2010; Mair and Fares, 2011; Feki et 

al., 2012). Therefore, the elevation data extracted from the DEM of the study area was 

used as an auxiliary variable in the cokriging analysis for enhanced spatial interpolation 

of rainfall. 

1.4.3 Land use and agriculture 

The Australian Land Use and Management (ALUM) Classification system is used for 

the national (1 : 2,500,000) and catchment scale (1 : 25,000 to 1 : 1,000,000) land use 

mapping in Australia (ABARES, 2012). The ALUM Classification system provides a 

nationally consistent method to collect and present land use information for a wide 

range of users across Australia. There are six major classes of land use (each further 

being divided into two extra tiers) in the ALUM classification system. Percent 

distribution of the six major land use categories in the study area is shown in Figure 1-

5. As can be seen from the figure, the dominant land use category in the study area is 

“Production from dryland agriculture and plantations” in which the main land use type 

is pasture productions for livestock. 
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Figure 1-5. Distribution of ALUM classified six major land use types in the study area 

 

The land use map for the study area was prepared from the catchment scale 50m grid 

raster data collected from the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES, 2012). Figure 1-6 shows details of different land 

use types in the study area. The map covers data for the period of 1997 to May 2011. 

The ALUM classified major land use categories for the study area (Figure 1-5) were re-

classified to produce the final land use map of the study area showing each land use 

types with their coverage (Figure 1-6). As can be seen from Figure 1-6, the upper part 

of the study area is mainly mountainous forest, and the most downstream part is 

covered with developed rural and urban areas. The majority of the middle portion of the 

study area is covered with agricultural and cropping lands, dominated by pasture and 

covering about 32% of the total area. Cultivations of cereals and hays, potatoes and 

different fruits, pasture productions for livestock are considered as the major 

agricultural activities.  
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Figure 1-6. Land use map of the study area 

1.4.4 Soil 

In this research project, the soil type data were collected from the Australian Soil 

Resource Information System (ASRIS) at http://www.asris.csiro.au to produce a digital 

soil map of the study area. ASRIS is a product of the Australian Collaborative Land 

Evaluation Program (ACLEP), which is developed by Commonwealth Scientific and 

Industrial Research Organization (CSIRO) and Department of Agriculture, Fisheries 

and Forestry (DAFF) in collaboration with state and territory agencies. The soil map of 

the study area is shown in Figure 1-7. As can be seen from the figure, the main types of 

soils in the study area include: strong texture contrast soils (Sodosols, Chromosols), 

soils that lack strong texture contrast (Dermosols, Ferrosols), sandy soils of weakly 

developed texture (Tenosols) and clay-rich soils of uniform texture (Vertosols). 
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However, the dominant soil types among them are the Sodosols (covers approximately 

54% of the study area) and the Dermosols (covers approximately 35% of the study 

area). It is important to note that the soil classification is shown in accordance with the 

Australian Soil Classification defined in Isbell (2002). 

 

 
Figure 1-7. Soil map of the study area 

1.4.5 Climate and streamflow 

The climate over south-eastern Australia (where the case study area is located) is 

influenced by a number of factors including Northwest Cloudbands, Sub-tropical 

Ridge, Cut-off Lows, El Niño and La Niña events of El Niño Southern Oscillation 

(ENSO), and the Southern Annular Mode (SAM) (Bureau of Meteorology, 2016). 

Hence, the gradient of rainfall exists in the south-north direction over the study area. 
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In this research project, nineteen rain gauge stations located within the study area 

(indicated with R1 to R19 in Figure 1-1) were considered. Daily rainfall data for all 

nineteen stations were collected from the Scientific Information for Land Owners 

(SILO) climate database (http://www.longpaddock.qld.gov.au/silo/) and the Bureau of 

Meteorology (http://www.bom.gov.au/climate/data/) for the period of thirty-three years 

from 1980to 2012. The major advantage of the SILO climate database is that the SILO 

data are highly quality-controlled and totally free from missing records (Jeffrey et al., 

2001). Therefore, the SILO rainfall data were used in this research project. The station 

numbers, names and corresponding BoM identification numbers and geographical 

coordinates of each of the rain gauges are given in Table 1-1 and their spatial locations 

are shown in Figure 1-1.  

 

Table 1-1. Details of rain gauge stations considered in the study 

Station 
Number 

Station 
ID 

Name of Station Latitude 
(Degree) 

Longitude 
(Degree) 

R1 86142 Toolangi (Mount St Leonard DPI) -37.57 145.50 
R2 86366 Fernshaw -37.61 145.60 
R3 86009 Black Spur -37.59 145.62 
R4 86070 Maroondah Weir -37.64 145.55 
R5 86385 Healesville (Mount Yule) -37.65 145.51 
R6 86363 Tarrawarra -37.66 145.48 
R7 86364 Tarrawarra Monastery -37.66 145.45 
R8 86219 Coranderrk Badger Weir -37.69 145.56 
R9 86383 Coldstream -37.72 145.41 
R10 86229 Healesville (Valley View Farm) -37.74 145.53 
R11 86367 Seville -37.80 145.49 
R12 86358 Gladysdale (Little Feet Farm) -37.86 145.65 
R13 86094 Powelltown DNRE -37.86 145.74 
R14 86059 Kangaroo Ground -37.68 145.25 
R15 86066 Lilydale -37.76 145.36 
R16 86076 Montrose -37.80 145.37 
R17 86106 Silvan -37.83 145.44 
R18 86072 Monbulk (Spring Road) -37.88 145.42 
R19 86266 Ferny Creek -37.87 145.35 

 Station numbers are same as in Figure 1-1 

 Station ID is as defined by the Bureau of Meteorology (BoM), Australia at http://www.bom.gov.au/climate/data/stations/ 
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Figure 1-8 shows the annual catchment average rainfall for the Middle Yarra River 

catchment (the study area) based on the nineteen rain gauge stations for the period from 

1980 to 2012. As can be seen from the figure, the annual catchment average rainfall 

was around 1081.6 mm when considering all years from 1980 to 2012. The annual 

catchment average rainfall in the aforementioned period varies from 710.4 mm to 

1422.2 mm. The figure also shows that the annual catchment average rainfall from 

1980 to 1996 was around 1164.2 mm, whereas it was only around 931.4 mm for the 

period from 1997 to 2009. It can be also seen that there was an abrupt drop in the 

annual catchment average rainfall by more than 200 mm within the case study area 

during the period from 1997 to 2009 when the Millennium Drought (Grant et al., 2013; 

Chiew et al., 2014) was occurred. This sudden change is found to be similar to the 

findings shown in Figure 1-3 for the entire Yarra River catchment. Furthermore, the 

figure shows that from 2010 onwards, the annual catchment average rainfall within the 

case study catchment started to grow up when there was a flood in Victoria (van den 

Honert and McAneney, 2011; Victorian Government, 2011). This change in rainfall has 

great implications on the water resources management of the study area.  

 

 

Figure 1-8. Annual average rainfall variations over the study area 
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The monthly average rainfall and temperature (max and min) in the study area is shown 

Figure 1-9. As can be seen from the figure, the September is the wettest month (rainfall 

amount equals to 112.5 mm) and have the highest rainfall variation. The figure also 

shows that the driest month is February (rainfall amount equals to 56.4 mm), which 

have the second highest rainfall variability. It was also found that the southern and 

south-eastern part of the study area experiences the highest rainfall whereas the lowest 

rainfall occurs in the north-western part. Approximately 60% of the rainfall occurs in 

the winter (June-August) and spring (September-November) seasons, which contributes 

mostly to streamflows. In general, the summer (December-February) is very dry 

compared to the winter (June-August) and spring (September-November). The average 

monthly maximum temperature varies from 11.4 0C (in July) to 25.3 0C (in February), 

and minimum temperature varies from 4.4 0C (in July) to 12.3 0C (in February). 

 

 

Figure 1-9. Monthly average rainfall and temperature variations in the study area 

 

There are six streamflow measuring stations along the main course of the Yarra River 

within the study area. Four streamflow measuring stations among them (indicated with 

S1 to S4 in Figure 1-1) were used in this research project. In the Australian state of 

Victoria, Melbourne Water Corporation (MWC) provides the access the continuous 
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streamflow data. Daily streamflow records for these four stations were thus collected 

from MWC database for a period of thirty years from 1980 to 2009. The choice of this 

study period is based on the availability of high quality of data with no missing records 

for an extended period. The station numbers, names and corresponding MWC 

identification numbers and geographical coordinates of each of the streamflow gauges 

are given in Table 1-2 and their spatial locations are also shown in Figure 1-1. 

 

Table 1-2. Description of streamflow measuring stations considered in the study 

Station 

Number 

Station 

ID 

Name of Station Latitude 

(Degree) 

Longitude 

(Degree) 

S1 229212 Yarra River at Millgrove -37.75 145.66 

S2 229653 Yarra River at Yarra Grange -37.67 145.48 

S3 229608 
Watsons Creek at Kangaroo 

Ground South 
-37.70 145.26 

S4 229200 Yarra River at Warrandyte -37.74 145.22 

 Station numbers are same as in Figure 1-1 

 Station ID is as defined by the Melbourne Water Corporation, Australia 

1.5 Research Significance  

This research project has produced several significant contributions in the field of water 

resources management, especially for the effective management of water resources in 

Australian conditions. These contributions are outlined below.  

 

In the optimal rain gauge network design using the kriging-based geostatistical 

approach, kriging is often used to estimate rainfall values along with the kriging 

variance in ungauged locations based on the observed rainfall values at neighboring 

gauged locations. In traditional kriging, accurate kriging results highly depend on the 

use of an appropriate variogram model, which represents spatial correlations among 

data points and plays a vital role in the kriging process. Therefore, the robustness of 

kriging interpolation heavily depends on the fitting and estimation of a correct 

variogram model. Furthermore, selection of an appropriate variogram model, finding 
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the optimal variogram parameters (i.e., nugget, sill and range) and the computational 

burdens involved are some difficulties associated with the traditional kriging. As a 

potential solution to these issues, a new universal function approximation-based kriging 

was explored in this study where genetic programming (GP) was used as a universal 

function approximator to derive the variogram model. This new variant of kriging is 

referred to as the genetic programming-based ordinary kriging (GPOK) in which the 

standard parametric variogram models (i.e., exponential, gaussian, spherical models) in 

traditional ordinary kriging were replaced by the GP-derived variogram model. The 

GPOK demonstrated in this study overcomes the limitations associated with the 

traditional ordinary kriging and gives improved estimation of rainfalls at ungauged 

locations. According to the best knowledge of the author, there is no record in the 

published literature on the variogram modelling and developing a kriging model using 

GP prior to this study. Variogram modelling using GP offers several advantages. For 

example, GP does not require a pre-defined mathematical form or architecture unlike 

ANN to generate the functional variogram models. In addition, GP can generate 

variogram models, which consists of similar mathematical structure as having with the 

standard variogram models. Furthermore, GP-derived variogram model does not 

require identifying the variogram parameters in advance, unlike the standard parametric 

variogram models in traditional kriging. Therefore, the GPOK is completely free from 

the trial and error process of estimating the variogram parameters. The function 

approximation capability of GP produces the best fitted GP-derived variogram models 

compared to the standard models, which were found to give the best functional 

variogram models. Thus, the GP-derived variogram models offer a viable alternative to 

the existing standard variogram models from which to choose the best variogram model 

for kriging interpolation of rainfall.  

 

Furthermore, a key advantage of kriging over deterministic and other conventional 

interpolation methods is that while providing the kriging variance for rain gauge 

network design, it is capable of complementing the sparsely sampled primary variable, 

such as rainfall by the correlated densely sampled secondary variable, such as elevation 

to improve the estimation accuracy of primary variable. This multivariate extension of 

kriging is referred to as the cokriging method, which was investigated in this study for 

enhanced spatial interpolation of rainfall. Based on the rainfall-topography relationship 
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of the case study catchment, the elevation was used as an auxiliary variable in addition 

to rainfall in the cokriging methods. However, it is often challenging to select the best 

interpolation method arbitrarily from a wide variety of available kriging and 

deterministic interpolation methods for estimating the spatial distribution of rainfall for 

a particular area because the performance of an interpolation method depends on many 

factors. As a solution to this issue, a comparative evaluation of a range of univariate 

and multivariate kriging and deterministic interpolation methods was performed in this 

study to identify the most appropriate interpolator for enhanced spatial interpolation of 

rainfall and generation of continuous rainfall maps. Ordinary kriging yields the best 

results among all univariate interpolation methods. Ordinary kriging combined with 

genetic programming overcomes some of the limitations of ordinary kriging and thus 

offers several advantages in spatial mapping of rainfall, which produces similar results 

as given by ordinary kriging. The ordinary cokriging using elevation information 

outperforms all other methods when comparing all univariate and multivariate methods. 

The ordinary cokriging was thus found to be the most suitable interpolator for enhanced 

spatial distribution of rainfall in the Middle Yarra River catchment. The major 

advantage of this method is that it allows the use of correlated auxiliary information to 

improve the accuracy of kriging interpolation of rainfall in a catchment with the 

mountainous and/or complex terrain.  

   

Conventionally, increasing network density through network augmentation (using 

additional rain gauge stations) to reduce the kriging variance of the network is used for 

the design of a rain gauge network. However, it is not very uncommon for a rain gauge 

network that it may consist of redundant stations, which have little or no contribution to 

the network performance for providing quality rainfall estimates. Since operation and 

maintenance of a rain gauge station involves large costs, removal of redundant stations 

can contribute to substantial cost reductions. Therefore, optimal rain gauge network 

design based on the variance reduction principle using the kriging-based geostatistical 

approach, it is important to consider both additional and redundant stations 

simultaneously in order to achieve the variance reduction and cost-effectiveness 

objectives of the optimal network. As a solution to these issues, a simple and effective 

rain gauge network design technique considering both additional and redundant stations 

under the variance reduction framework was investigated in this study. The technique 
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involves a methodical search for the optimal number and locations of rain gauge 

stations in the network that minimize the kriging variance of areal and/or point rainfall 

estimates over the catchment. The technique allows achieving the optimal rain gauge 

network through optimal positioning of additional stations (network augmentation) as 

well as removing and/or optimally relocating of existing redundant stations (network 

rationalization). Furthermore, the spatial variability of rainfall in the case study 

catchment is usually caused by the El Niño and La Niña processes of ENSO 

phenomenon. As a solution to this issue, the rain gauge network was designed 

separately based on rainfall records for both the El Niño and La Niña periods and the 

network that gave the enhanced estimates of areal average and point rainfalls was 

selected as the optimal network. It was found that the optimal network achieved in this 

way gives the improved spatiotemporal estimates of areal average and point rainfalls 

when comparing with the existing rain gauge network for the case study catchment.  

 

Rainfall is often considered independent of streamflow simulation and forecasting in 

many hydrological studies such as the design of a rain gauge network for estimation of 

areal average rainfall over a catchment or region. But this does not allow one to focus 

on the strength and weakness of an established optimal rain gauge network that really 

matter when rainfall data from the optimal network are fed into the streamflow 

forecasting models. Since streamflow is a consequence of rainfall, correct rainfall input 

is essential for accurate and enhanced streamflow forecasting. However, the majority of 

the streamflow forecasting techniques in the past studies used rainfall data directly from 

the existing rain gauge network which might exhibit high variance and hence not be the 

optimal network. This ultimately adversely affects the performance of streamflow 

forecasting models and results in less accurate streamflow forecasts. As a solution to 

this issue, an ANN-based enhanced streamflow forecasting approach was explored in 

this study, which incorporated the optimal rain gauge network-based input instead of 

using existing rain gauge network-based input in order to achieve the enhanced 

streamflow forecasting. According to the best knowledge of the author, there is no 

single research study in the published literature at present, which has employed the 

optimal rain gauge network-based input to improve the accuracy in streamflow 

forecasts. The approach was found to be highly effective to achieve better accuracy in 

streamflow forecasts and thus could be a viable option for enhanced streamflow 
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forecasting. The ANN-based input selection technique demonstrated in this thesis offers 

a high potential for significant input variables selection in data-driven modelling in 

hydrology. Furthermore, the ANN-based input selection technique offers an indirect 

way of identifying the optimal locations of rain gauge stations in the final optimal rain 

gauge network through the input significance of each rain gauge station, which 

produces the best streamflow forecasting performance of the network. Also, this study 

is the first of this kind in Australia to incorporate the input from an optimal rain gauge 

network within the ANN-based data-driven framework for improved forecasting of 

catchment streamflows, and is perhaps one of the very few studies across the world. 

 

As was stated in Section 1.4.1, the occurrence of extreme rainfalls in the Yarra River 

catchment of Victoria has caused the urban areas (mostly located in the lower segment 

of the catchment) highly vulnerable to floods. On the other hand, the occurrence of 

droughts (e.g., the 1997-2009 Millennium Drought) has led to a substantial reduction in 

rainfall and inflows of major water harvesting reservoirs of Victoria including 

Melbourne’s main water supply reservoirs located within the Yarra River catchment. 

The ANN-based enhanced streamflow forecasting approach demonstrated in this study 

can assist water managers for efficient planning and operation of the risk-based water 

resources systems to mitigate the impacts and risks caused by the occurrence of floods 

and droughts. Accurate rainfall information and improved estimation of future 

streamflows achieved through the approach especially in the middle segment (the case 

study area) of the Yarra River catchment can be supportive in the optimal operation of 

the water supply reservoirs for drought management as well as in the effective flood 

control planning in the urbanized lower segment of the catchment.  

1.6 Outline of the Thesis 

This thesis is prepared based on journal articles and conference papers published, 

submitted or in under review (refer to the list of publications). The outline of this thesis 

is presented through an interconnected flow chart as shown in Figure 1-10. As can be 

seen from the figure, this thesis consists of seven chapters. Each chapter of the thesis 

from Chapter 3 to Chapter 6 includes one or more publications as described in the 

following. 
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The first chapter addresses the subject of this thesis including the detailed background 

of the research project, the research aims and a brief methodology to achieve the 

stipulated aims. The significance of the research project (i.e., integrating the optimal 

rain gauge network-based input for enhanced streamflow forecasting) and the 

description of the study area are also presented in this chapter. 

 

The second chapter includes the literature review conducted at the initiation of this 

research project and provides a general overview of the rain gauge network design 

methods and impact of spatial rainfall variability and rain gauge network density on 

streamflow forecasting. Thus, the first two chapters cover the research design for this 

project. First, a detailed literature survey on the optimal rain gauge network design and 

evaluation using the kriging-based geostatistical approach is presented in this chapter. 

Then, the chapter also includes a review on the impact of spatial rainfall variability and 

rain gauge network density on the streamflow simulation and/or forecasting. It is worth 

mentioning that although Chapter 2 covers the majority of literature review of this 

research project, parts of the literature review are also distributed through Chapters 3 to 

6 in which it was particularly required to demonstrate the proposed methodology and 

discuss the application through a case study. 

 

The third chapter details the development of a new universal function approximation-

based kriging method using GP and its potential application for the improved 

estimation of rainfall. The proposed variant of kriging was referred to as GPOK in this 

thesis where the standard parametric variogram models (i.e., exponential, gaussian, 

spherical models) in traditional ordinary kriging were replaced by the GP-derived 

variogram model. GP was used as a universal function approximator in this study in 

order to overcome some of the limitations associated with the existing standard 

variogram as well as other universal function approximator such as ANN-derived 

variogram models. This chapter also shows that GP-based variogram modelling offers 

several advantages. For example, GP does not require a pre-defined mathematical form 

or architecture unlike ANN to generate the functional variogram model. In addition, 

GP-derived variogram model does not require identifying the variogram parameters in 

advance, unlike the standard variogram models. As a result, the proposed GPOK 
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method was completely free from the trial and error process of estimating the 

variogram parameters. Finally, the robustness of the proposed GPOK method over the 

traditional and ANN-based ordinary kriging methods for improved estimation of 

rainfall is detailed in this chapter. 

 

The fourth chapter presents the performance evaluation of different univariate and 

multivariate kriging interpolation methods to identify the best interpolator for enhanced 

spatial interpolation of rainfall and subsequent production of high quality continuous 

rainfall datasets in the form of rainfall maps. Based on the rainfall-topography 

relationship of the case study catchment, the elevation was used as an auxiliary variable 

in addition to rainfall (i.e., primary variable) for the multivariate or cokriging methods 

(ordinary cokriging and kriging with an external drift) in this research project. This 

chapter is divided into two parts. The first part of this chapter addresses the 

performance comparison of different univariate kriging interpolation methods including 

four traditional and a universal function approximation-based method using GP for 

spatial interpolation of rainfall. The second part of this chapter details the performance 

comparison of five traditional univariate kriging interpolation methods and two 

cokriging interpolation methods for enhanced spatial interpolation of rainfall. The 

second part of this chapter also includes the analysis for an additional case study area 

(Ovens River catchment in Victoria). Findings of the comparative performance of 

different univariate and multivariate kriging methods are also explained in this chapter.  

 

In chapter five, development of a simple and effective rain gauge network design 

methodology in order to achieve an optimal rain gauge network under the variance 

reduction framework using the kriging-based geostatistical approach is presented. 

Network expansion with additional stations (network augmentation) for variance 

reduction has been the underlying criterion to achieve the optimal network in most of 

the past studies. However, an existing rain gauge network may consist of redundant 

stations, which have little or no contribution to the network performance for providing 

quality rainfall estimates. As a solution to this issue, both additional and redundant 

stations were considered to achieve the optimal rain gauge network design in this 

research project. The optimal rain gauge network for the case study catchment was thus 

achieved through optimal positioning of additional rain gauge stations (network 
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augmentation) in addition to removing and/or optimally relocating of existing 

redundant rain gauge stations (network rationalization), which is detailed in this 

chapter. In this study, the spatial variability of rainfall in the case study catchment 

caused by the El Niño and La Niña processes of ENSO phenomenon was taken into 

consideration and thus the rain gauge network was designed independently based on 

rainfall records obtained for both El Niño and La Niña periods. The rain gauge network 

that gave the best estimates of areal average and point rainfalls was selected as the 

optimal rain gauge network for the case study catchment. Findings related to the 

optimal rain gauge network design and comparative estimates of rainfall from the 

existing and optimal network are finally explained in this chapter. 

 

In chapter six, an enhanced streamflow forecasting approach to achieve the improved 

accuracy in streamflow forecasting using the optimal rain gauge network-based input to 

ANN modelling framework is presented. In this chapter, the effectiveness of 

incorporating input from an optimally designed rain gauge network (instead of using 

input from an existing non-optimal rain gauge network) in the ANN-based streamflow 

forecasting models to improve streamflow forecasts is explored. The robustness of the 

proposed approach was tested using different quantitative performance evaluation 

measures and the corresponding findings, which are explained in this chapter. The 

potential of using the ANN-based input selection approach in significant input variables 

selection for developing the ANN-based streamflow forecasting models is also detailed 

in this chapter. Based on the ANN-based input variable selection approach, the chapter 

finally presents an indirect way of identifying the optimal locations of rain gauge 

stations in the final optimal rain gauge network in order to achieve the best streamflow 

forecasting performance of the network. 

 

Finally, a summary of the thesis, the conclusions drawn from the study and some 

recommendations for the future work are presented in chapter seven. Figure 1-10 

shown in the following depicts the interconnection between the works described in the 

journal papers (refer to the list of publications indicated earlier) included in this thesis.  
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Figure 1-10. Interconnection between works described in the thesis 
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Chapter 3: Universal Function Approximation-Based Kriging for Improved 
Estimation of Rainfall 
Introducing a new universal function approximation-based kriging method 
Demonstration on Case Study – Middle Yarra River Catchment, Australia 

Includes a journal paper entitled “Genetic programming-based ordinary kriging for 
spatial interpolation of rainfall.”  
(A conference paper is also presented at the 21st International Congress on Modelling 
and Simulation, MODSIM 2015 in Gold Coast, Queensland, Australia) 

Chapter 2: Rain Gauge Network Design and Its Impact on the Accuracy of 
Streamflow Simulation 
Review of rain gauge network design using kriging-based geostatistical approach 
Review of influence of rain gauge network design on streamflow simulation 

Chapter 1: Introduction 
General introduction to research detailed in the thesis 

Chapter 7: Summary, Conclusions and Recommendations for Future Study 
Summary and conclusions of research undertaken in Chapter 3 to Chapter 6 

Chapter 4: Univariate and Multivariate Kriging for Enhanced Spatial 
Interpolation of Rainfall 
Evaluating different kriging methods for enhanced spatial interpolation of rainfall  
Demonstration on Case Study – Middle Yarra River Catchment, Australia and 

Ovens River Catchment, Australia 

Includes two journal papers entitled “Ordinary kriging and genetic programming for 
spatial estimation of rainfall in the Middle Yarra River catchment, Australia” and 
“Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments” 

Chapter 5: Optimal Design of a Rain Gauge Network Using Kriging-Based 
Geostatistical Approach 
Optimal design of a rain gauge network in a catchment scale  
Demonstration on Case Study – Middle Yarra River Catchment, Australia 
Includes a journal paper entitled “Optimal design of rain gauge network in the Middle 
Yarra River catchment, Australia.”  
(A conference paper is also presented at the 36th Hydrology and Water Resources 
Symposium, HWRS 2015 in Hobart, Tasmania, Australia) 
 

Chapter 6: Enhanced Streamflow Forecasting Using Optimal Rain Gauge 
Network-Based Input 
Evaluating the effectiveness of using the optimal rain gauge network-based input 
in improving the accuracy of catchment streamflow forecasts  
Demonstration on Case Study – Middle Yarra River Catchment, Australia 
Includes a journal paper entitled “Improving streamflow forecast using optimal rain 
gauge network-based input to artificial neural network models” 
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Chapter 2 

Rain Gauge Network Design and Its Impact 

on the Accuracy of Streamflow Simulation  
 

 

2.1 Introduction  

One of the most important elements of the effective planning and management of water 

resource is the assessment of this invaluable resource, which takes into account the 

identification of the sources and the evaluation of their capacity, reliability and quality, 

implying the measurement and collection of data of interest (Mishra and Coulibaly, 

2009). For this purpose, monitoring networks are designed and sometimes optimized 

for decision making according to the water management objectives (Loucks et al., 

2005). The World Meteorological Organization (WMO) stated in 1981 that "the 

objective of a monitoring network is to ensure a density and distribution of stations in a 

region such that, by spatial interpolation between datasets at different stations, it will be 

possible to determine the characteristics of the basic hydrological and meteorological 

elements anywhere in the region with sufficient accuracy" (van der Made 1988, p.20). 

 

A vital part of modern water management covers the measurement of different 

processes of the hydrologic cycle. Monitoring networks are established to acquire 

measured data of different hydrologic variables with useful information content. A 

monitoring network can be defined as a set of strategically located measurement 

devices that collect data of interest about a water system at a given temporal scale. The 
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measured data of hydrologic variables from the monitoring network are used by water 

managers and decision-makers to manage water resources systems in an efficient 

manner or to maintain a good performance of water resource systems. Therefore, 

monitoring networks are considered as one of the important components of any 

hydrological study because they collect data that, after being interpreted, provide 

insights for decision-making. This thesis concentrates on rainfall monitoring network 

(or rain gauge network), which is commonly used for measurement and monitoring of 

rainfall data over a catchment or watershed. 

 

Rainfall is one of the most sought-after variables of the hydrological processes, which 

is used as a fundamental input for most hydrological modelling and analyses of water 

resources systems. However, many of the water resources systems are large in spatial 

extent and often consist of a rain gauge network that is very sparse due to large cost 

involvement, logistics, and geological factors. This results in considerable uncertainty 

in the collected rainfall data from these sparse rain gauge networks (Zealand et al., 

1999; Goovaerts, 2000). These problems have created the need for establishing an 

optimal rain gauge network that can provide high quality rainfall data for effective 

hydrological analysis and design of water projects. An optimal rain gauge network can 

be defined as a balanced network that neither suffers from lack of rain gauge stations 

nor is over-saturated with redundant rain gauge stations (Mishra and Coulibaly, 2009; 

Shaghaghian and Abedini, 2013). Hence, an optimal rain gauge network is often 

considered an indispensable component of any hydrological study. Therefore, a review 

of the existing optimal rain gauge network design approaches is vital to come up with a 

suitable approach for optimal design of rain gauge network in this study. 

 

As was mentioned in Section 1.1, the accuracy of streamflow simulation and 

forecasting primarily depends on the input data, wherein the largest impact on 

estimated streamflow is caused by the catchment rainfall (Faurès et al., 1995; Maskey 

et al., 2004; Jones et al., 2006; Ekström and Jones, 2009). Since streamflow is a 

consequence of rainfall, the uncertainty associated with rainfall leads to the uncertainty 

in estimated streamflow and can adversely affect the accuracy of streamflow simulation 

and forecasting (Faurès et al., 1995; Tsintikidis et al., 2002; Moulin et al., 2009). There 

are several methods that have been used in the past to assess the impact of rain gauge 



 
 

Chapter 2: Rain Gauge Network Design and Its Impact on the Accuracy of Streamflow Simulation 
 

 38  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting           

network density on streamflow simulation and forecasting. Understanding these 

techniques will be beneficial in developing a suitable streamflow forecasting approach 

for enhanced streamflow forecasting. 

 

There are two aims of this chapter: (i) to review the existing optimal rain gauge 

network design approaches that have been used for optimal design of rain gauge 

network, and (ii) to review the existing methods that have been used to evaluate the 

impact of rain gauge network design on streamflow simulation and forecasting. The 

outcome of this chapter will be the identification of the most suitable optimal rain 

gauge network design technique and development of an enhanced streamflow 

forecasting approach incorporating the optimal network for use in this research project.  

 

The chapter first starts with the review of the existing optimal rain gauge network 

design approaches, followed by the review of the existing methods that explores 

different aspects of the impact of rain gauge network design on streamflow simulation 

and forecasting.  

2.2 Overview of Rain Gauge Network Design Methods 

There is a long history of developing and establishing rain gauge networks around the 

world. Due to imbalanced regional development and less effective design during the 

early stages, the installation of new rain gauge stations is often required to satisfy the 

growing demands for rainfall monitoring in certain areas of a catchment or watershed 

(Wang et al., 2015). However, deploying infinite number of additional rain gauge 

stations in a network is unrealistic in real-world applications considering the complex 

environmental constraints and limited resources. As a result of these difficulties, 

optimal design of a rain gauge network is essential in order to achieve the highest 

rainfall monitoring efficiency for improving the resource utilization. The optimal 

configuration problem of rain gauge stations can be considered a facility location 

problem (Wang et al., 2015). In general, the aim of the rain gauge network design is to 

deploy a certain number of rain gauge stations at specific locations in the network to 

fulfill the water management objectives of a catchment or watershed. 
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The design and evaluation of rain gauge networks is associated with a number of key 

challenges, which range from establishing proper temporal and spatial scales to 

defining their scope at minimum costs. In theory, hydrologists usually take into account 

these challenges when developing new approaches for rain gauge network design. 

However, in practice, it has been reported that the rainfall data collected by the existing 

rain gauge networks remains, in general, inadequate for understanding and explaining 

the dynamics of natural water resources systems (Canadian Water Resources et al., 

1994; IUCN, 1980). This may be because the criteria to establish the final rain gauge 

network are driven in practice by non-scientific aspects, such as political and social 

viewpoints. 

 

Existing rain gauge networks are often evaluated to verify that the objectives for which 

the network was designed are fulfilled. The outcome of this evaluation comprises the 

reconfiguration of the existing rain gauge network, which may include a redefinition of 

the size and scope of the network. This can lead either to the inclusion of additional rain 

gauge stations through network augmentation process in places where rainfall data 

cannot be adequately inferred from the existing network or the elimination (due to 

redundancy or uselessness of the collected data) of the redundant rain gauge stations 

through network rationalization process (St-Hilaire et al., 2003; Mishra and Coulibaly, 

2009). In general, the same methods used for the design of monitoring networks are 

used for their evaluation. 

 

The design of hydrometric networks is a classical problem in hydrometeorology 

(Mishra and Coulibaly, 2009), which has received significant attention from the 

researchers for many years. Since myriad concerns are associated with hydrometric 

network design (Li et al, 2012), many approaches have been developed for that purpose 

around the world. A number of available network design and evaluation methods can 

be found in Mishra and Coulibaly (2009). These approaches can be broadly classified 

as statistical methods, entropy methods, optimization methods, basin physiographic 

characteristics and sampling strategies (as schematized in Figure 2-1), a comprehensive 

review of which is presented in the work by Mishra and Coulibaly (2009). 
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Figure 2-1. Classification of methods for hydrometric networks design and evaluation  

 

Mishra and Coulibaly (2009) indicated that statistical methods are the most developed. 

Furthermore, it is found based on the available literature that among all the statistical 

methods, the kriging-based geostatistical method is the most commonly used method 

for the design and evaluation of rain gauge networks. An important advantage of this 

method is that it can be implemented with the combination of other methods such as 

entropy method, multivariate statistical techniques, and different multi-objective 

optimization techniques using genetic algorithms, simulated annealing, and particle 

swarm optimization in order to achieve a balanced or optimal rain gauge network. It is 

also found that the entropy method is successfully implemented for rain gauge network 

design and optimization in several studies. Therefore, a detailed review of these two 

basic methods for the design of a rain gauge network is presented in this chapter. 
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2.3 Kriging-Based Geostatistical Approach 

2.3.1 Fundamental aspects of geostatistics  

The term 'geostatistics' designates the statistical study of natural phenomena, which can 

be generally characterized by a distribution of one or more variables in space. These 

variables are referred to as regionalized variables (Journel and Huijbregts, 1978; 

Webster and Oliver, 2007). The unique feature of a regionalized variable is that it can 

take values according to its spatial location (Chebbi et al., 2011). Geostatistics is thus 

based on the theory of regionalized variables, which allows modelling of the spatial 

variability of the variable based on the spatial dependence between neighboring 

observations. The degree of spatial dependence is generally expressed by variogram 

(also called semivariogram) in geostatistics, which has the structural (spatial variability) 

information required on a regionalized variable. A variogram is a mathematical 

function of the distance and direction separating two locations used to quantify the 

spatial autocorrelation in regionalized variables (Webster and Oliver, 2007). The 

variogram has a key role in geostatistics, which was first applied and developed 

through kriging.  

 

Kriging refers to a family of generalized least square regression methods in 

geostatistics (Isaaks and Srivastava, 1989; Goovaerts, 1997) that estimate values at 

unsampled locations using the sampled observations in a specified search 

neighborhood. As it will be seen, kriging-based geostatistical method for the design of 

rain gauge networks depends on the correct estimation of variogram models in which 

the design criteria are often related to the accuracy of the spatial estimation (i.e., the 

kriging standard error or the kriging variance) (e.g., Isaaks and Srivastava, 1989; ASCE 

Task Committee, 1990a,b). Therefore, prior to any kriging-based geostatistical 

assessment, the variogram must be computed from the regionalized variable data. 

