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1 Introduction
The inequality

(b − a)f(a + b2 ) ≤
b

∫
a

f(x) dx ≤ (b − a) f(a) + f(b)2 , a, b ∈ ℝ, a < b, (1.1)

holds for any convex function f defined on ℝ. It was first discovered by Hermite and was published in 1881
in the journalMathesis (see [40]). But this result was nowhere mentioned in the mathematical literature and
was not widely known as Hermite’s result. Beckenbach, a leading expert on the history and theory of con-
vex functions, wrote that this inequality was proved by Hadamard [5] in 1893. In 1974, Mitrinović found
Hermite’s note [40] inMathesis. Since (1.1) was known as Hadamard’s inequality, the inequality is now com-
monly referred to as the Hermite–Hadamard inequality. For related results, see [3, 4, 9–23, 30–34, 37, 43].

Let X be a vector space over the real or complex number fieldK and let x, y ∈ X, x ̸= y. Define the segment

[x, y] := {(1 − t)x + ty, t ∈ ]0, 1]}.

We consider the function f : [x, y] → ℝ and the associated function g(x, y) : [0, 1] → ℝ defined by

g(x, y)(t) := f((1 − t)x + ty), t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].
For any convex function defined on a segment [x, y] ⊂ X, we have the Hermite–Hadamard integral in-

equality (see [18, p. 2] and [19, p. 2])

f( x + y2 ) ≤
1

∫
0

f((1 − t)x + ty) dt ≤ f(x) + f(y)2 , (1.2)

which can be derived from the classical Hermite–Hadamard inequality (1.1) for the convex function g(x, y).
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14 | S.S. Dragomir, Double integral inequalities of Hermite–Hadamard type

Since f(x) = ‖x‖p for x ∈ X and 1 ≤ p < ∞ is a convex function, then, for any x, y ∈ X, from (1.2) we have
the norm inequality (see [44, p. 106])

"""""""
x + y
2

"""""""

p
≤

1

∫
0

‖(1 − t)x + ty‖p dt ≤ ‖x‖
p + ‖y‖p

2 .

Motivatedby theabove results, in this paperweobtaindouble integral inequalities ofHermite–Hadamard
type in which upper and lower bounds for the quantity

1
(b − a)(d − c)

b

∫
a

d

∫
c

f(αx + βyα + β ) dβ dα

are provided for some classes of h-convex functions defined on linear spaces. Applications for norm inequal-
ities and for Godunova–Levin-type functions are also given.

2 A double integral inequality for convex functions
For a, b, c, d ≥ 0 with b > a and d > c, we define the positive quantity

I(a, b; c, d) :=
b

∫
a

(
d

∫
c

(
α

α + β)
dβ) dα (2.1)

and we have the following representation.

Lemma 2.1. Let a, b, c, d ≥ 0 with b > a and d > c. We have the equality

I(a, b; c, d) = Id(a, b) − Ic(a, b), (2.2)

where Iz(x, y) is defined for x, y, z ≥ 0 with y > x by

Iz(x, y) :=
1
2((y

2 − z2) ln(y + z) + (z2 − x2) ln(x + z) + (y − x)(z − x + y2 )).

In particular, we have
I(a, b; a, b) = Ib(a, b) − Ia(a, b) =

1
2 (b − a)

2. (2.3)

Proof. We have

I(a, b; c, d) =
b

∫
a

(
d

∫
c

(
α

α + β)
dβ) dα

=
b

∫
a

α(
d

∫
c

dβ
α + β)

dα =
b

∫
a

α(ln(α + d) − ln(α + d)) dα

=
b

∫
a

α ln(α + d) dα −
b

∫
a

α ln(α + d) dα

=
b+d

∫
a+d

(u − d) ln u du −
b+c

∫
a+c

(u − c) ln u du. (2.4)
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Utilising the integration by parts formula, we have

b+d

∫
a+d

(u − d) ln u du = (u − d)
2

2 ln u
!!!!!!!

b+d

a+d
−
1
2

b+d

∫
a+d

(u − d)2

u
du

=
b2

2 ln(b + d) − a
2

2 ln(a + d) − 12

b+d

∫
a+d

(u − d)2

u
du. (2.5)

A straightforward calculation gives

b+d

∫
a+d

(u − d)2

u
du = (b − a)(a + b2 − d) + d

2 ln(b + d) − d2 ln(a + d). (2.6)

From (2.5) and (2.6) we have

b+d

∫
a+d

(u − d) ln u du = b
2

2 ln(b + d) − a
2

2 ln(a + d) − 12((b − a)(
a + b
2 − d) + d

2 ln(b + d) − d2 ln(a + d))

= Id(a, b).

