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Abstract 22 

The impact of fouling substances on the rejection of four N-nitrosamines by a reverse osmosis 23 

(RO) membrane was evaluated via a systematic characterisation of individual organic fractions 24 

in a secondary wastewater effluent and the deployment of a novel high-performance liquid 25 

chromatography-photochemical reaction-chemiluminescence (HPLC-PR-CL) analytical 26 

technique. The HPLC-PR-CL analytical technique allowed for a systematic examination of the 27 

correlation between the fouling level and the permeation of N-nitrosamines in the secondary 28 

wastewater effluent and synthetic wastewaters through an RO membrane. Membrane fouling 29 

caused by the secondary wastewater effluent led to a notable decrease in the permeation of N-30 

nitrosodimethylamine (NDMA) while a smaller but nevertheless discernible decrease in  the 31 

permeation of N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-32 

nitrosomorpholine (NMOR) was also observed. The decrease in N-nitrosamine permeation 33 

became insignificant after membrane permeability decreased by approximately 30%. 34 

Fluorescence spectrometry analysis revealed that major foulants in the secondary wastewater 35 

effluent were humic and fulvic acid-like substances. Analysis using the size exclusion 36 

chromatography technique also identified polysaccharides and proteins as additional fouling 37 

substances. Thus, further examination was conducted using solutions containing model 38 

foulants (i.e., sodium alginate, bovine serum albumin, humic acid and two fulvic acids). Similar 39 

to the secondary wastewater effluent, membrane fouling with fulvic acid solutions resulted in 40 

a decrease in N-nitrosamine permeation. In contrast, membrane fouling with the other model 41 

foulants resulted in an increase in N-nitrosamine permeation. Overall, these results suggest that 42 

the impact of fouling on the permeation of N-nitrosamines by RO is governed by specific small 43 

organic fractions (e.g. fulvic acid-like organics) in the secondary wastewater effluent.   44 
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1. Introduction 48 

Potable water reuse has become an attractive approach for augmenting fresh water sources in 49 

drought stricken regions such as the southwestern USA, southern Europe and Australia. 50 

Stringent quality assurance is required in potable water reuse to avoid adverse impacts on 51 

public health. Aside from the need to mitigate acute microbial risks through multiple treatment 52 

barriers and robust disinfection (CSWRCB, 2016), the occurrence of trace organic chemicals 53 

is of particular concern due to their potential for chronic health effects (Murphy et al., 2012; 54 

Villanueva et al., 2014). As a result, reverse osmosis (RO) has been widely used for the removal 55 

of these trace organic chemicals in many water reclamation plants around the world (Shannon 56 

et al., 2008; Verliefde et al., 2008). Removal efficiencies of most trace organic contaminants 57 

of over 90% can be achieved by RO (Al-Rifai et al., 2011).   58 

Of the many trace organic chemicals of concern, the removal of N-nitrosamines is arguably the 59 

most challenging for potable water reuse. Several N-nitrosamines are probable carcinogenic 60 

chemical (USEPA, 1993). In particular, unlike most other trace organic chemicals, the rejection 61 

of N-nitrosodimethylamine (NDMA) by RO membranes is well below 90% due to its small 62 

molecular size and uncharged property in aqueous solution (Plumlee et al., 2008). NDMA and 63 

other N-nitrosamines can occur naturally in wastewater and are not well removed by 64 

conventional treatment processes (Drewes et al., 2006). A more important source of NDMA is 65 

the direct result of chloramination of secondary wastewater effluent prior to RO treatment 66 

which is used to control biofouling on the RO membranes (Shah and Mitch, 2011). Because 67 

NDMA is sometimes identified in RO permeate at concentrations higher than the California 68 

regulatory notification level and Australian Guidelines for Water Recycling value of 10 ng/L 69 

(CDPH, 2015; NRMMC et al., 2008) in potable reuse schemes, additional water treatment such 70 

as an ultraviolet (UV) photolytic process or UV-advanced oxidation process (AOP) is 71 
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employed downstream of the RO process (Fujioka et al., 2012a; Sharpless and Linden, 2003). 72 

This additional treatment process ultimately increases the overall cost of potable water reuse. 73 

A high rejecting RO membrane for the removal of NDMA could potentially reduce the capital 74 

and operating costs of the UV-AOP. However, the large variation in NDMA rejection by RO 75 

(negligible to 80%) reported in the literature (Farré et al., 2011; Plumlee et al., 2008; Sedlak 76 

and Kavanaugh, 2006) makes it difficult to rely solely on RO for the removal of NDMA.  77 