 

Initially, an experimental variogram 𝛾(𝑑) is computed based on the regionalized 

variable data using the Equation (2-1) as given in the following: 
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𝛾(𝑑) =
1

2𝑁(𝑑) ∑ [𝑍(𝑠𝑖 + 𝑑) − 𝑍(𝑠𝑖)]2

𝑁(𝑑)

𝑖=1

                                          (2 − 1) 

        

where 𝑍(𝑠𝑖) and 𝑍(𝑠𝑖 + 𝑑) are the variable values at corresponding sampling locations 

𝑠𝑖 and (𝑠𝑖 + 𝑑), respectively located at 𝑑 distance apart and 𝑁(𝑑) is the number of data 

pairs (Isaaks and Srivastava, 1989; Webster and Oliver, 2007).  

 

A variogram cloud is generated first using Equation (2-1) for observations at any two 

data points, in which all semivariance values are plotted against their separation 

distance. The experimental variogram is computed from the variogram cloud by sub-

dividing it into a number of lags and taking an average of each lag interval (Johnston et 

al., 2001; Robertson, 2008). The average distances in each class interval are plotted 

against the values obtained from Equation (2-1), which is called the experimental 

variogram model (Oliver and Webster, 2014). The experimental variogram is thus 

composed of variogram 𝛾(𝑑) values for a finite set of discrete lags (Wackernagel, 

2003). A lag is a line vector that separates any two data points (Johnston et al., 2001). A 

typical variogram cloud based on Equation (2-1) and a typical experimental variogram 

with a typical fitted model are shown in Figure 2-2. 
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Figure 2-2. (a) A typical variogram cloud for a finite set of discrete lags, and (b) a 

typical experimental variogram based on the variogram cloud fitted by a typical 

variogram model with its parameters. 

 

The experimental model data can be fitted to several analytical variogram 𝛾(𝑑) models, 

which is a basic requirement in kriging-based geostatistics. Several standard variogram 

models are used for this purpose depending on the shape of the experimental 

variogram, which include exponential, gaussian, spherical, circular, linear, K-Bessel, J-

Bessel, rational quadratic, stable and hole effect models. The shape and corresponding 



 
 

Chapter 2: Rain Gauge Network Design and Its Impact on the Accuracy of Streamflow Simulation 
 

 44  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting           

functional form of these standard variogram models can be found in Davis (1973), 

Goovaerts, 1997; Johnston et al. (2001), Wackernagel (2003) and Webster and Oliver 

(2007). However, exponential, gaussian and spherical variogram models are mostly 

used in hydrology (Teegavarapu, 2007; Abo-Monasar and Al-Zahrani, 2014). The 

functional forms of these commonly used variogram models are given in Table 2-1.  

 

Table 2-1. Commonly used standard variogram models 
 

Model name Functional form of the variogram model 

Exponential 𝛾(𝑑) = 𝐶0 + 𝐶1 [1 − exp (−
3𝑑
𝑎

)] 

 

Gaussian 

 

𝛾(𝑑) = 𝐶0 + 𝐶1 [1 − exp (−
3𝑑2

𝑎2 )] 

 

Spherical 

 

𝛾(𝑑) = 𝐶0 + 𝐶1 [
3
2

(
𝑑
𝑎

) −
1
2

(
𝑑3

𝑎3)] ,        𝑑 < 𝑎 

 

          = 𝐶0 + 𝐶1,         𝑑 ≥ 𝑎 

Note: C0 = nugget coefficient, C0 + C1 = Sill, a = range, d = average lag distance  
 

The nugget coefficient (C0), sill (C0 + C1) and range (a) of the variogram models (Table 

2-1 and Figure 2-2) are commonly referred to the variogram parameters. A variogram 

model is essentially described by these parameters that affect computation in the 

kriging process. Nugget represents measurement error and/or microscale variation at 

spatial scales that are too fine to detect and is seen as a discontinuity at the origin of the 

variogram model. Range is a distance beyond which there is little or no autocorrelation 

among variables. Sill is the constant semivariance of the regionalized variables beyond 

the range (Johnston et al., 2001).  

 

Spatial dependence, given the fact that the neighboring points tend to have similar 

characteristics, is expressed mathematically by variogram models. As an example, 
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Figure 2-3 shows schematization of the exponential and spherical variogram models. 

As can be seen from the figure, for both spherical and exponential curves, the 

variogram model steadily increases at a maximum value and then approaches a constant 

value, which is called the sill (C0 + C1) parameter. Furthermore, the distance 

corresponding to the variogram sill can be distinguished from the figure, which is 

called the range (a) of the variogram model. In the estimation of regionalized variables 

by variogram analyses, range divides the samples into two categories: (i) all the 

samples whose distances to the point to be estimated are less than or equal to range 

provide information about the point (dependent), and (ii) all the samples outside the 

neighborhood defined by the range are independent observations with respect to the 

point to be estimated and may be disregarded, because they do not provide any 

information about the point (Isaaks and Srivastava, 1989). Therefore, it can be shown 

from the spherical variogram model that γ(d) = (C0 + C1) when d = a, meaning that the 

sill is reached at a distance equal to the variogram range. In contrast, the exponential 

semivariogram has a sill of (C0 + C1) that is approached asymptotically. In practice, a 

finite range is taken during variogram modelling for which γ(a) = 0.95*(C0 + C1) 

(ASCE Task Committee, 1990a). 

 

 

Figure 2-3. Schematization of the exponential and spherical variogram models 
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Furthermore, an important observation can be found from Figure 2-2, which indicates 

that the experimental variogram values is a function of the average lag distance 

between stations. This indicates that the experimental vs lag distance relationship can 

be modelled using suitable techniques (if any). Isaaks and Srivastava (1989) 

demonstrated that the experimental variogram (using Equation 2-1) can be modelled by 

any new mathematical function other than the available standard variogram models 

(exponential, gaussian, spherical models in Table 2-1). It is important to note that 

different universal function approximation-based techniques including artificial neural 

networks (ANN), genetic programming (GP), support vector machine (SVM), fuzzy 

theory and genetic algorithm (GA) could be a viable option for variogram modelling in 

such cases, which can be used to fit the experimental variogram (e.g., Chang et al., 

2005; Teegavarapu, 2007; Sitharam et al., 2008; Kholghi and Hosseini, 2009; 

Teegavarapu et al., 2009; Huang et al., 2012). The most important advantage of these 

techniques is that they do not require any pre-defined functional form to fit the 

experimental variogram unlike the standard variogram models. For this reason, they are 

able to fit the experimental variogram of any shape based on their high approximation 

capability (e.g., Teegavarapu, 2007).  

 

It is worth mentioning that developing new variogram models by fitting of the 

experimental variogram through the aforementioned universal function approximation-

based techniques may not result in a unique and stable solution for the kriging weights, 

if the ‘positive definiteness condition’ is not satisfied (Wackernagel, 2003; 

Teegavarapu, 2007). Therefore, the universal function approximation-based variogram 

models should satisfy the positive definiteness condition before using them in kriging 

computation. The positive definiteness condition for a variogram model demonstrates 

that the kriging variance obtained based on the adopted variogram model remains 

always positive (Webster and Oliver, 2007). It is important to note that the standard 

variogram models given in Table 2-1 consist of the positive definite functions and 

hence always satisfy the positive definiteness condition. Therefore, the standard 

variogram models always generate unique and stable solutions for the kriging weights 

(Wackernagel, 2003) and hence, they can be directly used in kriging analysis. 
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2.3.2 Concept of kriging-based geostatistical approach in rain gauge 

network design  

Kriging-based geostatistical method has been demonstrated to have many potential 

applications in hydrological research (Delhomme, 1978; ASCE Task Committee, 

1990b). In particular, the optimal design of a rain gauge network over a catchment 

using the concept of variance reduction under the kriging-based geostatistical 

framework is quite popular among the hydrologists. In most of the applications, rain 

gauge network design and evaluation focuses on minimizing the kriging variance of the 

areal average and/or point rainfall estimates across a particular study area or catchment 

(Cheng et al., 2008). The kriging variance, σ𝑧
2(𝑠0), of a regionalized variable, Z can be 

estimated using the Equation (2-2) as given in the following: 

 

σ𝑧
2(𝑠0) = ∑ 𝜔𝑖

𝑛

𝑖=1

𝛾(𝑑0𝑖) + 𝜇𝑧                           for  ∑ 𝜔𝑖

𝑛

𝑖=1

= 1                (2 − 2) 

 

where, 𝛾(𝑑) is the variogram value for the distance d; 𝑑0𝑖 is distance between sampled 

data points 𝑠𝑖 and 𝑠𝑗; 𝜇𝑧  is the Lagrangian multiplier in the Z scale; and 𝑑0𝑖 is distance 

between the unsampled location 𝑠0 (where estimation is desired) and sampled locations 

𝑠𝑖; 𝑛 is number of sampled locations (Webster and Oliver, 2007). The square root of the 

kriging variance is termed as the kriging standard error that forms the basis for the rain 

gauge network design and evaluation.  

 

In the kriging-based geostatistical method, the main objective is to minimize the kriging 

variance or kriging standard error of the network to obtain the optimal rain gauge 

network. The conceptual framework of the variance reduction technique using the 

kriging-based geostatistical method for rain gauge network design (e.g., Loof et al., 

1994) is shown in Figure 2-4. As can be seen from the figure, the optimization of a rain 

gauge network is achieved through minimizing the kriging variance or kriging standard 

error (KSE) of the network. The underlying principle is that optimal positioning of rain 

gauge stations in the high variance zones will reduce KSE of the network and hence 

will improve the network performance. Applying this principle repeatedly, at a certain 
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stage when the optimal combination of all rain gauge stations are achieved that yield 

high network performance, the optimal rain gauge network can be obtained. Thus, the 

optimal rain gauge network can be achieved by minimizing the kriging error, which 

involves a process of methodical search to find an optimal combination of the 

appropriate number and locations of stations producing the minimum KSE. 

 

 

Figure 2-4. Flowchart for the design of a rain gauge network using the kriging-based 

geostatistical approach (Adapted from Loof et al., 1994) 
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2.3.3 Application of kriging-based geostatistical approach in rain 

gauge network design 

Kriging-based geostatistical approach has been extensively used in network design and 

evaluation around the world including the design of rain gauge network (e.g., Cheng et 

al., 2008; Yeh et al., 2011; Haggag et al., 2016; Chang et al., 2017; Feki et al., 2017), 

drought monitoring network (e.g, Bonaccorso et al., 2003), evaporation monitoring 

network (e.g., Ashraf et al., 1997), groundwater head monitoring network (e.g, 

Cameron and Hunter, 2002; Kumar et al., 2005; Yang et al., 2008; Triki et al., 2013), 

groundwater quality monitoring network (e.g., Narany et al., 2015; Júnez-Ferreira et al., 

2016) and air temperature monitoring network (e.g., Ahmed, 2004). In particular, the 

approach finds wide applications in rain gauge network design and evaluation due to its 

simplicity of application and easy to use (e.g., Shamsi et al., 1988; Kassim and 

Kottegoda, 1991; Loof et al., 1994; Papamichail and Metaxa, 1996; Pardo-Igúzquiza, 

1998; Ghahraman and Sepaskhah, 2001; Tsintikidis et al., 2002; Nour et al., 2006; 

Barca et al., 2008; Chen et al., 2008; Cheng et al., 2008; Chebbi et al., 2011; Yeh et al., 

2011; Shaghaghian and Abedini, 2013; Shafiei et al., 2014; Adib and Moslemzadeh, 

2016; Aziz et al., 2016; Haggag et al., 2016; Chang et al., 2017; Feki et al., 2017).  

 

In most of the aforementioned studies for rain gauge network design, kriging was 

implemented alone where only rainfall was considered as a single regionalized variable 

in kriging analysis. However, it is also found from the literature that the kriging-based 

geostatistical approach offers an advantage over other network design methods because 

kriging is able to complement the sparsely sampled primary variable, such as rainfall by 

the correlated densely sampled secondary variable, such as elevation, radar-based 

rainfall data etc. This is often referred to as the cokriging method (Goovaerts, 2000; 

Feki et al., 2012). Therefore, some studies also implemented cokriging for rain gauge 

network design applications (e.g., Moore et al., 2000; Bradley et al., 2002; Volkmann et 

al., 2010; Putthividhya and Tanaka, 2013). In most of these studies, radar-based rainfall 

was used as the secondary information. However, high quality radar data is not 

frequently available in many cases, which could be one of the major constraints that 

limit the application of the cokriging method in the design and evaluation of a rain 

gauge network. 
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In regard to the rain gauge network design and evaluation based on the kriging based 

geostatistical approach, three different attributes have been identified as given in the 

following: 

 

x Augmentation of the network with additional rain gauge stations to achieve 

the desired network density and then identifying the optimal location of the 

additional stations in the network to improve the rainfall estimation 

accuracy as much as possible (e.g., Loof et al., 1994; Papamichail and 

Metaxa, 1996; Pardo-Igúzquiza, 1998; Tsintikidis et al., 2002; Barca et al., 

2008; Chebbi et al., 2011; Haggag et al., 2016) 

x Prioritizing the rain gauges in the network with respect to their contribution 

in estimation error reduction and accuracy improvement (e.g., Kassim and 

Kottegoda, 1991; Chen et al., 2008; Cheng et al., 2008; Yeh et al., 2011; 

Chang et al., 2017; Feki et al., 2017) 

x Choosing an optimal representative subset of rain gauges from an existing 

dense network to achieve as much information as possible maintaining the 

desired level of accuracy (e.g., Shamsi et al., 1988; Shaghaghian and 

Abedini, 2013; Adib et al., 2016; Aziz et al., 2016). 

 

It can be also found in most of the past studies that expansion of the existing network 

by adding supplementary stations has been the main underlying criterion to achieve the 

optimal rain gauge network (detailed in Figure 2-4). However, the placement and 

adjustment of stations significantly influence the quality of the obtained hydrological 

variable in a network (Yeh et al., 2011). Furthermore, an existing network may consist 

of redundant stations (St-Hilaire et al., 2003; Mishra and Coulibaly, 2009) that may 

make little or no contribution to the network performance for providing quality data. 

Mishra and Coulibaly (2009) suggested that one can approach the problem either by 

eliminating redundant stations from the network to minimize the cost or by expanding 

the network with installation of additional stations to reduce the rainfall estimation 
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uncertainty. Therefore, optimal placement of redundant stations as well as additional 

stations must be ensured in order to achieve the optimal rain gauge network. 

2.3.4 Limitations of kriging-based geostatistical approach in rain 

gauge network design 

In spite of the overwhelming advantages offered by the kriging-based geostatistical 

approach, the technique is defected with some limitations. The approach cannot be 

employed to initiate a network; that is, it cannot be used for design purposes unless a 

priori monitoring points with collected data are available. This is also true for any other 

statistical technique such as entropy method (discussed in Section 2.4) that is used to 

design and evaluate a monitoring network. In particular, availability of data from a 

number of monitoring points is one of the important requirements to implement 

kriging-based geostatistical technique in order to compute the kriging variance or 

kriging standard error, which is finally used for rain gauge network design and 

evaluation. Therefore, presence of an existing network with a number of rain gauge 

stations is vital for successful implementation of this approach. In regard to this, a 

region with unavailable data, specifically for the completely ungauged catchments with 

no data will restrict the application of the simplest form of this approach. In such case, 

remotely sensed data could be a viable option (e.g., Dai et al., 2017) and the kriging-

based geostatistical approach may be applied with modification using the remotely 

sensed data for rain gauge network design and evaluation. 

2.4 Entropy Method 

2.4.1 Overview of entropy theory 

The term ‘entropy’ as a scientific concept was first used in thermodynamics as early as 

the 1850s by Clasius. Later in 1877, Boltzmann provided a probabilistic explanation of 

the concept within the context of statistical mechanics. The explicit relationship 

between entropy and probability was developed in the early 1900s by Planck (e.g., 

Harmancioglu and Singh, 1998; Singh, 2013). Shannon (1948a, b) used the concept to 

provide an economic interpretation of the properties of long sequences of symbols, and 
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applied the results to a number of basic problems in coding theory and data 

transmission. Shannon finally developed, with his remarkable contributions in this area, 

the basis of modern information theory. Later, Jaynes (1957a, b) re-evaluated the 

method of maximum entropy and applied it to a variety of problems. 

2.4.2 Concept and application of entropy method in rain gauge 

network design 

Application of engineering principles to the problem of data collection calls for a 

minimum number of signals to be received to obtain the maximum amount of 

information. Redundant information does not help, which reduce the uncertainty 

further. Hence, this only increases the costs of obtaining data. In the case of redundant 

information, for example, an existing monitoring network should be reduced or 

rationalized and in the case of shortage of information, the existing network should be 

expanded (Mogheir and Singh, 2002). These considerations represent the essence of the 

field of communications and therefore hold equally true for hydrologic data sampling, 

which is essentially communicating with the natural system. Since the reduction of the 

uncertainty by means of making observations is equal to the amount of information 

gained, the entropy criterion indirectly measures the information content of a given 

series of data (Harmancioglu and Yevjevich, 1987). 

 

There have been a wide range of applications of entropy theory in the field of 

hydrology and water resources (e.g., Singh 1997; Singh, 2013). In particular, the 

entropy principle can be effectively used to develop suitable network design criteria on 

the basis of quantitatively expressed information expectations and information 

availability in the rain gauge network. The entropy theory may be used to set up an 

information-based design strategy to design the rain gauge network. This is justified in 

the sense that a rain gauge network is basically an information system (Krstanovic and 

Singh, 1992a, b). In fact, past studies on application of the entropy principle in rain 

gauge network design have revealed promising results particularly in the selection of 

technical design features, such as optimal locations of rain gauge stations and 

identification of redundant stations (e.g., Husain, 1989; Krstanovic and Singh, 1992a, b; 

Al-Zahrani and Husain, 1998; Yoo et al., 2008; Karimi-Hosseini et al., 2011; Ridolfi et 
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al., 2011; Vivekanandan and Jagtap, 2012; Li et al., 2012; Wei et al., 2014; Xu et al., 

2015; Werstuck and Coulibaly, 2016; Xu et al., 2017). There are also a number of 

studies that used the entropy theory in design of monitoring networks in different fields 

including water quality monitoring network design (e.g., Alpaslan et al., 1992; 

Harmancioglu and Alpaslan, 1992; Ozkul et al., 2000), and groundwater quality 

monitoring network design (e.g., Mogheir and Singh, 2002; Mogheir et al., 2009).  

2.4.3 Limitations of entropy method in rain gauge network design 

Past studies have demonstrated that entropy method is also a promising method in rain 

gauge network design problems because it allows the design of a network through 

quantitative assessment of information. However, there are some limitations of the 

entropy method, which must be noted (Harmancioglu et al., 1994). A sound evaluation 

of rain gauge network features by the entropy method requires the availability of 

reliable and sufficient data. Applications with inadequate data often cause numerical 

difficulties and hence unreliable results. For example, when considering spatial and 

temporal frequencies in the multivariate case, the major numerical difficulty is related 

to the proprieties of the covariance matrix. Furthermore, when the determinant of the 

matrix is very small, entropy measures cannot be determined reliably since the matrix 

becomes ill-conditioned. This often occurs when the available sample size is very small 

(e.g., Harmancioglu and Alpaslan, 1992). On the other hand, the question in regard to 

the data availability is how many data points would be considered sufficient. 

Particularly, it is quite challenging to determine when a data record can be considered 

sufficient (Harmancioglu et al., 1994). The presence of gaps in data series puts 

limitations on entropy estimates particularly in the time domain such that temporal 

design cannot be realized after certain lags (Harmancioglu et al., 1999). The same 

difficulty extends to space/time design of network, which leads to unreliable results. 

 

Another problem of the application of the entropy theory is the mathematical definition 

of entropy concepts for continuous variables. Shannon's basic definition of entropy is 

developed for a discrete random variable, and the extension of this definition to the 

continuous case entails the problem of selecting the discretizing class intervals to 

approximate probabilities with class frequencies. Different measures of entropy vary 
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with class intervals such that each selected value of class intervals constitutes a 

different base level or scale for measuring uncertainty. Consequently, the same variable 

investigated assumes different values of entropy for each selected value of class 

interval. It may even take on negative values which contradict the positivity property of 

the entropy function in theory. A possible procedure to overcome the above deficiency 

may be to define confidence levels for entropy measures, particularly for 

transinformation. This is still an issue that needs to be investigated. This can be 

resolved by an a priori probability distribution function, but there are then controversies 

over the choice of an a priori distribution so that the problem still remains unsolved. 

2.5 Hybrid or Mixed Method 

In many cases, more than one statistical technique of rain gauge network design is 

merged together in order to achieve the more accurate network design methodology. 

Combination of two statistical methods offers some advantages compared to when each 

of them is used individually for network design. These methods are referred to as the 

hybrid or mixed methods. In general, kriging technique alone was used for the design 

of rain gauge networks in most of the past studies (e.g., Shamsi et al., 1988; Kassim and 

Kottegoda, 1991; Loof et al., 1994; Papamichail and Metaxa, 1996; Tsintikidis et al., 

2002; Cheng et al., 2008; Haggag et al., 2016; Feki et al., 2017). However, in many 

studies, the kriging technique was used in combination with other techniques such as 

entropy (e.g., Chen et al., 2008; Yeh et al., 2011; Awadallah, 2012; Mahmoudi-

Meimand et al., 2015) and multivariate factor analysis (e.g., Shaghaghian and Abedini, 

2013) for the design of rain gauge networks. In those studies, the kriging technique was 

used to estimate rainfall data by interpolation in locations where prospective rain gauge 

stations are required to be installed, while entropy was used to measure the information 

content of each station, and the factor analysis along with clustering technique was used 

to prioritize stations in terms of information content, respectively. An important 

advantage of these hybrid methods is that the combination of kriging and entropy or 

kriging and factor analysis can effectively determine the optimum number and spatial 

distribution of rain gauge stations in a catchment or watershed. 
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2.6 Optimization Method 

Generally, optimization refers to the study of problems in which one seeks to minimize 

or maximize a real function by systematically choosing the values of real or integer 

variables from within an allowed set. The basic application of optimization in network 

design is to maximize information with respect to minimizing cost (Mishra and 

Coulibaly, 2009). According to Langbein (1979), the design of rain gauge networks 

need not essentially be based on formal schemes of optimization, such as the minimum 

cost of attaining data accuracy. A design can be based upon judgmental analyses to 

accommodate a mix of design criteria. Available literature indicate that most of the past 

studies used a sequential trial and error procedure to minimize the kriging variance of 

rain gauge networks to optimize the network (e.g., Shamsi et al., 1988; Loof et al., 

1994; Papamichail and Metaxa, 1996; Haggag et al., 2016). However, a few studies 

used optimization techniques such as simulated annealing, genetic algorithm, particle 

swarm optimization for minimizing the kriging variance in order to optimize rain gauge 

networks (e.g., Pardo-Igúzquiza, 1998; Barca et al., 2008; Chebbi et al., 2011; Adib et 

al., 2016; Aziz et al., 2014; Aziz et al., 2016). Several optimization techniques have 

been proposed in the literature since the early work of Bras and Rodríguez-Iturbe 

(1976) and Delhomme (1978), who demonstrated a methodology of rain gauge network 

design based on the minimization of the mean areal kriging variance. The adoption of 

optimization techniques in combination with the kriging-based geostatistical method for 

rainfall network sizing and augmentation was also performed by Pardo-Igúzquiza 

(1998), Barca et al. (2011), Chebbi et al. (2011), Aziz et al. (2014); Adib et al. (2016) 

and Aziz et al. (2016).  

 

In Delhomme (1978), the optimal location of rain gauges was identified using a 

technique called the fictitious point method while an automatic optimization technique, 

namely simulated annealing was adopted in Pardo-Igúzquiza (1998) and Aziz et al. 

(2014). Barca et al. (2008) provided a methodology for assessing the optimal location 

of new rain gauge stations within an existing rain gauge network. The methodology 

used kriging and probabilistic techniques (simulated annealing) combined with 

geographic information system (GIS). Chebbi et al. (2011) have considered mono-

objective criteria in simulated annealing technique assuming 1-hour rainfall intensity 
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interpolation and erosivity factor interpolation and using one single extreme rainfall 

event to perform the analysis. Rainfall quantities retained in previous studies were 

mainly taken in a deterministic way. Effectively, a single rainfall pattern was selected 

for which the average kriging variance was minimized to achieve the best new rain 

gauge locations (Delhomme, 1978; Pardo-Igúzquiza, 1998; Chebbi et al., 2011). In the 

recent past, genetic algorithm and particle swarm optimization techniques in 

combination with geostatistics were also used for rain gauge network design to 

minimize the kriging variance for network optimization in two recent studies (e.g., 

Adib et al., 2016; Aziz et al., 2016). The major concern of the optimization method is 

that this method often results in a network configuration, which is often not practically 

suitable to be implemented as the optimal network. Because it is practically unrealistic 

to re-locate and re-install all existing rain gauge stations in their new identified 

locations (which may be frequently occurred as a part of the solution) based on the 

optimization method, which involves large cost and logistics supports. As a result of 

these difficulties, the sequential trial and error procedure (e.g., Shamsi et al., 1988; 

Loof et al., 1994) to minimize the kriging variance to optimize rain gauge networks is 

usually preferred, in particular to identify the optimal locations of the additional and 

likely redundant stations in the network. 

2.7. Impact of Rain Gauge Network Design on the Accuracy of 

Streamflow Simulation 

Rainfall-runoff models are widely used to forecast the streamflow for a catchment of 

known rainfall that comes from an established rain gauge network with a number of 

rain gauge stations. In places where streamflow statistics are scarce, the models are 

used for design purposes to infer flows of a particular frequency by applying a design 

storm of the same frequency to the model (Retnam and Williams, 1988). Hydraulic 

structures at the catchment outlet are then designed to cope with this streamflow. 

Another important application of the models is in the area of flood forecasting, where 

observed rainfall is used by the model to predict streamflows. Depending on the 

complexity of the model and the precision required, the rainfall is specified as spatially 

averaged and varying in time. But the rainfall measurements in most cases are, in fact, 

taken by continuous (in time) rain gauges at points (in space) from an established 
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network, which gives only a limited spatial picture of rainfall (Hamlin, 1983; Retnam 

and Williams, 1988).  

 

The models may be simple regression equations applied to a particular catchment or 

they may be a more general conceptual form requiring a range of data describing the 

catchment (Hamlin, 1983; Retnam and Williams, 1988). Furthermore, the validity of a 

model depends on the accuracy and reliability of input parameters and initial and 

boundary conditions (Zhu et al., 2013). Of these parameters and data, rainfall input is 

proved to be the most important (Golding, 2009). Additionally, accurate rainfall is 

required in the calibration of hydrological models to yield parameter sets, which 

represent catchment characteristics. Extensive use of hydrological models has 

demonstrated the need for accurate rainfall fields in order to produce runoff and 

streamflow forecasting with a high degree of confidence (Beven and Hornberger, 1982; 

Cole and Moore, 2008; Xu et al., 2013). According to McMillan et al. (2011, page 84), 

“no model, however, well-founded in physical theory or empirically justified by past 

performance, can produce accurate runoff predictions if forced with inaccurate rainfall 

data.” Inaccurate rainfall data directly compromise the integrity of the model and the 

associated critical decisions made using model output (Golding, 2009; McMillan et al., 

2011). In particular, for small catchments, the timing and location of rainfall is critical 

in reproducing streamflow hydrographs. There is thus an urgent need to acquire reliable 

rainfall estimates at high spatial and temporal resolutions, which can be achieve 

through establishment of an optimal rain gauge network.  

 

Rainfall is usually measured through the ground-based rain gauge stations which are 

often installed in a network for a catchment or watershed. However, this rainfall 

measurement technique often results in errors due to lack of sufficient number of 

stations in the network due to financial, logistics and political factors (Goovaerts, 

2000). This obviously can limit their capability of producing accurate rainfall input for 

hydrological models. Furthermore, hydrologists intending to forecast floods do not 

usually have the opportunity to design or redesign the rain gauge network (Retnam and 

Williams, 1988). As a result of these difficulties, spatially variability of rainfall is often 

inferred from existing point measurements obtained from the rain gauge stations. 

Hence, the spatial variation of rainfall presents two particular problems when 
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hydrologic processes at catchment or basin scale are analysed via rainfall-runoff models 

(Hamlin, 1983; Retnam and Williams, 1988). The first is the extent to which point 

rainfall measurements adequately reflect the areal distribution of rainfall. This can be 

achieved through spatial variability analysis of rainfall and network design, which is 

discussed in the rain gauge network design part of this chapter. The second is the extent 

to which uncertainty in the true catchment rainfall and network configuration affect the 

catchment model parameters and response and hence the decision outcome.  

 

High variability in rainfall has a demonstrated impact on runoff modelling (Schilling 

and Fuchs, 1986). The impact of rainfall variability was investigated by Faurés et al. 

(1995) who studied the effect of varying density and placement of rain gauge stations in 

a network on hydrological modelling outcomes for a semi-arid watershed in 

southeastern Arizona of United States of America. By varying the gauges used to 

generate the rainfall input for the model, they found that the peak runoff and the runoff 

volume varied significantly with a coefficient of variation ranging from 9 to 76% and 2 

to 65%, respectively. This study demonstrated that in an environment dominated by 

high-intensity rainfall with significant spatial variability, rain gauge density and 

placement can strongly influence predicted streamflows from hydrological modelling, 

leading to increased uncertainty in model results. The errors within rain gauge 

measurements due to systematic and calibration issues also often result in significant 

error in subsequent modelling efforts. 

 

Several researches have demonstrated the impact on network density on streamflow 

using conceptual and/or physically distributed models. Krajewski et al. (1991) 

described a Monte Carlo study of a physically based distributed parameter hydrologic 

model for the simulation of overland flow and streamflow. In this study, sensitivity of 

the model response with respect to the spatial and temporal sampling density of rainfall 

input was investigated. The input data were generated by a space-time stochastic model 

of rainfall. The generated rainfall fields were sampled by the varied density synthetic 

rain gauge networks. The basin response, based on 5-min increment input data from a 

network of high density with about one gauge per 0.1 km2, was assumed to be the 

‘ground truth’, and other results were compared against it. Results were interpreted in 

terms of hydrograph characteristics such as peak magnitude, time to peak, and total 
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runoff volume. The results indicated that higher sensitivity of basin response with 

respect to the temporal resolution than to the spatial resolution of the rainfall data. 

Georgakakos et al. (1995) investigated the effect of the number of rain gauges (from 1 

to 11) on the simulation performance (cross-correlation coefficient between observed 

and simulated flow) in two American river basins with an area of 2000 km2. The results 

revealed that the cross-correlation coefficient increased considerably until 5 rain gauges 

were reached. Therefore they concluded that 11 rain gauges are more than adequate to 

represent mean areal precipitation over the catchment for their research purpose (the 

linkage of catchment climatology and hydrology to time scale). 

 

St-Hilaire et al. (2003) investigated the impact of network density at two temporal 

scales, i.e., for the estimation of total annual rainfall and for the estimation of daily 

rainfall during specific rain events. In this investigation, kriging was used as an 

interpolator to estimate the spatial distribution and variance of rainfall. Kriged rainfall 

from two network scenarios (sparse and dense) was used as input into the HSAMI 

hydrological model, and simulations were compared on five drainage basins in the 

Mauricie watershed of Quebec, Canada. A comparison of the distribution of total 

annual rainfall interpolated from the two network scenarios showed that addition of rain 

gauge stations changed the distribution and magnitude of rainfall in the study area. 

High rainfall cells were better defined with the denser network, and decreases in the 

relative spatial variance were observed. Finally, simulations performed with the 

HSAMI model were generally improved when the rainfall input were estimated using a 

denser station network for most drainage basins studied, as expressed by increased 

Nash coefficients and a decreased root-mean-square error. Peak flows during important 

summer flood events were generally better simulated when a denser network was used 

to calculate the mean daily rainfall used as input. Total cumulated volume estimations 

during the rain events were also generally improved with a denser rain gauge network.  

 

Dong et al. (2005) used statistical analyses and hydrological modelling to find the 

appropriate number and location of rain gauges for a river basin for streamflow 

simulation. First, a statistical method is used to identify the appropriate number of rain 

gauges, where the effect of the number of rain gauges on the cross correlation 

coefficient between areal averaged rainfall and discharge is investigated. Second, a 
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lumped HBV model (a conceptual hydrological model for continuous prediction of 

runoff, developed at the Swedish Meteorological and Hydrological Institute) is used to 

investigate the effect of the number of rain gauges on hydrological modelling 

performance. The Qingjiang River basin with 26 rain gauges in China is used for this 

case study. The results show that both cross correlation coefficient and modelling 

performance increase hyperbolically and level off after five rain gauges (therefore 

identified to be the appropriate number of rain gauges) for this basin. The study 

concludes with the identification of geographical locations of rain gauges which give 

the best and worst hydrological modelling performance, which shows that there is a 

strong dependence on the local geographical and climatic patterns. 

 

The influence of the spatial resolution of the rainfall input on the model calibration and 

application was investigated by Bárdossy and Das (2008). The analysis was carried out 

by varying the distribution of the rain gauge network. The semi-distributed HBV model 

was calibrated with the rainfall interpolated from the available observed rainfall of the 

different rain gauge networks. The meteorological input was interpolated using the 

external drift kriging method from the point measurements of the selected rain gauge 

stations. A mesoscale catchment located in the southwest of Germany was selected for 

this case study. They highlighted that the number and spatial distribution of rain gauges 

significantly affect the streamflow simulation results. It was found that the overall 

performance of the model worsens radically with an excessive reduction of rain gauges, 

and there is no significant improvement of the model by increasing the number of rain 

gauges more than a certain threshold number. 

 

An approach to improve the runoff forecasting based on the optimization of the mean 

daily areal rainfall series was investigated by Anctil et al. (2006). The experimental 

protocol in this investigation was structured in two phases. First, the rain gauge network 

was randomly sampled to produce subsets of a specific number of rain gauges, in order 

to assess the impact of reduced rainfall knowledge on streamflow forecasting 

performance. Then, a genetic algorithm was used to orient the rain gauge combinatorial 

problem toward improved forecasting performance. Random sampling revealed that 

median performance diminishes rapidly when 10 rain gauge stations or fewer (out of 

23) are used to compute the mean areal rainfall time series. Results also indicated that 
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some rain gauge combinations lead to better forecasts than when all available rain 

gauges are used to estimate the mean areal rainfall. These findings justify the genetic 

search performed in the second phase of the study. The best performance improvement 

was achieved when the mean areal rainfall was computed from a specific 12–rain 

gauges combination. Many other combinations also lead to noticeable improvements in 

streamflow forecasting, revealing the complexity of the identification of an optimal 

sub-network. From an optimization point of view, and through the filter of a lumped 

neural network rainfall-runoff model, these results demonstrate that it may be beneficial 

to reduce the size of the total rain gauge network.  