Similarly, we have
b+c

∫
a+c

(u − c) ln u du = Ic(a, b)

and by (2.4) we get the desired identity (2.2).
Finally, one easily verifies that

Ib(a, b) =
1
2 (b

2 − a2) ln(a + b) + 14 (b − a)
2

and
Ia(a, b) =

1
2 (b

2 − a2) ln(a + b) − 14 (b − a)
2,

which gives the desired equality (2.3).

We have the following double integral inequality for convex functions.

Theorem 2.2. Let f : C ⊆ X → [0,∞) be a convex function on the convex set C in a linear space X. Then, for
any x, y ∈ C and for any a, b, c, d ≥ 0 with b > a and d > c, we have

f( I(a, b; c, d)
(b − a)(d − c)

x + I(c, d; a, b)
(b − a)(d − c)

y) ≤ 1
(b − a)(d − c)

b

∫
a

d

∫
c

f(αx + βyα + β ) dβ dα

≤
I(a, b; c, d)
(b − a)(d − c)

f(x) + I(c, d; a, b)
(b − a)(d − c)

f(y), (2.7)

where

I(a, b; c, d) :=
b

∫
a

(
d

∫
c

(
α

α + β)
dβ) dα

and

I(c, d; a, b) :=
b

∫
a

(
d

∫
c

(
β

α + β)
dβ) dα.
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16 | S.S. Dragomir, Double integral inequalities of Hermite–Hadamard type

Proof. Consider the function gx,y : [0, 1] → ℝ defined by gx,y(s) = f(sx + (1 − s)y). This function is convex
on [0, 1] and by Jensen’s double integral inequality for real functions of a real variable we have

gx,y (
∫ba ∫dc (

α
α+β ) dβ dα

(b − a)(d − c) ) ≤
1

(b − a)(d − c)

b

∫
a

d

∫
c

gx,y(
α

α + β)
dβ dα,

which is equivalent to

f (
∫ba ∫dc (

α
α+β ) dβ dα

(b − a)(d − c)
x + ( 1 −

∫ba ∫dc ( α
α+β ) dβ dα

(b − a)(d − c) ) y )

≤
1

(b − a)(d − c)

b

∫
a

d

∫
c

f( α
α + β

x + (1 − α
α + β)

y) dβ dα.

By a simple calculation we obtain

f (
∫ba ∫dc (

α
α+β ) dβ dα

(b − a)(d − c)
x +

∫ba ∫dc (
β
α+β )dβdα

(b − a)(d − c)
y ) ≤

1
(b − a)(d − c)

b

∫
a

d

∫
c

f( α
α + β

x + β
α + β

y) dβ dα

and the first part of (2.7) is proved.
By the convexity of f we have

f(αx + βyα + β ) ≤
α

α + β
f(x) + β

α + β
f(y)

for any x, y ∈ C and for all α, β ≥ 0 with α + β > 0. Integrating on the rectangle [a, b] × [c, d] gives

b

∫
a

d

∫
c

f(αx + βyα + β ) dβ dα ≤ f(x)
b

∫
a

d

∫
c

α
α + β

dβ dα + f(y)
b

∫
a

d

∫
c

β
α + β

dβ dα,

which proves the second part of (2.7).

Corollary 2.3. Let f : C ⊆ X → [0,∞) be a convex function on the convex set C in a linear space X. Then, for
any x, y ∈ C and for any b > a ≥ 0, we have

f( x + y2 ) ≤
1

(b − a)2

b

∫
a

b

∫
a

f(αx + βyα + β ) dβ dα ≤ f(x) + f(y)2 .

The proof follows from (2.7) by noticing that

I(a, b; a, b) = 12 (b − a)
2.

