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Theproblemof robust 𝑙
2
-𝑙

∞
filtering for discrete-time systemwith interval time-varying delay and uncertainty is investigated, where

the time delay and uncertainty considered are varying in a given interval and norm-bounded, respectively. The filtering problem
based on the 𝑙

2
-𝑙

∞
performance is to design a filter such that the filtering error system is asymptotically stable with minimizing

the peak value of the estimation error for all possible bounded energy disturbances. Firstly, sufficient 𝑙
2
-𝑙

∞
performance analysis

condition is established in terms of linearmatrix inequalities (LMIs) for discrete-time delay systems by utilizing reciprocally convex
approach. Then a less conservative result is obtained by introducing some variables to decouple the Lyapunov matrices and the
filtering error system matrices. Moreover, the robust 𝑙

2
-𝑙

∞
filter is designed for systems with time-varying delay and uncertainty.

Finally, a numerical example is given to demonstrate the effectiveness of the filter design method.

1. Introduction

The uncertainty is unavoidable in practical engineering due
to the parameter drafting, modeling error, and component
aging.The controllers or filtering obtained based on nominal
systems cannot be employed to get the desired performance.
Therefore, more and more researchers are devoted to robust
control or robust filtering problems; see, for instance, [1–4].
On the other hand, time-delay often exists in the practical
engineering systems and is the main reason of the instability
and poor performance of the systems. Time-delay systems
have been widely studied during the past two decades [5–7].
In order to get less conservative results, more and more
approaches have been proposed to develop delay-dependent
conditions for discrete-time system with time-varying delay.
For examples, Jensen’s inequality is proposed in [8]; delay-
partitioning method is utilized in [9]; improved results are
obtained by using convex combination approach in [10].

In some practical applications, the peak value of the esti-
mation error is required to be within a certain range and

the aim of the 𝑙
2
-𝑙

∞
(energy-to-peak) filtering is to minimize

the peak values of the filtering error for any bounded
energy disturbance, which has received many attention. By
using a parameter-dependent approach, the robust energy-
to-peak filtering problem is considered in [11]. An improved
robust energy-to-peak filtering condition is proposed by
increasing the flexible dimensions in the solution space in
[12]. The robust 𝐿

2
-𝐿

∞
filtering for stochastic systems and

the exponential 𝐿
2
-𝐿

∞
filtering for Markovian jump sys-

tems are investigated in [13, 14], respectively. Compared
with the corresponding continuous-time systems, discrete-
time systems with time-varying delay have more stronger
application background [15]. For discrete-time Markovian
jumping systems, the reduced-order filter is designed in [16]
such that the filtering error system satisfies an energy-to-peak
performance. When time-delay appears, the robust energy-
to-peak filtering problem for networked systems is tackled in
[17]. For discrete-time switched systems with time-varying
delay, an improved robust energy-to-peak filtering design
method is proposed in [18].
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In this paper we consider the problem of robust 𝑙
2
-𝑙

∞
fil-

tering for uncertain discrete-time systems with time-varying
delay. The filter is designed by employing the reciprocally
convex approach proposed in [19] such that the filtering error
system is asymptotically stable with an 𝑙

2
-𝑙

∞
performance.

Firstly, a sufficient condition of the 𝑙
2
-𝑙

∞
performance anal-

ysis for nominal systems is obtained in terms of LMIs for
systems with time-varying delay and uncertainty. Based on
this criterion, by introducing some slack matrices, a less con-
servative result is obtained. Moreover, the desired filter for
nominal systems with time-varying delay is obtained by solv-
ing a set of LMIs.Then the result is extended to the uncertain
systems. A numerical example is given to illustrate the
effectiveness of the presented results.
Notation. The notation used throughout the paper is given
as follows. R𝑛 is the 𝑛-dimensional Euclidean space and
𝑃 > 0 (≥0) denotes that matrix 𝑃 is real symmetric and
positive definite (semidefinite); 𝐼 and 0 present the iden-
tity matrix and zero matrix with compatible dimensions,
respectively; ⋆ means the symmetric terms in a symmetric
matrix and sym(𝐴) stands for 𝐴 + 𝐴

𝑇; 𝑙
2
means the space

of square summable infinite vector sequences; for any real
function 𝑥 ∈ 𝑙

2
, we define ‖𝑥‖

∞
= sup

𝑘
√𝑥

𝑇
(𝑘)𝑥(𝑘) and

‖𝑥‖
2

= √∑
∞

𝑘=0
𝑥

𝑇
(𝑘)𝑥(𝑘); ‖ ⋅ ‖ refer to the Euclidean vector

norm. Matrices are assumed to be compatible for algebraic
operations if their dimensions are not explicitly stated.

2. Problem Statement

Consider a class of uncertain discrete-time systems with
time-varying delay described by

𝑥 (𝑘 + 1) = 𝐴 (𝜎) 𝑥 (𝑘) + 𝐴
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵 (𝜎)𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶 (𝜎) 𝑥 (𝑘) + 𝐶
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷 (𝜎)𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐿 (𝜎) 𝑥 (𝑘) + 𝐿
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐺 (𝜎)𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜙 (𝑘) , 𝑘 = −𝑑
2
, −𝑑

2
+ 1, . . . , 0,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector; 𝑦(𝑘) ∈ R𝑚 is the
measured output; 𝑧(𝑘) ∈ R𝑝 represents the signal to be
estimated; 𝑤(𝑘) ∈ R𝑙 is assumed to be an arbitrary noise
belonging to 𝑙

2
and 𝜙(𝑘) is a given initial condition sequence;

𝑑(𝑘) is a time-varying delay satisfying

1 ≤ 𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

2
< ∞, 𝑘 = 1, 2, . . . (2)