 

In recent years, the availability of spatially continuous radar rainfall data has led to its 

widespread utilization by hydrologists and inclusion in particular sorts of model. Tsai et 

al. (2014) developed a novel semi-distributed, data-driven, rainfall-runoff model for the 

Shihmen catchment, Taiwan to forecast reservoir inflow for a range of different 

forecasting horizons. The aim was to demonstrate how different levels of semi-

distribution, applied to continuous radar rainfall data inputs, operating in a data-driven 

rainfall-runoff modelling framework, affect the performance of multi-step-ahead 

reservoir inflow forecasts in Taiwan. To perform simulations, a set of models based on 

different levels of radar rainfall spatial disaggregation was formulated using the 

adaptive network-based fuzzy inference system (ANFIS), from which a model with the 

preferred level of input distribution is identified. Different levels of spatially aggregated 

radar-derived rainfall data are used to generate 4, 8 and 12 sub-catchment input drivers. 

They found that continuous rainfall data appears to provide better performance over 

discrete, point-based spatial data for reservoir inflow forecasting in Taiwan. It was also 

found that further performance improvement can be achieved by using a semi-

distributed modelling framework based on the spatially disaggregated radar rainfall 

input. 

 

The influence of the rain gauge density and their distribution in network on the 

modelling results is still a challenging topic in hydrology. Rain gauge network 

configuration is not only depends on the station density, station location also plays an 

important role in determining whether information is gained properly, which is to be 

used for hydrological modelling. Xu et al. (2013) investigated the influence of different 
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rain gauge density, network distribution and location of the rain gauge stations on the 

performance of the model in simulating the streamflow using the Xinanjiang model 

applied in Xiangjiang River basin, China. The basin consists of a dense rain gauge 

network with long and high quality data. Hence, the mean areal rainfall estimated by 

different rain gauge densities achieved through the stochastically-based rain gauge 

network design technique was analyzed at first. Secondly, the influence of different rain 

gauge density and distribution on the model performance was comprehensively 

evaluated. The results show that the error range of the indices in analyzing mean areal 

rainfall and simulated runoff narrowed gradually with increasing number of rain gauges 

up to some threshold, and beyond which the model performance did not show 

considerable improvements. The study found that the networks with 10 rain gauge 

stations yield the lowest model performance, whereas the highest model performance 

can be obtained using the 128 rain gauges network. Furthermore, when the number of 

rain gauges is higher than 93, there is no noticeable improvement in the model 

performance. Based on the stochastically generated rain gauge network, this study 

quantitatively demonstrated how the rain gauge stations’ geographic locations impact 

the streamflow simulation results. 

 

During the times of floods and natural calamities, it becomes difficult to collect 

information from all rain gauges in a catchment. Furthermore, it is reported that the 

impact of climatic change affects rainfall amounts, rainfall patterns, runoff amounts, 

and runoff coefficients (Ponce et al., 1997). Therefore, establishing a key rain gauge 

network is vital, which is capable of effective forecasting of floods with the desired 

accuracy. Kar et al. (2015) presented a methodology for the design of the key rain 

gauge network using multi-criteria decision analysis and clustering techniques for flood 

forecasting and demonstrated through a case study in the Kantamal sub-catchment, 

Mahanadi River basin, India. The objective was to achieve the key rain gauge network 

(instead of taking information from all rain gauge stations) that can be used for making 

reasonably accurate flood forecasts particularly during the time of distress (when the 

rainfall data of not all the stations are available due to various reasons). At first, 

different possible key rain gauge networks were designed from the existing rain gauge 

network in the catchment using Hall’s method, analytical hierarchical process (AHP), 

self-organization map (SOM) and hierarchical clustering (HC) techniques. Efficiency 



 
 

Chapter 2: Rain Gauge Network Design and Its Impact on the Accuracy of Streamflow Simulation 
 

 63  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting           

of the key networks is tested by artificial neural network (ANN), fuzzy logic and NAM 

rainfall-runoff models, and the best network was used for flood forecasting. Further, 

flood forecasting has been carried out with the key rain gauge networks. Although, the 

best rain gauge network has shown the highest efficiency, simultaneously other 

networks were also tested with certain designated efficiency in order to use them at the 

time of failure of the best rain gauge network. Furthermore, flood forecasting has been 

carried out using the three most effective rain gauge networks which uses only 7 rain 

gauges instead of 14 rain gauges established in the catchment. The fuzzy logic applied 

on the key rain gauge network derived using AHP yielded the best result for flood 

forecasting with efficiency of 83% for 1-day ahead forecast. This study conclusively 

proves the need of the key rain gauge network designed for effective flood forecasting, 

particularly when there is difficulty in gathering the information from all rain gauges 

over a catchment. 

 

The review of the analysis and results of all the aforementioned studies clearly 

highlight the importance and necessity of the optimal rain gauge network design for the 

enhanced rainfall estimations and incorporating the optimal rain gauge network-based 

input for accurate and improved streamflow forecasting. 
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Chapter 3 

Universal Function Approximation-Based 

Kriging for Improved Estimation of Rainfall 
 

 

3.1 Introduction 

Many hydrological analyses and investigations need the estimates of hydrologic 

variables such as rainfall at ungauged locations in a catchment where no direct 

observations are readily available. In this chapter, development and application of a 

variance dependent universal function approximation-based kriging for the improved 

estimation of rainfall at an ungauged location in the case study area is detailed. In 

general, variance dependent stochastic interpolation methods such as kriging are the 

most frequently used methods for estimating the point rainfall values at any ungauged 

(or target) location in a catchment based on the observed rainfall values available at all 

other surrounding rain gauge stations (Isaaks and Srivastava, 1989; Goovaerts, 1997; 

Vieux, 2001; Webster and Oliver, 2007). However, the major issue associated with 

traditional kriging is that it requires correct estimation of a variogram model that 

represents spatial correlations among data points. The variogram model plays a vital 

role in the kriging process to estimate the kriging weights and thus significantly impacts 

the performance of the methods. The robustness of kriging thus heavily depends on 

how the variogram model is obtained (Oliver and Webster, 2014). In traditional kriging, 

it is the common practice to use a number of pre-defined standard variogram functions 

(e.g., exponential, gaussian, spherical models) to fit the experimental variogram of 
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observed rainfall data. Furthermore, selection of an appropriate variogram model from 

the available standard models, finding the optimal variogram parameters (i.e., nugget, 

range, sill coefficients) and the computational burden involved are some of the 

difficulties associated with the traditional kriging (Teegavarapu, 2007; Oliver and 

Webster, 2014). In other words, it is generally not clear which particular variogram 

model from a set of available standard variogram models can perform well with the 

traditional kriging for a particular rainfall dataset.  

 

As a potential solution to the aforementioned issues, a new universal function 

approximation-based kriging was developed using genetic programming (GP) where 

GP (Koza, 1992; Banzhaf et al., 1997) was used as a universal function approximator to 

derive the variogram model. The new variant of kriging is referred to as the genetic 

programming-based ordinary kriging (GPOK) in which the standard parametric 

variogram models (i.e., exponential, gaussian, spherical models) in traditional ordinary 

kriging were replaced by the GP-derived variogram model. Variogram modelling using 

GP offers a number of advantages. For example, GP does not require a pre-defined 

mathematical formula to generate the functional variogram models unlike the standard 

variogram model functions (as discussed in Section 2.3.1 and shown in Table 2-1). In 

addition, GP is able to generate variogram models of simple form, which consist of 

similar mathematical structure as in the standard variogram models unlike other 

universal function approximators such as ANN (e.g., Teegavarapu, 2007). Furthermore, 

GP-derived variogram model does not require identifying the variogram parameters in 

advance, unlike the standard parametric variogram models in traditional kriging. 

Therefore, the GPOK method is found to be completely free from the trial and error 

process of estimating the variogram parameters. The GPOK developed in this way can 

overcome the aforementioned limitations associated with the traditional ordinary 

kriging and give the enhanced estimation of rainfalls at ungauged locations.   

 

In kriging, it is a common practice to select the best variogram model through the 

cross-validation and positive definiteness tests before using it for final interpolation of 

variable of interest. It is worth mentioning that the standard variogram models always 

satisfy the positive definite condition and thus results in a unique solution for the 

kriging weights (Wackernagel, 2003; Teegavarapu, 2007). Therefore, the cross-
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validation test alone is adequate to detect the best standard variogram model. However, 

developing and selecting a new variogram model (for example, the GP-derived 

variogram model detailed in this chapter) other than the standard ones cannot result in a 

unique and stable solution for the kriging weights, if the positive definiteness condition 

is not satisfied (Teegavarapu, 2007). The positive definiteness condition for a 

variogram model demonstrates that the variance obtained through kriging interpolation 

based on the adopted variogram model remains always positive (Wackernagel, 2003; 

Webster and Oliver, 2007). Therefore, the GP-derived model need to satisfy the cross-

validation and positive definiteness tests simultaneously before it can be finally used in 

the GPOK method for spatial interpolation of rainfall. In order to test the positive 

definiteness of the GP-derived variogram model, the kriging variance for all rain gauge 

locations was calculated through the GPOK method based on the adopted GP-derived 

variogram model. The positive value of the kriging variance can confirm that the GP-

derived model and its corresponding covariance function is capable of providing a 

unique and stable solution for the kriging weights in GPOK method. This indicates the 

suitability of the GP-derived model for kriging applications. 

 

Furthermore, ordinary kriging does not ensure getting positive kriging weights and 

thus, negative weights can be obtained as a part of the solution to satisfy the 

requirement of unbiased constraints of kriging. The reason of getting negative weights 

in ordinary kriging is due to the fact that there is no constraint in ordinary kriging 

algorithm that can force the kriging process to take positive values for the kriging 

weights (Szidarovszky et al., 1987). Negative kriging weights when assigned to high 

rainfall values at a rain gauge station can lead to the negative estimation of rainfall 

values at the target ungauged location, which does not make practical sense. In case of 

this problem, Szidarovszky et al. (1987) and Deutsch (1996) have suggested that 

negative kriging weights, if it is obtained as a part of the solution, should be corrected 

and converted to positive weights through the positive kriging technique (Barnes and 

Johnson, 1984). As a solution to this problem, a variant of positive kriging using the 

mathematical programming approach was explored in this chapter, in which an 

additional non-negativity constraint of the kriging weights is assigned. This approach 

can limit the kriging weights to non-negative values. Finally in this chapter, the 

performance and robustness of the GPOK technique was tested against three traditional 
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ordinary kriging as well as ANN-based ordinary kriging methods numerically and 

graphically for the enhanced estimation of rainfall at an ungauged location in the case 

study catchment. 

 

This chapter consists of the following journal paper. 

 

1. Adhikary SK, Muttil N, Yilmaz AG. 2016a. Genetic programming-based 

ordinary kriging for spatial interpolation of rainfall. Journal of Hydrologic 

Engineering 21(2): 04015062. DOI: 10.1061/(ASCE)HE.1943-5584. 

0001300. (SCImago Journal Rank indicator: Q1; Impact Factor: 1.694). 
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Chapter 4 

Univariate and Multivariate Kriging for 

Enhanced Spatial Interpolation of Rainfall  
 

 

4.1 Introduction 

Estimates of spatial rainfall distribution are vital for many hydrological analyses and 

modelling applications such as water budget analysis, flood modelling, climate change 

studies, drought management, irrigation scheduling and water management (Moral, 

2010; Delbari et al., 2013). The rain gauge network acts as the primary data source in 

this rainfall estimation. However, the rain-gauge network is often sparse in the field 

because the number of stations in a network is often limited by economic, logistics and 

geological factors (Goovaerts, 2000). For example, in Australia, the spatial density of 

rain gauge stations varies greatly across the country. Furthermore, most of the rain 

gauges are located along the coastal area, while the vast inland area has less than 

twenty per cent of the total number of rain gauges (Sun et al., 2013). As a result, point 

rainfall values are commonly accessible from a limited number of rain gauges. These 

limitations increase the need for using suitable spatial estimation methods to obtain the 

spatial distribution of rainfall and generate rainfall maps from the point rainfall values. 

Moreover, the network is often not deployed on a regular grid and rainfall data may not 

be available in the target location where it is most required (Lloyd, 2005). In such 

cases, spatial interpolation method plays a vital role to simulate rainfall in areas having 

no stations based on the observed rainfall values in the surrounding areas.  
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A number of interpolation methods ranging from simple conventional and deterministic 

methods to complex stochastic or geostatistical methods have been employed to 

interpolate point rainfall data from rain-gauges and generate spatial distribution of 

rainfall map over a catchment. Kriging-based geostatistical methods have been shown 

superior to the conventional and deterministic methods for spatial interpolation of 

rainfall (Isaaks and Srivastava, 1989; Goovaerts, 1997). Several studies have reported 

that rainfall is generally characterized by a significant spatial variation (e.g., Goovaerts, 

2000; Lloyd, 2005; Delbari et al., 2013). This suggests that interpolation methods 

which are explicitly able to incorporate the spatial variability of rainfall into the 

estimation process should be employed. In kriging, the spatial variability of rainfall is 

quantified by the variogram model that defines the degree of spatial correlation 

between the data points (Webster and Oliver, 2007). Therefore, kriging has become the 

most widely used geostatistical method for spatial interpolation of rainfall.  

 

The ability of kriging to produce spatial distribution of rainfall has been demonstrated 

in many studies across the world (e.g., Goovaerts, 2000; Jeffrey et al., 2001; Lloyd, 

2005; Moral, 2010; Yang et al., 2015). The major advantage of kriging is that it can 

take into account the spatial correlation between data points through the variogram 

model and provides unbiased estimates with a minimum variance. Another key 

advantage of kriging over the conventional and deterministic interpolation methods is 

that while providing a measure of prediction standard error (also called the kriging 

variance), it is capable of complementing the sparsely sampled primary variable, such 

as rainfall by the correlated densely sampled secondary variable, such as elevation to 

improve the estimation of primary variable, rainfall (Hevesi et al., 1992; Goovaerts, 

2000). This multivariate extension of kriging is referred to as the cokriging method.  

 

Kriging in geostatistics thus can be broadly categorized into two groups: univariate and 

multivariate kriging techniques. The univariate kriging employs a single primary 

variable (rainfall) for interpolations, which include ordinary kriging, simple kriging, 

universal kriging, log-normal kriging and indicator kriging. More recently, alternative 

univariate kriging methods such as universal function approximation-based kriging 

using ANN (e.g., Teegavarapu, 2007) and GP (as demonstrated in Chapter 3) are also 
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used for the enhanced estimation of rainfall. On the other hand, the multivariate kriging 

allows the inclusion of secondary variables such as elevation, slope, weather radar-

rainfall data that are more densely sampled to complement the primary variable to 

improve rainfall estimation, which include ordinary co-kriging, kriging with an external 

drift, and regression kriging. Multivariate kriging usually reduces the prediction error 

variance and specifically outperforms the univariate kriging method if the secondary 

variable is highly correlated (correlation coefficient higher than 0.75) with the primary 

variable (i.e., rainfall) and is known at many more points (Goovaerts, 2000). 

Furthermore, it can incorporate the exhaustive secondary variable (i.e., elevation) to 

give an enhanced estimation of primary variable (i.e., rainfall) when dealing with a low 

density rain-gauge network. 

 

In this chapter, the performance evaluation of different univariate and multivariate 

kriging interpolation methods to identify the best interpolator for enhanced spatial 

interpolation of rainfall and production of high quality continuous rainfall datasets in 

the form of rainfall maps is presented. This chapter is divided into two parts. The first 

part of this chapter addresses the performance evaluation of different univariate kriging 

interpolation methods including four traditional and a universal function 

approximation-based kriging method using GP for spatial interpolation of rainfall. The 

second part of this chapter details the performance evaluation of five traditional 

univariate interpolation methods including kriging and two cokriging interpolation 

methods for enhanced spatial interpolation of rainfall. The second part of this chapter 

also includes the analysis for an additional case study area, the Ovens River catchment 

of Victoria, Australia. 

 

In spatial interpolation of rainfall, it is often quite challenging to distinguish the best 

interpolation method to estimate the spatial distribution of rainfall for a particular 

catchment or study area. The reason is due to the fact that the performance of an 

interpolation method depends on a number of factors such as catchment size and 

characteristics, sampling density, sample spatial distribution, sample clustering, surface 

type, data variance, grid size or resolution, quality of auxiliary information to be used 

as well as the interactions among these factors. Moreover, it is unclear how the 

aforementioned factors affect the performance of the spatial interpolation methods 
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(Dirks et al., 1998, Li and Heap, 2011). As a solution this issue, the best interpolation 

method for a particular catchment or study area is usually established through the 

comparative assessment of different interpolation methods (e.g., Goovaerts, 2000; 

Hsieh et al., 2006; Moral, 2010; Di Piazza et al., 2011; Mair and Fares, 2011; Feki et 

al., 2012; Delbari et al., 2013), which was also implemented in this thesis. The 

interpolation method that gives the most realistic results with the lowest bias and the 

highest accuracy in rainfall estimation was chosen as the best interpolator to generate 

the continuous rainfall datasets for the case study catchment. 

 

Rainfall data distribution highly depends on local conditions, especially in regions 

having the complex terrain (e.g., Phillips et al., 1992; Lloyd, 2005; Subyani and Al-

Dakheel, 2009; Moral, 2010; Feki et al., 2012). The distribution can be rather different 

from coast to inland, high altitude to low altitude, and upper slope to down slope etc. 

Sharma and Shakya (2006) highlighted that any analysis of hydroclimatic variables 

should be carried out at the local scale rather than at a large or global scale because of 

the variations of hydroclimatic situations from one region to another. Hence, it is vital 

to consider the local environment that affects the distribution of rainfall data first, 

especially topographic conditions including elevation, slope, and distance to coast in 

order to improve the accuracy of the gridded rainfall data. Furthermore, rainfall-

topography relationships have been relatively little studied at a local or catchment scale 

in Australia and no such studies have been undertaken specifically within the Middle 

Yarra River catchment (the case study area in this research). Spatial distribution of 

monthly precipitation is also largely influenced by the topography in the case study 

catchment. Therefore, the elevation was used as an auxiliary variable in addition to 

rainfall (i.e., primary variable) in order to improve the estimation of rainfall using the 

multivariate kriging methods based on the rainfall-topography relationship of the case 

study catchment. 

 

This chapter consists of the following two journal papers. The first paper focuses on 

different univariate kriging interpolation methods, and the second paper details different 

multivariate as well as univariate kriging interpolation methods for enhanced spatial 

interpolation of rainfall and generation of continuous rainfall datasets in the form of 

rainfall maps. 
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Abstract
Rainfall data in continuous space provide an essential input for most hydrological and water

resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based

point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging

has become a widely used interpolation method to estimate the spatial distribution of climate var-

iables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary

kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic

(inverse distance weighting, radial basis function) interpolation methods for enhanced spatial

interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catch-

ment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the

catchments during 1980–2012 period are used for the analysis. A digital elevation model of each

catchment is used as the supplementary information in addition to rainfall for the OCK and

kriging with an external drift methods. The prediction performance of the adopted interpolation

methods is assessed through cross‐validation. Results indicate that the geostatistical methods

outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate

that among the geostatistical methods, the OCK method is found to be the best interpolator

for estimating spatial rainfall distribution in both the catchments with the lowest prediction error

between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use

of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can

significantly enhance the estimation of rainfall over a catchment.

KEYWORDS

cross‐variogram model, digital elevation model, kriging with an external drift, ordinary cokriging,

positive‐definite condition, variogram model

1 | INTRODUCTION

Rainfall data provide an essential input for many hydrological investiga-

tions and modelling tasks. Accuracy of various hydrological analyses such

as water budget analysis, flood modelling, climate change studies, drought

management, irrigation scheduling, and water management greatly

depends on the correct estimation of the spatial distribution of rainfall

(Delbari, Afrasiab, & Jahani, 2013; Moral, 2010). This usually requires a

dense rain‐gauge network with a large number of stations (Adhikary,

Muttil, & Yilmaz, 2016a). However, the rain‐gauge network is often sparse

in the field because the number of stations in a network is often restricted

by economic, logistics, and geological factors (Goovaerts, 2000). As a result,

point rainfall data are generally accessible from a limited number of

stations. These limitations increase the need for using suitable spatial esti-

mation methods to obtain the spatial distribution of rainfall and generate

rainfall map from the point rainfall values. Moreover, the network is often

not deployed on a regular grid and rainfall data may not be available in the

target location where it is most required (Adhikary et al., 2016a). In such

cases, spatial interpolation plays a vital role to simulate rainfall in areaswith

no stations based on the observed rainfall values in the surrounding areas.
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Several interpolation methods have been frequently employed to

interpolate rainfall data from rain‐gauge stations and produce the spatial

distribution of rainfall over a catchment. Examples of suchmethods range

from simple conventional (e.g., Thiessen polygons [Thiessen, 1911],

isohyet mapping [ASCE, 1996], simple trend surface interpolation

[Gittins, 1968]), and deterministic methods (i.e., inverse distance

weighting (IDW; ASCE, 1996), radial basis function (RBF;Di Piazza, Conti,

Noto, Viola, & Loggia, 2011) to complex stochastic or geostatistical

methods (i.e., ordinary kriging [OK], ordinary cokriging [OCK] and kriging

with an external drift [KED; Goovaerts, 2000]). Although the conven-

tional and deterministic methods have been improved over time, their

limitations continue to exist. These limitations have been described elab-

orately in Goovaerts (2000) and Teegavarapu and Chandramouli (2005).

Geostatistical methods have been shown superior to the conven-

tional and deterministic methods for spatial interpolation of rainfall

(Goovaerts, 1997; Isaaks & Srivastava, 1989). Several studies have

reported that rainfall is generally characterised by a significant spatial

variation (e.g., Delbari et al., 2013; Lloyd, 2005). This suggests that inter-

polation methods, which are explicitly able to incorporate the spatial

variability of rainfall into the estimation process should be employed.

In view of that, kriging has become the most widely used geostatistical

method for spatial interpolation of rainfall. The ability of kriging to

produce spatial predictions of rainfall has been distinguished in many

studies (e.g., Adhikary et al., 2016a; Goovaerts, 2000; Jeffrey, Carter,

Moodie, & Beswick, 2001; Lloyd, 2005; Moral, 2010; Yang, Xie, Liu, Ji,

& Wang, 2015). The major advantage of kriging is that it takes into

account the spatial correlation between data points and provides

unbiased estimates with a minimum variance. The spatial variability in

kriging is quantified by the variogram model that defines the degree

of spatial correlation between the data points (Webster &Oliver, 2007).

Another key advantage of kriging over the conventional and deter-

ministic methods is that while providing a measure of prediction stan-

dard error (also called kriging variance), it is capable of complementing

the sparsely sampled primary variable, such as rainfall by the correlated

densely sampled secondary variable, such as elevation to improve the

estimation accuracy of primary variable (Goovaerts, 2000; Hevesi,

Istok, & Flint, 1992). This multivariate extension of kriging is referred

to as the cokriging method. The standard form of cokriging is the

OCK method, which usually reduces the prediction error variance and

specifically outperforms kriging method if the secondary variable (i.e.,

elevation) is highly correlated (correlation coefficient higher than .75)

with the primary variable (i.e., rainfall) and is known at many more

points (Goovaerts, 2000). The KED is another commonly applied

cokrigingmethod, which can incorporate the exhaustive secondary var-

iable (i.e., elevation) to give an enhanced estimation of rainfall when

dealing with a low‐density rain‐gauge network. Thus, cokriging includ-

ing the OCK and KED methods has been the increasing preferred

geostatistical methods all over the word. As highlighted by Goovaerts

(2000) and Feki, Slimani, and Cudennec (2012), rainfall and elevation

tend to be related because of the orographic influence of mountainous

topography. Therefore, topographic information such as the digital ele-

vation model (DEM) can be used as a convenient and valuable source of

secondary data for theOCK and KEDmethods. The efficacy of incorpo-

rating elevation into the interpolation procedure for enhanced estima-

tion of rainfall has been highlighted in many studies across the world

(e.g., Di Piazza et al., 2011; Feki et al., 2012; Hevesi et al., 1992; Lloyd,

2005; Martínez‐cob, 1996; Moral, 2010; Phillips, Dolph, & Marks,

1992; Subyani & Al‐Dakheel, 2009).

A wide variety of spatial interpolation methods have been devel-

oped for the interpolation of spatially distributed point rainfall values.

However, it is often challenging to distinguish the best interpolation

method to estimate the spatial distribution of rainfall for a particular

catchment or study area. The reason is that the performance of an

interpolation method depends on a number of factors such as catch-

ment size and characteristics, sampling density, sample spatial distribu-

tion, sample clustering, surface type, data variance, grid size or

resolution, quality of auxiliary information to be used as well as the

interactions among these factors. Moreover, it is unclear how the afore-

mentioned factors affect the performance of the spatial interpolation

methods (Dirks, Hay, Stow, & Harris, 1998; Li & Heap, 2011). Hence,

the best interpolation method for a particular study area is usually

established through the comparative assessment of different interpola-

tion methods (e.g., Delbari et al., 2013; Dirks et al., 1998; Goovaerts,

2000; Hsieh, Cheng, Liou, Chou, & Siao, 2006; Mair & Fares, 2011;

Moral, 2010). The comparison among different interpolation methods

is made through a validation procedure. The interpolation method that

provides better results with lower bias and higher accuracy in rainfall

estimation is identified as the best interpolation method.

In the past, many studies have been devoted to the comparison

and evaluation of different deterministic and geostatistical interpola-

tion methods in a range of different regions and climates around the

world. Dirks et al. (1998) compared four spatial interpolation methods

using rainfall data from a network of 13 rain‐gauges in Norfolk Island

concluding that kriging provided no substantial improvement over

any of the simpler Thiessen polygon (TP), IDW, or areal‐mean

methods. Goovaerts (2000) employed three multivariate geostatistical

methods (OCK, KED, simple kriging with varying local means [SKVM]),

which incorporate a DEM as secondary variable and three univariate

methods (OK, TP, and IDW) that do not take into account the elevation

for spatial prediction of monthly and annual rainfall data available at 36

rain‐gauge stations. The comparison among these methods indicated

that the three multivariate geostatistical methods gave the lowest

errors in rainfall estimation. Martínez‐cob (1996) compared OK, OCK,

and modified residual kriging to interpolate annual rainfall and evapo-

transpiration in Aragón, Spain. The results indicated that OCK was

superior for rainfall estimation, reducing estimation error by 18.7%

and 24.3% compared with OK and modified residual kriging, respec-

tively. Hsieh et al. (2006) evaluated OK and IDW methods using daily

rainfall records from 20 rain‐gauges to estimate the spatial distribution

of rainfall in the Shih‐Men Watershed in Taiwan. The results demon-

strated that IDW produced more reasonable representations than

OK. Moral (2010) compared three univariate kriging (simple kriging

[SK], universal kriging, and OK) with three multivariate kriging methods

(OCK, SKVM, and regression kriging) to interpolate monthly and

annual rainfall data from 136 rain‐gauges in Extremadura region of

Spain. The results showed that multivariate kriging outperformed uni-

variate kriging and among multivariate kriging, SKVM and regression

kriging performed better than OCK.

Ly, Charles, and Degré (2011) used IDW, TP, and several kriging

methods to interpolate daily rainfall at a catchment scale in Belgium.
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The results indicated that integrating elevation into KED and OCK did

not provide improvement in the interpolation accuracy for daily rainfall

estimation. OK and IDW were considered to be the suitable methods

as they gave the smallest error for almost all cases. Mair and Fares

(2011) compared TP, IDW, OK, linear regression, SKVM to estimate

seasonal rainfall in a mountainous watershed concluding that OK pro-

vided the lowest error for nearly all cases. They also found that incor-

porating elevation did not improve the prediction accuracy over OK for

the correlation between rainfall and elevation lower than 0.82. Delbari

et al. (2013) used two univariate methods (IDW and OK), and four mul-

tivariate methods (OCK, KED, SKVM, and linear regression) for map-

ping monthly and annual rainfall over the Golestan Province in Iran.

They reported that KED and OK outperformed all other methods in

terms of root mean square error (RMSE). Jeffrey et al. (2001) derived a

comprehensive archive of Australian rainfall and climate data using a

thin plate smoothing spline to interpolate daily climate variables and

OK to interpolate daily and monthly rainfall. The aforementioned

studies on spatial interpolation of rainfall indicate that each method

has its advantages and disadvantages and thus performs in a dissimilar

way for different regions. There is no single interpolation method that

can work well everywhere (Daly, 2006). Therefore, the best interpolator

for a particular study area or catchment should essentially be achieved

through the comparative assessment of different interpolationmethods.

To date, many studies have been conducted on spatial interpola-

tion of rainfall at a regional and national scale in Australia (Gyasi‐Agyei,

2016; Hancock & Hutchinson, 2006; Hutchinson, 1995; Jeffrey et al.,

2001; Johnson et al., 2016; Jones, Wang, & Fawcett, 2009; Li & Shao,

2010; Woldemeskel, Sivakumar, & Sharma, 2013; Yang et al., 2015).

However, none of these studies was conducted at a local or catchment

scale. Likewise, elevation and rainfall relations locally have been rela-

tively little studied in Australia and no such studies have been under-

taken specifically within the Yarra River catchment and the Ovens

River catchment in Victoria, Australia. Sharma and Shakya (2006)

highlighted that any analysis of hydroclimatic variables should be car-

ried out at the local scale rather than at a large or global scale because

of the variations of hydroclimatic situations from one region to

another. Therefore, the main aim of this study is to assess if relatively

more complex geostatistical interpolation methods that take into

account the elevation and rainfall relation provide any benefits over

simpler methods for enhanced estimation of rainfall within the Yarra

River catchment and the Ovens River catchment in Victoria, Australia.

The specific focus is to evaluate the effectiveness of the cokriging

methods including OCK and KED that make use of elevation as a sec-

ondary variable over those methods including OK, IDW, and RBF that

do not make use of such information to estimate the spatial distribu-

tion of rainfall within the catchment. This study is expected to provide

an important contribution towards the enhanced estimation of rainfall

in the aforementioned two Australian catchments using the cokriging

methods by incorporating elevation as an auxiliary variable in addition

to rainfall data. One specific contribution of this paper is in explaining

how rainfall varies with elevation from catchment to catchment.

The Yarra River catchment and the Ovens River catchment in

Victoria are selected for this study because they are two important

water resources catchments in Australia in terms of water supply and

agricultural production (Adhikary, Yilmaz, & Muttil, 2015; EPA Victoria,

2003; Schreider, Jakeman, Pittock, & Whetton, 1996; Yu, Cartwright,

Braden, & de Bree, 2013). TheYarra River catchment is a major source

of water for more than one third of Victoria's population in Australia

(Barua, Muttil, Ng, & Perera, 2012). Although the catchment is not

large with respect to other Australian catchments, it produces the

fourth highest water yield per hectare of the catchment in Victoria

(Adhikary et al., 2015). There are seven storage reservoirs in the catch-

ment that supports about 70% of drinking water supply in Melbourne

city (Barua et al., 2012). The Ovens River catchment is another impor-

tant source of water in northeast Victoria, which forms a part of the

Murray‐Darling basin (Yu et al., 2013). The Ovens River is consid-

ered one of the most important tributaries of the Murray‐Darling

Basin due to the availability of sufficient volume of water with accept-

able quality and its good ecological condition. The average annual flow

of the river constitutes approximately 7.3% of the total flow of the state

of Victoria (Schreider et al., 1996). The catchment contributes approxi-

mately 14% of Murray‐Darling basin flows in spite of its relatively small

catchment area of less than 1% of the total Murray‐Darling basin area

(EPAVictoria, 2003; Yu et al., 2013). Thus, both the catchments have sig-

nificant contribution towards the sustainable development of Victoria's

economy. However, high rainfall variation and diverse water use

activities in these catchments has complicated the water management

tasks, which has further created strong burden on the water managers

and policymakers for effectivewater resourcesmanagement. Therefore,

enhanced estimation of rainfall and its spatial distribution is important,

which could be beneficial for effective water supply and demand man-

agement, and sustainable agricultural planning in both the catchments.

The rest of the paper is arranged as follows. First, a brief descrip-

tion of the study area and data used are presented, which is followed

by the detailed description of the methodology adopted in this study.

The results are summarized next, and finally, the conclusions drawn

from this study are presented.

2 | STUDY AREA AND DATA USED

2.1 | The study area

This study considers two catchments in Victoria as the case study area,

which includes the Middle Yarra River catchment and Ovens River

catchment in south‐eastern Australia. Figure 1 shows the approximate

location of the case study area. TheYarra River catchment is located in

northeast of Melbourne covering an area of 4,044 km2. The water

resources management is an important and multifaceted issue in the

Yarra River catchment because of its wide range of water uses as well

as its downstream user requirements and environmental flow provi-

sions (Barua et al., 2012). The catchment significantly contributes to

the water supply in Melbourne and has been playing an important role

in the way Melbourne has been developed and grown (Adhikary et al.,

2015). The Yarra River catchment consists of three distinctive sub‐

catchments including Upper, Middle, and Lower Yarra segments based

on different land use activities (Barua et al., 2012). This study concen-

trates on the Middle segment of the Yarra River catchment, which

forms part of the case study area in Figure 1. The Upper Yarra segment

includes mainly the forested and mountainous areas with minimum

human settlement, which is mainly used as a closed water supply
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catchment for Melbourne and has been reserved for more than

100 years for water supply purposes. TheMiddleYarra segment, starting

from the Warburton Gorge to Warrandyte Gorge, is notable as the only

part of the catchment with an extensive flood plain, which is mainly used

for agricultural activities. The Lower Yarra segment of the catchment,

which is located downstream of Warrandyte, is mainly characterized

by the urbanized floodplain areas of Melbourne city (Adhikary, Muttil,

& Yilmaz, 2016b). Most of the land along rivers and creeks in the middle

and lower segments has been cleared for the agricultural or urban

development (Barua et al., 2012; Melbourne Water, 2015).