Remark 2.4. Let (X, ‖ ⋅ ‖) be a real or complex linear space and let p ≥ 1. Then, for any x, y ∈ X, we have

"""""""
I(a, b; c, d)
(b − a)(d − c)

x + I(c, d; a, b)
(b − a)(d − c)

y
"""""""

p
≤

1
(b − a)(d − c)

b

∫
a

d

∫
c

"""""""
αx + βy
α + β

"""""""

p
dβ dα

≤
I(a, b; c, d)
(b − a)(d − c)

‖x‖p + I(c, d; a, b)
(b − a)(d − c)

‖y‖p

for any a, b, c, d ≥ 0 with b > a and d > c. In particular, we have

"""""""
x + y
2

"""""""

p
≤

1
(b − a)2

b

∫
a

b

∫
a

"""""""
αx + βy
α + β

"""""""

p
dβ dα ≤ ‖x‖

p + ‖y‖p

2

for any b > a ≥ 0.
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3 Double integral inequalities for h-convex functions
Assume that I and J are intervals in ℝ with (0, 1) ⊆ J and the functions f and h are real, non-negative and
defined on I and J, respectively.

Definition 3.1 (see [50]). Let h : J→[0,∞)with h not identical to 0. We say that f : I→[0,∞) is an h-convex
function if, for all x, y ∈ I, we have

f(tx + (1 − t)y) ≤ h(t)f(x) + h(1 − t)f(y) (3.1)

for all t ∈ (0, 1).

This concept can be extended for functions defined on convex subsets of linear spaces, in the same way as
above, by replacing the interval I by the corresponding convex subset C of the linear space X.

If we take y = x in (3.1), we get f(x) ≤ (h(t) + h(1 − t))f(x), which implies that 1 ≤ h(t) + h(1 − t) for all
t ∈ (0, 1). By taking

t = 12
we also get

h(12) ≥
1
2 .

For some results concerning this class of functions see [6, 39, 46, 47, 49, 50].
We recall below some concepts of convexity that are well known in the literature and can be seen as

particular instances of h-convex functions. Here, I is an interval inℝ.

Definition 3.2 (see [35]). We say that f : I→ℝ is aGodunova–Levin functionor that f belongs to the classQ(I)
if f is non-negative and, for all x, y ∈ I and t ∈ (0, 1), we have

f(tx + (1 − t)y) ≤ 1
t
f(x) + 1

1 − t f(y). (3.2)

Some further properties of this class of functions canbe found in [26, 27, 29, 41, 44, 45]. Amongothers, it has
been noted that non-negative monotone and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞), where C is a convex subset of the
real or complex linear space X, and the inequality (3.2) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1). If the
function f : C ⊆ X → ℝ is non-negative and convex, then it is of Godunova–Levin type.

Definition 3.3 (see [29]). We say that a function f : I → ℝ belongs to the class P(I) if it is non-negative and,
for all x, y ∈ I and t ∈ [0, 1], we have

f(tx + (1 − t)y) ≤ f(x) + f(y). (3.3)

Obviously, Q(I) contains P(I) and, for applications, it is important to note that P(I) also contains all non-
negative monotone, convex and quasi-convex functions, i.e., non-negative functions satisfying

f(tx + (1 − t)y) ≤ max{ f(x), f(y)} (3.4)

for all x, y ∈ I and t ∈ [0, 1]. For some results on P-functions, see [29, 42], while the interested reader can
consult [28] for quasi-convex functions.

If f : C ⊆ X → [0,∞), where C is a convex subset of the real or complex linear space X, then we say that
it is of P type (or quasi-convex) if the inequality (3.3) (or (3.4)) holds true for x, y ∈ C and t ∈ [0, 1].

Definition 3.4 (see [7]). Let s be a real number with s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is said to be
s-convex (in the second sense) or Breckner s-convex if

f(tx + (1 − t)y) ≤ ts f(x) + (1 − t)s f(y)

for all x, y ∈ [0,∞) and t ∈ [0, 1].