𝐴(𝜎), 𝐴
𝑑
(𝜎), 𝐵(𝜎), 𝐶(𝜎), 𝐶

𝑑
(𝜎), 𝐷(𝜎), 𝐿(𝜎), 𝐿

𝑑
(𝜎), and 𝐺(𝜎)

are system matrices and satisfy

𝐴 (𝜎) = 𝐴 + Δ𝐴 (𝜎) , 𝐴
𝑑
(𝜎) = 𝐴

𝑑
+ Δ𝐴

𝑑
(𝜎) ,

𝐵 (𝜎) = 𝐵 + Δ𝐵 (𝜎) ,

𝐶 (𝜎) = 𝐶 + Δ𝐶 (𝜎) , 𝐶
𝑑
(𝜎) = 𝐶

𝑑
+ Δ𝐶

𝑑
(𝜎) ,

𝐷 (𝜎) = 𝐷 + Δ𝐷 (𝜎) ,

𝐿 (𝜎) = 𝐿 + Δ𝐿 (𝜎) , 𝐿
𝑑
(𝜎) = 𝐿

𝑑
+ Δ𝐿

𝑑
(𝜎) ,

𝐺 (𝜎) = 𝐺 + Δ𝐺 (𝜎) .

(3)

Matrices Δ𝐴(𝜎), Δ𝐴
𝑑
(𝜎), Δ𝐵(𝜎), Δ𝐶(𝜎), Δ𝐶

𝑑
(𝜎), Δ𝐷(𝜎),

Δ𝐿(𝜎), Δ𝐿
𝑑
(𝜎), and Δ𝐺(𝜎) are unknown time-invariant

matrix representing the uncertainty of the system satisfying
the following conditions:

[Δ𝐴 (𝜎) Δ𝐴
𝑑
(𝜎) Δ𝐵 (𝜎)] = 𝑀

1
Δ

1
(𝜎) [𝑁𝐴

𝑁
𝐴𝑑

𝑁
𝐵] ,

Δ
𝑇

1
(𝜎) Δ

1
(𝜎) ≤ 𝐼,

[Δ𝐶 (𝜎) Δ𝐶
𝑑
(𝜎) Δ𝐷 (𝜎)] = 𝑀

2
Δ

2
(𝜎) [𝑁𝐶

𝑁
𝐶𝑑

𝑁
𝐷] ,

Δ
𝑇

2
(𝜎) Δ

2
(𝜎) ≤ 𝐼,

[Δ𝐿 (𝜎) Δ𝐿
𝑑
(𝜎) Δ𝐺 (𝜎)] = 𝑀

3
Δ

3
(𝜎) [𝑁𝐿

𝑁
𝐿𝑑

𝑁
𝐺] ,

Δ
𝑇

3
(𝜎) Δ

3
(𝜎) ≤ 𝐼,

(4)

where 𝜎 ∈ Θ andΘ is a compact set inR. The system in (1) is
assumed to be asymptotically stable. Our purpose is to design
a full order linear filter for the estimate of 𝑧(𝑘):

𝑥 (𝑘 + 1) = 𝐴
𝑓
𝑥 (𝑘) + 𝐵

𝑓
𝑦 (𝑘) , 𝑥 (0) = 0,

𝑧̂ (𝑘) = 𝐶
𝑓
𝑥 (𝑘) + 𝐷

𝑓
𝑦 (𝑘) ,

(5)

where 𝐴
𝑓
, 𝐵

𝑓
, 𝐶

𝑓
, and 𝐷

𝑓
are filter gains to be determined.

Let the augmented state vector 𝑥(𝑘) = [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘)]

𝑇

and 𝑧̃(𝑘) = 𝑧(𝑘) − 𝑧̂(𝑘). Then the filtering error system is
described as

𝑥 (𝑘 + 1) = 𝐴 (𝜎) 𝑥 (𝑘) + 𝐴
𝑑
(𝜎)Φ𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵 (𝜎)𝑤 (𝑘)

𝑧̃ (𝑘) = 𝐿̃ (𝜎) 𝑥 (𝑘) + 𝐿̃
𝑑
(𝜎)Φ𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐺 (𝜎)𝑤 (𝑘)

𝑥 (𝑘) = [𝜙
𝑇

(𝑘) 0]
𝑇

, 𝑘 = −𝑑
2
, −𝑑

2
+ 1, . . . , 0,

(6)

where Φ = [𝐼 0] and

𝐴 (𝜎) = [
𝐴 (𝜎) 0

𝐵
𝑓
𝐶 (𝜎) 𝐴

𝑓

] , 𝐴
𝑑
(𝜎) = [

𝐴
𝑑
(𝜎)

𝐵
𝑓
𝐶

𝑑
(𝜎)

] ,

𝐵 = [
𝐵 (𝜎)

𝐵
𝑓
𝐷(𝜎)

] ,

𝐿̃ (𝑘) = [𝐿 (𝜎) − 𝐷
𝑓
𝐶 (𝜎) −𝐶

𝑓] ,

𝐿̃
𝑑
(𝜎) = 𝐿

𝑑
(𝜎) − 𝐷

𝑓
𝐶

𝑑
(𝜎) , 𝐺 (𝜎) = 𝐺 (𝜎) − 𝐷

𝑓
𝐷 (𝜎) .

(7)
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The nominal system of (6) is system (6) without uncer-
tainty; that is, Δ𝐴(𝜎) = 0, Δ𝐴

𝑑
(𝜎) = 0, Δ𝐵(𝜎) = 0, Δ𝐶(𝜎) =

0, Δ𝐶
𝑑
(𝜎) = 0, Δ𝐷(𝜎) = 0, Δ𝐿(𝜎) = 0, Δ𝐿

𝑑
(𝜎) = 0, and

Δ𝐺(𝜎) = 0.
The following lemmas and definition will be utilized in

the derivation of the main results.