Rainfall varies significantly through different segments of the Yarra

River catchment. The mean annual rainfall varies across the catchment

from 600 mm in the Lower Yarra segment to 1,100 mm in the Upper

Yarra segment (Daly et al., 2013). The Middle Yarra segment (part of

the case study area in Figure 1) covers an area of 1,511 km2 and consists

of three storage reservoirs. Decreasing rainfall patterns in the catchment

will reduce the streamflows, which in turn will lead to the reduction in

reservoir inflows and hence impact the overall water availability in the

catchment.Moreover, the reduced streamflowsmay cause increased risk

of bushfires. Conversely, increasing rainfall patterns and the occurrence

of extreme rainfall events (as reported in Yilmaz and Perera [2014] and

Yilmaz, Hossain, and Perera [2014]) will result in excess amount of

streamflows that may cause flash floods in the urbanized lower segment

and makes it vulnerable and risk‐prone. The urbanized lower part of the

catchment is also dependent on the water supply from the storage

reservoirs mainly located in the middle and upper segments of the

catchment (Adhikary et al., 2015). Therefore, accurate spatial distribution

of rainfall in the middle and upper segments of the catchment could be

useful for accurate estimation of future streamflows for optimal reservoir

operation and effective flood control in the urbanized lower part.

The Ovens River catchment in northeast Victoria is also consid-

ered as a part of the case study area in this study, which is shown in

Figure 1. The catchment covers an area of 7,813 km2 (Yu et al.,

2013), which extends from the Great Dividing Range in the south

to the Murray River in the north, with the Yarrawonga Weir forming

the downstream boundary. It is considered to be one of the least

modified catchments within the Murray‐Darling basin. The catchment

contributes approximately 14% to the average flows of the Murray

River in spite of its relatively small size (0.75 percent of the total

Murray‐Darling Basin area; EPA Victoria, 2003; Yu et al., 2013). The

Ovens River is the main river in the catchment, which originates on

the northern edges of the Victorian Alps and flows in a north‐west-

erly direction until its junction with the Murray River near Lake

Mulwala. The riverine plains and alluvial flats are primarily cleared

for agricultural use, while the hills and mountains are covered by

forests with native plant species (Yu et al., 2013). Total average water

use in the catchment is about 30,000 million litres per year, 64% of

which is diverted from the Ovens River and its tributaries. A major

part of this water use is irrigation, which constitutes more than

16,000 million litres annually (Schreider et al., 1996). The river itself

provides natural conditions suitable for many significant native fish

species, particularly the endangered Murray Cod (EPA Victoria,

2003). Thus, the catchment is considered to be important, not only

at a regional scale, but also at the national scale in terms of its water

supply volume for domestic and agricultural production, and high

environmental value.

The climate of the Ovens River catchment varies considerably

with topography and elevation (Yu et al., 2013). The average annual

rainfall varies from 1,127 mm in the Alpine region at Bright to

636 mm on the alluvial plains in Wangaratta with most rainfall

FIGURE 1 Location and topography of (a) MiddleYarra River catchment and (b) Ovens River catchment in Victoria with existing rain‐gauge stations
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occurring in winter months (Yu et al., 2013). Approximately 45% of the

annual rainfall occurs during the winter (June to September) whereas

the summer is warm and dry. Winter snowfalls are common at alti-

tudes above 1,000 m (EPA Victoria, 2003). Therefore, enhanced esti-

mation of rainfall and its spatial distribution could be useful for the

effective management of water supply and agricultural activities in

the catchment.

2.2 | Data used

In this study, historical rainfall data from existing rain‐gauge stations in

the Middle Yarra River catchment and the Ovens River catchment

(Figure 1) for 1980–2012 period are considered. There are 19 rain‐

gauge stations in the Middle Yarra River catchment, whereas the

Ovens River catchment includes 42 rain‐gauge stations operated by

the Australian Bureau of Meteorology. Daily rainfall data are collected

from the Scientific Information for Land Owners climate database

(http://www.longpaddock.qld.gov.au/silo/) and compiled to generate

monthly and annual rainfall, which are then used for the analysis. Sum-

mary statistics of monthly rainfall data are given inTable 1. The annual

average rainfall in the MiddleYarra River catchment for the aforemen-

tioned period varies from 710 mm to 1422 mm with a mean value of

1082 mm. The southern and south‐eastern part experiences the

highest rainfall, whereas the lowest rainfall occurs in the north‐western

part in the study area. September is the wettest month (rainfall amount

equals to 112.5 mm) with the highest variation in rainfall. The driest

month is February (rainfall amount equals to 56.4 mm) with the second

highest variability. On the other hand, the annual average rainfall for

the same period in the Ovens River catchment varies from 231 to

2,473 mm with a mean value of 913 mm. The wettest month is July

(rainfall amount equals to 112.9 mm) with the highest variability and

February (rainfall amount equals to 51.3 mm) appears to be the driest

month with the third highest variation in rainfall.

For the OCK analysis, a DEM of both the catchments with 10 m

resolution (shown in Figure 1) is collected from the Geoscience

Australia. The elevation of the Middle Yarra River catchment varies

from 25 m (lowest‐mainly in central, north‐western, and western part)

to 1,243 m (highest‐mainly in northern, north‐eastern, and eastern

part) with a mean elevation of 621 m above mean sea level. Whereas,

the elevation of the Ovens River catchment varies from 124 m (lowest‐

mainly in the upper north‐western part) to 1903 m (highest‐mainly in

the lower southern, south‐eastern and eastern part) with a mean eleva-

tion of 874 m above mean sea level. Monthly and annual rainfall gen-

erally tend to increase with the higher elevations caused by the

orographic effect of mountainous terrain (Goovaerts, 2000). Several

studies have revealed that rainfall usually shows good correlation with

elevation. For example, Goovaerts (2000) showed that a good to signif-

icant correlation exists between the monthly rainfall and elevation,

TABLE 1 Summary statistics for monthly rainfall data of Middle Yarra River catchment and Ovens River catchment

Month Mean (mm) Minimum (mm) Maximum (mm) Standard deviation (mm)
Correlation coefficient
(versus elevation)a

Middle Yarra River catchment

January 67.3 1.8 201.4 31.23 0.79

February 56.4 0.0 269.5 53.40 0.69

March 66.3 9.2 217.8 36.89 0.77

April 84.7 15.2 246.0 45.81 0.74

May 88.3 10.2 239.7 42.47 0.67

June 106.4 13.8 300.2 46.18 0.70

July 102.1 17.9 303.9 48.95 0.73

August 108.6 21.1 289.7 50.67 0.72

September 112.5 25.3 350.3 56.98 0.67

October 101.6 4.0 333.9 50.86 0.69

November 96.1 15.3 258.7 47.60 0.77

December 91.3 8.2 301.2 52.88 0.74

Ovens River catchment

January 55.8 0.0 364.7 51.41 0.49

February 51.3 0.0 421.9 65.66 0.26

March 53.7 0.3 418.1 51.01 0.49

April 54.5 1.0 234.6 38.63 0.72

May 74.6 2.0 360.7 56.71 0.61

June 95.4 1.4 457.0 62.99 0.65

July 112.9 6.0 622.4 71.92 0.60

August 105.2 5.8 468.0 68.94 0.61

September 86.3 5.2 484.1 55.44 0.65

October 73.4 0.1 410.8 61.61 0.67

November 73.6 0.6 290.8 47.70 0.68

December 64.1 0.2 374.6 54.79 0.68

aLinear correlation coefficient between rainfall and elevation data.
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which varies from .33 to .83. Subyani and Al‐Dakheel (2009) found

that good correlation ranging from .34 to .77 exists between seasonal

rainfall and elevation in the Southwest Saudi Arabia. Moral (2010)

identified a good correlation ranging from .33 to .67 between monthly

and annual rainfall and elevation in the southwest region of Spain.

As can be seen inTable 1, the correlation coefficient (CC) between

the monthly average rainfall and elevation for the Middle Yarra River

catchment varies from .67 to .79, where 8 months have the CC values

greater than .70. This indicates that a strong correlation exists between

the monthly rainfall and elevation in the catchment, suggesting that

elevation may enhance the monthly rainfall estimates when used as a

secondary variable in the OCK analysis. On the contrary, the CC

between the monthly average rainfall and elevation for the Ovens

River catchment varies from .26 to .72, where 6 months exhibit the

CC values higher than .65. Apart from the driest month of February,

the correlation ranges from .49 to .72 in the Ovens River catchment.

Thus, it seems beneficial taking into account this exhaustive secondary

variable (elevation in this study) into the enhanced estimation and

mapping of rainfall in both the catchments. Goovaerts (1997) men-

tioned that use of multiple elevation data other than the colocated

positions of rain‐gauges can lead to unstable cokriging systems

because the correlation between near elevation data is much greater

than the correlation between distant rainfall data. Therefore, the

colocated elevation data are used for the OCK analysis in this study,

which are extracted at the same positions of rain‐gauge stations from

the DEM of the catchments.

3 | METHODOLOGY

The methodological framework adopted in this study for spatial inter-

polation of rainfall includes three kriging‐based geostatistical (OK,

OCK, and KED) and two deterministic (IDW and RBF) interpolation

methods, which is shown in Figure 2. A brief description of these

methods is presented in this section. The variogram and its estimation

technique are also summarised with each of the kriging methods

because it is a key component of kriging. For a more detailed descrip-

tion of the methods used in the current study, readers are referred to

several recent geostatistical textbooks including Journel and

Huijbregts (1978); Isaaks and Srivastava (1989), Goovaerts (1997),

Chilès and Delfiner (1999), Wackernagel (2003), and Webster and

Oliver (2007).

3.1 | Ordinary kriging

Kriging refers to a family of generalized least‐squares regression

methods in geostatistics that estimate values at unsampled locations

using the sampled observations in a specified search neighborhood

(Goovaerts, 1997; Isaaks & Srivastava, 1989). OK is a geostatistical

interpolation method based on spatially dependent variance, which

gives unbiased estimates of variable values at target location in space

using the known sampling values at surrounding locations. The unbi-

asedness in the OK estimates is ensured by forcing the kriging weights

to sum to 1. Thus, the OK estimator may be stated as a linear combina-

tion of variable values, which is given by

bZOK s0ð Þ ¼ ∑
n

i¼1
ωOK

i Z sið Þ with ∑
n

i¼1
ωOK

i ¼ 1 (1)

where bZOK s0ð Þ is the estimated value of variable Z (i.e., rainfall) at target

(at which estimation is to be made) unsampled location s0; ωOK
i indi-

cates the OK weights linked with the sampled location si with respect

to s0; and n is the number of sampling points used in estimation. While

giving the estimation at target location, OK provides a variance mea-

sure to signify the reliability of the estimation.

OK is known as the best linear unbiased estimator (Isaaks &

Srivastava, 1989). It is linear in the sense that it gives the estimation

based on the weighted linear combinations of observed values. It is

best in the sense that the estimate variance is minimized while interpo-

lating the unknown value at desired location. And it is unbiased

because it tries to have the expected value of the residual to be zero

(Adhikary et al., 2016b). The weight constraint in Equation 1 ensures

the unbiased estimation in OK. For OK, the kriging weights are deter-

mined to minimize the estimation variance and ensure the unbiased-

ness of the estimator.

The OK weightsωOK
i can be obtained by solving a system of (n + 1)

simultaneous linear equations as follows:

∑
n

i¼1
γ si−sj
! "

ωOK
i þ μOK

1 ¼ γ sj−s0
! "

for j ¼ 1;…………; n

∑
n

i¼1
ωOK

i ¼ 1
(2)

where γ(si − sj) is the variogram values between sampling locations si

and sj, γ(sj − s0) is the variogram values between sampling location sj

and the target location, s0, and μOK
1 is the Lagrange multiplier parame-

ter. Equation 2 indicates that OK highly depends on a mathematical

FIGURE 2 Methodological framework adopted in this study.
IDW = inverse distance weighting; KED = kriging with an external
drift; OCK = ordinary cokriging; OK = ordinary kriging; RBF = radial
basis function
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function called variogram model that indicates the degree of spatial

autocorrelation in datasets.

For OK interpolation of variables, first an experimental variogram

bγ dð Þ is derived by

bγ dð Þ ¼ 1
2N dð Þ ∑

N dð Þ

i¼1
Z si þ dð Þ−Z sið Þ½ &2 (3)

where Z(si) and Z(si + d) are the variable values at corresponding sam-

pling locations si and (si + d), respectively, located at d distance apart

and N(d) is the number of data pairs. A variogram cloud is initially gen-

erated using Equation 3 for observations at any two data points, in

which all semivariance values are plotted against their separation dis-

tance. The experimental variogram is computed from the variogram

cloud by subdividing it into a number of lags and taking an average

of each lag interval (Johnston, VerHoef, Krivoruchko, & Lucas, 2001;

Robertson, 2008). A variogram model γ(d) is then fitted to the experi-

mental variogram. A typical variogram cloud based on Equation 3 and

a typical experimental variogram with a typical fitted model is shown in

Figure 3.

Exponential, Gaussian, and spherical are the most commonly used

variogram models for kriging applications in hydrology (Adhikary et al.,

2015), which are also used to model the experimental variogram. The

functional forms these variogram models are given in Table 2. The

three models are fitted to the experimental variogram using regression

by noting the residual sum of squares (RSS) between the experimental

bγ dkð Þ and modelled γ(dk) variogram values (Mair & Fares, 2011) with a

trial‐and‐error approach for different lag sizes and lag intervals

(Goovaerts, 1997) such that the RSS is minimum. RSS is given by

RSS ¼ ∑
K

k¼1
bγ dkð Þ−γ dkð Þ½ &2 (4)

RSS in Equation 4 provides an exact measure of how well the

variogram model fits the experimental variogram (Robertson, 2008).

Lag sizes and number of lags are varied based on a general rule of

thumb, in which the lag size times the number of lags should be about

half of the largest distance among all data pairs in the variogram cloud

(Johnston et al., 2001, p. 66). The variogram parameters (nugget, sill,

and range) are also iteratively changed to obtain the best fitted model.

The model with its corresponding parameters that minimizes RSS is

selected as the best variogram model and finally used in OK analysis.

Variogrammodel fitting is performed using GS+ geostatistical software

(Robertson, 2008) and OK is implemented through ArcGISv9.3.1 soft-

ware (ESRI, 2009) and its geostatistical analyst extension (Johnston

et al., 2001).

3.2 | Ordinary cokriging

OCKmethod is a modification of the OKmethod. The key advantage of

OCK is that it can make use of more than one variable rather than using

only a single variable in the estimation process. The OCK method is

used to enhance the estimation of primary variable by using secondary

variable assuming that the variables are correlated to each other (Isaaks

& Srivastava, 1989). In this study, rainfall and elevation are considered,

respectively, as the primary and secondary variables in the OCK

method. Like OK method, the aim of the OCK method is to estimate

the primary variable. The OCK estimator (Goovaerts, 1997) considering

one secondary variable (i.e., elevation), which is cross‐correlated with

the primary variable (i.e., rainfall) may be written as

bZOCK s0ð Þ ¼ ∑
n

i1¼1
ωOCK

i1 Z si1ð Þ þ ∑
m

i2¼1
ωOCK

i2 V si2
! "

with ∑
n

i1¼1
ωOCK

i1 ¼ 1; ∑
m

i2¼1
ωOCK

i2 ¼ 0

(5)

where bZOCK s0ð Þ is the estimated value of primary variable at target

unsampled location s0,ωOCK
i1

andωOCK
i2

are the kriging weights associated

with the sampling locations of the primary and secondary variables Z

FIGURE 3 (a) a typical variogram cloud for a finite set of discrete lags,
and (b) a typical experimental variogram based on the variogram cloud
fitted by a typical variogram model with its parameters

TABLE 2 Commonly used positive‐definite variogram models

Model name Model equation

Exponential γ dð Þ ¼ C0 þ C1 1− exp − 3d
a

! "# $

Gaussian γ dð Þ ¼ C0 þ C1 1− exp − 3d2

a2

% &h i

Spherical γ dð Þ ¼ C0 þ C1
3
2

d
a

! "
− 1

2
d3

a3

% &h i
; d<a

=C0 + C1 , d ≥ a

C0 = nugget coefficient, C0 + C1 = Sill, a = range of variogram model.

d = distance of separation between two locations.
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and V, respectively, n and m are the number of sampling points for the

primary and secondary variables.

The OCK weights are obtained by solving a system of (n + 2) simul-

taneous linear equations (Goovaerts, 1997) that can be given by

∑
n

i1¼1
γzz si1−sj1

! "
ωOCK

i1 þ ∑
m

i2¼1
γzv si2−sj1

! "
ωOCK

i2 þ μOCK
1 ¼ γzz sj1−s0

! "
for j1 ¼ 1;……; n

∑
n

i1¼1
γvz si1−sj2

! "
ωOCK

i1 þ ∑
m

i2¼1
γvv si2−sj2

! "
ωOCK

i2 þ μOCK
2 ¼ γvz sj2−s0

! "
for j2 ¼ 1;……;m

∑
n

i1¼1
ωOCK

i1 ¼ 1

∑
m

i2¼1
ωOCK

i2 ¼ 0

(6)

where γzv si2−sj1
! "

and γvz si1−sj2
! "

are the cross‐variogram values

between sampled Z and V values, and μOCK
1 and μOCK

2 are the Lagrange

multiplier parameters accounting for the two unbiased conditions.

The elementary step in the OCK method is to establish an appro-

priate model for cross continuity and dependency between the pri-

mary (rainfall) and secondary (elevation) variable. This positive

correlation between variables is referred to as the cross‐regionalization

or coregionalization (Goovaerts, 1997; Wackernagel, 2003), which can

be quantified by cross‐variogram or cross‐covariance. These models

are used to define the cross continuity and dependency between

two variables in the OCK method (Subyani & Al‐Dakheel, 2009). The

cross‐variogram models between the primary (rainfall) and secondary

(elevation) variables in the OCK method are obtained by fitting with

an experimental cross‐variogram that is given by

bγzv ¼ bγvz ¼
1

2N dð Þ
∑

N dð Þ

i¼1
Z si þ dð Þ−Z sið Þ½ &× V si þ dð Þ−V sið Þ½ & (7)

It is important to note that the variogram models must satisfy the

positive‐definite condition (PDC) in kriging. For a single variable (rain-

fall) in the OK method, the condition is satisfied by using the posi-

tive‐definite variogram model functions given in Table 2. However,

the OCK method considering two variables (rainfall and elevation) con-

sists of one cross‐variogram and two direct variograms, and additional

requirement for satisfying the PDC (Goovaerts, 1999). In order to

make sure that the cross‐variogram model is positive‐definite (all

eigenvalues are positive), an indicator called the Cauchy‐Schwarz

inequality (Journel & Huijbregts, 1978; Phillips et al., 1992) must be

satisfied for all distance values d, which is given by

γzv dð Þ≤ γzz dð Þγvv dð Þ½ &
1
2 (8)

where γzv(d) is the cross‐variogram model between primary and sec-

ondary variables, and γzz(d) and γvv(d) are the direct variogram models

for primary and secondary variables, respectively. Based on the indica-

tor shown in Equation 8, Hevesi et al. (1992) suggested a graphical test

of PDC for the fitted models as follows:

FIGURE 4 Experimental variograms and fitted variogram models for the monthly rainfall data of the Middle Yarra River catchment used in the
ordinary kriging interpolation method
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PDC ¼ γzz dð Þγvv dð Þ½ &
1
2 (9)

The model is considered positive‐definite if the absolute value of

the cross‐variogram model γzv(d) in Equation 8 is less than the slope

and corresponding absolute value of PDC curve in Equation 9 for all

distance values d. In the OCK method, direct and cross‐variogram

models are fitted as linear combination of the same set of basic models

given in Table 2 such that the RSS value by Equation 4 is minimum

under the requirement of PDC. Variogram model fitting is performed

using GS+ geostatistical software (Robertson, 2008) and OCK is imple-

mented through ArcGISv9.3.1 software (ESRI, 2009) and its

geostatistical analyst extension (Johnston et al., 2001).

3.3 | Kriging with an external drift

KED is a particular type of universal kriging that gives the estimation of

a primary variable Z, known only at a small number of locations in the

study catchment, through a secondary variable V, exhaustively known

in the same area (Feki et al., 2012). The trend or local mean of the pri-

mary variable is first derived using the secondary variable (Goovaerts,

1997; Wackernagel, 2003) and then simple kriging is carried out on

residuals from the local mean. The KED estimator (Wackernagel,

2003) is generally given as

bZKED s0ð Þ ¼ ∑
n

i¼1
ωKED

i Z sið Þ with ∑
n

i¼1
ωKED

i ¼ 1 (10)

The KED weights ωKED
i can be obtained by solving a system of

(n + 2) simultaneous linear equations as follows:

∑
n

i¼1
γR si−sj

! "
ωKED

i þ μKED
0 þ μKED

1 V sj
! "

¼ γR sj−s0
! "

for j ¼ 1;……; n

∑
n

i¼1
ωKED

i ¼ 1

∑
n

i¼1
ωKED

i V sið Þ ¼ V s0ð Þ

;

(11)

where γR(si − sj) is the residual variogram values between sampling

locations si and sj, γR(sj − s0) is the residual variogram values between

sampling location sj and the target location, s0, and μKED
0 and μKED

1 are

the Lagrange multiplier parameters.

OCK and KED differ in the way the secondary variable V is used.

The secondary variable (e.g., elevation in this study) gives only the

trend information in KED, whereas estimation with OCK is directly

influenced by it (Delbari et al., 2013). In case of KED, the primary

and secondary variables should exhibit a linear relationship. In addition,

estimation with KED requires the secondary variable values at all the

TABLE 3 Results of fitted variogram models for monthly rainfall data for using in the OK interpolation method

Month Model name

Variogram parameters Cross‐validation statistics

Nugget, C0 (mm2) Sill, C0 + C1 (mm2) Range, a (km) SM SRMS

Middle Yarra River catchment

January Spherical 0.15 163.65 25.20 0.068 0.998

February Spherical 0.20 58.70 24.75 0.059 1.000

March Spherical 0.00 205.38 25.25 0.059 0.863

April Spherical 1.25 270.75 24.85 0.054 0.897

May Spherical 1.10 327.20 25.25 0.039 0.916

June Spherical 0.10 727.60 26.85 0.041 0.847

July Spherical 0.10 849.60 27.00 0.031 0.795

August Spherical 4.00 839.00 26.11 0.035 0.851

September Spherical 1.00 816.00 27.07 0.045 0.883

October Spherical 0.00 390.00 24.18 0.049 0.903

November Spherical 0.00 292.50 21.53 0.058 0.861

December Spherical 0.00 320.00 22.00 0.060 0.863

Ovens River catchment

January Spherical 92.00 455.00 109.50 ‐0.048 0.992

February Spherical 83.00 360.00 70.00 0.007 1.024

March Spherical 85.00 501.00 107.10 ‐0.021 0.991

April Gaussian 93.00 793.00 162.29 ‐0.060 1.000

May Spherical 109.00 1016.00 108.60 ‐0.047 1.016

June Spherical 50.00 1240.00 90.00 ‐0.039 1.001

July Gaussian 180.00 2030.00 80.50 ‐0.083 0.992

August Spherical 58.00 1420.00 65.00 ‐0.040 0.990

September Spherical 25.00 937.00 67.00 ‐0.028 0.997

October Spherical 102.00 519.00 75.40 ‐0.027 1.001

November Spherical 19.00 430.00 68.00 0.001 0.988

December Spherical 35.00 296.00 89.10 ‐0.028 0.988

Note. OK = ordinary kriging; SM = standardized mean error; SRMS = standardized root mean square error.
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estimation grid nodes as well as all the sampling locations si. The resid-

ual variogram models are fitted based on the basic models in Table 2

such that the RSS value between the experimental and modelled

variogram values by Equation 4 is minimum. Variogram model fitting

and estimation with KED are performed using GS+ geostatistical soft-

ware (Robertson, 2008).

3.4 | Inverse distance weighting

IDW interpolation method (ASCE, 1996) gives a linear weighted aver-

age of several neighbouring observations to estimate the variable value

at target location. This method assumes that each observation point

has local influence that diminishes with distance. IDW assigns greater

weights to observation points near to the target location, and the

weights diminish as a function of distance (Johnston et al., 2001).

The estimation by IDW can be written as

bZ s0ð Þ ¼ ∑
n

i¼1
ωiZ sið Þ where ωi ¼ d−ki0 = ∑

n

i¼1
d−ki0 (12)

where bZ s0ð Þ is the estimated rainfall value at desired location s0, Z(si) is

the Z value at location si, ωi is the weight assigned to observation

points, di0 is the distance between the sampling point at locations si

and s0, n is the number of sampling points, and k is a power, which is

referred to as a control parameter.

As “k” approaches zero and the weights becomes more similar,

IDW estimates approach the simple average of the surrounding obser-

vations. However, the effect of the farthest observations on the

estimated value is diminished with the increase of k. The value of k

ranges from 1 to 6 (Teegavarapu & Chandramouli, 2005). Several stud-

ies have investigated with variations in a power to examine its effects

on the spatial distribution of information from rainfall observations

(Chen & Liu, 2012). Therefore, k value is varied in the range of 1 to 6

with an increment of 0.1 in the current study. The optimal k value is

selected based on the lowest RMSE value between the observed and

estimated values. All rain‐gauge stations are considered in the search

neighbourhood in the estimation process. IDW interpolation is per-

formed by ArcGISv9.3.1 software (ESRI, 2009) and its geostatistical

analyst extension (Johnston et al., 2001).

3.5 | Radial basis function

RBF (Chilès & Delfiner, 1999) is an exact interpolation method, which

stands for a diverse group of interpolation methods. The RBF estima-

tor can be viewed as a weighted linear function of distance from grid

point to data point plus a bias factor, which is given by

bZ s0ð Þ ¼ ∑
n

i¼1
ωi∅ si − s0k kð Þ þ μ (13)

where ∅(r) is the radial basis function (r = ‖si − s0‖), r is the radial dis-

tance from target point s0 to sampling points si, ωi are the weights

and μ is the Lagrangian multiplier. The weights are obtained by solving

of a system of (n + 1) simultaneous linear equations.

The basis kernel functions in the RBF method are analogous to

variograms in kriging, which makes it similar to geostatistical interpola-

tion methods. However, RBF does not have the advantage of a prior

analysis of spatial correlation unlike kriging. When interpolating a grid

node, the basis kernel functions define the optimal set of weights to be

used with the sampling points. There are several radial basis functions

available (Johnston et al., 2001) However, thin plate spline is the most

commonly used radial basis function for interpolation (e.g., Boer, de

Beurs, & Hartkamp, 2001; Di Piazza et al., 2011; Hutchinson, 1995).

In this study, thin plate spline is also used as the radial basis function,

which is given by

∅ rð Þ ¼ crð Þ2 ln crð Þ (14)

where c is the smoothing parameter, which is obtained through cross‐

validation process. The optimal value of the smoothing parameter is

selected based on the lowest RMSE value between the observed and

estimated values. RBF interpolation method is performed by

ArcGISv9.3.1 software (ESRI, 2009) and its geostatistical analyst

extension (Johnston et al., 2001).

3.6 | Assessment of interpolation methods

The performance of different interpolation methods (OK, OCK, KED,

IDW, and RBF) used in this study are evaluated and compared through

cross‐validation process. The cross‐validation is a simple leave‐one‐out

FIGURE 5 Experimental variograms and fitted variogram models
based on the collocated elevation data for (a) Middle Yarra River
catchment, and (b) Ovens River catchment
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validation procedure (Haddad, Rahman, Zaman, & Shrestha, 2013) in

which observations are removed one at a time from the dataset and

then re‐estimated from the remaining observations using the adopted

model. Cross‐validation provides important evidence of the perfor-

mance measures for the interpolation methods. In this study, the per-

formance of all the interpolation methods for rainfall estimation is

compared based on mean bias error (MBE), RMSE, and coefficient of

determination (R2) values between the observed and estimated rainfall

values, which are given by Equations 15–17.

MBE ¼ 1
n
∑
n

i¼1
Z sið Þ−bZ sið Þ
h i

(15)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Z sið Þ−bZ sið Þ
h i2

s

(16)

R2 ¼
∑n
i¼1 Z sið Þ−Zmf g bZ sið Þ−bZm

n oh i2

∑n
i¼1 Z sið Þ−Zmf g2∑n

i¼1
bZ sið Þ−bZm

n o2 (17)

In Equations 15–17, Z(si) and bZ sið Þ are the observed and predicted

values, Zm and bZm are the mean of the observed and predicted values,

and n is the number of sampled data points. The interpolation method

with the lowest MBE and RMSE values and the highest R2 value is cho-

sen as the best interpolation method.

As has been mentioned earlier, kriging gives the prediction

standard error while giving the estimation of unsampled variables,

the adequacy of the variogram model for kriging and cokriging estima-

tion should also be tested to produce correct interpolation results

(Johnston et al., 2001; Phillips et al., 1992). Therefore, two additional

standardized cross‐validation statistics are used in this study, which

are standardized mean error (SM) and standardized root mean square

error (SRMS) as given by Equations 18–19

SM ¼ 1
n
∑
n

i¼1

Z sið Þ−bZ sið Þ
h i

bσ sið Þ
(18)

SRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1

Z sið Þ−bZ sið Þ
bσ sið Þ

" #2
vuut (19)

where bσ sið Þ is the prediction standard error for location si. SM should

be close to 0 if the estimates using the adopted variogram model are

unbiased. SRMS should be close to 1 if the estimation variances are

consistent and the variability of the prediction is correctly assessed

(Adhikary et al., 2015; Johnston et al., 2001).

FIGURE 6 Experimental cross‐variograms with the fitted cross‐variogram models and positive‐definite condition curve based on the monthly
rainfall and collocated elevation data for the Middle Yarra River catchment used in the ordinary cokriging interpolation method
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4 | RESULTS AND DISCUSSION

4.1 | Variogram models for OK analysis

The OK analysis requires the estimation of the direct variogrammodels

for rainfall data. In this study, an isotropic experimental variogram is

estimated from the rainfall dataset for each month assuming an identi-

cal spatial correlation in all directions and neglecting the influence of

anisotropy on the variogram parameters. Isotropy is assumed for the

methodological simplicity. Isotropy is a property of a natural process

or data where directional influence is considered insignificant and spa-

tial dependence (autocorrelation) changes only with the distance

between two locations (Johnston et al., 2001). Under the isotropic con-

dition, the semivariance is assumed the same for a given distance,

regardless of direction. Initially, the directional experimental variograms

are estimated from each monthly rainfall dataset. However, the direc-

tional variograms are found noisy because of the less number of rain‐

gauge stations in the study area. Therefore, the directional influence

is ignored in the experimental variogram calculation. The experimental

variogram is then fitted with three predefined variogram model func-

tions (exponential, Gaussian, and spherical as given inTable 2) to obtain

the variogram models for each monthly rainfall dataset.

For convenience in this study, results obtained for the Middle

Yarra River catchment are presented and discussed elaborately and

compared with that obtained for the Ovens River catchment.

Figure 4 shows the experimental variograms and fitted variogram

models with optimal variogram parameters (i.e., nugget, sill, and range)

for monthly rainfall data of the Middle Yarra River catchment, which

are used in OK analysis. The best fitted variogram models are selected

based on the minimum RSS values using a trial‐and‐error process with

different lag intervals. The variogram parameters are iteratively

changed to get the best fitted model, which yields the minimum RSS.

As can be seen from Figure 4, the spherical model is the best fitted

variogram model for all months having spatial structure of

.66 < R < .97 (results of R not shown in Figure). It can be also noted that

10 months (except November and December) have R values greater

than .75. The optimal variogram parameters for each monthly rainfall

dataset for both the catchments are provided in Table 3. As can be

seen from Table 3, the ratio of nugget coefficient to sill of the

variogram model is small for all months for both the catchments. This

evidently indicates that a strong spatial correlation exists between

the monthly mean rainfall and the spatial distribution of the rain‐gauge

stations over the study area. This supports the use of geostatistical

interpolation methods such as OK, OCK, and KED, which consider

TABLE 4 Results of fitted cross‐variogram models between monthly rainfall and elevation for using in the OCK interpolation method

Month Model name

Variogram parameters Cross‐validation statistics

Nugget, C0 (mm2) Sill, C0 + C1 (mm2) Range, a (km) SM SRMS

Middle Yarra River catchment

January Gaussian 1.0 1387.0 12.65 0.053 1.001

February Gaussian 40.0 801.0 16.19 0.067 1.000

March Gaussian 1.0 1545.0 14.36 0.055 1.006

April Gaussian 150.0 1653.0 18.35 0.057 1.004

May Gaussian 80.0 1651.0 19.40 0.042 1.019

June Gaussian 300.0 1874.5 19.75 0.055 1.001

July Gaussian 55.0 3081.2 13.50 0.008 1.002

August Gaussian 57.5 2872.9 12.10 0.007 1.006

September Gaussian 179.4 2746.0 14.25 0.042 1.002

October Gaussian 114.5 1860.9 15.85 0.053 1.004

November Gaussian 3.4 1804.4 12.00 0.034 1.000

December Gaussian 1.7 1774.7 15.66 0.096 1.002

Ovens River catchment

January Gaussian 485.2 2197.9 60.98 ‐0.020 0.989

February Gaussian 525.8 2540.3 50.56 0.001 1.119

March Gaussian 635.1 2349.5 52.45 ‐0.012 1.093

April Gaussian 373.7 2209.3 36.01 ‐0.019 0.904

May Gaussian 595.0 3170.7 32.99 ‐0.015 1.090

June Gaussian 342.6 3961.7 52.48 ‐0.022 1.117

July Gaussian 652.2 4175.6 71.62 ‐0.030 1.028

August Gaussian 919.2 4223.1 96.48 ‐0.024 1.095

September Gaussian 733.6 3717.8 66.49 ‐0.018 1.000

October Gaussian 256.0 2048.1 29.73 ‐0.010 1.010

November Gaussian 413.5 1925.5 64.09 ‐0.013 1.050

December Gaussian 123.5 1935.7 32.60 ‐0.021 1.007

Note. OCK = ordinary cokriging; SM = standardized mean error; SRMS = standardized root mean square error.
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the spatial correlation in the estimation process. The range of influence

and the sill of the variogram model vary from one month to another,

but the variogram exhibit a same spherical structure in all months. This

may be caused due to the control of the relief on the spatial distribu-

tion of rainfall (Delbari et al., 2013). The range of influence is lowest

for November (21.53 km) and highest for September (27.07 km). Fur-

thermore, the cross‐validation statistics in Table 3 for both the catch-

ments confirm that the fitted variogram models for all monthly

rainfall data satisfy the unbiased condition and thus can be used for

the OK analysis.