For some properties of this class of functions, see [1, 2, 7, 8, 24, 25, 36, 38, 48].
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The concept of Breckner s-convexity can be similarly extended for functions defined on convex subsets
of linear spaces. It is well known that if (X, ‖ ⋅ ‖) is a normed linear space, then the function f(x) = ‖x‖p for
p ≥ 1 is convex on X. Utilising the elementary inequality (a + b)s ≤ as + bs, which holds for any a, b ≥ 0 and
s ∈ (0, 1], for the function g(x) = ‖x‖s we have

g(tx + (1 − t)y) = ‖tx + (1 − t)y‖s ≤ (t‖x‖ + (1 − t)‖y‖)s ≤ (t‖x‖)s + ((1 − t)‖y‖)s = tsg(x) + (1 − t)sg(y)

for any x, y ∈ X and t ∈ [0, 1], which shows that g is Breckner s-convex on X.
We can now introduce another concept of function that incorporates the classes of P-functions and of

Godunova–Levin functions.

Definition 3.5. We say that the function f : C ⊆ X → [0,∞) is of s-Godunova–Levin type with s ∈ [0, 1] if

f(tx + (1 − t)y) ≤ 1
ts
f(x) + 1

(1 − t)s f(y)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that, for s = 0, we obtain the class of P-functions, while, for s = 1, we obtain the class of
Godunova–Levin functions. If we denote by Qs(C) the class of s-Godunova–Levin functions defined on C,
then we obviously have

P(C) = Q0(C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1(C) = Q(C)

for 0 ≤ s1 ≤ s2 ≤ 1.
We can now prove the following generalisation of the Hermite–Hadamard inequality for h-convex func-

tions defined on convex subsets of linear spaces.

Theorem 3.6. Assume that the function f : C ⊆ X → [0,∞) is an h-convex function with h Lebesgue integrable
on [0, 1]. Let y, x ∈ C andassume that themapping [0, 1] ∋ t Ü→ f((1 − t)x + ty) is Lebesgue integrable on [0, 1].
Then, we have

1
2h(12 )

f( x + y2 ) ≤
1

2(b − a)(d − c)

b

∫
a

d

∫
c

(f(αx + βyα + β ) + f(βx + αyα + β )) dβ dα

≤
f(x) + f(y)

2(b − a)(d − c)

b

∫
a

d

∫
c

(h( α
α + β)
+ h( β

α + β))
dβ dα (3.5)

for any a, b, c, d ≥ 0 with b > a and d > c.

Proof. By the h-convexity of f we have

f(tx + (1 − t)y) ≤ h(t)f(x) + h(1 − t)f(y) (3.6)

and
f((1 − t)x + ty) ≤ h(1 − t)f(x) + h(t)f(y) (3.7)

for any t ∈ [0, 1]. Summing the inequalities (3.6) and (3.7) and dividing by 2 gives

1
2 (f(tx + (1 − t)y) + f((1 − t)x + ty)) ≤

1
2 (h(1 − t) + h(t))(f(x) + f(y)) (3.8)

for any t ∈ [0, 1]. Taking
t = α

α + β

in (3.8) gives
1
2(f(

αx + βy
α + β ) + f(βx + αyα + β )) ≤

1
2(h(

α
α + β)
+ h( β

α + β))
(f(x) + f(y))
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for any α, β ≥ 0 with α + β > 0. Since the mapping [0, 1] ∋ t Ü→ f((1 − t)x + ty) is Lebesgue integrable on
[0, 1], then the double integrals

b

∫
a

d

∫
c

f(αx + βyα + β ) dβ dα and
b

∫
a

d

∫
c

f(αy + βxα + β ) dβ dα

exist and we get the second inequality in (3.5) by integrating the inequality on the rectangle [a, b] × [c, d]
over (α, β).

From the h-convexity of f we also have

f( z + w2 ) ≤ h(12)(f(z) + f(w)) (3.9)

for any z, w ∈ C. If we take
z = αx + βy

α + β
and w = βx + αy

α + β

in (3.9), then we get
f( x + y2 ) ≤ h(12)(f(

αx + βy
α + β ) + f(βx + αyα + β ))

for any α, β ≥ 0 with α + β > 0. Integrating the inequality on the rectangle [a, b] × [c, d] over (α, β), we get
the first inequality in (3.5).