Lemma 1 (see [20]). For any matrices 𝑈 and 𝑉 > 0, the
following inequality holds:

𝑈𝑉
−1

𝑈
𝑇

≥ 𝑈 + 𝑈
𝑇
− 𝑉. (8)

Lemma 2 (see [19]). Let 𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑁
: R𝑚

→ R have pos-
itive values in a subset 𝐷 of R𝑚. Then, the reciprocally convex
combination of 𝑓

𝑖
over 𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑

𝑖
𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑘) = ∑

𝑖

𝑓
𝑖
(𝑘) + max

𝑔𝑖,𝑗(𝑘)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑘) (9)

subject to

{𝑔
𝑖,𝑗

: R
𝑚

󳨀→ R, 𝑔
𝑗,𝑖

(𝑘) = 𝑔
𝑖,𝑗

(𝑘) , [
𝑓
𝑖
(𝑘) 𝑔

𝑖,𝑗
(𝑘)

𝑔
𝑗,𝑖

(𝑘) 𝑓
𝑗
(𝑘)

] ≥ 0} .

(10)

Lemma 3. For any constant matrix 𝑀 > 0, integers 𝑎 ≤ 𝑏,
vector function 𝑤: {𝑎, 𝑎 + 1, . . . , 𝑏} → R𝑛, then

− (𝑏 − 𝑎 + 1)

𝑏

∑

𝑖=𝑎

𝑤
𝑇
(𝑖)𝑀𝑤 (𝑖) ≤ −(

𝑏

∑

𝑖=𝑎

𝑤(𝑖))

𝑇

𝑀(

𝑏

∑

𝑖=𝑎

𝑤 (𝑖)) .

(11)

Lemma 4. Given a symmetric matrix 𝑄 and matrices 𝐻, 𝐸
with appropriate dimensions, then

𝑄 + sym (𝐻𝐹𝐸) < 0, (12)

for all 𝐹𝑇
𝐹 ≤ 𝐼, if and only if there exists a scalar 𝜀 > 0 such

that

𝑄 + 𝜀𝐸
𝑇
𝐸 + 𝜀

−1
𝐻𝐻

𝑇
< 0. (13)

Definition 5. Given a scalar 𝛾 > 0, the filtering error 𝑧̃(𝑘) in
(6) is said to satisfy the 𝑙

2
-𝑙

∞
disturbance attenuation level 𝛾

under zero initial state, and the following condition is sat-
isfied:

‖𝑧̃‖∞ < 𝛾‖𝑤‖2. (14)

Our aim is to design a filter in the form of (5) such that
the filtering error system in (6) is asymptotically stable and
satisfies the 𝑙

2
-𝑙

∞
performance defined in Definition 5.

3. Main Results

In this section, the sufficient 𝑙
2
-𝑙

∞
performance analysis

condition is first derived for nominal filtering error system
of (6). Then an equivalent result is obtained by introducing
three slack matrices. Based on these results, a desired filter is
designed to render the nominal system of (6) asymptotically
stable with an 𝑙

2
-𝑙

∞
performance.Then the result is extended

to the uncertain system in (6).

3.1. 𝑙
2
-𝑙

∞
Performance Analysis. In this subsection, we first

give the result of 𝑙
2
-𝑙

∞
performance analysis for nominal

system of (6).

Theorem 6. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices 𝑃 > 0, 𝑄
3
> 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2, 𝑆

𝑗
> 0, 𝑗 = 1, 2,

and 𝑀 such that the following LMIs hold:

[
𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (15)

[
[
[
[
[

[

𝑃 0 0 𝐿̃
𝑇

⋆ 𝑄
3

0 𝐿̃
𝑇

𝑑

⋆ ⋆ 𝐼 𝐺
𝑇

⋆ ⋆ ⋆ 𝛾
2
𝐼

]
]
]
]
]

]

> 0, (16)

Π̃ =

[
[
[
[
[
[
[
[
[
[
[
[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0 0 Π̃
16
𝑆
1

Π̃
17
𝑆
2

𝐴
𝑇
𝑃

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃
33

Π̃
34

0 𝑑
1
𝐴

𝑇

𝑑
𝑆
1

𝑑𝐴
𝑇

𝑑
𝑆
2

𝐴
𝑇

𝑑
𝑃

⋆ ⋆ ⋆ Π̃
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑
1
𝐵

𝑇
𝑆
1

𝑑𝐵
𝑇
𝑆
2

𝐵
𝑇
𝑃

⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
1

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
2

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑃

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(17)

where

Π̃
11

= −𝑃 + 𝑄
1
+ 𝑄

2
+ (𝑑 + 1)Φ

𝑇
𝑄

3
Φ − Φ

𝑇
𝑆
1
Φ,

Π̃
22

= −𝑆
2
− 𝑄

1
− 𝑆

1
, Π̃

23
= 𝑆

2
− 𝑀

𝑇
,

Π̃
33

= −𝑄
3
− 2𝑆

2
+ sym(𝑀) , Π̃

34
= 𝑆

2
− 𝑀

𝑇
,

Π̃
44

= −𝑄
2
− 𝑆

2
,

Π̃
16

= 𝑑
1
Φ

𝑇
(𝐴 − 𝐼)

𝑇
, Π̃

17
= 𝑑Φ

𝑇
(𝐴 − 𝐼)

𝑇
,

𝑄
𝑖
= diag {𝑄

𝑖
, 𝑄

𝑖
} , 𝑖 = 1, 2, 𝑑 = 𝑑

2
− 𝑑

1
.

(18)

Proof. First, the asymptotic stability of the nominal system
of (6) is proved. We denote 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and the
following Lyapunov functional is chosen:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) + 𝑉

5
(𝑘) , (19)

where

𝑉
1
(𝑘) = 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

2

∑

𝑗=1

𝑘−1

∑

𝑖=𝑘−𝑑𝑗

𝑥
𝑇
(𝑖) 𝑄

𝑖
𝑥 (𝑖) ,
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𝑉
3
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

+

−𝑑1

∑

𝑗=−𝑑2+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖) ,

𝑉
4
(𝑘) =

−1

∑

𝑗=−𝑑1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑑
1
𝜂
𝑇
(𝑖) Φ

𝑇
𝑆
1
Φ𝜂 (𝑖) ,

𝑉
5
(𝑘) =

−𝑑1−1

∑

𝑗=−𝑑2

𝑘−1

∑

𝑖=𝑘+𝑗

𝑑𝜂
𝑇
(𝑖) Φ

𝑇
𝑆
2
Φ𝜂 (𝑖) .