For elevation data, an isotropic experimental variogram is com-

puted ignoring the directional influence. The experimental variogram

is then fitted with the aforementioned three variogram model func-

tions. The best fitted variogram model is selected using the same pro-

cedure described above. The Gaussian variogram model gives the best

fitted model for both the catchments with the lowest RSS value, which

is shown in Figure 5. The optimal variogram parameters for both the

catchments are also shown in the figure. In order to avoid possible

inconsistencies in the subsequent modelling of direct and cross‐

variograms in OCK analysis (Goovaerts, 1997, 2000), the colocated

elevation data (see Figure 1) are used for estimating the variogram of

elevation, not the entire DEM of the catchment. Therefore, the

cokriging method adopted in this study is referred to as the colocated

OCK method (Wackernagel, 2003).

4.2 | Cross‐variogram models for OCK analysis

The OCK analysis requires the simultaneous estimation of the direct

and cross‐variogram models for the rainfall and elevation variables.

The three variogram models are fitted as a linear combination of the

same set of standard models given in Table 2 so that the RSS value is

minimum under the constraints of PDC (Goovaerts, 1999). Figure 6

shows the experimental and fitted cross‐variogram models for the

MiddleYarra River catchment. The number of data pairs in each lag size

is the same for all the three direct and cross‐variogram models.

Figure 6 also shows the PDC curve computed based on Equation 9

to examine the positive‐definiteness criteria of the cross‐variogram

models obtained for the catchment. Additionally, the cross‐validation

statistics are used for identifying the adequacy and final selection of

the adopted cross‐variogram model for the OCK analysis. The cross‐

validation results obtained using all the adopted cross‐variogram

models for both the catchments are presented inTable 4. The results in

Table 4 indicate that the cross‐variogram models of all monthly

datasets are suitable for the OCK analysis considering all

neighbourhoods for both the catchments.

As can be seen from Figure 6, the Gaussian variogram model fits

well for all monthly datasets of the Middle Yarra River catchment,

which also satisfy the PDC criteria defined by Equation 9. Further-

more, the correlation between monthly rainfall and elevation for all

FIGURE 7 Experimental residual variograms and fitted residual variogram models for the MiddleYarra River catchment used in the kriging with an
external drift interpolation method
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months in Table 1 indicates that elevation will contribute to enhance

the monthly rainfall estimation in the catchment. The figure also shows

that the values of the sample cross‐variogram increase for distances

from 0 to 25 km (more than half of the maximum interstation distance)

for almost all months. This indicates that a positive spatial cross‐

correlation exists between rainfall and elevation in the catchment. This

wide ranges may be due to the high correlation (.67 < R < .79) between

the monthly rainfall and elevation (Table 1). Such high correlation con-

firms that the monthly rainfall in the Middle Yarra River catchment is

mainly caused by the orographic effects.
Figure 6 also shows the PDC curves, which are computed to

examine the positive‐definite conditions of the cross‐variogram

models of the catchment. It is worth pointing out that the PDC curve

may give a qualitative indication for the degree of correlation. As can

be observed from Figure 6, the plotted PDC curve for most of the

months showed a close fit to the cross‐variogram model for smaller

distances with few exceptions (February, April, May, and June

months). For example, the PDC curve is closer to the cross‐variogram

model in the case of January, March, July, November, and December

months depending on the degree of correlation. This conclusion holds

true based on the higher correlation for these months as given in

Table 1.

4.3 | Residual variogram models for KED analysis

In order to implement the KED analysis, experimental residual

variograms are estimated based on the residuals obtained from linear

regression between rainfall and elevation data neglecting the influence

of anisotropy on the variogram parameters. The experimental residual

variogram is then fitted using the three standard models given in

Table 2. Figure 7 shows the experimental and fitted residual variogram

models for all monthly datasets of the MiddleYarra River catchment. It

can be seen from the figure that the spherical model gives the best

fitted model for all monthly datasets. The optimal variogram parame-

ters and the corresponding cross‐validation statistics of the selected

residual variogram models for both the catchments are presented in

Table 5. As can be also seen from Figure 7 and Table 5, the residual

variogram models exhibit relatively smaller sills than those obtained

from the actual rainfall datasets (see Figure 4) but they follow very sim-

ilar structure. This is not unexpected because the residual variograms

from the linear regression represents variation, which remains after

removing the trend (Lloyd, 2005). The cross‐validation statistics shown

in Table 5 also indicate that the residual variogram models of all

monthly datasets for both the catchments are satisfactory for the

KED analysis.

TABLE 5 Results of fitted residual variogram models for using in the KED interpolation method

Month Model name

Variogram parameters Cross‐validation statistics

Nugget, C0 (mm2) Sill, C0 + C1 (mm2) Range, a (km) SM SRMS

Middle Yarra River catchment

January Spherical 0.10 43.14 8.86 0.029 1.022

February Spherical 0.01 23.11 13.10 0.025 0.981

March Spherical 0.10 56.69 9.35 0.060 0.999

April Spherical 0.10 75.70 10.76 0.010 1.000

May Spherical 0.10 115.80 11.61 ‐0.034 1.031

June Spherical 39.90 298.70 27.03 0.005 0.981

July Spherical 5.70 257.70 11.59 ‐0.024 0.990

August Spherical 0.10 265.00 11.57 ‐0.013 0.984

September Spherical 0.10 283.50 11.77 0.027 0.982

October Spherical 0.10 139.40 10.60 ‐0.010 1.004

November Spherical 0.10 84.94 9.69 0.054 0.992

December Spherical 0.10 100.70 10.61 0.058 0.990

Ovens River catchment

January Spherical 38.90 239.40 42.90 ‐0.017 1.012

February Spherical 60.10 320.90 32.72 0.004 1.029

March Spherical 13.40 246.20 26.80 ‐0.011 0.996

April Gaussian 67.20 188.00 103.05 ‐0.043 1.008

May Spherical 217.00 597.00 108.40 ‐0.026 1.071

June Spherical 60.00 841.00 70.20 ‐0.044 1.028

July Spherical 5.00 1713.00 106.00 ‐0.092 1.005

August Gaussian 250.00 2084.00 90.54 ‐0.045 1.001

September Spherical 1.00 975.00 100.85 ‐0.027 1.029

October Spherical 42.10 383.60 87.00 ‐0.018 1.041

November Spherical 6.00 367.30 92.30 ‐0.012 0.989

December Spherical 31.00 192.50 88.75 ‐0.028 0.993

Note. KED = kriging with an external drift; SM = standardized mean error; SRMS = standardized root mean square error.
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4.4 | Spatial prediction of rainfall

In this study, different geostatistical and deterministic interpolation

methods including OK, OCK, KED, IDW, and RBF are adopted to

estimate the spatial distribution of monthly mean rainfall in the

Middle Yarra River catchment and the Ovens River catchment in

Australia. Several performance measures including MBE, RMSE, and

R2 are frequently used to indicate how accurately an interpolator

predicts the observed data. Smaller values of MBE and RMSE with

a higher R2 value of an interpolator indicate better prediction by

the corresponding method. In case of the scatter plot, the better pre-

diction is that if all scattered points lay close to the 450 line with the

highest R2 value between the predicted and observed values

(Adhikary et al., 2016a).

Table 6 presents the different performance measures of the

adopted interpolation methods (or interpolators) for estimating

monthly rainfall over both the study catchments. The different interpo-

lation methods are quantitatively compared based on these perfor-

mance measures in order to identify the best interpolator for each of

the catchment. As can be seen from the table, geostatistical (OK,

OCK, and KED) interpolation methods perform better than determinis-

tic (IDW and RBF) interpolation methods for monthly rainfall estima-

tion in the study area. The OCK method gives the best results for

rainfall estimation over the study area for all months when considering

all the performance measures. The KED method gives the second best

results, which is very close to the performance of the OCK method but

performs better than the OK method for both the catchments. IDW

and RBF give similar performance with higher error in rainfall estima-

tion over the study area. For the Middle Yarra River catchment,

Table 6 also shows that in some months, the RBF method performs

better than the OK method for rainfall estimation. However, no

remarkable differences are seen between them when considering all

the performance measures.

For OK, OCK, KED, IDW, and RBF methods, the average RMSE

values (Table 6) for the Middle Yarra River catchment are 11.93,

10.29, 10.85, 12.66, and 12.22 mm, respectively, whereas the average

RMSE values for the Ovens River catchment are 17.42, 16.15, 16.65,

17.54, and 23.41 mm, respectively. For OK, OCK, KED, IDW, and

TABLE 6 Performance of different interpolation (OK, OCK, KED, IDW, and RBF) methods for monthly rainfall estimation in the study area

Month

MBE (mm) RMSE (mm) R2

OK OCK KED IDW RBF OK OCK KED IDW RBF OK OCK KED IDW RBF

Middle Yarra River catchment

January 0.98 0.63 0.73 1.76 1.56 8.92 6.96 7.99 8.96 9.99 0.40 0.66 0.56 0.42 0.31

February 0.51 0.38 0.41 0.73 0.85 5.25 3.80 4.45 5.26 5.46 0.42 0.71 0.59 0.42 0.42

March 0.97 0.65 0.70 1.67 1.78 8.71 6.79 8.41 9.58 9.50 0.54 0.73 0.58 0.45 0.46

April 1.03 0.83 0.89 1.70 2.27 9.80 8.26 8.75 10.68 10.04 0.54 0.67 0.64 0.46 0.55

May 0.78 0.72 ‐0.40 1.43 2.41 11.55 10.78 11.98 11.58 11.80 0.49 0.56 0.51 0.49 0.55

June 1.19 1.26 1.17 2.25 3.29 15.15 13.77 13.44 17.26 15.15 0.61 0.67 0.69 0.49 0.63

July 0.89 0.11 ‐0.36 1.73 2.77 15.50 14.63 14.84 16.85 15.01 0.65 0.69 0.68 0.59 0.68

August 1.05 0.03 ‐0.20 2.08 3.04 16.75 15.94 14.67 18.19 16.12 0.59 0.63 0.69 0.52 0.64

September 1.38 0.87 0.92 2.69 3.52 16.79 15.73 15.38 18.46 17.17 0.57 0.62 0.63 0.48 0.57

October 1.07 0.79 ‐0.11 1.86 2.32 12.34 10.70 11.56 12.05 12.48 0.53 0.64 0.60 0.56 0.56

November 1.23 0.55 0.58 2.16 2.28 11.00 8.25 9.10 11.43 11.72 0.50 0.73 0.66 0.47 0.46

December 1.31 1.07 1.08 2.25 2.28 11.43 7.93 9.58 11.65 12.17 0.51 0.78 0.66 0.50 0.48

Average 1.03 0.66 0.45 1.86 2.36 11.93 10.29 10.85 12.66 12.22 0.53 0.67 0.62 0.49 0.54

Ovens River catchment

January ‐0.62 ‐0.56 ‐0.25 ‐1.78 ‐1.13 12.86 12.39 12.45 13.68 18.42 0.41 0.44 0.42 0.34 0.18

February 0.11 ‐0.01 0.08 ‐0.96 1.26 17.51 16.32 17.34 17.53 25.64 0.15 0.23 0.19 0.11 0.02

March ‐0.28 ‐0.22 ‐0.15 ‐1.26 ‐0.25 13.13 12.30 12.87 14.44 17.14 0.44 0.59 0.51 0.33 0.32

April ‐0.62 ‐0.38 ‐0.41 ‐0.53 ‐0.58 10.31 9.19 9.58 11.00 14.91 0.56 0.71 0.66 0.49 0.31

May ‐1.07 ‐0.59 ‐0.60 ‐1.94 ‐1.56 23.18 21.16 22.89 23.27 34.19 0.18 0.29 0.25 0.15 0.01

June ‐0.92 ‐0.87 ‐0.94 ‐1.19 ‐0.81 22.13 21.98 22.04 22.21 32.50 0.52 0.66 0.61 0.57 0.30

July ‐1.94 ‐1.36 ‐2.01 ‐3.53 ‐2.09 23.16 22.89 22.92 23.01 31.35 0.62 0.68 0.65 0.64 0.44

August ‐0.94 ‐0.92 ‐1.05 ‐1.35 ‐1.16 22.24 21.92 21.97 22.27 30.01 0.66 0.70 0.68 0.68 0.49

September ‐0.62 ‐0.55 ‐0.62 ‐0.46 ‐0.87 20.39 20.01 20.08 20.44 28.12 0.50 0.57 0.54 0.56 0.32

October ‐0.53 ‐0.31 ‐0.35 ‐0.63 ‐0.41 19.37 17.65 19.01 19.64 26.24 0.23 0.39 0.32 0.19 0.04

November 0.01 ‐0.33 ‐0.05 0.18 0.30 10.52 9.37 9.48 12.17 11.61 0.73 0.80 0.78 0.65 0.70

December ‐0.27 ‐0.21 ‐0.11 ‐0.41 ‐0.22 9.67 8.59 9.12 10.82 10.83 0.63 0.71 0.69 0.54 0.61

Average ‐0.64 ‐0.53 ‐0.54 ‐1.15 ‐0.63 17.42 16.15 16.65 17.54 23.41 0.47 0.57 0.53 0.44 0.31

Note. IDW = inverse distance weighting; KED = kriging with an external drift; MBE = mean bias error; OCK = ordinary cokriging; OK = ordinary kriging;
R2 = coefficient of determination; RBF = radial basis function; RMSE = root mean square error.
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RBF methods, the average R2 values (Table 6) for the Middle Yarra

River catchment are .53, .67, .62, .49 and .54, respectively whereas

the average R2 values for the Ovens River catchment are .47, .57,

.53, .44, and .31, respectively. The higher R2 value in the OCK and

KED methods indicate that using elevation as a secondary variable

brings more information in the rainfall estimation process under the

kriging‐based geostatistical analysis framework.

As explained by Delbari et al. (2013), using elevation as a second-

ary variable may not always improve the prediction accuracy through

the OCK analysis if the spatial continuity of elevation is weaker than

that of rainfall despite a high correlation exists between rainfall and

elevation. In this study, the relative nugget effect (i.e., ratio of nugget

coefficient to sill) of the direct variogram models for rainfall (Table 3)

and elevation (Figure 5), and the cross‐variogram models for rainfall‐

elevation (Table 4) for both the catchments are found very small in

all months. This results in the improvement in the rainfall estimation

by the OCK method, which is thus selected as the best interpolator

for the study area in this study. Therefore, the OCK method (the best

interpolator) is used to generate a continuous rainfall dataset of the

monthly average rainfall for each of the catchments, which are shown

in Figure 8 and Figure 9. The created datasets are expected to be very

useful in various hydrological and water resources planning studies

within the Yarra River catchment and the Ovens River catchment

in Australia.

FIGURE 8 Spatial distribution of monthly rainfall in the Middle Yarra River catchment using the ordinary cokriging (the best interpolator in this
study) interpolation method
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5 | CONCLUSIONS

In this study, three kriging‐based geostatistical (OK, OCK, and KED)

and two deterministic (IDW and RBF with thin plate spline) interpola-

tion methods are used for estimating spatial distribution of monthly

mean rainfall in the MiddleYarra River catchment and the Ovens River

catchment in Victoria, Australia. The objective is to compare the per-

formances of these interpolation methods to select the best interpola-

tion method for generating a high quality continuous rainfall dataset in

the form of a rainfall map for the study area. The elevation data

obtained from a DEM of the study area is used as a supplementary var-

iable in addition to rainfall records for the cokriging analysis using the

ordinary cokriging and kriging with an external drift methods. Results

show that the geostatistical methods outperform the deterministic

methods for spatial interpolation of rainfall over the study area. Specif-

ically, the performance of the cokriging methods (OCK and KED) is

better than that of other geostatistical methods. The performance of

the RBF with thin plate spline is found practically as good as the ordi-

nary kriging method for rainfall estimation, whereas the IDW method

is shown to have the worst results for the study area. OCK performs

the best among all the interpolators and gives the improved estimates

of rainfall in all months for both the catchments. It provides the lowest

estimation errors and the highest correlations between the estimated

and observed monthly average rainfall. Thus, ordinary cokriging is

identified as the best interpolator in this study for estimating spatial

distribution of rainfall in both the catchments. The obtained results

FIGURE 9 Spatial distribution of monthly rainfall in the Ovens River catchment using the ordinary cokriging (the best interpolator in this study)
interpolation method
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indicate that making use of elevation as an auxiliary variable in addition

to rainfall data can enhance the estimation of rainfall in a catchment

with the mountainous and/or complex terrain. This study thus recom-

mends the use of cokriging for the generation of continuous rainfall

map especially in catchments with high spatial variation of rainfall as

well as elevation.
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Chapter 5 

Optimal Design of a Rain Gauge Network 

Using Kriging-Based Geostatistical Approach 

 

 

5.1 Introduction 

Rainfall is one of the most sought-after variables of hydrological processes. Rain gauge 

station is the important component of a comprehensive hydrometric network, which is 

used to collect rainfall data and related hydrological information (Wang et al., 2015). 

Rain gauge stations can be considered the ground-based sensing nodes in a 

hydrological sensor web (Chen et al., 2014), which is a reconfigurable and 

collaborative observation system (Zheng et al., 2012). Thus, the proper deployment of 

rain gauge stations through an optimal network configuration can improve the 

utilization of limited resources and promote cost savings in various water resources 

management tasks including flood control, drought management, reservoir operation, 

streamflow forecasting and disaster warning, and study of climate change impact on 

water resources. Industrial development and growing domestic and agricultural water 

demands are imposing increased pressure on water resources and on the environment. 

With the increasing pressure on water resources, more emphasis should be given on 

sustainable management of water resources. This can be achieved through an optimal 

hydrometric network (Mishra and Coulibaly, 2009), which can provide the adequate 

information of hydrological data with appropriate temporal and spatial resolution. 
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In recent decades, it has been largely documented that climate change could have 

adverse regional effects on hydrologic extremes such as floods and droughts in terms of 

their frequency and severity. Impacts of climate change on various water resources 

sectors have been extensively investigated as well (Intergovernmental Panel on Climate 

Change, 2001). Climate change during the late 20th century was significant (Stewart et 

al., 2005), and the projected changes in climate over the 21st century predict a climate 

that would result in greater shifting in seasonality of streamflows, with more rainfall, 

more frequent flooding and earlier loss of mountain snowpack (Dettinger et al., 2004; 

Knowles and Cayan, 2004). Climate variability affects the spatial and temporal 

distribution of rainfall over the catchment, and the influence of the spatial variability of 

rainfall on storm runoff has been addressed well by several researchers (e.g., Wilson et 

al., 1979; Troutman, 1983; Krajewski et al., 1991; 2003). Climatic variability also 

changes the streamflow regime of river systems (e.g., Poff et al., 1997). For example, 

large-scale inter-annual and inter-decadal climate variations related to the ENSO and to 

the SAM (Bureau of Meteorology, 2016) account for high variability in climate and 

streamflow systems in Australia (Dutta et al., 2006; Chowdhury and Beecham, 2010). 

All the aforementioned findings indicate the importance of having high quality 

hydrological information to sustain the researchers’ efforts in deriving appropriate 

models for flood warning and drought mitigation. This highlights the increasing 

requirement of optimal network design in the context of climate and land use changes. 

However, the spatial and temporal effect of hydrometeorological observations used for 

different water resources studies changes under changing climate conditions (Mishra 

and Coulibaly, 2009). WMO (1994) recommends that hydrometric networks should be 

reviewed from time to time to take into account the ‘‘reduction in hydrological 

uncertainty brought about by the data since the last network analysis’’ and any changes 

related to funding, data needs, and logistics, etc. Therefore, due to nonstationary 

climate conditions, the hydrometric networks should be evaluated and reviewed 

periodically to account for climate change and land use changes for the efficient 

management of water resources systems.  

 

Rain gauge network is usually installed to get direct measurements of rainfall data. 

However, many of the water resources systems are large in spatial extent and often 

consist of a rain gauge network that is very sparse due to large cost involvement, 
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logistics, and geological factors. This results in considerable uncertainty in the collected 

rainfall data from these sparse rain gauge networks (Zealand et al., 1999; Goovaerts, 

2000). Therefore, an optimal rain gauge network should be established, which is 

capable of providing the high quality rainfall estimates needed for the effective 

hydrological analysis and design of water resources projects and is thus regarded as an 

indispensable component of any hydrological study. In this chapter, a simple and 

effective rain gauge network design methodology using the kriging-based geostatistical 

approach under the variance reduction framework is presented in order to achieve an 

optimal rain gauge network for the case study catchment.  

 

In rain gauge network design studies, it is a common practice to identify and select the 

best network configuration having optimal number and locations of rain gauge stations. 

Adequate density as well as location of stations in the network equally plays a vital role 

in determining whether the network is optimal and sufficient information is gained. 

These issues of rain gauge network design can be suitably handled by the kriging-based 

geostatistical approach. Therefore, this approach was adopted for optimal design of rain 

gauge network demonstrated in this study, which finds wide applications in the rain 

gauge network design across the world (e.g., Shamsi et al., 1988; Kassim and 

Kottegoda, 1991; Loof et al., 1994; Papamichail and Metaxa, 1996; Pardo-Igúzquiza, 

1998; Tsintikidis et al., 2002; Chen et al., 2008; Cheng et al., 2008; Yeh et al., 2011; 

Shaghaghian and Abedini, 2013; Aziz et al., 2016; Chang et al., 2017; Feki et al., 

2017). An important feature of this approach is the provision of kriging standard error 

(KSE) (obtained through square root of the kriging variance) that forms the basis for 

rain gauge network design and evaluation. Based on this approach, the optimal network 

configuration is achieved through minimizing the KSE values of the network, which 

involves a methodical search for the optimal number and locations (or optimal 

combination) of rain gauge stations in the network producing the minimum kriging 

standard error of areal average and/or point rainfall estimates.  

 

An optimal rain gauge network is essentially a balanced or ideal network, which should 

neither be suffered from lack of rain gauge stations nor be over-saturated with 

redundant rain gauge stations (Mishra and Coulibaly, 2009; Shaghaghian and Abedini, 

2013). In other words, the optimal rain gauge network should consist of the number and 
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locations of rain gauge stations in such a way that it can yield optimum rainfall 

information with minimum uncertainty and cost (Kassim and Kottegoda, 1991; 

Basalirwa et al., 1993; Pardo-Igúzquiza, 1998). One can address such problem either by 

expanding the network through installation of additional rain gauge stations (network 

augmentation) to enhance the rainfall estimation with reduced uncertainty or by 

rationalizing the network through eliminating redundant rain gauge stations (network 

rationalization) from the network to minimize the operation and maintenance cost of 

the station and/or network (Mishra and Coulibaly, 2009).  

 

In most of the past studies, network expansion with additional rain gauge stations to 

minimize the network variance has been the underlying criterion to achieve the optimal 

network. However, an existing rain gauge network may consist of redundant stations, 

which have little or no contribution to the network performance for providing quality 

rainfall estimates. As a solution this issue, both additional as well as redundant stations 

were considered to achieve the optimal rain gauge network design. In this chapter, the 

optimal rain gauge network for the case study catchment was demonstrated and 

established through optimal positing of additional rain gauge stations (network 

augmentation process) in addition to eliminating and/or optimally relocating of existing 

redundant rain gauge stations (network rationalization process). The underlying 

principle is that optimal positioning of additional and redundant rain gauge stations in 

the high variance zones will reduce the KSE of the network and hence the improved 

performance of the network for enhanced estimation of rainfall can be achieved. 

Applying this principle repetitively, a certain stage will come when the optimal network 

configuration with optimal combination of all rain gauge stations can be achieved to 

form the optimal rain gauge network, which exhibits the best network performance with 

minimum KSE. A flow chart of the methodological framework adopted for the optimal 

design of a rain gauge network in this study is shown in Figure 5-1. 
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Figure 5-1. The methodological framework adopted for optimal rain gauge network 

design in this study 
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In Australia, high climate variability usually results in the high variation of rainfall 

(Chiew and McMahon, 2003; Ruiz et al., 2007). In particular, the spatial variability of 

rainfall in southeastern Australia (where the case study catchment is located) is strongly 

influenced by the El Niño and La Niña processes of the ENSO effect (Murphy and 

Ribbe, 2004; Dutta et al., 2006; Pittock et al., 2006; Chowdhury and Beecham, 2010; 

Mekanik et al., 2013). As a solution to this issue, the spatial variability of rainfall 

caused by the ENSO effect was taken into consideration in the rain gauge network 

design process. Use of rainfall records from both the El Niño and La Niña periods in 

the rain gauge network design can offer a better representation of the high rainfall 

variability experienced in the Middle Yarra River catchment of Victoria, Australia (the 

case study catchment). Therefore, the rain gauge network was designed independently 

based on the El Niño and La Niña rainfall records and demonstrated in this chapter. The 

network that gave the enhanced estimates of areal average and point rainfalls for both 

the El Niño and La Niña periods was chosen as the optimal rain gauge network for the 

case study catchment. The procedure of using rainfall records from the El Niño and La 

Niña periods enables the obtained optimal rain gauge network to take the spatial 

variability of local rainfall patterns over the case study catchment into account, which 

can yield the enhanced estimation of rainfall in the study catchment. 
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Optimal design of rain gauge network in the Middle Yarra
River catchment, Australia

Sajal Kumar Adhikary,1* Abdullah Gokhan Yilmaz1 and Nitin Muttil1,2
1 College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
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Abstract:
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well-
designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates
at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the
main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of
additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain
gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well
as optimally relocating of existing redundant stations using the kriging-based geostatistical approach was undertaken in this
study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall
records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall
data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error
can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain
gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept
proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together
is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.

KEY WORDS rain gauge network; geostatistical analysis; ordinary kriging; kriging error; variogram modelling; Middle Yarra
River catchment

Received 7 July 2014; Accepted 28 October 2014

INTRODUCTION

Rainfall data provide essential input for effective
planning, designing, operating and managing of water
resources projects. Rainfall data are employed in various
water resources management tasks such as water budget
analysis and assessment, flood frequency analysis and
forecasting, streamflow estimation, and design of hydraulic
structures. A reliable rain gauge network can provide
immediate and precise rainfall data that are crucial for
effective and economic design of hydraulic structures for
flood control. This helps to minimize the hydrological and
economic risk involved in differentwater resources projects.
Rain gauge networks are usually installed to facilitate the
direct measurement of rainfall data that characterize the
spatial and temporal variations of local rainfall patterns in a
catchment. A rain gauge network should be denser than

networks used to measure other meteorological elements
(e.g. temperature), because the highly variable rainfall
patterns and its spatial distribution cannot be represented
effectively without having a network of enough spatial
density (Pardo-Igúzquiza, 1998). A well-designed rain
gauge network thus should contain a sufficient number of
rain gauges, which reflect the spatial and temporal
variability of rainfall in a catchment (Yeh et al., 2011).
Hydrologists are often required to estimate areal average

rainfall over the catchment and/or point rainfall at
unsampled locations from observed sample measurements
at neighbouring locations. This task can be accomplished
accurately with an optimally designed rain gauge network
and is, therefore, regarded as an indispensable component
of any hydrological study. However, the rain gauge
network used in most of the hydrological studies are often
sparse and thus incapable of providing adequate rainfall
estimates necessary for effective hydrological analysis and
design of water resources projects. Use of inaccurate
rainfall data may result in significant design errors in the
water resources projects, which may eventually result in
the immeasurable loss of lives and property damages.
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Thus, identification and selection of the best network
configuration having optimal number and locations of rain
gauge stations is the sole objective of the network design.
Hence, the optimal rain gauge network should contain the
number and locations of rain gauge stations in such a way
that it can yield optimum rainfall information with
minimum uncertainty and cost (Kassim and Kottegoda,
1991; Basalirwa et al., 1993; Pardo-Igúzquiza, 1998). One
can approach the problem either by eliminating redundant
stations from the network to minimize the cost or by
expanding the network with installation of additional
stations to reduce the estimation uncertainty (Mishra and
Coulibaly, 2009).
The design of hydrometric networks is a well-identified

problem in hydrometeorology (Mishra and Coulibaly, 2009),
which has received considerable attention from the
researchers for many years. Because hydrometric network
design is associated with myriad concerns, many approaches
have been developed for optimal network design. Among
others, one type of approach is a kriging-based geostatistical
approach that finds wide applications in the rain gauge
network design. An important feature of this approach is the
provision of kriging error that forms the basis for the rain
gauge network design. Optimal network configuration can be
achieved by minimizing the kriging error that involves a
process of methodical search to find an optimal combination
of the appropriate number and locations of stations producing
the minimum kriging error. More detailed information about
kriging-based geostatistics can be found in the literature
(Isaaks and Srivastava, 1989; Webster and Oliver, 2007). In
many studies, the kriging technique alone was employed for
the rain gauge network design (Shamsi et al., 1988; Kassim
and Kottegoda, 1991; Loof et al., 1994; Papamichail and
Metaxa, 1996; Tsintikidis et al., 2002; Cheng et al., 2008).
However, some studies applied the kriging technique in
combination with other techniques such as entropy
(Yeh et al., 2011; Chen et al., 2008) and multivariate
factor analysis (Shaghaghian and Abedini, 2013) for the
network design. In those studies, the sole function of the
kriging was to generate rainfall data by interpolation in
locations where prospective stations might be installed,
whereas entropywas used tomeasure the information content
of each station, and the factor analysis along with clustering
technique was used to prioritize stations in terms of
information content, respectively. Although in most of the
past studies, trial-and-error procedure was used to minimize
the kriging error, a few studies combined optimization
method based on simulation tools (e.g. simulated annealing)
with the kriging technique (Pardo-Igúzquiza, 1998; Barca
et al., 2008; Chebbi et al., 2011) to obtain the optimal rain
gauge network.
Four different objectives are usually considered with

regard to optimal rain gauge network design and
assessment by the kriging-based geostatistical approach:

• Expanding the existing rain gauge network with
additional stations to achieve appropriate network density
for the reduction of estimation uncertainty (Loof et al.,
1994; Papamichail and Metaxa, 1996; Tsintikidis et al.,
2002; Barca et al., 2008; Chebbi et al., 2011).

• Identifying and establishing theoptimal locationof additional
rain gauge stations in the network to improve the estimation
accuracy (Pardo-Igúzquiza, 1998; Chen et al., 2008).

• Prioritizing the rain gauges with respect to their contribu-
tion in error reduction in the network (Kassim and
Kottegoda, 1991; Cheng et al., 2008; Yeh et al., 2011).

• Choosing an optimal subset of stations from an existing
dense rain gauge network to achieve optimum rainfall
information (Shaghaghian and Abedini, 2013).

Expansion of the existing network by adding supplemen-
tary stations has been themain underlying criterion to achieve
the optimal network in most of the past studies. However, the
placement and adjustment of stations significantly influence
the quality of the obtained hydrological variable in a network
(Yeh et al., 2011). Furthermore, an existing network may
consist of redundant stations (Mishra and Coulibaly, 2009)
that may make little or no contribution to the network
performance for providing quality data. Therefore, the
optimal positioning of both additional and redundant stations
linked to the existing rain gauge network constitutes the main
scope of this paper. Hence, the objective of this study is to
design an optimal rain gauge network through optimal
positioning of additional stations as well as optimally
relocating of existing redundant stations using the kriging-
based geostatistical approach.
A network design methodology was developed in this

study to determine optimal locations of the additional stations
and existing redundant stations in the current rain gauge
network located in the Middle Yarra River catchment in
Victoria, Australia. The procedure involves a methodical
search for the optimal number and locations of rain gauge
stations in the network thatminimize the kriging error of areal
and/or point rainfall estimates over the catchment. The
methodology presented in this paper is in line with that of
Loof et al. (1994) who used the kriging-based geostatistical
approach to determine the optimal location of additional rain
gauge stations in the existing network by using only a
selected variogram (e.g. exponential) model. The major
contribution here is that unlike the work of Loof et al. (1994),
the developedmethodology considered the likely presence of
the redundant stations within the existing network along with
the additional stations to obtain the optimal rain gauge
network. Furthermore, the use of a selected variogrammodel
in kriging may not give appropriate results for all types of
catchments depending on the rainfall and catchment
characteristics. Therefore, instead of using a selected
variogram model in the kriging, the best fitted variogram
model from a set of commonly used variogram models in
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hydrology was used to compute the kriging error in the
network design. The best variogram model was chosen for
the kriging applications on the basis of different goodness-of-
fit criteria and cross-validation statistics.
The rest of the paper has been organized as follows.

First, details of the study area and datasets used are
presented, which is followed by the methodology. The
results are summarized next and finally, the conclusions
are drawn.

STUDY AREA AND DATA DESCRIPTION

The study area

Themiddle segment of theYarra River catchment located
in Victoria, Australia, is selected as the case study
catchment. Approximate location of the catchment is shown
in Figure 1. The water resources management is an
important and complex issue in the Yarra River catchment
because of its wide range of water uses as well as its
downstream user requirements and environmental flow
provisions (Barua et al., 2012). The catchment is home to
more than one-third ofVictoria’s population (approximately
1.5 million) and native plant and animal species, where the
Yarra River acts as the only lifeline. Although the Yarra
River catchment is not large with respect to other Australian
catchments, it produces the fourth highest water yield per
hectare of the catchment in Victoria, making it a very
productive catchment (Melbourne Water, 2013). The Yarra

River has thus played a key role in the way Melbourne has
developed and grown.
The catchment lies north and east of Melbourne

covering an area of 4044km2. The Yarra River travels
about 245 km from its source, on the southern slopes of
the Great Dividing Range in the forested Yarra Ranges
National Park, and runs through the catchment into the
end of its estuary, at Port Phillip Bay. There are seven
storage reservoirs located within the catchment (Figure 1)
that support water supply to Melbourne. Because of the
diversity of water use activities and significant changes in
the rainfall patterns, pressure upon the water resources
management has become more intense in the catchment
(Barua et al., 2012).
The Yarra River catchment is divided into three

distinctive subcatchments, namely, Upper Yarra, Middle
Yarra and Lower Yarra segments (Barua et al., 2012)
based on the different land use patterns (Figure 1). Forest,
agricultural and urban areas are the major land use
patterns of the catchment (Sokolov and Black, 1996). The
Upper Yarra segment of the catchment, beginning from
the Yarra Ranges National Park to the Warburton Gorge
at Millgrove, consists of mainly forested and mountainous
areas with minimum human settlement. This segment is
used as a closed water supply catchment for Melbourne,
and about 70% of Melbourne’s drinking water supply
comes from this pristine upper segment. Thus, it has been
reserved for more than 100 years for water supply
purposes (Barua et al., 2012; Melbourne Water, 2013).
The Middle Yarra segment, from the Warburton Gorge to

Figure 1. Yarra River catchment showing the study area with rain gauge stations
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Warrandyte Gorge, is notable as the only part of the
catchment with an extensive flood plain, which is mainly
used for agricultural activities. The Lower Yarra segment
of the catchment, located downstream of Warrandyte, is
mainly characterized by the urbanized floodplain areas of
Melbourne city. Most of the land along rivers and creeks
in the Middle and Lower segments of the catchment has
been cleared for the agricultural or urban development
(Melbourne Water, 2013).
The management of water resources in the Yarra River

catchment is of great importance considering the greater
variation of the rainfall patterns through its different
segments. The mean annual rainfall varies across the
catchment from about 1100mm in the Upper Yarra segment
to 600mm in the Lower Yarra segment (Daly et al., 2013).
TheMiddleYarra segment (case study area) covers an area of
1511km2 (Figure 1). The area consists of three reservoirs,
namely, Maroondah, Silvan and Sugarloaf reservoirs, that
supports water supply for a range of activities including urban
and agricultural activities. The main intention of improving
reservoir operation in Australia is to store as much water as
possible for satisfying the water demand during shortage of
streamflows while keeping provision for flood control during
excess streamflows (Melbourne Water, 2013). Decreasing
rainfall patterns will reduce the streamflows, which in turn
will lead to the reduction in reservoir inflows and hence
impact the overall water availability. Moreover, the reduced
streamflows may cause increased risk of bushfires in the
catchment. However, increasing rainfall patterns and the
occurrence of extreme rainfall events will result in excess
amount of streamflows that may cause flash floods in the
urbanized lower segment of the catchment and make it
vulnerable and risk prone. The urbanized Lower segment of
the catchment is also dependent on the water supply from the
storage reservoirs mainly located in the middle and upper
reaches of the catchment. Accurate rainfall information in the
Middle and Upper segments of the Yarra River catchment is
essential to determine the future streamflows accurately for
optimal reservoir operation and effective flood control in the
lower segment. Therefore, the design of an optimal rain
gauge network has great importance for the Middle Yarra
River catchment.