Corollary 3.7. With the assumptions of Theorem 3.6 we have

1
2h(12 )

f( x + y2 ) ≤
1

(b − a)2

b

∫
a

b

∫
a

f(αx + βyα + β ) dβ dα ≤ f(x) + f(y)
(b − a)2

b

∫
a

b

∫
a

h( α
α + β)

dβ dα

for any b > a ≥ 0.

The following result holds for convex functions.

Corollary 3.8. Let f : C ⊆ X → [0,∞) be a convex function on the convex set C in a linear space X. Then, for
any x, y ∈ C and for any a, b, c, d ≥ 0 with b > a and d > c, we have

f( x + y2 ) ≤
1

(b − a)(d − c)

b

∫
a

d

∫
c

(
f ( αx+βyα+β ) + f ( βx+αyα+β )

2 ) dβ dα ≤ I(a, b; c, d) + I(c, d; a, b)
(b − a)(d − c)

f(x) + f(y)
2 ,

where I(a, b; c, d) and I(c, d; a, b) are defined in (2.1).

For two distinct positive numbers p and q, we consider the logarithmic mean

L(p, q) := p − q
ln p − ln q .

Corollary 3.9. Assume that the function f : C ⊆ X → [0,∞) is of Godunova–Levin type on C. Let y, x ∈ C andas-
sume that themapping [0, 1] ∋ t Ü→ f((1 − t)x + ty) is Lebesgue integrable on [0, 1]. Then, for any a, b, c, d > 0
with b > a and d > c, we have

1
4 f(

x + y
2 ) ≤

1
2(b − a)(d − c)

b

∫
a

d

∫
c

(f(αx + βyα + β ) + f(βx + αyα + β )) dβ dα

≤
f(x) + f(y)

2 (2 + A(c, d)L(a, b) +
A(a, b)
L(c, d) ), (3.10)

where L is the logarithmic mean and A is the arithmetic mean of the numbers involved.
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20 | S.S. Dragomir, Double integral inequalities of Hermite–Hadamard type

Proof. We take
h(t) = 1

t
, t ∈ (0, 1),

in (3.5) and we have to integrate the double integral

b

∫
a

d

∫
c

(
α + β
α
+
α + β
β ) dβ dα.

Observe that
b

∫
a

d

∫
c

α + β
α

dβ dα =
b

∫
a

d

∫
c

(1 + βα) dβ dα

= (b − a)(d − c) + (ln b − ln a)d
2 − c2

2

= (b − a)(d − c)(1 + ln b − ln ab − a
c + d
2 )

= (b − a)(d − c)(1 + A(c, d)L(a, b))

and
b

∫
a

d

∫
c

α + β
β

dβ dα = (b − a)(d − c)(1 + A(a, b)L(c, d) ),

which produce the second part of (3.10).

Remark 3.10. With the assumptions of Corollary 3.9 we have the inequalities

1
4 f(

x + y
2 ) ≤

1
(b − a)2

b

∫
a

b

∫
a

f(αx + βyα + β ) dβ dα ≤ (1 + A(a, b)L(a, b) )(f(x) + f(y))

for any b > a > 0.

Corollary 3.11. Assume that the function f : C ⊆ X → [0,∞) is of P type on C. Let y, x ∈ C and assume that the
mapping [0, 1] ∋ t Ü→ f((1 − t)x + ty) is Lebesgue integrable on [0, 1]. Then, for any a, b, c, d with b > a ≥ 0
and d > c ≥ 0, we have

1
2 f(

x + y
2 ) ≤

1
2(b − a)(d − c)

b

∫
a

d

∫
c

(f(αx + βyα + β ) + f(βx + αyα + β )) dβ dα ≤ f(x) + f(y)

and, in particular,

1
2 f(

x + y
2 ) ≤

1
(b − a)2

b

∫
a

b

∫
a

f(αx + βyα + β ) dβ dα ≤ f(x) + f(y).

The interested reader may obtain similar results for other h-convex functions as provided above. The details
are omitted.

Acknowledgment: The author would like to thank the anonymous referee for valuable suggestions that have
been incorporated in the final version of the paper.
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