The underlying mechanisms of the observed variation in NDMA rejection by RO have been 78 

elucidated in several recent studies. In addition to membrane properties (Fujioka et al., 2013b) 79 

and RO feed solution temperature (Fujioka et al., 2012b), membrane fouling has been shown 80 

to affect NDMA rejection (Fujioka et al., 2013a; Steinle-Darling et al., 2007). However, the 81 

effects of membrane fouling on NDMA rejection in these previous studies did not produce 82 

consistent results. Steinle-Darling et al. (2007) reported that membrane fouling with model 83 

foulants (alginate) resulted in a reduction in the rejection of N-nitrosamines including NDMA. 84 

In a subsequent study, Fujioka et al. (2013a) observed an increase in the rejection of N-85 

nitrosamines with tertiary wastewater effluent. It is noteworthy that Fujioka et al. (2013a) also 86 

observed only negligible impact of fouling layer on N-nitrosamine rejection when the 87 

membrane was fouled with large molecular weight model foulants (i.e., sodium alginate, 88 

bovine serum albumin and humic acid). These previous results suggested that the impact of 89 

membrane fouling could vary depending on the properties of the foulants, but the major model 90 

foulants were unlikely to be representative of substances causing the increased N-nitrosamine 91 

rejection.  92 

In a well-controlled laboratory-scale study to evaluate the effects of membrane fouling on N-93 

nitrosamine rejection, bench-scale RO systems have the advantage of precise regulation of the 94 

operating conditions. However, sample volumes required for their analysis can be excessive. 95 
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The standard method for the analysis of N-nitrosamines including NDMA (McDonald et al., 96 

2012; Munch and Bassett, 2004) is based on solid-phase extraction (SPE) followed by gas 97 

chromatography and tandem mass spectrometry (GC-MS/MS) detection and requires a sample 98 

volume of 0.2–1.0 L/sample. This limits the number of samples that can be acquired, which 99 

has ultimately contributed to a lack of understanding of the dynamics of NDMA rejection 100 

during RO treatment. Of a particular note, previous bench-scale studies (Fujioka et al., 2013a; 101 

Steinle-Darling et al., 2007) have only evaluated N-nitrosamine rejection by RO membranes 102 

under two sampling conditions—before and after membrane fouling development.  103 

Recently, a fast, high-throughput, and reliable high-performance liquid chromatography-104 

photochemical reaction-chemiluminescence (HPLC-PR-CL) analytical technique for the 105 

quantitation of N-nitrosamines has been developed (Kodamatani et al., 2009). The analytical 106 

method can be performed with a very small sample injection volume (20–200 µL) and requires 107 

no concentration steps, unlike the SPE-GC-MS/MS method (Munch and Bassett, 2004). In 108 

addition, this HPLC-PR-CL method can achieve more precise determination of NDMA 109 

concentrations with method detection limits of 2 and 0.2 ng/L in UF-treated wastewater and 110 

RO permeate, respectively (Fujioka et al., 2016). Thus, this newly established HPLC-PR-CL 111 

analytical technique opens up new opportunities for a systematic examination of the correlation 112 

between the fouling condition and N-nitrosamine rejection. 113 

This work aimed to identify major foulants that influence N-nitrosamine rejection by an RO 114 

membrane. A nanofiltration (NF) membrane was also used for comparison. The HPLC-PR-CL 115 

analytical technique was modified for the determination of N-nitrosamines in the secondary 116 

wastewater effluent and model foulant solutions, and was used to systematically examine the 117 

correlation between fouling development and N-nitrosamine rejection. Consequently, five 118 

model foulants were selected and four N-nitrosamines, including NDMA, were selected for 119 
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delineation of the mechanisms underlying the impact of membrane fouling on N-nitrosamine 120 

rejection. 121 

2. Materials and methods 122 

2.1. Chemicals 123 

Four analytical grade N-nitrosamines (Ultra Scientific, Kingstown, RI, USA) were used in this 124 

study: NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-125 

nitrosomorpholine (NMOR) (Table 1). A stock solution containing all four N-nitrosamines 126 

was prepared at 1 µg/mL of each compound in pure methanol. Five model foulants – sodium 127 

alginate, bovine serum albumin (BSA), humic acid and two fulvic acids – were also used. 128 