Dataset used

There are 19 (number 1 to 19 in Figure 1) rain gauge
stations in the study area (Middle Yarra River catchment),
which are currently operated andmaintained by theBureau of
Meteorology (BoM), Australia. Among those, two stations,
namely, Monbulk (Spring Road) (station 18) and Ferny
Creek (station 19), were installed by BoM in 2011 (Figure 1
and Table I). The rain gauge network in this study thus
consisted of 17 stations before 2011 (will be called as the
network before 2011 in this paper) and consists of 19 stations

after 2011 (will be called as the network after 2011 in this
paper). The objective of this paper is to determine the optimal
location of the two new additional stations (stations 18 and 19)
in the network after 2011 as well as the existing redundant
stations in the network before 2011.
Daily rainfall data for all 19 stations in the rain gauge

network of the Middle Yarra River catchment were collected
from the SILO climate database for the period of 1980–2012.
The SILO database (http://www.longpaddock.qld.gov.au/silo/)
has been selected for this study because SILOdata are free from
missing records. This database allows filling up the missing
recordsbasedon its own interpolation algorithmusing available
records in the surrounding stations (Jeffrey et al., 2001).
Several studies reported that the rainfall variability in the

eastern parts ofAustralia (including the study area) is strongly
influenced by the El Niño Southern Oscillation (ENSO)
phenomenon (Allan, 1988; Nicholls and Kariko, 1993;
Murphy and Ribbe, 2004; Dutta et al., 2006; Chowdhury and
Beecham, 2010; Mekanik et al., 2013). The ENSO is
quantitatively defined by the Southern Oscillation Index
(SOI) that divides ENSO into El Niño and La Niña
phenomena. The El Niño phenomenon is a persistent
negative value of the SOI, which usually corresponds to a
decrease in rainfall. The La Niña phenomenon is the reverse
process of El Niño and is responsible for causing more
rainfall than normal (Chowdhury and Beecham, 2010). The
spatial variability of rainfall caused by ENSO effect was
considered for the design of the rain gauge network in this
study by considering daily rainfall records of one El Niño and
one La Niña year.
The SOI data were obtained from BoM for the period of

1980–2012. It was found that maximum negative SOI
occurred in the year 1997 for the El Niño period, whereas
maximum positive SOI occurred in the year 2010 for the La
Niña period. Therefore, daily rainfall data of 1997 (El Niño)
and 2010 (LaNiña) were selected for the rain gauge network
design in this study. Use of rainfall records from the selected
years for El Niño and La Niña periods in the network design
will be a better representation of the high rainfall variability
experienced in the Middle Yarra River catchment. The
statistics of daily rainfall data at different rain gauge stations
for the selected El Niño and La Niña years are given in
Table I.

METHODOLOGY

A rain gauge network design methodology was developed
in this study using the kriging-based geostatistical
approach. The framework of the developed methodology
is composed of the following three steps:

1. Data preparation and transformation – Performing explor-
atory data analysis and normality test for the observed data.
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2. Variogram modelling and kriging interpolation – This
includes fitting and selection of appropriate variogram
models, performing kriging interpolations and estimation
of the kriging error.

3. Rain gauge network design – This step involves
exploring the existing rain gauge network for finding
appropriate locations for additional stations and remov-
ing and/or relocating redundant stations to reduce kriging
error in the network to achieve the best network output.

Each of the three steps is discussed in detail in the
following subsections.

Data preparation and transformation

The normal distribution of data is a basic requirement of
the kriging-based geostatistical approach (Barca et al., 2008).
Kriging assumes that the data come from a stationary
stochastic process. Kriging leads to an optimum estimator
and yields best results when the data are normally
distributed. Thus, the inconsistency present in observed
datasets should be identified and fixed in the beginning
before going for the model development and analysis. To
accomplish this, the exploratory data analysis (i.e. detection
and removal of trends and outliers, performing the normality
test for the observed data and applying the data transfor-
mation for non-normal datasets) was undertaken. Transfor-
mation of the inconsistent data is very useful to make it

symmetrical, linear and constant in variance. The log
transformation is often used for hydrological data that have
skewed or non-normal distributions. After employing the
log transformation on the observed data, the skewness of the
transformed data becomes close to zero, and the data follow
the normal distribution (Johnston et al., 2001). In this study,
the log transformation was applied for data transformation
when datasets could not satisfy the normal distribution
hypothesis.
Once the data transformation is completed, the

transformed data must be tested to check whether the
evidence is sufficient to accept the normal distribution
hypothesis. A statistical test known as Kolmogorov–
Smirnov (K–S) test was applied for this purpose, because
it is a simple and straightforward test to check the
normality. Details of the K–S test can be found in
McCuen (2003). Further investigation can be performed
for the normal distribution through the visual examination
of quantile–quantile (Q–Q) plot and skewness coefficients
obtained from the observed data (Johnston et al., 2001).
Data were accepted as normally distributed if most of the
transformed data in the Q–Q plot were laid on or very
close to a straight line, and skewness coefficients of the
transformed data were reduced or close to zero. After
transforming and testing of all observed datasets for the
normal distribution, resulting datasets were used for the
variogram modelling and kriging interpolation.

Table I. Summary of rain gauge stations and rainfall data used in the case study

Station
no.a

BoM
ID BoM rain gauge station name

Elevation
(m)

Daily rainfall (mm)

El Niño year La Niña year

Mean SDb Mean SDb

1 86142 Toolangi (Mount St Leonard DPI) 595 2.418 5.395 4.343 12.601
2 86366 Fernshaw 210 2.057 4.887 3.759 8.499
3 86009 Black Spur 567 2.504 6.228 4.461 11.069
4 86070 Maroondah Weir 174 1.787 4.125 3.508 7.385
5 86385 Healesville (Mount Yule) 100 1.477 3.488 3.759 8.499
6 86363 Tarrawarra 124 1.414 3.827 3.119 7.343
7 86364 Tarrawarra Monastery 100 1.392 3.540 2.656 6.516
8 86219 Coranderrk Badger Weir 360 2.255 5.167 3.708 8.048
9 86383 Coldstream 83 1.425 3.444 2.813 6.685
10 86229 Healesville (Valley View Farm) 156 1.725 3.807 3.134 6.716
11 86367 Seville 181 1.685 3.818 3.029 6.392
12 86358 Gladysdale (Little Feet Farm) 295 2.140 4.681 4.056 8.949
13 86094 Powelltown DNRE 189 2.481 5.373 4.048 9.685
14 86059 Kangaroo Ground 183 1.449 3.466 2.684 6.704
15 86066 Lilydale 130 1.492 3.662 2.922 6.915
16 86076 Montrose 170 2.529 5.726 3.202 6.917
17 86106 Silvan 259 2.193 5.063 3.299 7.261
18 86072 Monbulk (Spring Road) — 2.270 4.929 4.140 8.934
19 86266 Ferny Creek 513 2.285 4.895 4.640 9.581

BoM, Bureau of Meteorology.
a Station numbers are same as in Figure 1.
b SD – standard deviation of daily rainfall records.
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Variogram modelling and kriging interpolation

The kriging technique requires an appropriate
variogram model that defines the spatial structure of the
observed data in the computation process. Initially, an
experimental variogram from the observed data is
derived. A functional variogram model is then fitted to
the experimental variogram. The obtained variogram
model contains necessary information to be used in
kriging interpolation of observed data. Fitting and
selection of appropriate variogram model can be
accomplished through the variogram modelling tech-
nique. Once a proper variogram model is chosen for the
observed dataset, kriging is employed for the generation
of interpolated surfaces and the estimation of the
corresponding kriging error.

Variogram modelling. The degree of spatial depen-
dence is generally expressed by a variogram model in
kriging. A variogram is a mathematical function of the
distance and direction separating two locations used to
quantify the spatial autocorrelation in regionalized
variables (RVs). An RV is a variable that can take values
according to its spatial location. Variogram modelling is a
process of developing relationship among sampling
locations to quantify the variability associated with RV.
Variogram function is a key tool for the kriging method
and frequently employed to exercises that involve
estimating desired values at new unsampled locations
based on observed values at neighbouring locations.
The kriging method requires a theoretical variogram

function that is to be fitted with an experimental
variogram of the observed data. The experimental
variogram, γ(h), is calculated from the observed data as
a function of the distance of separation, h, and is given by

γ hð Þ ¼ 1
2N hð Þ

∑
N hð Þ

i¼1
Z xi þ hð Þ % Z xið Þ½ '2 (1)

where N(h) is the number of sample data points separated
by a distance h; xi and (xi +h) represent sampling
locations separated by a distance h; Z(xi) and Z(xi+h)
indicate values of the observed variable Z, measured at
the corresponding locations xi and (xi+h), respectively.
The theoretical variogram function, γ* (h), allows the
analytical estimation of variogram values for any distance
and provides the unique solution for weights required for
kriging interpolation. Several variogram models are
possible depending on the shape of the variogram
function that include exponential, gaussian, spherical,
circular, linear, K-bessel, J-bessel, rational quadratic,
stable and hole effect models (Johnston et al., 2001;
Webster and Oliver, 2007). However, exponential,
gaussian and spherical variogram models are mostly used
in hydrology and are expressed by Equations (2)-(4).

γ* hð Þ ¼ C0 þ C1 1% exp %3h
a

! "# $

Exponential
(2)

γ* hð Þ ¼ C0 þ C1 1% exp %3h2

a2

! "# $

Gaussian
(3)

γ* hð Þ ¼ C0 þ C1 1:5
h
a

! "
% 0:5

h3

a3

! "# $

Spherical
(4)

where C0, a and (C0+C1) represent nugget, range and sill,
respectively, commonly called as variogram parameters.
These parameters describe a variogram model and hence
affect the kriging computation. Nugget represents measure-
ment error and/or microscale variation at spatial scales that
are toofine to detect and is seen as a discontinuity at the origin
of the variogram model. Range is a distance beyond which
there is little or no autocorrelation among variables. Sill is the
constant semivariance of the RV beyond the range.
For variogram modelling, three isotropic theoretical

variogram functions (i.e. exponential, gaussian and spherical
models) were fitted to the experimental variogram ignoring
directional influences andassuming isotropic condition. Isotropy
is a property in which direction is unimportant and the spatial
dependence or autocorrelation changes only with the distance
between two locations. The corresponding variogram parame-
ters of the theoretical models were inferred on the basis of
the experimental variogram. Manual (visual) and automatic
fitting methods (ESRI, 2009) were applied to obtain the best
fitted parameters for variogram models. The variogram
parameters (nugget, sill and range coefficients) were
iteratively changed to obtain the best fitted model. The best
model was selected on the basis of the coefficient of
determination (R), residual sum of square (RSS), root mean
square error (RMSE) and mean absolute error (MAE)
values. The variogram model that gave the highest R with
the lowest RSS, RMSE and MAE values was chosen for
kriging interpolation.

Kriging interpolation. Kriging is an optimal surface
interpolation technique based on spatially dependent
variance. Kriging refers to a family of generalized least-
square regression methods in geostatistics. It is the best
linear unbiased estimator of unknown variable values at
unsampled locations in space, where no measurements are
available based on the known sampling values from
surrounding area (Isaaks and Srivastava, 1989; Webster
and Oliver, 2007). Ordinary kriging (OK) technique from
the family of the classical geostatistical methods was used in
this study for interpolation of the rainfall data and estimation
of the kriging error. The kriging estimator is expressed as

Z( x0ð Þ ¼ ∑
n

i¼1
wiZ xið Þ (5)
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where Z*(x0) refers to the estimated value of Z at desired
location x0; wi represents weights associated with the
observation at the location xiwith respect to x0; and n indicates
the number of observations within the domain of search
neighbourhood of x0 for performing the estimation of Z*(x0).
The kriging variance, σ2z x0ð Þ , in the OK can be

computed by Equation (6) as

σ2z x0ð Þ ¼ μz þ ∑
n

i¼1
wiγ h0ið Þ for∑

n

i¼1
wi ¼ 1 (6)

where γ(h) is the variogram value for the distance h; h0i is
the distance between observed data points xi and xj; μz is
the Lagrangian multiplier in the Z scale; h0j is the distance
between the unsampled location x0 (where estimation is
desired) and sample locations xi; and n is the number of
sample locations.
When a log transformation is applied to data, OK is

converted to log-normal kriging (LNK). The log-
transformed predicted values obtained in the LNK are
then back-transformed to its original states. However, the
back-transformed values are biased predictor (Johnston
et al., 2001). Therefore, the kriging variance, σ2z x0ð Þ, in
the LNK is obtained by Equation (7), which is derived
from the unbiased expression of the LNK estimator given
by Cressie (1993):

σ2z x0ð Þ ¼ Z( x0ð Þf g2exp σ2y x0ð Þ
n o

% 1
h i

(7)

where Z*(x0) refers to the estimated value of Z at desired
location x0 and σ2y x0ð Þ is the LNK error in Y scale. The
square root of the kriging variance is termed as the
kriging standard error (KSE) that forms the basis for the
rain gauge network design and evaluation.

Performance assessment of variogram models. The
final form of the theoretical variogram model for kriging
applications was selected on the basis of the results of a
validation scheme known as the cross-validation proce-
dure. Cross-validation is a simple leave-one out validation
procedure (Haddad et al., 2013) that involves eliminating
the data values individually one by one from the observed
data and then predicting each data value by using the
remaining data values. This validation scheme helps to
evaluate the prediction performance of kriging by
comparing observed and estimated values. Cross-
validation statistics serves as diagnostics to demonstrate
whether the performance of the adopted model is
acceptable. The statistics are used to check whether the
prediction is unbiased, as close as possible to the
measured value, and the variability of the prediction is
correctly assessed. Model performances were evaluated
on the basis of the following cross-validation parameters
(Johnston et al., 2001):

• The mean standardized prediction error (MSS) was
used to check if the model is unbiased and should be
close to zero for unbiased estimates (the closer the
MSS values to zero, the better the performance of
the model).

• The root mean square prediction error (RMSE) was
used to check whether the prediction is close to the
measured values (the smaller the RMSE value, the
closer the prediction is to the measured value).

• The variability of the predicted data was assessed in two
ways; first, by comparison of the RMSE and average KSE
values. If RMSE and KSE values are closer, this indicates
that the variability in the prediction is correctly assessed.
Second, the variabilitywas assessed by the rootmean square
standardized (RMSS) prediction error. If the root mean
square standardized value is close to one, then the estimation
variances are consistent and the variability of the prediction
is correctly assessed. If it is greater than one, then it is
underestimated, and otherwise, it is overestimated.

Rain gauge network design

An optimal rain gauge network should neither suffer from
lack of rain gauge stations nor be oversaturated with
redundant rain gauge stations. A typical procedure of rain
gauge network design has to look for a combination among
all rain gauge stations in such a way that minimizes the
estimation variance and/or maximizes the information
content for the observed data. This can be achieved either
by optimal positioning of additional and redundant stations
or simply removing redundant stations that forms the scope
of this paper. The variance reduction approach under the
kriging-based geostatistical approach was used for the rain
gauge network design in this study. Reduction of the kriging
error was considered as an indicator to achieve the optimal
network. The underlying principle is that optimal positioning
of additional as well as redundant stations in high variance
zones will reduce the kriging error in the network and hence
improve the network performance. Applying this principle
repeatedly, a certain stage will come when the optimal
combination of existing and additional stations can be
obtained that yield high network performance to form the
optimal rain gauge network. It is important to note that
topographic effects (elevation) can be used as a secondary
variable in kriging process in the form of co-kriging
(Goovaerts, 2000; Mair and Fares, 2011; Feki et al., 2012).
However, this variable was not considered in the current
study for the kriging interpolation and network design
because it is beyond the scope of this study. The following
sequential stepswere used for the rain gauge network design:

1. Perform variogram modelling and kriging analysis for
the network before 2011 (BoM’s base network)
consisting of 17 stations and computation of the
kriging error (KSEOld).
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2. Consider the network after 2011 (BoM’s augmented
network) consisting of 19 stations and again perform
variogram modelling and kriging analysis to estimate
the corresponding kriging error (KSENew).

3. Compute the relative error (RE) reduction to check the
network performance for error reduction as

RE %ð Þ ¼ KSEOld % KSENew

KSEOld
)100 (8)

4. Generate KSE map for the network after 2011 (BoM’s
augmented network) and identify high variance zones
in the KSE map. Locate additional stations directly in

Table II. Summary of skewness values and normality test for mean daily rainfall data

Year/period
Rain gauge network used(no.

of rain gauge stations)

Skewness

K–S*Without transformation With log transformation

El Niño year Network before 2011 (n= 17) 0.1740 0.0408 0.1855
Network after 2011 (n= 19) %0.0442 — 0.1728

La Niña year Network before 2011 (n= 17) 0.3075 0.1102 0.1145
Network after 2011 (n= 19) 0.2045 0.0067 0.1169

*K–S: Kolmogorov–Smirnov statistic value.
KS17, 0.05 = 0.3180.
KS19, 0.05 = 0.3010.

Figure 2. Fitted variogram models for mean daily rainfall of (a) El Niño year and (b) La Niña year for the network before 2011 (Bureau of Meteorology’s
base network with 17 rain gauge stations)
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high variance zones, whereas remove redundant
stations are from low variance zones and locate them
in high variance zones in the KSE map.

5. Locate either a single rain gauge or a set of rain gauges
in high variance zones of the KSE map from the group
of additional and redundant stations. Calculate the
corresponding RE each time (repeat steps two to four).
It is worth noting that redundant stations were
identified from the network before 2011, and additional
stations were considered from the network after 2011.

6. Plot RE values against various combinations of
existing and additional rain gauge stations.

7. Select the combination that gives the maximum RE
value indicating the optimal location of rain gauge
stations and thus yield the optimal rain gauge network.

RESULTS AND DISCUSSION

Data preparation and transformation

Kriging-based geostatistical interpolation methods lead
to optimum estimators when data values are normally

distributed. Thus, the goodness of fit of the normal
distribution was first investigated for rainfall datasets.
Exploratory data analysis and visual inspection of Q–Q
plots for rainfall datasets were performed to explore the
normal distribution hypothesis. Skewness values of the
histograms obtained in the exploratory data analysis were
used initially to check whether the rainfall data could
approach the normal distribution. If the skewness values
are close to zero, this means that data are free from
skewness and thus fit the normal distribution. The
skewness values of observed mean daily rainfall data
for El Niño and La Niña years are shown in Table II.
The results indicate that data are positively skewed and

corresponding skewness values are not close to zero in all
cases except the network after 2011 during El Niño year.
This means that they do not follow a normal distribution
and appropriate transformation is necessary to make them
normally distributed. Log transformation was applied to
those positively skewed datasets, and histograms were
formed again. Skewness values for obtained histograms
of log-transformed datasets are also listed in Table II. It is

Figure 3. Fitted variogram models for mean daily rainfall of (a) El Niño year and (b) La Niña year for the network after 2011 (Bureau of Meteorology’s
augmented network with 19 rain gauge stations)
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seen that the log transformation has greatly reduced the
skewness values close to zero, and hence, transformed
datasets can be treated as normally distributed.
Fitting of normal distribution for all rainfall datasets was

confirmed by the K–S test with a 5% significance level.
Datasets were accepted as normally distributed (i.e. null
hypothesis was accepted) if the K–S test statistic value was
less than the corresponding critical value (KS17=0.3180
and KS19 =0.3010) for the 5% level of significance. In the
current study, the null hypothesis is defined as the
condition that indicates datasets are normally distributed.
It is evident from Table II that the null hypothesis of both
non-transformed and transformed datasets normality
cannot be rejected at the 0.05 level of significance, and
thus, K–S test has accepted the normal distribution in the
95% confidence level. By considering the exploratory data
analysis and K–S test results, it can be concluded that all
positively skewed rainfall datasets approach a normal
distribution after applying the log transformation.

Variogram models for rainfall datasets

In the variogram modelling process, an experimental
variogram was first computed by using Equation (1) based

on normally distributed rainfall datasets. The binning
process that defines average values of variance in several
distance lags was followed in computing the experimental
variogram. A lag represents a line vector that separates any
two sample locations and thus has length (distance) and
direction (orientation). In the experimental variogram
computation, a lag size of 2.835km equals to the minimum
interstation distance, and a total of 8 lag intervals that covers
half of the maximum interstation distance were used
(Johnston et al., 2001; Webster and Oliver, 2007). Three
variogram functions, namely, exponential, gaussian and
spherical models described by Equations (2)-(4), were
fitted to the experimental variogram. For simplicity of
modelling, effect of anisotropy on variogram parameters
was ignored, and isotropy was assumed. Because of the
less number of stations in the network, formation of
directional variograms gave only few data pairs that were
too chaotic to form directional variogram. Therefore,
directional influence was ignored, and isotropic
variogrammodel was fitted to the experimental variogram
in all cases.
Figures 2 and 3 show the computed experimental and

fitted variogram models with corresponding variogram
parameters and goodness-of-fit measures for rainfall

Figure 4. Kriging standard error (KSE) map for (a) El Niño year and (b) La Niña year with trial locations of additional stations (stations 18 and 19) and
redundant stations (stations 5 and 6) in the high variance zones of the KSE map
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datasets of El Niño and La Niña years for the network
before 2011 and network after 2011, respectively. As
seen in Figures 2 and 3, the gaussian model gives the
highest R value and lowest RSS, RMSE and MAE
values for both El Niño and La Niña years and was,
therefore, selected as the best variogram model. The
computed cross-validation statistics for all models
indicate that the gaussian variogram model satisfies
the unbiased and consistent estimates of variances for
all four rainfall datasets in El Niño and La Niña years
for the network before 2011 and network after 2011,
respectively, and thus applicable for the kriging
analysis. Therefore, it can be concluded that the
gaussian variogram model and the corresponding
parameters are adequate to describe the spatial structure
of the observed rainfall data.

Kriging of rainfall datasets

In this study,OKwas implemented throughArcGISv9.3.1
software (Redlands, CA, USA) (ESRI, 2009) and its
geostatistical analyst extension (Johnston et al., 2001). OK
was performed for non-transformed rainfall datasets using

the modelled variograms to estimate the kriging error.
However, in case of log-transformed rainfall datasets, LNK
was performed, and back-transformed values were used to
estimate the kriging error. For log-transformed datasets,
predicted values computed by kriging were automatically
back-transformed to the original values before a map was
produced by the ArcGIS software (Johnston et al., 2001).
Figure 4 shows the kriging error (KSE) map produced by
kriging interpolation for the network after 2011 during El
Niño and La Niña years, respectively.
Figure 4 demonstrates that less gauge density exists in the

eastern and south-eastern part of the Middle Yarra River
catchmentwhere high variance zones are observed. It is seen
that locations near existing stations have lower KSE values,
whereas higherKSE values can be found in areas having less
or no rain gauge stations. For example, areas having stations
4, 5, 6 and 7 exhibit lower KSE values because of the high
network density. It reveals the likely presence of redundant
stations in that region. However, in the north-western,
eastern and south-eastern part of the catchment, it is
observed that the network density is comparatively less
and therefore requires placement of the additional stations to
reduce the kriging error. Thus, the rain gauge density in the

Table III. Proposed positions of Bureau of Meteorology stations in high variance areas of kriging error map

Trial no.
Rain gauge station

useda

New location in high
variance zone in KSE

mapb

Location coordinates (m)

Easting Northing

Case-1: Optimal positioning of new additional stations (stations 18 and 19) in the high variance areas

1 Station 18 18A 369 163 5 806 421
2 Station 18 18B 374 495 5 811 531
3 Station 18 18C 378 494 5 817 084
4 Station 19 19D 370 385 5 802 755
5 Station 19 19E 372 051 5 809 531
6 Station 19 19 F 377 494 5 816 418
7 Station 18 18A 369 163 5 806 421

Station 19 19D 370 385 5 802 755
8 Station 18 18A 369 163 5 806 421

Station 19 19E 372 051 5 809 531
9 Station 18 18A 369 163 5 806 421

Station 19 19 F 377 494 5 816 418
10 Station 18 18B 374 495 5 806 421

Station 19 19D 370 385 5 802 755
11 Station 18 18B 374 495 5 806 421

Station 19 19F 377 494 5 816 418
12 Station 18 18C 378 494 5 806 421

Station 19 19E 372 051 5 809 531

Case-2: Relocating and optimal positioning of redundant stations (stations 5 and 6) in the high variance areas

13 Station 5 5P 361 276 5 837 856
14 Station 6 6Q 355 278 5 829 747
15 Station 5 5P 361 276 5 806 421

Station 6 6Q 355 278 5 802 755

KSE, kriging standard error.
a Station numbers are the same as Figure 1.
b Station locations are shown in Figure 4.
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network affects the kriging interpolated values and the
corresponding KSEmap. The reason is that in areas of sparse
stations, the experimental variogram ismore chaotic in nature
and simulated surface produced by kriging carries large
uncertainties (Journel and Huijbregts, 1978). Therefore, the
placement of additional rain gauge stations in that area will
help to minimize the kriging error and improve estimation
accuracy that leads to an optimal rain gauge network.
According to the aforementioned considerations, two

cases were considered, and further analysis was performed
using the kriging method:

• Case-1: Optimal positioning of additional stations in
the high variance areas. In this study, stations 18 and 19
installed by BoM in the network after 2011 were
considered as additional stations, and determining their
optimal locations was explored.

• Case-2: Redundant stations are either removed or are
optimally relocated from low to high variance zones in
the network. In this study, stations 5 and 6 in the
network before 2011 (i.e. BoM’s base network) were
identified as redundant stations from Figure 4, and
determining their optimal locations was explored.

Based on the aforementioned two cases, additional
(stations 18 and 19) and redundant (stations 5 and 6) stations
were placed in the high variance zones of the network after
2011, and their corresponding locations are shown in
Figure 4. This results in a number of possible combinations
for locating rain gauge stations that are given in Table III.
This will allow one to check the optimality of the BoM’s
augmented network (i.e. network after 2011). This enables a
decisionmaker to select the best combination of the number
and location of stations in the network after 2011 that yield

Figure 5. Cross-validation statistics (a)mean standardizedprediction error (MSS), (b) differenceof kriging standarderror (KSE)and rootmean square error (RMSE) and
(c) root mean square standardized (RMSS) for El Niño and La Niña years. MSS and (KSE-RMSE) values close to 0 indicate an accurate model, whereas RMSS value

close to 1 indicates an accurate model
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the highest reduction in KSE and hence the best network
output and estimation accuracy. However, the remaining 17
rain gauge stations in the BoM’s base network (i.e. network
before 2011) were not relocated in the subsequent network
augmentation because it is not practically feasible to relocate
all existing rain gauge stations.

After selecting potential rain gauge sites in the high
variance zones, rainfall values were estimated in those
locations by kriging prediction. Predicted rainfall values of
additional and redundant stations for scenarios 1 and 2 were
combined with observed rainfall datasets of the remaining
stations. Therefore, each combination of rain gauge stations
got individual rainfall datasets. For each combination,
exploratory data analysis, checking of data normality and
variogram modelling were performed again for El Niño and
La Niña years. Summary of the exploratory data analysis
and data normality conditions for all rainfall datasets is
given in Table IV. It can be seen from Table IV that in most
cases of the El Niño year, the skewness values of rainfall
datasets are close to zero, and hence, no transformation was
necessary. However, log transformation was applied to the
remaining datasets that were positively skewed, and it was
found that skewness values approached to zero after log
transformation. Furthermore, the K–S test confirms that the
spatial datasets for all combinations have accepted the
normal distribution in the 95% confidence level for both El
Niño and La Niña years. Therefore, rainfall datasets for all
trial combinations exhibit a normal distribution and are thus
ready for further analysis.
Summary of the variogram modelling and cross-

validation statistics for all rainfall datasets is provided in
Table V and Figure 5, respectively. As seen from Table V,
the exponential variogram model gives satisfactory result
for all trial combinations in the La Niña year as well as for
most cases in the El Niño year and thus can be applied
further for the kriging analysis. The results also indicate
that gaussian and spherical models produce satisfactory
results for few combinations. The cross-validation statis-
tics show that the unbiased and consistent estimates of
variances are achieved for all rainfall datasets in the
El Niño and La Niña years.

Optimal design of rain gauge network

For rain gauge network design, KSE values were computed
for the network before 2011 and network after 2011. Although
the estimation error and variability were reduced in some
parts of the network, a number of regions exhibiting high
KSE were still present. Rain gauge stations (additional and
redundant) were placed at areas having higher values of
KSE, and the process was repeated until the KSE values
could not be reduced further. In this way, the process was
repeated for a number of trials where the network was
optimized with different combination of stations having
individual rainfall datasets. The sites that resulted in the
most significant reduction in KSE values were identified as
the locations for placing additional as well as redundant
stations. In the methodical search procedure, to obtain the
optimal network for case-1, attempt was made first by one
additional station (either station 18 or 19) and thenwith both

Figure 6. Relative error (RE) reduction for different combinations of
stations in the network after 2011

Figure 7. Devised optimal rain gauge network in the Middle Yarra River
catchment
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additional stations (stations 18 and 19 together). Similarly,
the optimal network search procedure for case-2 followed
the relocation of one redundant station (either station 5 or 6)
and then with both redundant stations (stations 5 and 6
together). The computation was performed for both the
El Niño and La Niña years, and corresponding KSE values
were estimated to compute theKSE reduction (Figure 6). As
expected, the estimated KSE for different combination of
stations was reduced as the number of stations was
optimally combined that led to the optimal rain gauge
network. Figure 6 shows that KSE values have decreased as
the network is optimized with different combination of
additional and redundant stations.
The result for case-1 demonstrates that high variance

regions in the KSE map was defined by station
combination of trial 7, which had the maximum reduction
in KSE values. As seen in Figure 6, the maximum
reduction in the KSE was obtained for this particular
combination for both El Niño and La Niña years.
Therefore, the optimal locations of the additional two
stations in the network after 2011 (BoM’s augmented
network) can be represented by the station combination of
trial 7. However, the result obtained for case-2 indicates
that relocation of only one redundant station (station 5)
defined by station combination of trial 13 in the high
variance zone results in the maximum reduction in KSE
values. It is interesting to note that relocation of both
redundant stations (stations 5 and 6 together) defined by
station combination of trial 15 in high variance zones
gives a similar reduction in the KSE value. However, this
alternative is less preferred because relocation and
re-installing of a rain gauge station is associated with
cost and manpower. Thus, the accepted feasible solution
is the station combination defined by trial 13 for case-2 is
selected as the optimal positioning of redundant stations.
In this way, the optimal rain gauge network is achieved
for the Middle Yarra River catchment, which is shown in
Figure 7. The optimal rain gauge network consists of 19
stations, which includes the original 16 stations (stations
1–4, 6, 7–17), the redundant (station 5) station from the

network before 2011 and two additional stations (stations
18 and 19) from the network after 2011 with their
corresponding new locations.
The BoM’s existing rain gauge network (Figure 1) and

the designed optimal rain gauge network in this study
(Figure 7) demonstrate that the optimal rainfall network
provides more accurate estimates of areal average and
point rainfalls in the Middle Yarra River catchment
(Table VI). Although the improvement is insignificant in
terms of mean daily rainfall scale as compared with actual
datasets, the devised optimal network improves the areal
average as well as point rainfall estimates. Therefore, it
can be used for relevant hydrological applications.

CONCLUSIONS

On the basis of the results obtained in this study, the
following conclusions can be drawn:

• The spatial structure and continuity of the rainfall data
were modelled by using thee different variogram models
(exponential, gaussian and spherical) for the selected El
Niño and La Niña years. Cross-validation statistics were
applied to test the validity of different variogram models
and adequacy of estimated model parameters to be used
for kriging applications. The results show that an isotropic
gaussian model had the best fit with the experimental
variogram generated from the mean daily rainfall datasets
for both the network before 2011 and network after 2011.

• Kriging error map produced by OK shows that locations
adjacent to the rain gauge stations exhibit lower error,
whereas higher error is found in regions having less or no
stations. It can be concluded that additional stations are
necessary in regions that lack rain gauge stations and
should be located accordingly to reduce the kriging error.

• It was found that if the additional stations (stations 18 and
19 together) installed in the network by BoM after 2011
are optimally located (as indicated in Figure 7), then the
network yields improved estimates of areal average and

Table VI. Comparison between observed and estimated areal average rainfall

Option

Observed mean rainfall
(mm)

Estimated mean rainfall (mm)
for the rain gauge network

Error (%) obtained
for the rain gauge network

El Niño
year

La Niña
year

El Niño year La Niña year El Niño year La Niña year

BoM Optimal BoM Optimal BoM Optimal BoM Optimal

Case-1 1.946 3.541 1.905 1.904 3.509 3.526 %2.2 %2.2 %0.9 %0.4
Case-2 1.946 3.541 1.905 1.949 3.509 3.520 %2.1 0.2 %0.9 %0.6

Case-1: Optimal positioning of new additional stations (stations 18 and 19) in the high variance areas
Case-2: Relocating and optimal positioning of redundant stations (stations 5 and 6) to the higher variance areas
BoM, Bureau of Meteorology.
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point rainfall for the La Niña year only, whereas no
improvement could be achieved for the El Niño year.