(20)

Calculating the forward difference of𝑉(𝑘) along the trajecto-
ries of filtering error system (6) with 𝑤(𝑘) = 0 yields

Δ𝑉
1
(𝑘) = 𝑥

𝑇
(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘)

= (𝐴𝑥(𝑘) + 𝐴
𝑑
Φ𝑥(𝑘 − 𝑑(𝑘)))

𝑇

× 𝑃 (𝐴𝑥 (𝑘) + 𝐴
𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− 𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

(21)

Δ𝑉
2
(𝑘) =

2

∑

𝑗=1

𝑥
𝑇
(𝑘) 𝑄

𝑗
𝑥 (𝑘)

−

2

∑

𝑗=1

𝑥 (𝑘 − 𝑑
𝑗
)𝑄

𝑗
𝑥 (𝑘 − 𝑑

𝑗
)

≤

2

∑

𝑗=1

𝑥
𝑇
(𝑘) 𝑄

𝑗
𝑥 (𝑘)

−

2

∑

𝑗=1

𝑥 (𝑘 − 𝑑
𝑗
)Φ

𝑇
𝑄

𝑗
Φ𝑥 (𝑘 − 𝑑

𝑗
) ,

(22)

Δ𝑉
3
(𝑘) = (𝑑 + 1) 𝑥

𝑇
(𝑘)Φ

𝑇
𝑄

3
Φ𝑥 (𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘+1)

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘)

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

− 𝑥
𝑇
(𝑘 − 𝑑 (𝑘))Φ

𝑇
𝑄

3
Φ𝑥 (𝑘 − 𝑑 (𝑘))

−

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

= (𝑑 + 1) 𝑥
𝑇
(𝑘)Φ

𝑇
𝑄

3
Φ𝑥 (𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑1

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

+

𝑘−𝑑1

∑

𝑖=𝑘+1−𝑑(𝑘+1)

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

− 𝑥
𝑇
(𝑘 − 𝑑 (𝑘))Φ

𝑇
𝑄

3
Φ𝑥 (𝑘 − 𝑑 (𝑘))

−

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘)

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

−

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇
(𝑖) Φ

𝑇
𝑄

3
Φ𝑥 (𝑖)

≤ (𝑑 + 1) 𝑥
𝑇
(𝑘)Φ

𝑇
𝑄

3
Φ𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝑑 (𝑘))Φ

𝑇
𝑄

3
Φ𝑥 (𝑘 − 𝑑 (𝑘)) .

(23)

By using Lemma 3, we have

Δ𝑉
4
(𝑘) = 𝑑

2

1
𝜂
𝑇
(𝑘)Φ

𝑇
𝑆
1
Φ𝜂 (𝑘)

− 𝑑
1

𝑘−1

∑

𝑖=𝑘−𝑑1

𝜂
𝑇
(𝑖) Φ

𝑇
𝑆
1
Φ𝜂 (𝑖)

≤ 𝑑
2

1
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

𝑇

× 𝑆
1
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− (Φ𝑥 (𝑘) − Φ𝑥 (𝑘 − 𝑑
1
))

𝑇

× 𝑆
1
(Φ𝑥 (𝑘) − Φ𝑥 (𝑘 − 𝑑

1
)) .

(24)

Since [
𝑆2 𝑀

⋆ 𝑆2
] ≥ 0, the following inequality holds:

[
[
[
[

[

√
𝛼
1

𝛼
2

(𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
))

−√
𝛼
2

𝛼
1

(𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘)))

]
]
]
]

]

𝑇

× [
𝑆
2

𝑀

⋆ 𝑆
2

]

×

[
[
[
[

[

√
𝛼
1

𝛼
2

(𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
))

−√
𝛼
2

𝛼
1

(𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘)))

]
]
]
]

]

≥ 0,

(25)
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where 𝛼
1

= (𝑑
2
− 𝑑(𝑘))/𝑑 and 𝛼

2
= (𝑑(𝑘) − 𝑑

1
)/𝑑. Then

employing Lemma 2, for 𝑑
1
< 𝑑(𝑘) < 𝑑

2
, we have

Δ𝑉
5
(𝑘) = 𝑑

2
𝜂
𝑇
(𝑘)Φ

𝑇
𝑆
2
Φ𝜂 (𝑘)

− 𝑑

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

𝜂
𝑇
(𝑖) Φ

𝑇
𝑆
2
Φ𝜂 (𝑖)

− 𝑑

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜂
𝑇
(𝑖) Φ

𝑇
𝑆
2
Φ𝜂 (𝑖)

≤ 𝑑
2
𝜂
𝑇
(𝑘)Φ

𝑇
𝑆
2
Φ𝜂 (𝑘)

−
𝑑

𝑑
2
− 𝑑 (𝑘)

(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

Φ𝜂(𝑖))

𝑇

𝑆
2
(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

Φ𝜂 (𝑖))

−
𝑑

𝑑 (𝑘) − 𝑑
1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

Φ𝜂(𝑖))

𝑇

𝑆
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

Φ𝜂 (𝑖))

≤ 𝑑
2
((𝐴 − 𝐼)Φ𝑥(𝑘) + 𝐴

𝑑
Φ𝑥(𝑘 − 𝑑(𝑘)))

𝑇

× 𝑆
2
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− [
𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑

2
)

𝑥(𝑘 − 𝑑
1
) − 𝑥(𝑘 − 𝑑(𝑘))

]

𝑇

[
𝑆
2

𝑀

⋆ 𝑆
2

]

× [
𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑

2
)

𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘))

] .