Sodium alginate and humic acids were supplied by Sigma-Aldrich (St Louis, MO, USA). BSA 129 

was purchased from Wako Pure Chemical Industries (Tokyo, Japan). Suwannee River fulvic 130 

acid standard II and Pahokee Peat fulvic acid standard II were purchased from International 131 

Humic Substances Society (IHSS, MN, USA). Analytical grade NaCl, CaCl2, NaHCO3 and 132 

luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) were supplied from Wako Pure Chemical 133 

Industries (Tokyo, Japan). Secondary wastewater effluent was collected from a municipal 134 

wastewater treatment plant (WWTP) in Japan. The sampling point was before chlorine 135 

disinfection and after screening, primary settling and activated sludge treatment.  136 
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Table 1 Physicochemical properties of the selected N-nitrosamines. 137 

Compound Structure Molecular 
formula 

Molecular 
weight [Da] 

Low D 

at pH 8a  
pKa

a 

NDMA 
 

C2H6N2O 74.1 0.04 3.5 

NMEA 

 

C2H8N2O 88.1 0.40 3.4 

NPYR 

 

C4H8N2O 100.1 0.44 3.3 

NMOR 

 

C4H8N2O2 116.1 -0.18 3.1 

a Chemicalize (http://www.chemicalize.org).  138 

2.2. Membrane treatment system 139 

A low pressure RO membrane – ESPA2 – was supplied as flat sheet samples by 140 

Nitto/Hydranautics (Osaka, Japan). The ESPA2 membrane is a composite polyamide RO 141 

membrane that has been used widely in water reclamation applications (Fujioka et al., 2012a). 142 

An NF membrane – ESNA1-LF – from Nitto/Hydranautics (Osaka, Japan) was also used in 143 

this study. A bench-scale RO system with a cross-flow configuration was used (Fig. S1). The 144 

treatment system includes a stainless steel membrane cell (Iwai Pharma Tech, Tokyo, Japan) 145 

that can hold a circular flat sheet membrane coupon with effective surface area of 36.3 cm2. A 146 

high-pressure pump (KP-12, FLOM, Tokyo, Japan) was also used to transport feed solution 147 

from a 2-L glass reservoir to the membrane cell. The feed solution temperature was controlled 148 

in the reservoir with a stainless steel heat exchanging coil connected to a temperature control 149 

unit (NCB-500, Tokyo Rikakikai, Tokyo, Japan). 150 
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2.3. Experimental protocols 151 

Each experiment was initiated by conditioning the RO membranes with deionized water (Q 152 

18.0 MΩcm) at 1,500 kPa until the permeate flux stabilised. The deionized water was then 153 

replaced with 2 L of the secondary wastewater effluent or solutions of model foulant. The 154 

model foulant solutions contained background electrolytes (20 mM NaCl, 1 mM NaHCO3, 1 155 

mM CaCl2) and 30–50 mg/L of one of the model foulants in Milli-Q water. Each N-nitrosamine 156 

was spiked into the RO feed at a concentration of 500 ng/L. The RO treatment system was 157 

operated at constant flux of 60 or 80 L/m2h. During each experiment, both RO feed and 158 

permeate were recirculated into the feed reservoir to maintain a constant concentration of each 159 

solute and foulant in the RO feed. While full-scale RO systems in water reclamation 160 

applications are typically designed and operated at the permeate flux of ~20 L/m2h (Fujioka et 161 

al., 2012a), the high flux was used in this study to accelerate membrane fouling. The feed 162 

temperature was maintained at 20 °C and transmembrane pressure (TMP) was recorded. RO 163 

feed and permeate samples were collected periodically in amber vials (1.5 mL). Concentrations 164 

of N-nitrosamines in the RO feed and permeate samples were used for calculating their 165 

rejections. The RO permeate and feed sample volumes were negligible (i.e. 1.5 mL) as 166 

compared to 2 L of the initial feed volume; thus, N-nitrosamine concentration in the RO feed 167 

was expected to be constant throughout the experiment. In addition, a previous study (Fujioka 168 

et al., 2012b) has confirmed that changes in N-nitrosamine concentrations from 250 to 1,500 169 

ng/L had no impact on the rejection of N-nitrosamines. Overall, the experimental condition of 170 

this study allowed for an accurate evaluation of N-nitrosamine rejections without any 171 

interference from changes in their concentrations in the RO feed.  172 
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2.4. Analytical techniques 173 