• It was also found that if BoM’s installed additional
stations (stations 18 and 19 together) were considered
to be in their original positions in the network after
2011, and only one redundant station (station 5) was
optimally located without relocating other existing
stations, the network yielded significant improvement
in areal average and point rainfall estimates for both El
Niño and La Niña years.

• Thus, this study has developed an optimal rainfall
network for the Middle Yarra River catchment that
consists of an optimal combination of rain gauge
stations with the capability of providing more accurate
areal average as well as point rainfall estimates.

The main recommendation arising from the results
obtained in this study is to instal and maintain additional
and redundant rain gauges in the Middle Yarra River
catchment at locations indicated in Figure 7. It is not
necessary to relocate the other existing rain gauge stations
in the current network because of the associated costs.
The concept proposed in this study for optimal design of
rain gauge network through combined use of additional
and redundant stations together is equally applicable to
any other catchment.
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Chapter 6 

Enhanced Streamflow Forecasting Using 

Optimal Rain Gauge Network-Based Input 

 

 

6.1 Introduction 

In general, rainfall is considered independent of streamflow simulation and forecasting 

in most of the hydrological investigations. For example, rain gauge network is 

frequently designed to achieve the optimal rain gauge network for enhanced estimation 

of point rainfall at ungauged locations and/or areal average rainfall over a catchment or 

study area (e.g., Bras and Rodriguez-Iturbe, 1976; Bastin et al., 1984; Papamichail and 

Metaxa, 1996; Pardo-Igúzquiza, 1998; Tsintikidis et al., 2002; Cheng et al., 2008; 

Shaghaghian and Abedini, 2013; Aziz et al., 2016; Haggag et al., 2016; Feki et al., 

2017). But this does not allow one to focus on the strength and weakness of the 

established optimal rain gauge network that really matter when rainfall data from the 

optimal network are fed into the streamflow forecasting models (Andréassian et al., 

2001). Therefore, a rain gauge network should be designed to provide a satisfactory 

solution to the specific needs such as the enhanced streamflow forecasting in this study 

for which the network is being designed and/or established. Since streamflow is a 

consequence of rainfall, correct rainfall input is of great importance for accurate and 

enhanced streamflow forecasting. Hence, an optimal rain gauge network should be 

established, which can provide the high quality rainfall input that can be used in 

streamflow forecasting models in order to achieve the enhanced streamflow forecasting.  
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In the existing literature, studies on impact of rainfall input uncertainty and rain gauge 

network density and distribution on the performance of streamflow simulation and 

forecasting are abundantly found (e.g., Faurès et al., 1995; St-Hilaire et al., 2003; Dong 

et al., 2005; Anctil et al., 2006; Bárdossy and Das, 2008; Ekström and Jones, 2009; 

Moulin et al., 2009; Xu et al., 2013; Tsai et al., 2014; Kar et al., 2015; Zeinivand, 2015; 

Chen et al., 2017). In those studies, streamflow forecasting models employed rainfall 

data obtained directly from the existing rain gauge network, which might not be an 

optimal network and hence might not provide the quality rainfall estimates. This 

ultimately affects the performance of the streamflow forecasting accuracy and results in 

the less accurate streamflow forecasting. However, the direct use of rainfall input from 

an optimal rain gauge network for streamflow simulation and forecasting is rarely 

documented. Hence, the development of an ANN-based enhanced streamflow 

forecasting approach using the optimal rain gauge network-based input is detailed in 

this chapter. In the proposed ANN-based enhanced streamflow forecasting approach, 

the rainfall input from an optimal rain gauge network was used in the ANN-based 

streamflow forecasting model instead of using the rainfall input directly from an 

existing non-optimal rain gauge network in order to achieve the enhanced streamflow 

forecasting. 

 

In this investigation, the first streamflow forecasting model was developed using the 

rainfall input from the existing rain gauge network and the second streamflow 

forecasting model was established using the rainfall input from an optimal rain gauge 

network (details of the optimal rain gauge network design demonstrated in Chapter 5) 

over the case study catchment. Then, the third streamflow forecasting model was 

developed using the rainfall input from an augmented optimal rain gauge network over 

the case study catchment. This chapter provides a comparison of the performances of 

the aforementioned three streamflow forecasting models to test the performance and 

robustness of the proposed ANN-based enhanced streamflow forecasting approach. 

Furthermore, the issues associated with the application of ANN-based input selection 

technique for selecting significant input variables are detailed in this chapter. Based on 

the input significance obtained by the ANN-based input selection technique, the chapter 

finally presents an indirect way of identifying the optimal locations of rain gauge 
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stations in the final optimal rain gauge network, which can give the best streamflow 

forecasting performance of the network. Furthermore, this is the first study of this kind 

undertaken in Australia to incorporate the optimal rain gauge network-based rainfall 

input within the ANN-based data-driven streamflow forecasting framework for 

enhanced streamflow forecasting. 

 

As was indicated in Section 1.1, floods and droughts induced water management 

problems have become the major concerns in Australia, particularly in southeastern 

Australia. Australia’s population and agricultural production are highly concentrated in 

this part of the country where water resources play a crucial role in the region’s 

economic development. The main aim of the reservoir operation in Australia is to store 

as much water as possible to meet water demands during droughts while keeping 

provision for flood control during floods. Lower rainfall usually causes the reduction in 

streamflows, which obviously results in the shortage of reservoir inflows and affects the 

overall water supply to the urban areas. In addition, reduction in streamflows may cause 

the increased risks of bushfires, which is not unusual in the southeastern Australia 

during droughts. On the other hand, the occurrence of extreme rainfall results in the 

excess amount of streamflows that often causes flash floods in the urbanized 

catchments located along the coastlines of the region and makes it vulnerable and risk-

prone. Therefore, accurate and enhanced streamflow forecasting is of great importance 

for optimal operation of reservoirs and drought management, and effective flood 

control and management in Australia. Accordingly, the proposed enhanced streamflow 

forecasting approach and the obtained results detailed in this study could be very much 

supportive to address the aforementioned floods and droughts induced water 

management challenges in an efficient manner, specifically in southeastern Australia. 
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ABSTRACT 

Accurate streamflow forecasting is of great importance for the effective management of 

water resources systems. In this study, an improved streamflow forecasting approach 

using the optimal rain gauge network-based input to artificial neural network (ANN) 

models is proposed and demonstrated through a case study (the Middle Yarra River 

catchment in Victoria, Australia). First, the optimal rain gauge network is established 

based on the current rain gauge network in the catchment. Rainfall data from the 

optimal and current rain gauge networks together with streamflow observations are 

used as the input to train the ANN. Then, the best subset of significant input variables 

relating to streamflow at the catchment outlet is identified by the trained ANN. Finally, 

one-day-ahead streamflow forecasting is carried out using ANN models formulated 

based on the selected input variables for each rain gauge network. The results indicate 

that the optimal rain gauge network-based input to ANN models gives the best 

streamflow forecasting results for the training, validation and testing phases in terms of 

various performance evaluation measures. Overall, the study concludes that the 

proposed approach is highly effective to achieve the enhanced streamflow forecasting 

and could be a viable option for streamflow forecasting in other catchments. 

 

 

KEYWORDS: Streamflow forecasting, Artificial neural network, Optimal rain gauge 

network, Input selection, Yarra River catchment. 
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1. INTRODUCTION 

Streamflow is one of the key variables in hydrology. Accurate forecasting of 

streamflow is essential for many of the activities associated with the efficient planning 

and operation of the components of risk-based water resources systems. Particularly, 

flood control and operational river management systems highly depend on accurate and 

reliable forecasting of streamflow. The analysis and design of dams and bridges, 

management of extreme events including floods and droughts, optimal operation of 

reservoir encompassing irrigation, hydropower generation, domestic and industry water 

supply objectives are a few examples where information regarding short-term and long-

term streamflow forecasting is vital (Londhe and Charhate, 2010). Hence, there is a 

growing need to improve the short-term and long-term streamflow forecasting for the 

efficient optimization of water resources systems (Akhtar et al., 2009). 

 

The approaches used for streamflow forecasting cover a wide range of methods from 

completely black box (data-driven or machine learning) models to detailed conceptual 

or physically-based models (Porporato and Ridolfi, 2001). The conceptual or 

physically-based models usually require extensive data and huge computational efforts, 

and are influenced by the effects of overparameterization and parameter redundancy 

(Linares-Rodriguez et al., 2015). Furthermore, such models could not be applied to a 

slightly different system. As a result of these limitations, data-driven methods have 

been increasingly preferred for hydrological modelling and forecasting (Khu et al., 

2001; Yilmaz & Muttil, 2014). In particular, a data-driven method that has gained 

significant attention to researchers in recent years is the artificial neural network 

(ANN)-based streamflow forecasting technique (e.g., Zealand et al., 1999; Dibike and 

Solomatine, 2001; Birikundavyi et al., 2002; Huang et al., 2004; Kumar et al., 2004; 

Wu et al., 2005; Kişi, 2007; Srinivasulu and Jain, 2009; Londhe and Charhate, 2010; 

Abrahart et al., 2012; Sivapragasam et al., 2014; Linares-Rodriguez et al., 2015; 

Taormina et al., 2015). 

 

The majority of the aforementioned studies have confirmed that ANN is able to 

outperform traditional statistical methods. ANN is perhaps the most popular machine 

learning method with flexible mathematical structure, which is capable of identifying a 
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direct mapping between inputs and outputs without detailed consideration of the 

internal structure of the physical process (Maier and Dandy, 2000; Dibike and 

Solomatine, 2001). ANN models are computationally fast and reliable, and yield results 

comparable to conceptual models. These models can extract the complex non-linear 

relationships between the inputs and outputs of a process without the physics being 

explicitly provided. Furthermore, ANN models for streamflow forecasting require only 

a limited number of input variables, such as rainfall and flow data (e.g., Talei et al., 

2010; Londhe and Charhate, 2010; Yilmaz and Muttil, 2014), which makes them 

suitable for forecasting applications in practice. For a detailed description of ANNs 

with their modelling processes and applications in hydrology and water resources, 

readers are referred to Govindaraju and Rao (2000), ASCE Task Committee (2000a,b), 

Dawson and Wilby (2001), Maier et al. (2010), and Tayfur (2012). 

 

This study mainly focuses on the important hydrological aspects of rainfall input for 

streamflow simulation within the framework of ANN-based streamflow forecasting 

models. Rainfall is one of the most important inputs in the development of ANN 

models for streamflow forecasting. Since streamflow is a consequence of rainfall, using 

accurate rainfall input to ANN models is vital in order to achieve the enhanced 

streamflow forecasting. However, many of the water resources systems are large in 

spatial extent and often consist of a rain gauge network that is very sparse due to 

economic, geological and logistic factors. This may cause inaccuracy in the collected 

rainfall information (Zealand et al., 1999). Therefore, it is necessary to establish an 

optimal rain gauge network, which can give high quality rainfall estimates for accurate 

streamflow forecasting. An optimal rain gauge network refers to a balanced or ideal 

network that never suffers from station shortages, or from over saturations caused by 

redundant stations (Mishra and Coulibaly, 2009; Shaghaghian and Abedini, 2013; 

Adhikary et al., 2015). If rainfall information can be more accurately estimated through 

the optimal network and used in ANN-based streamflow forecasting models, it is likely 

that enhanced streamflow forecasting can be achieved, a conclusion supported by the 

works of Andréassian et al. (2001), who tested the sensitivity of watershed models to 

the imperfect knowledge of rainfall input. 

 

Rainfall is often considered independent of streamflow forecasting in many 
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hydrological studies such as average areal rainfall estimation over a catchment (e.g., 

Bras and Rodriguez-Iturbe, 1976; Bastin et al., 1984; Seed and Austin, 1990; Adhikary 

et al., 2016a, 2017) or the design of rain gauge networks (e.g., Papamichail and Metaxa, 

1996; Pardo-Igúzquiza, 1998; Tsintikidis et al., 2002; Chen et al., 2008; Cheng et al., 

2008; Adhikary et al., 2015; Feki et al., 2017). However, this does not allow one to 

focus on the strength and weakness of an established network that really matter when 

rainfall data are fed into a streamflow forecasting model. Furthermore, Bras (1979) and 

Storm et al. (1989) emphasized that watersheds act as low-pass filters, attenuating the 

rainfall variability. It is thus necessary to take this filter into account to determine the 

quality and quantity of rainfall data required to achieve a certain degree of accuracy in 

streamflow forecasting. Hence, it is logical to design a rain gauge network for 

providing a satisfactory solution to the specific needs (enhanced streamflow forecasting 

in the current study) for which the network is being established. Based on the 

aforementioned considerations, it is thus hypothesized that use of the optimal rain 

gauge network-based input to streamflow forecasting models can contribute to the 

improved streamflow forecasting. 

 

To date, many studies have been devoted to the impact of rainfall input, varying rain 

gauge network density and distribution on the performance of streamflow forecasting 

(e.g., Faurès et al., 1995; St-Hilaire et al., 2003; Dong et al., 2005; Anctil et al., 2006; 

Xu et al., 2006; Bárdossy and Das, 2008; Ekström and Jones, 2009; Moulin et al., 2009; 

Volkmann et al., 2010; Xu et al., 2013; Tsai et al., 2014; Linares-Rodriguez et al., 

2015). However, none of these studies used rainfall input from the optimal rain gauge 

network for streamflow forecasting. Therefore, the objective of this study is to use 

rainfall information from an optimally designed rain gauge network in combination 

with streamflow observations as the input to ANN-based streamflow forecasting 

models for enhanced streamflow forecasting. The specific focus is to evaluate the 

effectiveness of integrating an optimal rain gauge network within the framework of 

ANN models to achieve the improved streamflow forecasting. The experimental 

approach is planned in two phases and demonstrated through an application to the 

Middle Yarra River catchment in Victoria, Australia. First, the optimal rain gauge 

network is established from the current operational rain gauge network in the catchment 

by using the well-known Kriging-based geostatistical technique (presented in Adhikary 
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et al., 2015). Next, streamflow forecasting is undertaken one day in advance at the 

catchment outlet based on the selected significant input variables (rainfall and 

streamflow) for each of the current and optimal rain gauge networks. Such an approach 

could be scalable to other catchments contingent upon addressing the local contextual 

issues, which is expected to be a viable option to achieve the enhanced streamflow 

forecasting. 

 

The remainder of the paper is structured as follows. First, the study area and dataset 

used are described in details. This is followed by the detailed description of the 

methodology adopted in this study. The results are summarized next and finally, the 

conclusions drawn from the study are presented. 

2. STUDY AREA AND DATASET USED 

2.1 The study area 

In the current study, the middle segment of the Yarra River catchment (referred to as 

the Middle Yarra River catchment) located in Victoria, Australia, is selected as the case 

study area. Approximate location of the catchment is shown in Figure 1. The catchment 

is located at northeast of Melbourne, which covers an area of 4044 km2. The catchment 

is home to more than one-third of Victoria’s population (approximately 1.8 Million). 

Although the Yarra River catchment is not large with respect to other Australian 

catchments, it produces the fourth highest water yield per hectare of the catchment in 

Victoria, which makes it a very productive catchment. The Yarra River thus plays a key 

role in the way Melbourne has developed and grown (Adhikary et al., 2016b). 

 

The Yarra River catchment is divided into three distinctive sub-catchments (as shown 

in Figure 1), namely Upper Yarra, Middle Yarra, and Lower Yarra segments based on 

the different land use patterns. The Upper Yarra segment of the catchment consists of 

mainly forested and mountainous areas with minimum human settlement. 

Approximately 70% of Melbourne’s drinking water supply comes from this pristine 

upper segment (Barua et al., 2012). The Middle Yarra segment is distinguished as the 

only part of the catchment with an extensive flood plain, which is mainly used for 
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agricultural activities. The Lower Yarra segment is mainly characterized by the 

urbanized floodplain areas of Melbourne city. The average annual rainfall varies across 

the Yarra River catchment from about 1100 mm in the Upper Yarra segment to 600 mm 

in the lower Yarra segment (Daly et al., 2013). Hence, water resources management in 

the catchment is of great importance considering the diverse water use activities and 

high variability in rainfall. 

 

 

Figure 1. Location of the study area (Middle Yarra River catchment) with hydrometric 

stations 

 

The Middle Yarra segment (the case study area as shown in Figure 1) covers an area of 

1511 km2. There are three storage reservoirs, namely, Maroondah, Silvan, and 

Sugarloaf in the study area that supports water supply for a range of activities including 

urban and agricultural activities. The main aim of the reservoir operation in Australia is 

to store as much water as possible to meet water demands during droughts while 

keeping provision for flood control during floods. Lower rainfall causes reduction in 

streamflows, which obviously results in the shortage of reservoir inflows and affects the 

overall water availability. In addition, reduction in streamflows may cause increased 
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risks of bushfires. On the other hand, the occurrence of higher or extreme rainfall 

results in excess amount of streamflows that may cause flash floods in the urbanized 

lower segment of the catchment and make it vulnerable and risk-prone. The urbanized 

lower segment also depends on the water supply from the storage reservoirs mainly 

located in the middle and upper segments of the catchment (Adhikary et al., 2015). 

Therefore, accurate streamflow forecasting is of great significance for optimal 

operation of storage reservoirs, and planning for effective flood control and mitigation 

measures, particularly in the urbanized lower segment of Yarra River catchment. 

2.2 Dataset used 

Available literature suggests that many different variables are used as input to ANN 

models. Rainfall and antecedent streamflow are the most frequently used inputs for 

ANN-based streamflow forecasting models. The antecedent streamflow acts indirectly 

as a descriptor of the moisture state in the watershed (Anctil et al., 2004). The input 

also consists of air temperature or potential evapotranspiration in combination with 

rainfall information. However, some studies have shown that model results are nearly 

insensitive to the potential evapotranspiration or temperature and thus their usage as 

input are unnecessary (e.g., Oudin et al., 2005, 2006; Xu et al., 2006). Therefore, 

rainfall data together with streamflow observations are used as the necessary input to 

develop ANN-based streamflow forecasting models in the current study. 

 

In the current study, dataset are based on the historical rainfall records from the rain 

gauge network of Australian Bureau of Meteorology (BoM) and streamflow 

observations from the streamflow measuring network of Melbourne Water Corporation 

(MWC). Spatial location of the hydrometric stations within the study area is shown in 

Figure 1. There are nineteen rain gauge stations (indicated with R1 to R19) in the 

BoM’s current network and four streamflow measuring stations (indicated with S1 to 

S4) along the main course of the Yarra River in the study area. Table 1 presents the 

particulars of the hydrometric (rain gauge and streamflow) stations.  

 

 

 



 
 

Chapter 6: Enhanced Streamflow Forecasting Using Optimal Rain Gauge Network-Based Input 

 167  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting          

Table 1. Summary of the hydrometric stations in the Middle Yarra River catchment 

Station no. 
Station Details 

Station 
ID 

Name of Station 
Easting  

(m) 
Northing 

(m) 
Rain gauge stations   

R1 86142 Toolangi (Mount St Leonard DPI) 367665 5840620 
R2 86366 Fernshaw 376433 5836534 
R3 86009 Black Spur 378165 5838779 
R4 86070 Maroondah Weir 372048 5833250 
R5 86385 Healesville (Mount Yule) 368559 5831973 
R6 86363 Tarrawarra 365931 5830821 
R7 86364 Tarrawarra Monastery 362905 5830845 
R8 86219 Coranderrk Badger Weir 373425 5827770 
R9 86383 Coldstream 359825 5823625 
R10 86229 Healesville (Valley View Farm) 370480 5822015 
R11 86367 Seville 367398 5815000 
R12 86358 Gladysdale (Little Feet Farm) 381535 5809020 
R13 86094 Powelltown DNRE 389545 5808810 
R14 86059 Kangaroo Ground 345855 5827920 
R15 86066 Lilydale 353900 5820765 
R16 86076 Montrose 356285 5814905 
R17 86106 Silvan 362717 5811901 
R18 86072 Monbulk (Spring Road) 361051 5806323 
R19 86266 Ferny Creek 354874 5807326 

Streamflow measuring stations   
S1 229212 Yarra River at Millgrove 380730 5820906 
S2 229653 Yarra River at Yarra Grange 365590 5830000 
S3 229608 Watsons Creek at Kangaroo 

Ground South 
346900 5825660 

S4 229200 Yarra River at Warrandyte 343157 5821896 

Station no. are same as in Figure 1. 

Station ID for rain gauges is as defined by the Bureau of Meteorology (BoM), Australia at 
http://www.bom.gov.au/climate/data/stations/ and Station ID for streamflow gauges is as 
defined by the Melbourne Water Corporation (MWC).  
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Thirty years of daily meteorological and hydrological data (from 1980 to 2009) 

including rainfall and streamflow are used in this study. The choice of this study period 

is based on the availability of high quality of data with no missing records for an 

extended period. Daily rainfall data of all nineteen rain gauge stations are collected 

from the Scientific Information for Land Owners (SILO) climate database 

(http://www.longpaddock.qld.gov.au/silo/). The SILO database has been selected for 

this study because SILO data are quality controlled and completely free from missing 

records. The missing records in this database are filled up during quality control 

process based on the ordinary kriging and thin plate spline interpolation techniques 

using available records in the nearby surrounding stations. The SILO database gives an 

additional benefit of data drill opportunity using the aforementioned interpolation 

techniques by which one can get the necessary rainfall data at any ungauged location in 

the catchment (Jeffrey et al., 2001). Streamflow data of all four streamflow measuring 

stations are collected from the MWC database. The average annual rainfall in the study 

area during the 1980-2009 period varies from 710 mm to 1422 mm with a mean rainfall 

of 1063 mm. Approximately 60% of the mean rainfall occurs in the winter (June-

August) and spring (September-November) seasons, which contributes mostly to 

streamflow. 

3. METHODOLOGY  

This study presents an approach of streamflow forecasting in an attempt to achieve the 

enhanced streamflow forecasting using the optimal rain gauge network-based input to 

ANN models. The methodological framework of the proposed approach is shown in 

Figure 2, which is demonstrated through an application to the Middle Yarra River 

catchment in Victoria, Australia. As can be seen from the figure, the framework has 

two parts and in the first part of the framework, an optimal and an augmented rain 

gauge network are established from the BoM’s current operational rain gauge network. 

The second part consists of streamflow forecasting, which focuses on the impact of 

optimal rain gauge network-based input on the performance of streamflow forecasting. 

In general, the framework is implemented through following four steps: (i) optimal rain 

gauge network design, (ii) augmentation of the optimal rain gauge network, (iii) ANN-
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based input variable selection, and (iv) streamflow forecasting and assessment. These 

steps are described in the following subsections. 

 

 

Figure 2. Framework of methodology adopted in this study 

3.1 Optimal Rain Gauge Network Design  

An optimal network should essentially consist of sufficient number of rain gauge 

stations with suitable locations in such a way that the network can provide optimum 

rainfall information with minimum uncertainty and cost. Adequate station density as 

well as location in the network equally plays a vital role in determining if the rain 

gauge network is optimal and sufficient information is gained (Adhikary et al., 2015). 

Thus, the optimal network is achieved through optimal positioning of additional 

stations (i.e., network extension) together with redundant stations or simply removing 

redundant stations (i.e., network rationalization) (St-Hilaire et al., 2003; Mishra and 

Coulibaly, 2009). In this study, the kriging-based geostatistical technique is used for 

optimal rain gauge network design. Kriging is a well-known stochastic interpolation 

technique that provides unbiased estimates of a variable at unsampled locations based 

on the sampled values at surrounding locations as well as kriging variance of 

estimation. The optimal rain gauge network is achieved through minimizing the kriging 

variance of the current network under the framework of variance reduction principle. 
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The principle demonstrates that optimal positioning of additional as well as redundant 

stations in the high variance zones of the network reduces network variance and thus 

improves the network performance. 

 

Details of the optimal rain gauge network design in the Middle Yarra River catchment 

can be found in an earlier study conducted by Adhikary et al. (2015). The optimal 

network in that study was established through a methodical search for the optimal 

number and locations of stations in the current network using the network extension 

and rationalization procedures. The optimal network established in this way for the 

study catchment is shown in Figure 3. As can be seen from the figure, the optimal 

network consists of nineteen rain gauge stations including sixteen original stations 

(stations R1-R4, R6, R7-R17) in their current positions, two additional stations (stations 

R18a and R19a), and a redundant station (station R5b) in their corresponding new 

optimal positions. The rainfall data at the identified optimal locations of the additional 

and redundant stations (stations R18a, R19a, and R5b) in the optimal network is also 

obtained from the SILO database through their data drill option based on the ordinary 

kriging technique (Jeffrey et al., 2001). A major finding in the study of Adhikary et al. 

(2015) was that the established optimal network provides more accurate areal average 

and point rainfall estimates in the Middle Yarra River catchment. Now, the objective of 

the current study is to answer the questions whether the optimal network-based rainfall 

information could produce enhanced streamflow forecasting.   
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Figure 3. Optimal rain gauge network as presented in Adhikary et al. (2015) for the 

Middle Yarra River catchment 

3.2  Augmentation of Optimal Rain Gauge Network  

In rain gauge network design, it is commonly believed that a denser network with more 

rain gauge stations causes reduction of network variance and thus results in the 

improved estimate of areal average or point rainfalls in a catchment (e.g., Papamichail 
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and Metaxa, 1996; Cheng et al., 2008). Furthermore, the network density often 

influences the quality of flow simulations (St-Hilaire et al., 2003). It is worth 

mentioning that unlike the past studies, no additional fictitious rain gauge stations to 

increase the network density were considered for optimal rain gauge network design 

presented in Adhikary et al. (2015). Considering these factors, additional fictitious 

stations are incorporated to augment the optimal network of Adhikary et al. (2015) to 

increase the network density, which will be called as the augmented optimal rain gauge 

network in the current study. The main intention is to investigate the potential of an 

augmented or dense network in enhancing the performance of streamflow forecasting. 

This strategy facilitates exploring the impact of a relatively denser network on the 

streamflow forecasting accuracy. This also helps to identify the locations of key 

fictitious stations in addition to rain gauge stations in the optimal network, which have 

greater influence on the accurate streamflow forecasting.  

 

In order to augment the optimal network presented in Adhikary et al. (2015), the study 

catchment is first delineated into a number of sub-catchments based on the digital 

elevation model using the ArcGIS software. Additional fictitious stations are then 

placed in such a way that each sub-catchment comprises at least one rain gauge station. 

Ten additional fictitious stations are considered for the network augmentation. Thus, 

the resulting augmented optimal network consists of twenty-nine rain gauge stations, 

which is shown in Figure 4. The rainfall data at the locations of fictitious stations 

(stations P1 to P10) in the augmented optimal network are also collected from the SILO 

database. The data are generated through the data drill option based on the ordinary 

kriging technique (Jeffrey et al., 2001). For further details of the rainfall estimation at 

ungauged locations using the ordinary kriging technique, readers are referred to 

Adhikary et al. (2016b). 
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Figure 4. The augmented optimal rain gauge network with additional fictitious stations 

in the study area. 
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3.3 ANN-Based Input Variable Selection 

3.3.1 ANN model  

Artificial neural networks (ANNs) are biologically inspired general computational 

models that have been roughly based on the functioning of human brain. ANN is highly 

beneficial over conventional hydrological models because it has flexible structures that 

are able to simulate not only the linear but also the complex nonlinear hydrologic 

relationship between a model’s input and output variables. In addition, ANN is capable 

of adapting itself to changing conditions leading to the enhanced model performance, 

shorter computation times and faster model development (Yilmaz and Muttil, 2014). 

Once trained properly, ANN model can be used to make forecasting of a future output 

for a set of given inputs. Detailed background of the ANN theory can be found in 

Govindaraju and Rao (2000) and Tayfur (2012). 

 

An ANN is characterized by its architecture, training, or learning algorithm and by its 

activation function. The ANN model constructed in this study is the feed-forward 

multilayer perceptron (MLP), which is the most commonly used network topology in 

hydrological forecasting (ASCE Task Committee, 2000a, b). The MLP is organized as 

layers of computing elements, known as neurons, connected between layers via 

weights. A single hidden layer is considered in this study because a single hidden layer 

with sufficient neurons is often sufficient in many cases to fit multi-dimensional 

mapping problems well (Wu et al., 2005). Thus, the resulting MLP network 

configuration, as shown in Figure 5, consists of an input layer that receives inputs from 

the environment, an intermediate hidden layer, and an output layer that produces the 

network’s response (Muttil and Chau, 2006, 2007). The number of neurons in the 

hidden layer depends on the problem complexity, number of input and output variables. 

Having a large number of hidden neurons usually gives the network flexibility to solve 

complex systems but this may cause overfitting. Therefore, it is essential to identify the 

optimal number of nodes in the hidden layer, which greatly influences the performance 

of the trained network. In this study, the optimum number of neurons in the hidden 

layer is identified using a trial and error approach by varying the number of hidden 

layer neurons. 
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Figure 5. Configuration of a three-layer feed-forward multilayer perceptron (MLP) 

neural network architecture 

 

In the MLP network, processing in neurons is done from the input layer through hidden 

layers to the output layer. Nonlinearity of the system is captured with activation 

functions in the ANN model. Amongst many types of activation functions, the sigmoid 

and the hyperbolic-tangent activation functions are the most commonly used functions 

in hydrological modelling (Dawson and Wilby, 2001). In this study, the sigmoid 

activation function is used in the hidden layer and a linear activation function is used in 

the output layer. 

 

A backpropagation algorithm is used to train the ANN model, which is a supervised 

learning algorithm that adjusts the connection weights and biases in the backward 

direction. A number of training algorithms have been developed for error 

backpropagation learning. In this study, the Levenberg–Marqurdt (LM) 

backpropagation algorithm is used. The LM algorithm is more reliable than any other 

backpropagation variants because it has the fastest convergence among all algorithms 
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and is also able to obtain the lowest mean square error in many cases (Linares-

Rodriguez et al., 2015). The ANN model is implemented through the MATLAB Neural 

Network Toolbox. 

 

A common practice in ANN modelling is to split the input dataset into appropriate 

training, validation, and testing subsets. This often helps to avoid overfitting problems 

and guarantee generalization capability of ANN (Linares-Rodriguez et al., 2015). Thus, 

the sampled dataset (i.e., 9667) of this study is divided according to the proportions 

70% (i.e., 6767), 15% (i.e., 1450), and 15% (i.e., 1450) for training, validation, and 

testing datasets, respectively. More data (two-third of total data) are considered in the 

training set because in an ideal situation a larger-input dataset is preferable for training 

an ANN model. This approach often helps to achieve a better calibrated ANN model by 

capturing all the maximum and minimum values in the data series. The training dataset 

is used to train the ANN model. The validation dataset is used during the training 

process to confirm that the model does not cause an overtraining problem. In other 

words, when validation error increases for a specified number of iterations, the training 

is stopped. Finally, the performance of the trained ANN model is tested using the 

testing datasets. ANN weights and biases are also initialized using a fixed random seed 

value so that the same ANN model structure can reproduce the same network response 

at all times. The backpropagation training of the ANN is terminated after 1000 epochs, 

which is expected to be satisfactory in this study.  

3.3.2 Identification of significant input variables based on ANN 

weights 

One of the most important steps in ANN modelling is the identification of an 

appropriate set of input variables that essentially defines the output of a system (Muttil 

and Chau, 2006, 2007). If relevant input variables cannot be accurately identified, it is 

likely that the desired input-output relationships cannot be accurately captured by the 

ANN model. On the contrary, when excessive numbers of variables are used as the 

input, the highly correlated variables dominate the model and hence it is not possible to 

use information from all the measurements available. In addition, too many inputs may 

cause overparameterization problems (Akhtar et al., 2009; Linares-Rodriguez et al., 
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2015). This is usually addressed by different pre-processing and/or input selection 

techniques that attempt to reduce the input space by selecting the most significant input 

variables. The commonly used input selection techniques include correlation-based 

analysis, mutual information analysis, data mining techniques (e.g., principal 

component analysis, cluster analysis), and forward selection and backward elimination 

techniques (Bowden et al., 2005; Muttil and Chau, 2007).  

 

In the recent past, an ANN-based input selection technique has been demonstrated by 

Muttil and Chau (2006, 2007) to identify the most significant input variables, which 

offers several advantages. Since ANN itself is used for significant input variable 

selection, no further analytical procedures are necessary for the same. A major 

advantage of ANN model is that it is able to learn problems involving very non-linear 

and complex data. Therefore, the model can identify correlated patterns between input 

data and corresponding target values. The ANN-based input selection technique 

overcomes some of the limitations associated with the aforementioned commonly used 

input selection techniques. For example, ANN can take into account the interaction 

amongst variables in the input space and thus identify variables that may not be 

significant by itself, but are significant in combination with other variables (Muttil and 

Chau, 2007). Thus, the ANN-based technique is ideally suited for identifying 

significant input variables for streamflow forecasting. 

 

In this study, a two-step procedure is adopted to identify the most significant input 

variables. First, a set of candidate inputs is prepared based on a priori knowledge of the 

system being modelled. Before training, it is often useful to scale the inputs and targets 

so that they always fall within a specified range. In this study, input and output data are 

standardized between 0 and 1. The MLP network is then trained with the standardized 

data and the ANN-based input selection technique is used to select the best set of input 

variables that predominantly describes the streamflow at the catchment outlet. 

According to this technique, an interpretation of the connection weights along the paths 

from the input layer to the hidden layer of the trained network is undertaken. The inputs 

with the largest weight values indicate the most significant input variables. An input 

significance measure, known as the contribution factor, is used to determine the relative 
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predictive importance of the independent variables in predicting the network’s output. 

The contribution factor of the nth variable, CFn is defined by Equation (1) as:  

 

𝐶𝐹𝑛 =
∑ 𝐴𝐵𝑆(𝑤𝑗𝑛)𝑛𝐻

𝑗=1
∑ ∑ 𝐴𝐵𝑆(𝑤𝑗𝑖)𝑛𝐻

𝑗=1
𝑛𝐺
𝑖=1

× 100                                               (1) 

 

Where nG is the number of input variables, nH indicates the number of hidden nodes, 

wji are the weights from input layer i to the hidden layer j (as shown in Figure 5) and 

ABS refers to the absolute function. The summation of absolute values of network 

weights is used because some weight values may be positive and others are negative 

(Muttil and Chau, 2007).  