(26)

Note that when 𝑑(𝑘) = 𝑑
1
or 𝑑(𝑘) = 𝑑

2
, it yields 𝑥(𝑘 − 𝑑

1
) −

𝑥(𝑘 − 𝑑(𝑘)) = 0 or 𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
) = 0. Hence, the

inequality in (24) still holds. Combining the conditions from
(21) to (24), we have

Δ𝑉 (𝑘) = 𝜁
𝑇
(𝑘)Π

𝑠
𝜁 (𝑘) , (27)

where

𝜁 (𝑘)

= [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 𝑑

1
)Φ
𝑇

𝑥
𝑇
(𝑘 − 𝑑 (𝑘))Φ

𝑇
𝑥
𝑇
(𝑘 − 𝑑

2
)Φ
𝑇
]
𝑇

,

Π
𝑠
=

[
[
[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0

⋆ Π̃
22

Π̃
23

𝑀
𝑇

⋆ ⋆ Π̃
33

Π̃
34

⋆ ⋆ ⋆ Π̃
44

]
]
]

]

+

[
[
[

[

Π̃
16

0

𝑑
1
𝐴

𝑇

𝑑

0

]
]
]

]

𝑆
1

[
[
[

[

Π̃
16

0

𝑑
1
𝐴

𝑇

𝑑

0

]
]
]

]

𝑇

+

[
[
[

[

Π̃
17

0

𝑑𝐴
𝑇

𝑑

0

]
]
]

]

𝑆
2

[
[
[

[

Π̃
17

0

𝑑𝐴
𝑇

𝑑

0

]
]
]

]

𝑇

+

[
[
[

[

𝐴
𝑇

0

𝐴
𝑇

𝑑

0

]
]
]

]

𝑃

[
[
[

[

𝐴
𝑇

0

𝐴
𝑇

𝑑

0

]
]
]

]

𝑇

.

(28)

On the other hand, the following inequality can be obtained
from (17):

Π
𝑠1

=

[
[
[
[
[
[
[
[
[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0 Π̃
16
𝑆
1

Π̃
17
𝑆
2

𝐴
𝑇
𝑃

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0

⋆ ⋆ Π̃
33

Π̃
34

𝑑
1
𝐴

𝑇

𝑑
𝑆
1

𝑑𝐴
𝑇

𝑑
𝑆
2

𝐴
𝑇

𝑑
𝑃

⋆ ⋆ ⋆ Π̃
44

0 0 0

⋆ ⋆ ⋆ ⋆ −𝑆
1

0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
2

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑃

]
]
]
]
]
]
]
]
]

]

< 0

(29)

which is equivalent to Π
𝑠

< 0. Hence, Δ𝑉(𝑘) < 0 which
implies that the filtering error system in (6) with 𝑤(𝑘) = 0

is asymptotically stable.
Next, we show the 𝑙

2
-𝑙

∞
performance of system (6). To

this end, we define

𝐽 (𝑘) = 𝑉 (𝑘) −

𝑘−1

∑

𝑖=0

𝑤
𝑇
(𝑖) 𝑤 (𝑖) . (30)

Then under the zero initial condition, that is, 𝑥(𝑘) = 0,
𝑘 = −𝑑

2
, −𝑑

2
+ 1, . . . , 0, it can be shown that for any nonzero

𝑤(𝑘) ∈ 𝑙
2
[0,∞)

𝐽 (𝑘) =

𝑘−1

∑

𝑖=0

[Δ𝑉 (𝑖) − 𝑤
𝑇
(𝑖) 𝑤 (𝑖)]

=

𝑘−1

∑

𝑖=0

𝜉
𝑇
(𝑖) (Π + Π

𝑇

1
𝑃Π

1
+ 𝑑

2

1
Π

𝑇

2
𝑆
1
Π

2

+𝑑
2

12
Π

𝑇

2
𝑆
2
Π

2
) 𝜉 (𝑖) ,

(31)

where
𝜉 (𝑖)

= [𝑥
𝑇
(𝑖) 𝑥

𝑇
(𝑖 − 𝑑1)Φ

𝑇
𝑥
𝑇
(𝑖 − 𝑑 (𝑖))Φ

𝑇
𝑥
𝑇
(𝑖 − 𝑑2)Φ

𝑇
𝑤 (𝑖)]

𝑇

,

Π =

[
[
[
[
[
[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0 Π̃
15

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0

⋆ ⋆ Π̃
33

Π̃
34

−𝐿̃
𝑇

𝑑
𝑆

⋆ ⋆ ⋆ Π̃
44

0

⋆ ⋆ ⋆ ⋆ Π̃
55

]
]
]
]
]
]

]

,

Π
1
= [𝐴 0 𝐴

𝑑
0 𝐵] ,

Π
2
= [(𝐴 − 𝐼)Φ 0 𝐴

𝑑
0 𝐵] ,

Π
3
= [𝐿̃ 0 𝐿̃

𝑑
0 𝐺] .

(32)
By using Schur complement equivalence, the inequality in
(17) is equivalent toΠ+Π

𝑇

1
𝑃Π

1
+𝑑

2

1
Π

𝑇

2
𝑆
1
Π

2
+𝑑

2

12
Π

𝑇

2
𝑆
2
Π

2
< 0.