2.4.1. HPLC-photochemical reaction-chemiluminescence detection (HPLC-PR-CL) 174 

N-nitrosamine concentrations were determined by HPLC-PR-CL. This method is based on the 175 

chemiluminescence reaction between peroxynitrite with luminol.  Peroxynitrite is formed by 176 

the photochemical reaction of N-nitrosamines with UV irradiation at 254 nm after HPLC 177 

separation. The HPLC separation was performed with an InertSustain AQ-C18 (5 μm, 4.6 × 178 

250 mm) (GL Sciences, Tokyo, Japan) with an eluent of 5 mM phosphate buffer and methanol 179 

(95:5 v/v). Further details of this method are provided elsewhere (Fujioka et al., 2016; 180 

Kodamatani et al., 2016). A sample HPLC-PR-CL chromatogram of the separation of NDMA, 181 

NMOR, NMEA and NPYR is shown in Fig. S2. Each sample from the RO feed was pre-filtered 182 

with a 0.45 µm hydrophilic PTFE syringe filter (Filtstar, Starlab Scientific, China). The sample 183 

injection volume was from 20 to 200 µL. 184 

2.4.2. Fluorescence spectroscopy 185 

Excitation emission matrix (EEM) fluorescence spectra (Aqualog, Horiba, Kyoto, Japan) of 186 

the samples were obtained using a 1-cm quartz cuvette. The EEM spectra (EEMs) were 187 

acquired with scanning emission spectra every 8 pixels from 245.21 to 827.61 nm by changing 188 

the excitation wavelength from 220 to 800 nm at 1 nm step with a 4.60 nm CCD bin increment 189 

at low gain and 1 s integration. All EEMs were corrected through blank subtraction (ultrapure 190 

water – 18.2 MΩcm with 1 g/L methanol and humic acid) to reduce scatter from the water 191 

Raman peak for instrument/spectral biases according to the emission and excitation correction 192 

factors provided by the manufacturer.  193 
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2.4.3. Size exclusion chromatography  194 

Organic carbon content in the water samples were characterised by a liquid chromatography-195 

organic carbon detection (LC-OCD) system (DOC-LABOR, Karlsruhe, Germany). Details of 196 

the analysis can be found in previous published studies (Henderson et al., 2011; Huber et al., 197 

2011). The analysis was performed at 1.1 mL/min flow rate with a mobile phase of phosphate 198 

buffer, 2.5 g/L KH2PO4 and 1.2g/L Na2HPO4. Samples was diluted 1:10 in Milli-Q water and 199 

a volume of 2.0 mL of the sample was injected into the LC-OCD system.  200 

3. Results and discussion 201 

3.1. Analysis in a secondary wastewater effluent 202 

The analysis of N-nitrosamines in the secondary wastewater effluent using HPLC-PR-CL was 203 

validated through spike testing. Each N-nitrosamine was spiked into the secondary wastewater 204 

effluent at a concentration of 50 ng/L for analyte recovery evaluation. Recovery was calculated 205 

based with the ratio of the peak height of N-nitrosamine in the secondary wastewater effluent 206 

to the peak height of N-nitrosamine in the pure water matrix. With the injected sample volume 207 

of 200 µL, the peak height of NDMA at the retention time (rt) of 6.1 min (Fig. 1a) revealed 208 

66% recovery relative to the pure water matrix. Recovery in the range of 87 and 90% was 209 

observed for all other N-nitrosamines (Table S3). Impurities in the secondary effluent could 210 

interfere with photochemical and/or chemiluminescence reaction, leading to the low recovery 211 

observed here when a large injection volume was used. The observed decreasing peak heights 212 

of N-nitrosamines were attributed to the reduction of baseline chemiluminescence after 3 min 213 

as compared to the initial baseline chemiluminescence. The impact was particularly strong 214 

around the NDMA peak (rt = 6.1 min) and gradually recovered to the original baseline as 215 

shown in Fig. 1a. Because the baseline chemiluminescence is generated from the reaction of 216 
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the eluent, the reduction of baseline chemiluminescence after the sample injection substances 217 

in the secondary wastewater effluent could have interfered with the photochemical reaction 218 

and/or chemiluminescence reaction. Accordingly, the peak heights of N-nitrosamines may also 219 

have reduced by the interference.  220 

 221 
Fig. 1 – Analysis of N-nitrosamine concentrations in the secondary wastewater effluent using 222 

the HPLC-PR-CL analysis with sample injection volume of (a) 200 µL and (b) 20 µL.  223 