3.4 Streamflow Forecasting and Assessment 

In the current study, streamflow forecasting is achieved through developing the rainfall-

runoff (R-R) relationship between the future streamflow at the catchment outlet, and 

rainfall and streamflow records available up to the current time t. Mathematically, the 

R-R relationship can be expressed as: 

 

𝑄𝑡+𝑉∆𝑡 = 𝑓(𝑅𝑡, 𝑅𝑡−∆𝑡, ⋯ , 𝑅𝑡−𝑈∆𝑡, 𝑄𝑡, 𝑄𝑡−∆𝑡, ⋯ , 𝑄𝑡−𝑈∆𝑡)                           (2) 

 

where Q is the streamflow (m3/s), R is the rainfall (mm), V (with V = 1, 2, 3,……) 

denotes how far into the future the streamflow forecasting is sought, U (with U = 1, 2, 

3,……) indicates how far back the recorded data in the time series likely affect the 

streamflow forecasts while Δt stands for time interval. The neural network structure for 

the ANN model as generalized in Figure 5 is used to forecast the one-day-ahead 

streamflow at the catchment outlet. It is important to note that for a simple 

demonstration of the proposed methodology, only one-day-ahead streamflow 

forecasting is undertaken in the current study and thus seven-days-ahead and/or 

seasonal forecast of streamflows are not the scope of this work.  

 

In the current study, three different ANN-based streamflow forecasting models are 

formulated, which are described below: 
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x ANN model-1: This ANN model includes the current rain gauge network-

based rainfall data together with streamflow observations as the input (see 

Figure 1). This model is designated as the base case for comparison in order 

to test the robustness and efficacy of the proposed approach. 

x ANN model-2: This ANN model uses the optimal rain gauge network-

based rainfall data along with streamflow observations as the input (see 

Figure 3). This model is indicated as the test case-1 wherein no additional 

fictitious stations are incorporated in the optimal network design. 

x ANN model-3: This ANN model includes the augmented optimal rain 

gauge network-based rainfall data in combination with streamflow 

observations as the input (see Figure 4). This model is designated as the test 

case-2, in which additional fictitious stations are considered to augment the 

optimal rain gauge network. 

 

The performance of each ANN model for streamflow forecasting is assessed and 

compared using four different evaluation metrics given in Equation (3)-(6): normalized 

root mean squared error (NRMSE), mean absolute error (MAE), Nash-Sutcliffe 

coefficient of efficiency (NSCE), correlation coefficient (CC). Further details on these 

metrics can be found in Dawson et al. (2007) and Moriasi et al. (2007).  

 

NRMSE = √∑ [𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑒𝑠𝑡(𝑡)]2𝑁
𝑡=1
∑ [𝑄𝑜𝑏𝑠(𝑡) − �̅�𝑜𝑏𝑠]2𝑁

𝑡=1
                                                (3) 

 

MAE = ∑ ‖𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑒𝑠𝑡(𝑡)‖𝑁
𝑡=1

𝑁                                                          (4) 

 

NSCE = 1 − ∑ [𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑒𝑠𝑡(𝑡)]2𝑁
𝑡=1
∑ [𝑄𝑜𝑏𝑠(𝑡) − �̅�𝑜𝑏𝑠]2𝑁

𝑡=1
                                                (5) 

 

CC = ∑ [𝑄𝑜𝑏𝑠(𝑡) − �̅�𝑜𝑏𝑠] × [𝑄𝑒𝑠𝑡(𝑡) − �̅�𝑒𝑠𝑡]𝑁
𝑡=1

√∑ [𝑄𝑜𝑏𝑠(𝑡) − �̅�𝑜𝑏𝑠]2𝑁
𝑡=1 × √∑ [𝑄𝑒𝑠𝑡(𝑡) − �̅�𝑒𝑠𝑡]2𝑁

𝑡=1
             (6) 
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where 𝑄𝑜𝑏𝑠(𝑡) is the observed streamflow at time t, 𝑄𝑒𝑠𝑡(𝑡) is the forecasted 

streamflow at time t, �̅�𝑜𝑏𝑠 and �̅�𝑒𝑠𝑡 are the mean value of observed and forecasted 

streamflow, respectively, and N is the number of observations in the time series data. 

4. RESULTS AND DISCUSSION 

4.1 Current and Optimal Rain Gauge Network-based Input for 

ANN Model  

The three-layer feed-forward MLP neural network, as generalized in Figure 5, is first 

trained to formulate the ANN model-1using inputs that comprise data from the current 

rain gauge network-based rainfall and available streamflow records in the Middle Yarra 

River catchment (Figure 1). The neural network is then trained to formulate the ANN 

model-2 using inputs that include data from the optimal rain gauge network-based 

rainfall and available streamflow records in the catchment (Figure 3). As mentioned 

earlier, there are 19 rain gauges and 4 streamflow measuring stations in the current rain 

gauge network (Figure 1 and Table 1). The optimal rain gauge network as described in 

Adhikary et al. (2015) also consists of the same number of rain gauge and streamflow 

measuring stations (Figure 3) because no additional fictitious stations were considered 

for the optimal network design in that study. A major advantage of the optimal network 

is that stations are optimally located in the optimal network and hence it provides 

improved rainfall estimates (please see Adhikary et al., 2015 for details).  

 

According to the Bransby-Williams formula (Wanielista et al., 1997), it is estimated 

that the catchment has a time of concentration of approximately 3 days. Rainfall 

occurring within a duration equal to time of concentration would exhibit the greatest 

influence on streamflows. In addition, streamflow values from the preceding duration 

provide the antecedent flow information prior to the onset of a rainfall event (Wu et al., 

2005). Therefore, a time lag of 3 days (t, t-1 and t-2) is adopted in this study to obtain 

the time-lagged input (rainfall and streamflow) values for forecasting (t+1) streamflows 

at the catchment outlet. Hence, for each of the current and optimal networks, rainfall 

and streamflow data from 19+4 (=23) stations gives a total of 23*3 (= 69) inputs from 
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which the significant input variables are to be selected to formulate the ANN model-1 

and ANN model-2. 

 

The input layer of the neural network for both the current and optimal networks 

consists of 69 nodes based on the 69 inputs. The output layer consists of a single node, 

which is streamflow at the catchment outlet that is to be forecasted. The neural 

networks are then trained with the training details and data division described earlier. 

The backpropagation training of the neural networks is terminated after 1000 epochs, 

which is found to be sufficient in this study. In order to find the optimum number of 

hidden nodes, a trial and error procedure is adopted in the training of neural networks 

by gradually varying the number of nodes in the hidden layer from 2 to 10. The optimal 

number of hidden nodes is found to be 6 for both the current and optimal rain gauge 

networks. Hence, the resulting neural network based on the current and optimal rain 

gauge network-based input has 69-6-1 structure. 

 

ANN weights for each of the trained neural networks with 69-6-1 structure are obtained 

from the simulation. The ANN weights are inserted in Equation (1) to calculate the 

contribution factor of each of the 69 inputs for both the current and optimal rain gauge 

networks, which are presented in Table 2. The sum of the contribution factors of all the 

69 input variables should be 100%, which can be seen in Table 2. The sum of the 

contribution factors of all the 69 input variables should be 100%, which can be seen in 

Table 2. As explained earlier, the definition of the contribution factor demonstrates that 

the higher its value for an input variable, the more that input contributes to the 

streamflow forecasting. In other words, if all input variables are considered to have 

equal significance, then each input exhibits a significance of 1/69 (equivalent to 

contribution factor of 1.45%) of the total contribution factor (= 100%) of all input 

variables. Thus, the input variables with a contribution factor greater than 1.45% are 

considered as the relatively more significant variables, which are indicated with the 

shaded color in Table 2.  
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It is evident from Table 2 that the influence of the significant input variables decreases 

in most cases with an increase of time lag for both the current and optimal rain gauge 

networks. It is also seen from the table that the optimally located stations in the optimal 

rain gauge network have higher contribution factor than that given by them in the 

current rain gauge network. In other words, the significant input variables based on the 

optimal network describes the outlet streamflow relatively better than what the current 

network does. This indicates the significance of incorporating the optimal rain gauge 

network-based input for accurate streamflow forecasting in a catchment, which is the 

main focus of the current study. 

4.2 Augmented Optimal Rain Gauge Network-Based Input for ANN 

Model 

The MLP neural network, as generalized in Figure 5, is also trained using inputs that 

include data from the augmented optimal rain gauge network-based rainfall and 

available streamflow values in the study catchment to formulate the ANN model-3. The 

augmented optimal network consists of 29 rain gauges and 4 streamflow measuring 

stations as shown in Figure 4. Therefore, rainfall and streamflow data from 19+10+4 (= 

33) stations in the augmented optimal network gives a total of 33*3 (= 99) inputs 

considering the adopted 3 day time lag, from which the significant input variables are to 

be selected for the ANN model-3. Thus, the input layer of the neural network for the 

augmented optimal network comprises 99 nodes and the output layer consists of a 

single node based on the outlet streamflow that is to be forecasted. The optimal number 

of nodes in the hidden layer is found to be 4 based on the trial and error process by 

gradually varying the number of hidden nodes from 2 to 10. Thus, the resulting neural 

network has 99-4-1 structure for the augmented optimal network, which is trained using 

the same training specification and data division explained earlier. ANN weights of the 

trained neural network with 99-6-1 structure are then obtained from the simulation. The 

contribution factor of each of the 99 input variables is calculated using Equation (1) 

based on the ANN weights for the augmented optimal network, which is presented in 

Table 3.  
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Table 3. Contribution factor based on the trained ANN weights for the augmented 

optimal rain gauge network for one-day-ahead streamflow forecasting 

Sl. 
no. 

Augmented optimal rain gauge network (see Figure 4) 
(Additional fictitious stations are considered in the optimal network design) 

Input 
Variables 

Contribution factor* (CFn) of the input variables 
(%) Sum 

 (t) (t-1) (t-2)  
1 R1 0.82 0.84 0.87 2.53 
2 R2 2.36 1.11 0.54 4.01 
3 R3 1.83 1.21 0.87 3.91 
4 R4 0.78 1.46 1.43 3.68 
5 R5b*** 1.22 0.88 0.63 2.74 
6 R6 0.60 0.64 1.02 2.26 
7 R7 1.79 0.73 0.98 3.51 
8 R8 1.44 1.61 2.13 5.18 
9 R9 0.87 1.28 0.33 2.47 
10 R10 0.57 1.10 0.59 2.26 
11 R11 0.95 1.51 0.85 3.31 
12 R12 2.25 0.64 0.55 3.44 
13 R13 1.35 0.36 0.55 2.26 
14 R14 0.25 0.24 0.98 1.46 
15 R15 0.85 0.60 0.87 2.33 
16 R16 1.35 0.26 0.58 2.20 
17 R17 0.75 0.76 0.30 1.81 
18 R18a** 0.74 1.03 1.14 2.91 
19 R19a** 1.61 0.72 1.06 3.39 
20 S1 2.22 2.02 1.62 5.86 
21 S2 2.55 2.55 2.00 7.10 
22 S3 1.10 1.18 0.89 3.17 
23 S4 1.41 0.62 0.94 2.98 
24 P1 1.01 0.46 1.30 2.78 
25 P2 1.40 0.41 1.22 3.02 
26 P3 0.73 0.55 1.09 2.37 
27 P4 0.49 0.72 1.02 2.24 
28 P5 0.32 1.09 0.38 1.80 
29 P6 0.97 0.99 0.91 2.87 
30 P7 0.39 0.80 1.03 2.22 
31 P8 0.80 0.61 1.22 2.64 
32 P9 0.49 0.84 0.82 2.14 
33 P10 1.30 1.20 0.68 3.18 

 Sum of contribution of all variables = 100 
 

*Shaded cell shows variables having a contribution factor greater than 1/99 = 1.01% 

**Optimal position of additional rain gauge stations (stations 18 and 19, see Figure 3) 
as identified by Adhikary et al. (2015) 

***Optimal re-located position of redundant rain gauge station (station 5, see Figure 3) 
as identified by Adhikary et al. (2015) 
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The sum of the contribution factors of all the 99 input variables should be 100%, which 

can be seen in Table 3. In general, if all input variables are considered to have equal 

significance, then each input has a significance of 1/99 (equivalent to contribution 

factor of 1.01%) of the total contribution factor (= 100%) of all input variables. Thus, 

the input variables with a contribution factor greater than 1.01% are considered as the 

relatively more significant variables in this case, which are indicated with the shaded 

dark color in Table 3. As can be seen from the table, apart from the selected other 

significant input variables, some additional fictitious stations in the augmented optimal 

network are seen to have influence on the outlet streamflows. This indicates that the 

optimal locations of rain gauge stations should be decided in the final operational 

network after satisfying the objectives of accurate rainfall estimations as well as 

enhanced streamflow forecasting simultaneously. 

4.3 Streamflow Forecasting with Current and Optimal Rain Gauge 

Network-Based Input 

In order to forecast streamflow, the ANN-based streamflow forecasting models (i.e., 

ANN model-1 and ANN model-2) as explained by Equation (2) are formulated using 

the identified significant inputs for both the current and optimal rain gauge networks. It 

can be seen from Table 2 that 29 significant inputs are identified for the current rain 

gauge network whereas 30 significant inputs are identified for the optimal rain gauge 

network. The neural networks are trained once again with the training details and data 

division described earlier using the selected significant inputs. The optimum number of 

hidden neurons for the neural networks is also obtained through the trial and error 

process described earlier. The optimal number of hidden nodes is found to be 2 for both 

the ANN model-1 and ANN model-2. Hence, the ANN model-1 consists of 29-2-1 

structure whereas the ANN model-2 has 30-2-1 structure. The neural network 

simulations of the ANN model-1 and ANN model-2 are then carried out to generate 

one-day-ahead streamflow forecasting at the catchment outlet. For both the ANN 

model-1 and ANN model-2, different performance evaluation measures are computed 

for the observed and predicted streamflows, which are presented in Table 4.  
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It is evident from the results presented in the table that the ANN model-2 produces 

more accurate streamflow forecasts than that produced by the ANN model-1. The 

improvement is significant in terms of the four performance evaluation measures 

(NRMSE, MAE, NSCE, and CC) in which NRMSE and MAE are decreased by 7.1% 

and 2.4%, respectively whereas NSCE is increased from 0.919 to 0.930 and CC is 

improved from 0.961 to 0.969 for the testing dataset. Scatter plots of the ANN model-1 

and ANN model-2 forecasting results in the testing phase are presented in Figures 6a-

6b. As can be seen from the figures, scatter points for the ANN model-2 forecasted 

values are located more closely with the 450 calibration line and thus, shows a relatively 

better agreement between the observed and predicted streamflows than that given by 

the ANN model-1 forecast. Furthermore, time series plots of the observed and 

simulated streamflows in the testing phase for the ANN model-1 and ANN model-2 are 

shown in Figures 7a-7b. It is evident from the figures that ANN model-2 exhibits better 

agreement between the observed and streamflow time series than ANN model-1. 

Figures 7a-7b (with the largest peak values zoomed) also indicate that the ability of 

ANN model-2 to capture the peak values are better than the ANN model-1. This 

conclusively proves that the optimal rain gauge network-based input (ANN model-2) 

produces better streamflow forecasts than the current rain gauge network-based inputs 

(ANN model-1) produce. All these findings reveal the effectiveness of using the 

optimal rain gauge network-based input in improving the streamflow forecasting of a 

catchment. 
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Figure 6. Scatter plots for the testing phase for (a) ANN model-1 based on the BoM’s 

current rain gauge network, (b) ANN model-2 based on the optimal rain gauge network 

considering no additional fictitious stations (c) ANN model-3 based on the augmented 

optimal rain gauge network considering additional fictitious stations 
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Figure 7. Time series plots of the observed streamflow vs simulated streamflow in the 

testing phase for (a) ANN model-1 based on the BoM’s current rain gauge network, (b) 

ANN model-2 based on the optimal rain gauge network considering no additional 

fictitious stations (c) ANN model-3 based on the augmented optimal rain gauge 

network considering additional fictitious stations 
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4.4 Streamflow Forecasting with Augmented Optimal Rain Gauge 

Network-Based Input 

ANN model-3 as explained by Equation (2) is formulated using the identified 

significant inputs for the augmented optimal rain gauge network. Table 3 shows that 42 

inputs are selected as the significant inputs for the augmented optimal network. The 

neural networks are trained once again with the training details and data division 

described earlier using the 42 selected significant inputs. The optimum number of 

hidden neurons for the neural network is obtained through the trial and error process 

described earlier, which is found to be 2 for the ANN model-3. Thus, the ANN model-3 

has 42-2-1 structure, which is then used to generate one-day-ahead streamflow 

forecasting at the catchment outlet. Different performance evaluation measures are also 

computed for the observed and the ANN model-3 forecasting results, which is shown in 

Table 4. As can be seen from the table, the ANN model-3 outperforms all the models to 

generate accurate streamflow forecasting. The improvement is significant when 

compared to ANN model-1, in terms of the four performance evaluation measures 

(NRMSE, MAE, NSCE, and CC) in which NRMSE and MAE are reduced by 18.3% 

and 30.4%, respectively whereas NSCE is improved from 0.919 to 0.946 and CC is 

improved from 0.961 to 0.974 for the testing dataset. Although the improvement by the 

ANN model-3 is not significant compared to the ANN model-2, this gives an important 

insight about the usage of an augmented rain gauge network for the enhanced 

streamflow forecasting.  

 

For the ANN model-3 forecasting results, the scatter plot in the testing phase as shown 

in Figure 6c also shows that the best results is achieved through this model. It is also 

evident from the time series plot for the ANN model-3 in the testing phase as shown in 

Figure 7c that the observed and simulated streamflows have the best agreement. As can 

be also seen from the Figures 7a-7c that the ability of ANN model-3 to capture the peak 

values are better than the ANN model-1 and ANN model-2. These results indicate that 

improved streamflow forecasting can be achieved through an augmented rain gauge 

network. In other words, these results demonstrate that one should obtain the final 

operational rain gauge network from this augmented network, which is able to provide 

accurate rainfall estimates (rain gauge network design objective) as well as give the 
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enhanced streamflow forecasting (flow forecasting objective) simultaneously. 

However, it is emphasized that if cost is a concern, the optimal network, which 

provides significant improvement in streamflow forecasting over the current network, 

should be used in practice for flow forecasting since the optimal network consists of the 

optimal number of stations. The reason is that unlike the previous studies, the optimal 

network used in this study was designed without incorporating the additional fictitious 

rain gauge stations. Again, if forecasting accuracy is taken as the primary objective, the 

augmented network is recommended for flow forecasting in practice. 

5. Conclusions 

Four conclusions can be drawn based on the findings of the current study: 

 

x The proposed approach of using the rainfall input to ANN-based streamflow 

forecasting models from the optimal rain gauge network appears to be 

effective for the enhanced streamflow forecasting, particularly when the 

current operational rain gauge network is not optimal. The study 

conclusively proves the significance of the optimal location of rain gauge 

station in a catchment for enhanced streamflow forecasting. 

x The optimal locations of rain gauge stations in the final operational optimal 

network should be established after satisfying the accurate rainfall 

estimations and improved streamflow forecasting objectives simultaneously. 

The network design based on only accurate rainfall estimations objective 

may not always guarantee accurate streamflow forecasting. 

x Further improvement of forecasting performance can be achieved through 

expansion or augmentation of the rain gauge network considering additional 

fictitious rain gauge stations. In fact, the best forecasting performance are 

achieved in this study when the augmented rain gauge network-based input 

is used in the ANN-based streamflow forecasting models. 

x ANN-based input variable selection offers an indirect way of identifying the 

optimal locations of rain gauge stations in the final operational rain gauge 

network. The optimal locations of rain gauge stations can be identified from 
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an augmented or expanded network by checking the selected significant 

input variables. 
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Chapter 7 

Summary, Conclusions and 

Recommendations for Future Study 
 

 

7.1 Summary  

Australia is called the land of ‘drought and flooding rains’. This contrast was more 

evident than ever in the last two decades, when the extensive 1997-2009 Millennium 

Drought was followed by the occurrence of a series of large-scale devastating floods in 

2010-2011. These caused severe havoc in eastern and southeastern Australia where the 

country’s population and agricultural production are highly concentrated. Water 

resources play a vital role in the economic development of the region. The region’s 

explosive population growth and resulting new demands on limited water resources 

require efficient management of existing water resources rather than building new 

facilities to meet the challenge. These issues have created great challenges to effective 

management of water resources particularly in eastern and southeastern Australia. In 

the water management communities, it is well-known that to address the 

aforementioned water management challenges, maximizing water management 

efficiency based on streamflow forecasting is crucial. 

 

Streamflow forecasting is of vital importance to flood control and mitigation and water 

resources planning and management. Streamflow forecasting is usually challenging due 

to the complexity of hydrologic systems. However, a key challenge remains to achieve 
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the enhanced accuracy in streamflow forecasting. The accuracy of streamflow 

forecasting mainly depends on the input data, wherein the catchment rainfall causes the 

largest impact on streamflow. Since streamflow is a consequence of rainfall, 

uncertainty associated with rainfall can adversely affect the accuracy of streamflow 

forecasting. This highlights the importance of using accurate rainfall data in streamflow 

forecasting models to achieve the enhanced streamflow forecasting. It is now widely 

recognized in the hydrological communities that an optimal rain gauge network is able 

to provide high quality rainfall estimates. Thus, it can be hypothesized that 

incorporating the rainfall input from an optimal rain gauge network rather than from an 

existing rain gauge network (which may not be an optimal network) in the streamflow 

forecasting models would enhance the accuracy in streamflow forecasting. Therefore, 

this thesis focused on the optimal design of a rain gauge network and then use of the 

optimal network-based rainfall input along with streamflow values in streamflow 

forecasting models in order to improve the accuracy in streamflow forecasting.  

 

This study concentrates on investigating and providing potential solutions to the 

following issues associated with, rain gauge network design, spatial estimation of 

rainfall, and streamflow forecasting: (1) potential of using universal function 

approximation techniques in variogram modelling and kriging interpolation of rainfall, 

(2) performance of different univariate and multivariate kriging methods for enhanced 

spatial interpolation of rainfall, and potential of using auxiliary information (elevation) 

in addition to rainfall in kriging method for improved estimation of rainfall, (3) use of 

network augmentation (using additional rain gauge stations) as well as network 

rationalization (eliminating or re-locating redundant rain gauge stations) in the optimal 

rain gauge network design, and (4) potential of incorporating rainfall input from an 

optimal rain gauge network in the ANN-based streamflow forecasting models to 

achieve the enhanced streamflow forecasting.  

 

The aforementioned aims of the study were demonstrated through a case study area, 

which consists of the middle part of the Yarra River catchment (referred to as the 

'Middle Yarra River catchment' in this thesis) in Victoria, Australia. The extensive 

clearing of lands due to agricultural and urban development in the middle and lower 

segment of the Yarra River catchment often results in high river flows that causes 
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frequent flash flooding in the study area and the urbanized lower segment where 

Melbourne city is located. The study area also contains three major storage reservoirs, 

which support water supplies to domestic, agricultural, industrial and environmental 

purposes. Hence, the enhanced estimation of accurate rainfall and future streamflows 

specifically in the middle and upper segments of the Yarra River catchment was 

identified as an absolute and timely need. In this study, 19 rain gauge stations and 4 

streamflow measuring stations of the Yarra River located within the study area were 

considered for the analysis. All rainfall and streamflow time series data were collected 

at daily time steps and streamflow forecasting models detailed in this study were 

developed using the ANN-based data-driven modelling technique. 

 

Hydrological investigations often require the estimates of hydrologic variables such as 

rainfall at ungauged locations in a catchment where no direct observations are readily 

available. Variance dependent stochastic interpolation methods such as kriging are the 

most commonly used methods for this purpose. In traditional kriging, accurate kriging 

results highly depend on the fitting and estimation of a correct variogram model. 

Selection of an appropriate variogram model, finding the optimal variogram parameters 

(i.e., nugget, sill and range coefficients) and the associated computational burdens are 

some difficulties involved in the traditional kriging. As a potential solution to these 

issues, a new universal function approximation-based kriging was developed using GP 

in this study where GP was used as a universal function approximator to derive the 

variogram model. This new variant of kriging is referred to as the GPOK method in 

which the standard parametric variogram models (i.e., exponential, gaussian, spherical 

models) in traditional ordinary kriging were replaced by the GP-derived variogram 

model. The performance of the GPOK method was compared with the traditional and 

another universal function approximation technique such as ANN-based ordinary 

kriging methods. It was found that the GPOK method demonstrated in this study 

overcomes the limitations associated with the traditional ordinary kriging and 

outperforms in estimating rainfalls at ungauged locations. It was also found that 

variogram modelling using GP offers several advantages. For example, GP does not 

require a pre-defined mathematical form or architecture unlike ANN to generate the 

functional variogram models. In addition, GP can generate variogram models, which 

consists of similar mathematical structure as having with the standard variogram 
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models. Furthermore, GP-derived variogram model does not require identifying the 

variogram parameters in advance, unlike the standard parametric variogram models in 

traditional kriging. Therefore, the GPOK was found to be completely free from the 

tedious trial and error process of estimating the variogram parameters. The function 

approximation capability of GP generates the best fitted GP-derived variogram models 

compared to the standard models, which were found to be the best functional variogram 

models. Thus, the GP-derived variogram models offer a viable alternative to the 

existing standard variogram models for kriging interpolation of rainfall. 

 

A key advantage of kriging over deterministic and other conventional interpolation 

methods is that while providing the kriging variance for rain gauge network design, it is 

capable of complementing the sparsely sampled primary variable (such as rainfall) by 

the correlated densely sampled auxiliary information (such as elevation) to improve the 

estimation accuracy of primary variable. This multivariate extension of kriging is 

referred to as the cokriging method, which was investigated in this study for enhanced 

spatial interpolation of rainfall. Based on the rainfall-topography relationship of the 

case study catchment, the elevation was used as an auxiliary variable in addition to 

rainfall in the cokriging methods. However, it is often challenging to select the best 

interpolation method arbitrarily from a wide variety of available kriging and 

deterministic interpolation methods for estimating the spatial distribution of rainfall for 

a particular area because the performance of an interpolation method depends on many 

factors. As a solution to this issue, a comparative evaluation of a range of univariate 

and multivariate kriging and deterministic interpolation methods was performed in this 

study to identify the most appropriate interpolator for enhanced spatial interpolation of 

rainfall and generation of continuous rainfall maps. Following a comparison of 

performances of all interpolation methods, it was found that the ordinary cokriging 

using elevation information along with rainfall outperformed the other methods and 

was found to be the most suitable interpolator for enhanced estimation of spatial 

distribution of rainfall in the Middle Yarra River catchment. 

 

Conventionally, increasing network density through network augmentation using 

additional rain gauge stations to reduce the kriging variance of the network is generally 

used for the design of a rain gauge network. However, it is likely that a rain gauge 



 
 

Chapter 7: Summary, Conclusions and Recommendations for Future Study 

 205  
 
S.K. Adhikary: Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting           

network may consist of redundant stations, which have little or no contribution to the 

network performance for providing quality rainfall estimates. Since operation and 

maintenance of a rain gauge station involves large costs, removal of redundant stations 

can contribute to substantial cost reductions. Therefore, for optimal design of a rain 

gauge network using the kriging-based geostatistical approach based on the variance 

reduction principle, it is essential to consider both additional and redundant stations 

simultaneously in order to achieve the variance reduction and cost-effectiveness 

objectives of the optimal network. As a solution to this issue, a simple and effective 

rain gauge network design technique considering both additional and redundant 

stations, which involves a methodical search for the optimal number and locations of 

rain gauge stations in the network that minimize the kriging variance of the network. 

The technique allows achieving the optimal rain gauge network for the case study 

catchment through optimal positioning of additional stations (network augmentation) as 

well as removing and/or optimally relocating of existing redundant stations (network 

rationalization). Furthermore, the spatial variability of rainfall in the case study 

catchment is mainly caused by the El Niño and La Niña processes of ENSO 

phenomenon. As a solution to this issue, the rain gauge network was designed 

separately based on rainfall records obtained for both El Niño and La Niña periods and 

the network that gave the enhanced estimates of areal average and point rainfall values 

was chosen as the optimal rain gauge network. Following a comparison of 

performances between the optimal and existing rain gauge networks, it was found that 

the optimal network outperformed the existing one based on the spatiotemporal 

estimation of rainfalls. 

 

In general, rainfall is considered independent of streamflow forecasting in many 

hydrological studies such as the optimal design of a rain gauge network for estimation 

of areal average rainfall over a catchment or area. However, this does not allow one to 

know the strength and weakness of the designed optimal network when the optimal 

network-based rainfall data are used in streamflow forecasting models. Therefore, it is 

highly rational to design an optimal rain gauge network for providing a satisfactory 

solution to the specific need of enhanced streamflow forecasting for which the network 

is being designed. In practice, rainfall data are fed into streamflow forecasting models 

directly from the existing rain gauge network that might exhibit high variance and 
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hence not be the optimal one. This ultimately adversely affects the performance of 

streamflow forecasting models and thus results in the less accurate streamflow 

forecasts. As a solution to this issue, an ANN-based enhanced streamflow forecasting 

approach was developed and demonstrated in this study, which incorporated the 

optimal rain gauge network-based input instead of using existing non-optimal rain 

gauge network-based input in order to achieve the enhanced accuracy in streamflow 

forecasting. The proposed approach was found to be highly effective in improving the 

accuracy in streamflow forecasting, particularly when the current operational rain 

gauge network is not an optimal one. Further improvement in streamflow forecasting 

was achieved through the expansion or augmentation of the optimal rain gauge network 

considering additional fictitious rain gauge stations. The catchments were divided into a 

number of sub-catchments based on the digital elevation model and then the fictitious 

stations were placed in sub-catchments (where there is no station) and streamflow 

forecasting was performed. The ANN-based input selection technique that was also 

demonstrated in this study offers a viable technique for selecting significant input 

variables for data-driven modelling as this technique is capable of learning problems 

involving very non-linear and complex data. Furthermore, the input contribution factor 

of selected significant input variables obtained from the technique gives an indirect 

measure by which optimal locations of stations from a rain gauge network can be 

identified, giving an indirect way of rain gauge network design for enhanced 

streamflow forecasting. 

7.2 Conclusions 

The following conclusions are drawn based on the findings obtained from this study: 

 

x In a rain gauge network design exercise, network augmentation (using 

additional stations) as well as network rationalization (eliminating or re-

locating redundant stations) and identification of optimal locations of both 

additional and redundant stations are seen as a potential way to achieve the 

optimal rain gauge network. In other words, the additional fictitious stations 

that contribute to reduce kriging variance of the network can be selected. 

And the redundant stations that have little or no contribution to the network 
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variance reduction can be either eliminated or optimally located in the high 

variance areas of the network. 

x In this study, it was found that relocation and optimal placement of only 

redundant stations in the high variance areas of the rain gauge network gives 

the maximum reduction of the kriging variance and the best estimates of 

areal average and point rainfalls. This concludes that optimal placement of 

redundant stations in addition to additional stations is vital to achieve an 

optimal rain gauge network. 

x The enhanced streamflow forecasting approach developed in this study 

incorporates the input from an optimal rain gauge network. This approach 

was found to be highly effective in improving the streamflow forecasting 

accuracy, particularly when the current operational rain gauge network is 

not an optimal one. 

x The ANN-based input selection technique that was employed in this study 

for streamflow forecasting offers a viable technique for significant input 

variables selection. This technique is capable of learning problems 

involving very non-linear and complex data. 

x Further improvement in streamflow forecasting was achieved through 

expansion or augmentation of the optimal rain gauge network by 

incorporating additional fictitious rain gauge stations. The fictitious stations 

were added in sub-catchments that were delineated based on the digital 

elevation model. 

x The genetic programming-based ordinary kriging (GPOK) method 

demonstrated in this study, which uses the GP-derived variogram model to 

replace the standard variogram models (i.e., exponential, gaussian, spherical 

etc.) in traditional kriging, was found to be the most suitable technique for 

improved estimation of rainfall at ungauged locations. This study 

conclusively proves that the fusion of geostatistical (ordinary kriging) and 

data-driven (genetic programming) techniques has a high potential for 

spatial surface interpolation. 
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x Use of GP as a universal function approximator in variogram modelling is 

beneficial as GP-based variogram modelling does not require a pre-defined 

mathematical form or architecture unlike other universal function 

approximator such as ANN to generate the functional variogram models. 

Furthermore, the GP-derived variogram models were found to give the best 

functional variogram models that can be used as a viable alternative to the 

standard variogram models. However, it is important to note that one should 

be cautious before using the GP-derived variogram model because it may 

not exhibit positive-definite function to produce a unique and stable solution 

for the kriging weights, which is an important pre-requisite of kriging. 

Hence, it is emphasized that in case of the GP-derived variogram models, 

two mandatory criteria including cross-validation and positive definiteness 

condition must be satisfied simultaneously to obtain an authorized GP-

derived variogram model. 

x Making use of auxiliary variables that are highly correlated with rainfall can 

enhance the spatial estimation of rainfall in a catchment. The ordinary 

cokriging using elevation information in combination with rainfall was 

found to be the most suitable interpolator in this study for estimating 

enhanced spatial distribution of rainfall. 

7.3 Recommendations for Future Study 

Based on the present study, the following future studies are recommended. 

 

x This study mainly focuses on the improvement of streamflow forecasting by 

using the optimal rain gauge network-based input in the ANN-based data-

driven modelling framework. The streamflow forecasting methodology 

presented in this study could be extended by incorporating the input from an 

optimally designed integrated hydrometric network (combined rain gauge 

and stream gauge network), which is recommended as a potential 

investigation for future studies. 
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x Study of potential improvements to the optimal rain gauge network design 

presented in this study through multi-objective optimization is considered as 

a useful investigation in future. Since large cost is involved with a rain 

gauge network (e.g., cost of installation of stations, cost of monitoring, cost 

associated with redundant station), inclusion of cost reduction objective 

together with variance reduction objective in the multi-objective 

optimization scheme of the network design is seen as a way to achieve the 

cost-efficient optimal rain gauge network.  

x The simulation and forecasting of streamflows using a conceptual or 

physically-distributed model based on the input from an optimal rain gauge 

network along with other hydrological and environmental variables (e.g., 

evaporation, temperature, humidity, soil moisture etc.) is considered as 

another potential investigation in future.   

x Assessment of uncertainty in rainfall estimates without having an optimal 

rain gauge (or hydrometric) network and its impact on streamflow 

forecasting accuracy is also recommended for future studies.  

x Use of gauge-radar rainfall ensembles as input to the streamflow forecasting 

models in data-driven or conceptual modelling framework is seen as another 

potential investigation in future studies. For this purpose, merging of rain 

gauge-radar rainfalls for accurate quantitative precipitation estimation with 

high spatial resolution can be achieved through different cokriging models 

presented in this study.  
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