Then we have 𝐽(𝑘) < 0; that is,

𝑉 (𝑘) <

𝑘−1

∑

𝑖=0

𝑤
𝑇
(𝑖) 𝑤 (𝑖) . (33)
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On the other hand, it yields from (16) and (33) that

𝑧̃
𝑇
(𝑘) 𝑧̃ (𝑘) = 𝜂

𝑇
(𝑘) [𝐿̃ 𝐿̃

𝑑
𝐺]

𝑇

[𝐿̃ 𝐿̃
𝑑

𝐺] 𝜂 (𝑘)

≤ 𝛾
2
𝜂
𝑇
(𝑘) [

[

𝑃 0 0

⋆ 𝑄
3

0

⋆ ⋆ 𝐼

]

]

𝜂 (𝑘)

≤ 𝛾
2
(𝑉 (𝑘) + 𝑤

𝑇
(𝑘) 𝑤 (𝑘))

≤ 𝛾
2

𝑘

∑

𝑖=0

𝑤
𝑇
(𝑖) 𝑤 (𝑖) ≤ 𝛾

2

∞

∑

𝑖=0

𝑤
𝑇
(𝑖) 𝑤 (𝑖) ,

(34)

where

𝜂 (𝑘) = [

[

𝑥 (𝑘)

Φ𝑥 (𝑘 − 𝑑 (𝑘))

𝑤 (𝑘)

]

]

. (35)

Then, we have ‖𝑧̃‖
∞

< 𝛾‖𝑤‖
2
by taking the supremum over

time 𝑘 > 0. By Definition 5, the filtering error 𝑧̃(𝑘) satisfies a
given 𝑙

2
-𝑙

∞
disturbance attenuation level. This completes the

proof.

Remark 7. Theadvantage of the results benefits from utilizing
the reciprocally convex combination approach proposed in
[19]. For the extensively used Jensen inequality [8], the inte-
gral term

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

(𝑑
2
− 𝑑

1
) 𝜂

𝑇
(𝑖) 𝑆𝜂 (𝑖)

= −

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

(𝑑
2
− 𝑑

1
) 𝜂

𝑇
(𝑖) 𝑆𝜂 (𝑖)

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

(𝑑
2
− 𝑑

1
) 𝜂

𝑇
(𝑖) 𝑆𝜂 (𝑖)

(36)

with 𝑑
1
≤ 𝑑(𝑘) ≤ 𝑑

2
, 𝜂(𝑖) = 𝑥(𝑖 + 1) − 𝑥(𝑖) by the term

− [𝑥(𝑘 − 𝑑
1
) − 𝑥(𝑘 − 𝑑(𝑘))]

𝑇

𝑆 [𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘))]

− [𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
)]

𝑇

𝑆 [𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
)]

(37)

which is a special case of the following term with 𝑀 = 0

− [
𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑

1
)

𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
)
]

𝑇

× [
𝑆 𝑀

⋆ 𝑆
] [

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
1
)

𝑥 (𝑘 − 𝑑 (𝑡)) − 𝑥 (𝑘 − 𝑑
2
)
]

(38)

with [
𝑆 𝑀

⋆ 𝑆
] ≥ 0, which is one of the advantages of recip-

rocally convex combination approach. On the other hand,
the delay partitioning method is widely applied to reduce
the conservatism of the results [9, 21, 22]. Also, the method
can be extended to the problem considered in this paper.
However, it will rise significant computation cost with the
partitioning number increasing. Therefore, the reciprocally
convex method needs less decision variables and can be seen
as a tradeoff between the conservatism and the computation
cost.

Then, an equivalent condition of LMI (17) is obtained
by introducing three slack matrices 𝐻

1
, 𝐻

2
, and 𝑇, which is

presented in the following theorem.

Theorem 8. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices 𝑃 > 0, 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, 𝑆

𝑗
> 0, 𝐻

𝑗
, 𝑗 = 1, 2, 𝑇,

and 𝑀, such that the following LMIs hold:

[
𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (39)

[
[
[
[
[

[

𝑃 0 0 𝐿̃
𝑇

⋆ 𝑄
3

0 𝐿̃
𝑇

𝑑

⋆ ⋆ 𝐼 𝐺
𝑇

⋆ ⋆ ⋆ 𝛾
2
𝐼

]
]
]
]
]

]

> 0, (40)

Ω̃ =

[
[
[
[
[
[
[
[
[
[
[
[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0 0 Π̃
16
𝐻

𝑇

1
Π̃

17
𝐻

𝑇

2
𝐴

𝑇
𝑇

𝑇

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃
33

Π̃
34

0 𝑑
1
𝐴

𝑇

𝑑
𝐻

𝑇

1
𝑑𝐴

𝑇

𝑑
𝐻

𝑇

2
𝐴

𝑇

𝑑
𝑇

𝑇

⋆ ⋆ ⋆ Π̃
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑
1
𝐵

𝑇
𝐻

𝑇

1
𝑑𝐵

𝑇
𝐻

𝑇

2
𝐵

𝑇
𝑇

𝑇

⋆ ⋆ ⋆ ⋆ ⋆ 𝑆
1
− 𝐻

𝑇

1
− 𝐻

1
0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑆
2
− 𝐻

𝑇

2
− 𝐻

2
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑃 − 𝑇
𝑇
− 𝑇

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0 , (41)
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where Π̃
𝑖𝑖
, 𝑖 = 1, . . . , 4, Π̃

16
, Π̃

17
, Π̃

23
, and Π̃

34
are defined in

(17).

Proof. On one hand, if (17) holds, then there exist𝐻
𝑗
= 𝐻

𝑇

𝑗
=

𝑆
𝑗
, 𝑗 = 1, 2, and 𝑇 = 𝑇

𝑇
= 𝑃 such that (41) holds. On the

other hand, if (41) holds, we have the following inequality
based on Lemma 1:

[
[
[
[
[
[
[
[

[

Π̃11 Φ
𝑇
𝑆1 0 0 0 Π̃16𝐻

𝑇

1
Π̃17𝐻

𝑇

2
𝐴
𝑇
𝑇
𝑇

⋆ Π̃22 Π̃23 𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃33 Π̃34 0 𝑑1𝐴
𝑇

𝑑
𝐻
𝑇

1
𝑑𝐴
𝑇

𝑑
𝐻
𝑇

2
𝐴
𝑇

𝑑
𝑇
𝑇

⋆ ⋆ ⋆ Π̃44 0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑1𝐵
𝑇
𝐻
𝑇

1
𝑑𝐵
𝑇
𝐻
𝑇

2
𝐵
𝑇
𝑇
𝑇

⋆ ⋆ ⋆ ⋆ ⋆ −𝐻1𝑆
−1

1
𝐻
𝑇

1
0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐻2𝑆
−1

2
𝐻
𝑇

2
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑇𝑃
−1

𝑇
𝑇

]
]
]
]
]
]
]
]

]

< 0.