To reduce the presence of interfering substances, the sample injection volume was reduced 224 

from 200 to 20 µL, which was successfully validated for NDMA in ultrafiltration-treated 225 

wastewater in a previous study (Fujioka et al., 2016). With the smaller injection volume, the 226 

chemiluminescence around the four N-nitrosamine peaks dropped to an intensity near the initial 227 

baseline (rt = 0–2 min) (Fig. 1b). As a result, recovery of NDMA improved from 66% 228 

(injection volume = 200 µL) to 96% (injection volume = 20 µL). Similarly, the other N-229 

nitrosamines generally revealed improved recoveries (96–106%) (Table S3). The method 230 
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detection limits (MDLs) for NDMA, NMEA, NPYR and NMOR in the secondary wastewater 231 

effluent were 1.8, 3.7, 3.3 and 2.3 ng/L, respectively. 232 

3.2. N-nitrosamine rejection associated with a secondary wastewater effluent 233 

The fouling propensity of the ESPA2 RO membrane was identified for the secondary 234 

wastewater effluent. Fouling development using the ESPA2 RO membrane with the secondary 235 

wastewater effluent led to an increase in the rejection of all four N-nitrosamines investigated 236 

(Fig. 2). In particular, NDMA rejection increased from 75.7 (t = 5 min) to 80.0% (t = 200 min) 237 

with an increase in TMP from 1.6 to 2.5 MPa (approximately 30% increase in TMP). Similar 238 

observations could be made with the other N-nitrosamines, although the increase in their 239 

rejection was less significant compared to NDMA (Fig. 2). In response to the fouling 240 

development from 5 to 200 min, the rejections of NMEA, NPYR and NMOR also increased 241 

from 93.3 to 95.1%, from 97.5 to 98.2% and from 99.2 to 99.6%, respectively. 242 

The results suggest that membrane fouling at full-scale applications can lead to a gradual 243 

decrease in the permeation of NDMA, meaning that the prolonged operation could result in an 244 

increase in NDMA rejection. It should be noted that the accelerated membrane fouling protocol 245 

applied here could only show the behaviour of NDMA rejection during fouling development 246 

and the rejection values do not directly simulate the actual impact of fouling in full scale.  247 

Treated wastewater contains a diverse range of organics. It is essential to identify individual 248 

organic fractions most responsible for the variation in N-nitrosamine rejection. Thus, further 249 

investigation was performed by characterising the secondary wastewater effluent and 250 

conducting RO studies using model foulants. 251 
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 252 
Fig. 2 – Changes in N-nitrosamine rejection and TMP during RO treatment of the secondary 253 

wastewater effluent with ESPA2 membrane (permeate flux = 80 L/m2h, feed solution 254 

temperature = 20 °C, pH = 8). Values here are the average and range of duplicate results. 255 

3.3. Characterisation of organics in the RO feed 256 

3.3.1. LC-OCD 257 

Organic constituents in the secondary wastewater effluent were characterised by LC-OCD and 258 

were separated into four main fractions – biopolymers (>20,000 Da), humics (approximately 259 

1,000 Da), building blocks (300–500 Da) and low molecular weight (LMW) acids and neutrals 260 

(<350 Da) (Henderson et al., 2010; Huber et al., 2011) (Table S4). The fraction identified as 261 

biopolymers can be polysaccharides and proteins, and the fraction of building blocks includes 262 

breakdown products during the degradation of humic substances (Huber et al., 2011). The 263 

secondary wastewater effluent contained a wide distribution of organic fractions (Fig. 3a). The 264 

distribution of dissolved organic matter was biopolymers (8%), humic substances (43%), 265 
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building blocks (14%) and LMW neutrals (21%). Biopolymers can be represented by model 266 

organic foulants including sodium alginate (i.e. polysaccharide) and BSA (i.e. protein) (Fig. 267 

3b and 3c), and humic substances can be represented by humic acids (Fig. 3d) and fulvic acids 268 

(Fig. 3e and 3f), thus, these model foulants were selected for further investigation of this study. 269 

In contrast, there were no model foulants that were readily available for the other small organics 270 

including building blocks and LMW neutrals. 271 

 272 
Fig. 3 – LC-OCD chromatogram of the (a) secondary wastewater effluent and solutions 273 

containing (b) sodium alginate, (c) BSA, (d) humic acid, (e) Suwannee River fulvic acid and 274 

(f) Pahokee Peat fulvic acid.  275 
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3.3.2. EEM spectroscopy 276 

