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1 Introduction

The inequality
b

)s Jf(x)dxs(b—a
a
holds for any convex function f defined on R. It was first discovered by Hermite and was published in 1881
in the journal Mathesis (see [40]). But this result was nowhere mentioned in the mathematical literature and
was not widely known as Hermite’s result. Beckenbach, a leading expert on the history and theory of con-
vex functions, wrote that this inequality was proved by Hadamard [5] in 1893. In 1974, Mitrinovi¢ found
Hermite’s note [40] in Mathesis. Since (1.1) was known as Hadamard’s inequality, the inequality is now com-
monly referred to as the Hermite—Hadamard inequality. For related results, see [3, 4, 9-23, 30-34, 37, 43].
Let X be a vector space over the real or complex number field K and let x, y € X, x # y. Define the segment

a+b

f@ +5)
2

2 >

(b—a)f( a,beR,a<bh, (1.1)

x,y] :={(1 - t)x + ty, t €]0, 1]}.
We consider the function f : [x, y] — R and the associated function g(x, y) : [0, 1] — R defined by
g, y)() == (1 - tx+ty), te[0,1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].
For any convex function defined on a segment [x, y] ¢ X, we have the Hermite—-Hadamard integral in-
equality (see [18, p. 2] and [19, p. 2])
1

f()%) < Jf((l ~x+ ty)dt < L0 W)

> (1.2)

which can be derived from the classical Hermite—Hadamard inequality (1.1) for the convex function g(x, y).
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14 — S.S.Dragomir, Double integral inequalities of Hermite—Hadamard type DE GRUYTER

Since f(x) = ||x||P for x ¢ Xand 1 < p < oo is a convex function, then, for any x, y € X, from (1.2) we have
the norm inequality (see [44, p. 106])

1
14 p 14
”XZL)/“ < J"(l — l’)X+ ty”P dt < M
0

Motivated by the above results, in this paper we obtain double integral inequalities of Hermite-Hadamard
type in which upper and lower bounds for the quantity

b d
ax+/3y
(b - a)(d C)ij a+B dﬁda

are provided for some classes of h-convex functions defined on linear spaces. Applications for norm inequal-
ities and for Godunova-Levin-type functions are also given.

2 Adouble integral inequality for convex functions

Fora, b, c,d > 0 with b > a and d > c, we define the positive quantity

d

I(a, bs c, d) ::f([(aiﬁ)dﬂ)da 2.1)

and we have the following representation.

Lemma 2.1. Leta, b, c,d > 0withb > a and d > c. We have the equality
I(a’ b;C, d) =Id(a1 b)_IC(a’ b); (2-2)
where I,(x, y) is defined for x, y, z > O with y > x by

L(x,y) := ((y —z2)In(y +2) + (22 - x> In(x + 2) + (y - x)( X2ﬂ>>

In particular, we have
Ia, b; @, b) = In(a, b) ~ Lo(a, b) = 5 (b - a)”. (2.3)

Proof. We have

I(a, b;c, d)

a(ln(a + d) - In(a + d)) da

|
—_— VN Ne—
S
/N A
O —
2 QU
+ =
=
N~
QU
| —

b
= | aln(a+d) da—Jaln(uH d)da
a
b+d b+c
= J(u—d)lnudu— J(u—c)lnudu. (2.4)
a+d a+c
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Utilising the integration by parts formula, we have

b+d

_ A2 b+d 2
J(u—d)lnuduz(u d) Inu ——J w-d du
2 ard 2 u
a+d a+d
2
_ b_ Inh +d) - & ln(a id)- L j (u ud) (2.5)
a+d
A straightforward calculation gives
b+d d b
J (“_u  du=(b- )(‘” —d>+d21n(b+d)—d21n(a+d). (2.6)

a+d

From (2.5) and (2.6) we have

b+d
b? a? 1
J (u-d)lnudu="1n(b+d) - 5 Ina+d) - 5((b—a)(

a+d

a+b

- d) +dIn(b +d) - d®In(a + d))

=1I4(a, b).