(42)

In addition, matrices 𝐻
𝑗
, 𝑗 = 1, 2, and 𝑇 are nonsingular due

to 𝑆
𝑗
−𝐻

𝑇

𝑗
−𝐻

𝑗
< 0, 𝑗 = 1, 2, and𝑃−𝑇

𝑇
−𝑇 < 0.Then, pre- and

promultiplying (42) by diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑆
1
𝐻

−1

1
, 𝑆

2
𝐻

−1

2
, 𝑃𝑇

−1
}

and its transpose yields (17). Therefore, the equivalence
between (41) and (17) is proved.

3.2. Robust Filter Design. In this subsection, the filter in the
form of (5) is firstly designed such that the nominal filtering
error system of (6) is asymptotically stable with an 𝑙

2
-𝑙

∞

performance. Then the robust filtering problem is solved.
Based on the result ofTheorem 8, the filter designmethod for
nominal system of (1) is presented in the following theorem.

Theorem 9. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices [ 𝑃1 𝑃2

⋆ 𝑃3
] > 0, 𝑄

3
> 0, 𝑄

𝑙
> 0, 𝑄

𝑙
> 0, 𝑙 = 1, 2, 𝑆

𝑗
> 0,

𝐻
𝑗
, 𝐹

𝑗
, 𝑗 = 1, 2, diagonal matrix 𝑁 > 0, 𝑇

1
, and 𝑀 such that

the following set of LMIs hold:

[
𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0 (43)

Ω = [
Ξ Γ

⋆ Λ
] < 0 (44)

Υ =

[
[
[
[
[
[
[
[
[
[

[

𝑃
1

𝑃
2

0 0 (𝐿 − 𝐷
𝑓
𝐶)

𝑇

⋆ 𝑃
3

0 0 −𝐶
𝑇

𝑓

⋆ ⋆ 𝑄
3

0 (𝐿
𝑑
− 𝐷

𝑓
𝐶

𝑑
)
𝑇

⋆ ⋆ ⋆ 𝐼 (𝐺 − 𝐷
𝑓
𝐶

𝑑
)
𝑇

⋆ ⋆ ⋆ ⋆ 𝛾
2
𝐼

]
]
]
]
]
]
]
]
]
]

]

> 0, (45)

where

Ξ =

[
[
[
[
[
[
[

[

Ξ
11

−𝑃
2

𝑆
1

𝐶
𝑇
𝑁𝐶

𝑑
0 0

⋆ Ξ
22

0 0 0 0

⋆ ⋆ Ξ
33

𝑆
2
− 𝑀

𝑇
𝑀

𝑇
0

⋆ ⋆ ⋆ Ξ
44

𝑆
2
− 𝑀

𝑇
0

⋆ ⋆ ⋆ ⋆ Ξ
55

0

⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]
]
]
]
]
]
]

]

,

Γ=

[
[
[
[
[
[
[
[
[
[
[

[

Γ11 Γ12 𝐴
𝑇
𝑇

𝑇

1
+ 𝐶

𝑇A𝑠0𝐵
𝑇

𝑓
𝐴

𝑇
𝐹

𝑇

1
+ 𝐶

𝑇A𝑠0𝐵
𝑇

𝑓

0 0 𝐴
𝑇

𝑓
𝐴

𝑇

𝑓

0 0 0 0

𝑑1𝐴
𝑇

𝑑
𝐻

𝑇

1
𝑑𝐴

𝑇

𝑑
𝐻

𝑇

2
𝐴

𝑇

𝑑
𝑇

𝑇

1
+ 𝐶

𝑇

𝑑
A𝑠0𝐵

𝑇

𝑓
𝐴

𝑇

𝑑
𝐹

𝑇

1
+ 𝐶

𝑇

𝑑𝑖
A𝑠0𝐵

𝑇

𝑓

0 0 0 0

𝑑1𝐵
𝑇
𝐻

𝑇

1
𝑑𝐵

𝑇
𝐻

𝑇

2
𝐵

𝑇
𝑇

𝑇

1
+ 𝐷

𝑇A𝑠0𝐵
𝑇

𝑓
𝐵

𝑇
𝐹

𝑇

1
+ 𝐷

𝑇A𝑠0𝐵
𝑇

𝑓

]
]
]
]
]
]
]
]
]
]
]

]

,

Λ=

[
[
[

[

𝑆1 − 𝐻1 − 𝐻
𝑇

1
0 0 0

⋆ 𝑆2 − 𝐻2 − 𝐻
𝑇

2
0 0

⋆ ⋆ 𝑃1 − 𝑇1 − 𝑇
𝑇

1
𝑃2 − 𝐹2 − 𝐹

𝑇

1

⋆ ⋆ ⋆ 𝑃3 − 𝐹2 − 𝐹
𝑇

2

]
]
]

]

,

Ξ
11

= − (𝑃
1
+ 𝑆

1
) + 𝑄

1
+ 𝑄

2
+ (𝑑 + 1)𝑄

3
,

Ξ
22

= −𝑃
3
+ 𝑄

1
+ 𝑄

2
,

Ξ
33

= −𝑆
2
− 𝑄

1
− 𝑆

1
,

Ξ
44

= −𝑄
3
+ sym (𝑀

𝑖
− 𝑆

2𝑖
) ,

Ξ
55

= −𝑄
2
− 𝑆

2
,

Γ
11

= 𝑑
1
(𝐴 − 𝐼)

𝑇
𝐻

𝑇

1
, Γ

12
= 𝑑(𝐴 − 𝐼)

𝑇
𝐻

𝑇

2
.

(46)

Moreover, a suitable 𝑙
2
-𝑙

∞
filter is given by

𝐴
𝑓

= 𝐴
𝑓
𝐹

−1

2
, 𝐵

𝑓
= 𝐵

𝑓
, 𝐶

𝑓
= 𝐶

𝑓
𝐹

−1

2
,

𝐷
𝑓

= 𝐷
𝑓
.