The organics in the secondary wastewater effluent were also characterised by EEM 277 

fluorescence spectroscopy. EEM peaks can be classified as protein-like, fulvic-like and humic-278 

like fluorophores. A strong peak in the EEM spectrum of the secondary wastewater effluent 279 

was observed at the excitation/emission (Ex/Em) wavelengths of 350/425 nm which was 280 

designated as C (Liu et al., 2011) in Fig. 4a and indicates a humic acid-like fluorophore as 281 

suggested in the literature (Chen et al., 2003; Coble, 1996; Nam and Amy, 2008). Another peak 282 

at the Ex/Em of 220/416-427 nm was designated as A in Fig. 4a indicating the presence of 283 

fulvic acid-like fluorophore (Chen et al., 2003). It is noted that humic and fulvic acid-like 284 

fluorophore could coexist in these EEM regions (i.e., A and C) and their presence cannot be 285 

distinguished from each other (Rosario-Ortiz and Korak, 2017). Two other small peaks at the 286 

Ex/Em of 220/325-334 nm (aromatic amino acid) and 270/310-320 nm (tryptophan, amino 287 

acid) which were designated as T1 and T2 in Fig. 4a, respectively. The EEM spectroscopy 288 

results (Fig. 4a) imply the presence of proteins and humic organics, which is consistent with 289 

the findings attained through the LC-OCD chromatography (Fig. 3a).  290 
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(a) secondary effluent 

 
(b) sodium alginate 

 
(c) BSA 

 
(d) humic acid 

 
 (e) Suwannee River fulvic acid 

  
 (f) Pahokee Peat fulvic acid 

Fig. 4 – EEM fluorescence spectrum of (a) secondary effluent, solutions containing (b) sodium 291 

alginate, (c) BSA, (d) humic acid, (e) Suwannee River fulvic acid and (f) Pahokee Peat fulvic 292 

acid. 293 

Solutions of individual model foulants were also characterised using fluorescence spectroscopy 294 

to compare to the organics in the secondary wastewater effluent. The EEM of the sodium 295 

alginate solution revealed negligible peaks in the spectrum (Fig. 4b), which was expected since 296 

polysaccharide-like substances do not contain molecular structure sensitive to photon 297 
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excitation. A peak of protein-like substance was identified with the BSA solution at the Ex/Em 298 

of 265/325-350 nm and 223/334-348 nm which are designated as T1 and T2, respectively (Fig. 299 

4c). These peaks were also identified in the secondary wastewater effluent. The EEM spectrum 300 

of the humic acid solution (Fig. 4d) revealed a peak at the Ex/Em of 225/415-435 nm (A1) and 301 

250/435-449 nm (A2), and they were also identified at the secondary wastewater effluent (Fig. 302 

4a). The EEM spectrum of the fulvic acid solution (Fig. 4e and 4f) showed two peaks – a 303 

strong peak at the Ex/Em of 250/430-460 nm (A) and a weak peak at the Ex/Em of 350/425 304 

nm (C). This is consistent with a previous study (Chen et al., 2003) where the same source of 305 

Suwannee River fulvic acid was examined. These two peaks (A and C) observed in the fulvic 306 

acid solution were also identified in the secondary wastewater effluent. The characterisation 307 

performed above indicate that the secondary wastewater effluent contains humic acid- and 308 

fulvic acid-like substances as major sources of fluorophores. 309 

3.4. N-nitrosamine rejection by model foulants 310 

Further examination using model foulants (i.e., sodium alginate, BSA, humic acid and two 311 

fulvic acids) was conducted to identify fouling substances in the secondary effluent that govern 312 

the variation in the permeation of N-nitrosamines. Overall, initial NDMA rejections with the 313 

solutions containing one of the five model foulants (63–70%) were lower than the initial 314 

NDMA rejection with the secondary effluent (76%). This indicates that the difference in 315 

organic and inorganic constituents in the feed solution could affect the permeation of NDMA 316 

through RO.  317 

Membrane fouling with three model foulant (sodium alginate, BSA and humic acid) resulted 318 

in negligible impact on the permeation of N-nitrosamines through the RO membrane (Fig. 5 319 

and S5). Membrane fouling with sodium alginate decreased NDMA rejection from 70.3 to 320 

59.5% despite the considerable increase in TMP from 1.6 (t = 0 min) to 2.7 MPa (t = 45 min) 321 
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(Fig. 5a). Likewise, sodium alginate fouling caused decreased rejections of NMEA, NPYR and 322 