Similarly, we have
b+c

j (u-c)lnudu=1I:(a,b)

a+c

and by (2.4) we get the desired identity (2.2).
Finally, one easily verifies that

Iy(a, b) = %(b2 —a®)In(a + b) + %(b —a)?

and 1 1
Iu(a,b) = E(bz -a®)In(a+b) - Z(b -a)?,
which gives the desired equality (2.3). O

We have the following double integral inequality for convex functions.

Theorem 2.2. Let f: C < X — [0, 00) be a convex function on the convex set C in a linear space X. Then, for
any x,y € Cand forany a, b, c,d > 0withb > a and d > c, we have

bd
I(a, b;c,d I(c,d;a, b
f( S )X+ o )y)<(b a)(d—c)JJf “X+By dﬁda

(b-a)d-c) (b-a)d-rc) a+pf
I(a, b;c, d) I(c, d;a, b)
< (b_a)(d_c)f(XH (b_a)(d_c)f(y), (2.7)
where
b, d
I(a, byc, d) i= j ( J(af )dﬁ)da
and

b d
I(c, d; a, b) := J(j(a/jﬂ)dﬁ)da.
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Proof. Consider the function gy, : [0, 1] — R defined by gy (s) = f(sx + (1 - s)y). This function is convex
on [0, 1] and by Jensen’s double integral inequality for real functions of a real variable we have

Jo J¢ (s%g) 4B de (f
g”( (b-a)d-0 ><(b Q- c)”g 5)dpde

which is equivalent to

b d, 4 b d a
i(k L<m)dﬁdax+<l_la Liperae ), )

(b-a)d-c) (b-a)d-c)

b d
< manas c)JJf rig (1 g ) aBaa

By a simple calculation we obtain

bd, 4 b d, B b d
L) dBd £)dpd
f( )@t J, | (an)s ay>< [[#(:5
(b-a)d-rc) (b-a)d-c) (b - a)(d c)ac a+B +

y) dB da

and the first part of (2.7) is proved.
By the convexity of f we have

() s g™ g

forany x, y € C and for all a, 8 > O with @ + 8 > O. Integrating on the rectangle [a, b] x [c, d] gives

d b d b d
J ““ﬁy dﬁdagf(x)” a dﬁda+f(y)” B_ g da,

fly)

a+p a+pf

0 >

which proves the second part of (2.7). O

Corollary 2.3. Letf: C ¢ X — [0, 0o) be a convex function on the convex set C in a linear space X. Then, for
any x,y € C and for any b > a > 0, we have

bb
X+ y ax + ﬁy f0) + f(y)
f( 2 )5 0- a)ZHf a+p dﬂd‘“ 2
aa
The proof follows from (2.7) by noticing that
I(a,b;a, b) = %(b -a)’.

Remark 2.4. Let (X, || - ||) be a real or complex linear space and let p > 1. Then, for any x, y € X, we have

e G < g [

b-a)d-c) (b-a)d-—c) a+pf
I(a, b;c, d) I(c,d;a,b)
< [CErICET) ]I + b-ad-o Iy ¥

forany a, b, c,d > 0 with b > a and d > c. In particular, we have

b b
X+y ax + By Hp IxIIP + llylIP
O

forany b > a > 0.
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3 Double integral inequalities for h-convex functions

Assume that I and J are intervals in R with (0, 1) < J and the functions f and h are real, non-negative and
defined on I and J, respectively.

Definition 3.1 (see [50]). Let h:J — [0, co) with h not identical to 0. We say that f : I — [0, co) is an h-convex
function if, for all x, y € I, we have

fltx + (1 - ty) < h(H)f(x) + h(1 - H)f(y) (3.1)
forallt € (0, 1).

This concept can be extended for functions defined on convex subsets of linear spaces, in the same way as
above, by replacing the interval I by the corresponding convex subset C of the linear space X.