NMOR from 91.3 to 85.3%, from 95.9 to 93.3% and from 98.4 to 97.5%, respectively. Similar 323 

observations were identified for membrane fouling with BSA and humic acid solutions. 324 

Membrane fouling with BSA lead to a reduction in NDMA rejection from 64.0 (TMP = 1.6 325 

MPa, t = 0 min) to 57.7% (TMP = 2.0 MPa, t = 80 min) (Fig. 5b). Membrane fouling with 326 

humic acid caused a minor reduction of NDMA rejection from 62.9 (TMP = 1.7 MPa, t = 0 327 

min) to 59.7% (TMP = 2.6 MPa, t = 70 min) (Fig. 5c). 328 

 329 
Fig. 5 – Changes in N-nitrosamine rejection and TMP during RO treatment of solutions 330 

containing 50 mg/L of (a) sodium alginate, (b) BSA and (c) humic acid with ESPA2 membrane 331 

(20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2, feed temperature = 20.0 ± 0.1 ºC, permeate flux 332 

= 80 L/m2h). 333 

In contrast, membrane fouling with fulvic acid solutions caused a slight increase in N-334 

nitrosamine rejection (Fig. 6 and S6). When the TMP increased from 1.64 (t = 0 min) to 1.78 335 

MPa (t = 360 min) by the fouling development with Suwannee River fulvic acid solution, 336 

NDMA rejection increased from 64.7 to 69.4% (Fig. 6a). In response to the fouling 337 

development, the rejections of NMEA, NPYR and NMOR also increased from 88.9 to 91.2%, 338 
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from 93.6 to 95.3% and from 98.2 to 98.9%, respectively. Another fouling test with Pahokee 339 

Peat fulvic acid solution also revealed the trend of increasing N-nitrosamine rejection; NDMA 340 

rejection increased from 67.5 to 73.6% when the TMP increased from 1.6 (t = 0 min) to 2.5 341 

MPa  (t = 240 min) (Fig. 6b). In conjunction with fulvic acid fouling development, NMEA, 342 

NPYR and NMOR revealed increased rejection from 91.0 to 91.3%, from 95.4 to 95.8% and 343 

from 98.7 to 99.1%, respectively.  344 

 345 
Fig. 6 – Changes in N-nitrosamine rejection and TMP during RO treatment of solutions 346 

containing 30 mg/L of (a) Suwannee River fulvic acid and (b) Pahokee Peat fulvic acid with 347 

ESPA2 membrane (20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2, feed temperature = 20.0 ± 0.1 348 

ºC, permeate flux = 80 L/m2h). 349 

The trend of reducing the permeation of N-nitrosamines with a fouling layer of small molecular 350 

weight foulants (i.e. fulvic acids) was also observed with the ESNA1-LF NF membrane (Fig. 351 

S7). Membrane fouling with Pahokee Peat fulvic acid solution caused an increase in N-352 

nitrosamine rejection only after reaching as high TMP as those used for the ESPA2 RO 353 

membrane. For example, NDMA remained almost zero for the increase in TMP from 0.13 (t = 354 

0 50 100 150 200 250 300 350
0.0

0.5

1.0

1.5

2.0

2.5

RO treatment time [min]

TM
P 

[M
Pa

]

0

20

40

60

80

100

 NMOR
 NPYR
 NMEA
 NDMA

R
ej

ec
tio

n 
[%

]

0 50 100 150 200 250
RO treatment time [min]

(a) Suwannee River fulvic acid                                     (b) Pahokee Peat fulvic acid 



21 

 

0 min) to 0.57 MPa (t = 90 min) but thereafter increased from 0.9 (TMP = 0.75 MPa, t = 120 355 

min) to 5.8% (TMP = 1.85 MPa, t = 155 min) (Fig. S7a). The rejection of the other N-356 

nitrosamines also increased from 4 to 10–11% for the TMP increase from 0.75 to 1.85 MPa. In 357 

contrast, only negligible increase in NDMA rejection by up to 2% occurred with membrane 358 

fouling caused by a solution containing a larger model foulant – humic acid – even after 359 

reaching the high TMP (i.e. >1.5 MPa) at 40 min (Fig. S8). Considering that the ESNA1-LF 360 

membrane itself has almost no N-nitrosamine rejection capacity, the mechanism behind the 361 

increased rejection with fulvic acid can be hypothesized that the fouling layer of the small 362 

molecular weight fulvic acid foulants can function as an additional barrier of N-nitrosamine 363 

transport to the membrane. Another plausible mechanism is the restriction of permeation 364 

pathway of N-nitrosamine in the membrane structure by these small foulants (Steinle-Darling 365 

et al., 2010), resulting in less permeation through the RO membrane.  366 

3.5. Proposed mechanisms 367 

The compounds with uncharged and hydrophilic properties including N-nitrosamines are 368 

essentially rejected by size exclusion as previously suggested in the literature (Bellona et al., 369 