If we take y = x in (3.1), we get f(x) < (h(t) + h(1 - t))f(x), which implies that 1 < h(t) + h(1 - t) for all
t € (0, 1). By taking

1
)

Wz)2 7

For some results concerning this class of functions see [6, 39, 46, 47, 49, 50].
We recall below some concepts of convexity that are well known in the literature and can be seen as
particular instances of h-convex functions. Here, I is an interval in R.

we also get

Definition 3.2 (see [35]). Wesay that f : I — Risa Godunova—Levin function or that f belongs to the class Q(I)
if f is non-negative and, for all x, y € I and t € (0, 1), we have

fltx s (1= 09) < 00 + - f). (.2

Some further properties of this class of functions can be found in [26, 27, 29, 41, 44, 45]. Among others, it has
been noted that non-negative monotone and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f: C € X — [0, co), where C is a convex subset of the
real or complex linear space X, and the inequality (3.2) is satisfied for any vectors x, y € Cand t € (0, 1). If the
function f : C ¢ X — R is non-negative and convex, then it is of Godunova-Levin type.

Definition 3.3 (see [29]). We say that a function f: I — R belongs to the class P(I) if it is non-negative and,
forallx,y e Iand t € [0, 1], we have

fltx + (1 = y) < f(x) + fy). (3.3)

Obviously, Q(I) contains P(I) and, for applications, it is important to note that P(I) also contains all non-
negative monotone, convex and quasi-convex functions, i.e., non-negative functions satisfying

fltx + (1 - t)y) < max{f(x), f(y)} (3.4)

forall x,y € I and t € [0, 1]. For some results on P-functions, see [29, 42], while the interested reader can
consult [28] for quasi-convex functions.

If f: C <X — [0, 0c0), where C is a convex subset of the real or complex linear space X, then we say that
it is of P type (or quasi-convex) if the inequality (3.3) (or (3.4)) holds true for x,y € Cand t € [0, 1].

Definition 3.4 (see [7]). Let s be a real number with s € (0, 1]. A function f : [0, co) — [0, c0) is said to be
s-convex (in the second sense) or Breckner s-convex if

fltx + (1 - t)y) < 00 + (1 - O*f(y)
forall x,y € [0, 00) and t € [0, 1].

For some properties of this class of functions, see [1, 2, 7, 8, 24, 25, 36, 38, 48].
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The concept of Breckner s-convexity can be similarly extended for functions defined on convex subsets
of linear spaces. It is well known that if (X, || - ||) is a normed linear space, then the function f(x) = |x||P for
p > 1is convex on X. Utilising the elementary inequality (a + b)* < a’ + b®, which holds for any a, b > 0 and
s € (0, 1], for the function g(x) = | x|°* we have

gltx + (1 - 0)y) = lltx + (1= yl* < (tlixll + @ = Ollyl)® < (ElIx)® + (1 - BllyD)* = 800 + (1 - O)°8(y)

forany x, y € X and ¢t € [0, 1], which shows that g is Breckner s-convex on X.
We can now introduce another concept of function that incorporates the classes of P-functions and of
Godunova-Levin functions.

Definition 3.5. We say that the function f : C < X — [0, o) is of s-Godunova-Levin type with s € [0, 1] if

1
(1-0°

floxs (1= 09) < 2of00 + f)

forallt € (0,1)and x, y € C.

We observe that, for s = 0, we obtain the class of P-functions, while, for s = 1, we obtain the class of
Godunova-Levin functions. If we denote by Qs(C) the class of s-Godunova-Levin functions defined on C,
then we obviously have

P(C) = Qo(C€) < Qs,(C) < Qs,(C) < Q1(C) = Q(O)

for0<s; <s; < 1.
We can now prove the following generalisation of the Hermite—Hadamard inequality for h-convex func-
tions defined on convex subsets of linear spaces.

Theorem 3.6. Assume that the functionf : C < X — [0, co) is an h-convex function with h Lebesgue integrable
on [0, 1]. Lety, x € C and assume that the mapping [0, 1] > t — f((1 — t)x + ty) is Lebesgue integrable on [0, 1].
Then, we have

() () apea

(h(aiﬁ)+h((x‘%ﬁ)>dﬂd(x (3.5)

X+y 1
Zh(%)f< 2 )SZ(b—a)(d—c)

S +f)
“2(b-a)d-c)

R N
Ot n, O

forany a,b,c,d >0withb >aandd > c.

Proof. By the h-convexity of f we have

fltx + (1 = t)y) < h(H)f(x) + h(1 - )f(y) (3.6)
and
Sl = t)x + ty) < h(1 - )f(x) + h(t)f(y) (3.7)
for any t € [0, 1]. Summing the inequalities (3.6) and (3.7) and dividing by 2 gives
%(f(tx +(1-t)y) +fl(1-tx +ty)) < %(h(l =) + h()(f(X) + f(y) (3.8)
for any ¢ € [0, 1]. Taking
a
t= a+f
in (3.8) gives
1 ax + By Bx +ay 1 a B
g ) (g ) = 2(n(ap) (G op) Jowo o
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for any a, f > 0 with a + 8 > 0. Since the mapping [0, 1] > t — f((1 — t)x + ty) is Lebesgue integrable on
[0, 1], then the double integrals

d b d
ax+By ay+ﬁx
Jf s dﬁda and chf . dBda

R e,

exist and we get the second inequality in (3.5) by integrating the inequality on the rectangle [a, b] x [c, d]
over (a, f).
From the h-convexity of f we also have

(Z5) <n(5 )@ + fow (3.9
for any z, w € C. If we take

3 ax + By _ Bx +ay

Y and w= PR

in (3.9), then we get

S0 ()

f(z Shz f a+f +f a+f

for any a, > 0 with a + 8 > 0. Integrating the inequality on the rectangle [a, b] X [c, d] over (a, ), we get
the first inequality in (3.5). O

Corollary 3.7. With the assumptions of Theorem 3.6 we have

b b
1 X+y aX+ﬁy f(X)+f(y
/()= omar | g e ar

b
Jh
a

9%@

forany b > a > 0.
The following result holds for convex functions.

Corollary 3.8. Let f: C < X — [0, 00) be a convex function on the convex set C in a linear space X. Then, for
any x,y € C and for any a, b, c,d > Owith b > a and d > c, we have

b d ax+ﬁy ﬂx+ay
f<x+y) < JJ a+ﬁ a+/3 ) dBda < I(a, b;c, d) +I(c, d; a, b) f(x) + f(y)
2 (b - a)(d -0) - (b-a)d-c) 2 ’
a c
where I(a, b; ¢, d) and I(c, d; a, b) are defined in (2.1).
For two distinct positive numbers p and g, we consider the logarithmic mean

pP-q

L =1
(p,q) : Inp_Ing

Corollary 3.9. Assume that the functionf: C < X — [0, 00) is of Godunova—Levintypeon C.Lety, x € C and as-
sume that the mapping [0, 1] > t — f((1 — t)x + ty) is Lebesgue integrable on [0, 1]. Then, forany a, b, c,d > 0
with b > aand d > c, we have

b d
(3 mmanaa | UG5 () anae

fx) + f(y) A(c,d) A(a,b)
<7 (“ La.b ' I, d))

(3.10)

where L is the logarithmic mean and A is the arithmetic mean of the numbers involved.
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Proof. We take
1
h(t) = ?, te (0) 1)3

in (3.5) and we have to integrate the double integral

f ath, )dﬁda.

R e

Observe that
bd 8 bd
a+
” - dﬁd[x:ch d,Bda
2_ 2
—(h-a)d-c)+(nb-lnay =
Inb-Inac+d
= (b-a)d- o1+ 25
B A(c, d)
—(b—a)(d—c)<1+ L(a’b))
and
(lasp A(a, b)
JJ ; dﬁda:(b—a)(d—c)(1+—L(C’d)),
which produce the second part of (3.10). O

Remark 3.10. With the assumptions of Corollary 3.9 we have the inequalities

b b
“y aX+ﬁy Aa, b)
7 “b- a)zan wrg ) aBdas (1 T )0 + )

forany b > a > 0.

Corollary 3.11. Assume that the functionf: C € X — [0, co) isof P typeon C. Let y, x € C and assume that the
mapping [0, 1] > t — f((1 — t)x + ty) is Lebesgue integrable on [0, 1]. Then, for any a, b, c,d with b > a > 0
and d > c > 0, we have

b d
(5= s | () g amsa s s

and, in particular,

b b
x+y OUH'ﬁ)’
H(5) s = j Jf ) B da < fx) + £).

The interested reader may obtain similar results for other h-convex functions as provided above. The details
are omitted.

Acknowledgment: The author would like to thank the anonymous referee for valuable suggestions that have
been incorporated in the final version of the paper.
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