2004; Fujioka et al., 2012b). Size exclusion in RO treatment is based on the relationship 370 

between compound size and the size of pathway within the RO membrane (e.g. free-volume 371 

holes) (Fujioka et al., 2013b). As a result, the main focus of the impact of fouling substances 372 

on the permeation of N-nitrosamines is on the size of pathway inside the fouling layer formed 373 

on the RO membrane surface and the size of the internal pathway of the RO membrane. 374 

The formation of the fouling layer with large molecular weight model foulants (sodium alginate, 375 

BSA and humic acid) resulted in a negligible decrease in N-nitrosamines rejection (Fig. 6a-c). 376 

Considering that fouling of the RO membranes progresses with cake layer formation, the 377 

fouling layer is sufficiently porous such that N-nitrosamines can readily permeate from the bulk 378 
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solution through the fouling layer and to the membrane surface, which could explain the 379 

negligible impact on the permeation of N-nitrosamines.  380 

In contrast to the effects of high molecular weight model foulants, membrane fouling with the 381 

secondary wastewater effluent (containing a diverse range of molecular weight organics, Fig. 382 

3) led to decreased permeation of N-nitrosamines (Fig. 2). It is important to note that similar 383 

observations were also identified with the low molecular weight model foulants (i.e. fulvic 384 

acids) in this study (Fig. 6). The secondary wastewater effluent and fulvic acid solutions both 385 

contain fractions of low molecular weight organics (Fig. 3). Thus, these organics can form a 386 

densely packed cake layer that functions as an additional sieving barrier (Ang et al., 2011) or 387 

can obstruct the pathway of solutes (Steinle-Darling et al., 2010). Thus, it can be suggested that 388 

low molecular weight organics in the secondary effluent allow less solutes to permeate through 389 

RO membranes, leading to the enhanced rejection of N-nitrosamines. The results also suggest 390 

that the identification of fractions of low molecular weight organics using LC-OCD technique 391 

could allow for changes in the permeation of N-nitrosamines during long-term plant operation.  392 

4. Conclusions 393 

A high throughput HPLC-PR-CL analytical technique was used to examine the correlation 394 

between the type of foulant and N-nitrosamine rejection by an RO membrane. Membrane 395 

fouling with a secondary wastewater effluent led to a decrease in the permeation of NDMA 396 

and the other N-nitrosamines (i.e. NMEA, NPYR and NMOR), although the membrane fouling 397 

(accelerated at a high permeate flux) only provided a trend of N-nitrosamine rejection during 398 

fouling development. Examination by LC-OCD chromatography revealed that the major 399 

constituents in the secondary wastewater effluent were biopolymers (e.g. polysaccharides and 400 

proteins) and humic substances (e.g. humic acid and fulvic acid). Further investigation with 401 

fluorescence spectrometry also identified humic acid-like organics, fulvic acid-like organics 402 
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and proteins. Thus, the effects of membrane fouling on N-nitrosamine rejection were also 403 

evaluated using solutions of these compounds as model foulants. Membrane fouling with these 404 

model foulant solutions with the exception of fulvic acids generally resulted in a negligible 405 

impact on the permeation of N-nitrosamines. In contrast, membrane fouling with fulvic acids 406 

led to a notable decrease in the permeation of N-nitrosamines, which was similar to that 407 

observed with the secondary wastewater effluent. Secondary wastewater effluent and fulvic 408 

acid solutions contain low molecular weight organics, thus, can form a densely packed fouling 409 

layer formed on the RO membrane surface or can obstruct the pathway of solutes in the RO 410 

membrane structure. They can reduce the permeation of N-nitrosamines through RO 411 

membranes. The results indicate that specific foulants in reclaimed wastewater (e.g. fulvic acid-412 

like substances) could play an important role in the variation of N-nitrosamine rejection over 413 

long-term RO system operation. Future work is necessary to isolate individual organic fractions 414 

from reclaimed wastewater to identify substances influencing N-nitrosamine rejection. 415 
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