(47)

Proof. Firstly, we introduce four matrices 𝑇
1
, 𝑇

2
, 𝑇

3
, and 𝑇

4

with 𝑇
4
invertible and define

𝐽
1
= [

𝐼 0

0 𝑇
2
𝑇

−1

4

] , 𝐹
1
= 𝑇

2
𝑇

−1

4
𝑇
3
, 𝐹

2
= 𝑇

2
𝑇

−𝑇

4
𝑇

𝑇

2
,

𝑄
𝑙
= 𝑇

2
𝑇

−1

4
𝑄

𝑙
𝑇

−𝑇

4
𝑇

𝑇

2
, 𝐽 = diag {𝐽

1
, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐽

1
} ,

[
𝑃
1

𝑃
2

⋆ 𝑃
3

] = 𝐽
1
𝑃𝐽

𝑇

1
, 𝑇 = [

𝑇
1

𝑇
2

𝑇
3

𝑇
4

] ,

𝐽
2
= diag {𝐽

1
, 𝐼, 𝐼, 𝐼} ,

[
𝐴

𝑓
𝐵

𝑓

𝐶
𝑓

𝐷
𝑓

] = [
𝑇
2

0

0 𝐼
] [

𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] [
𝑇

−𝑇

4
𝑇

𝑇

2
0

0 𝐼
] .

(48)

From (44), we have 𝐹
2
+ 𝐹

𝑇

2
= 𝑇

2
𝑇

−𝑇

4
𝑇

𝑇

2
+ 𝑇

2
𝑇

−1

4
𝑇

𝑇

2
> 0

which implies that 𝑇
2
is nonsingular. Hence, 𝐽 and 𝐽

2
are
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nonsingular. The inequality in (45) can be obtained by pre-
an promultiplying (33) with 𝐽

2
and 𝐽

𝑇

2
, respectively. Noting

that

Ω = 𝐽Ω̃𝐽
𝑇 (49)

we have Ω̃ < 0. On the other hand, because 𝑇
2
and 𝑇

4
cannot

be obtained from (44), we cannot determine the filters from
(48). However, we can construct an equivalent filter transfer
function from 𝑦(𝑘) to 𝑧̃(𝑘):

𝑇
𝑧̃𝑦

= 𝐶
𝑓
(𝑧𝐼 − 𝐴

𝑓
)
−1

𝐵
𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
𝑇

−𝑇

2
𝑇

𝑇

4
(𝑧𝐼 − 𝑇

−1

2
𝐴

𝑓
𝑇

−𝑇

2
𝑇

𝑇

4
)
−1

𝑇
−1

2
𝐵

𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
(𝑧𝐹

2
− 𝐴

𝑓
)
−1

𝐵
𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
𝐹

−1

2
(𝑧𝐼 − 𝐴

𝑓
𝐹

−1

2
)
−1

𝐵
𝑓
+ 𝐷

𝑓
.

(50)

Therefore, the desired filter can be obtained from (47). This
completes the proof.

Then the filter design result for uncertain system (6) is
presented in the following theorem.

Theorem 10. Given a scalar 𝛾 > 0, the system in (6) with
uncertainty is asymptotically stable with an 𝑙

2
-𝑙

∞
performance

if there exist matrices [
𝑃1 𝑃2

⋆ 𝑃3
] > 0, 𝑄

3
> 0, 𝑄

𝑙
> 0,

𝑄
𝑙
> 0, 𝑙 = 1, 2, 𝑆

𝑗
> 0, 𝐻

𝑗
, 𝐹

𝑗
, 𝑗 = 1, 2, diagonal matrix

𝑁 > 0, 𝑇
1
, 𝑀, and scalars 𝜀

𝑖
> 0, 𝑖 = 1, . . . , 4 such that the

following set of LMIs hold:

[
𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (51)

[

[

Ω + 𝜀
3
Ω

𝑇

1
Ω

1
+ 𝜀

4
Ω

𝑇

2
Ω

2
Ω

3
Ω

4

⋆ −𝜀
3
𝐼 0

⋆ ⋆ −𝜀
4
𝐼

]

]

< 0, (52)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Υ
11

𝑃
2

Υ
13

Υ
14

(𝐿 − 𝐷
𝑓
𝐶)

𝑇

0 0

⋆ 𝑃
3

0 0 −𝐶
𝑇

𝑓
0 0

⋆ ⋆ Υ
33

Υ
34

(𝐿
𝑑
− 𝐷

𝑓
𝐶

𝑑
)
𝑇

0 0

⋆ ⋆ ⋆ Υ
44

(𝐺 − 𝐷
𝑓
𝐶

𝑑
)
𝑇

0 0

⋆ ⋆ ⋆ ⋆ 𝛾
2
𝐼 𝑀

3
0

⋆ ⋆ ⋆ ⋆ ⋆ 𝜀
1
𝐼 𝐷

𝑓
𝑀

2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝜀
2
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0,

(53)

where Ω is defined in (44) and

Ω
1
= [𝑁𝐴

0 0 𝑁
𝐴𝑑

0 𝑁
𝐵

0 0 0 0] ,

Ω
2
= [𝑁𝐶

0 0 𝑁
𝐶𝑑

0 𝑁
𝐷

0 0 0 0] ,

Ω
3

= [0 0 0 0 0 0 𝑑
1
𝑀

𝑇

1
𝐻

𝑇

1
𝑑𝑀

𝑇

1
𝐻

𝑇

2
𝑀

𝑇

1
𝑇

𝑇

1
𝑀

𝑇

1
𝐹

𝑇

1
]
𝑇

,

Ω
4
= [0 0 0 0 0 0 0 0 𝑀

𝑇

2
𝐵

𝑇

𝑓
𝑀

𝑇

2
𝐵

𝑇

𝑓
]
𝑇

,

Υ
11

= 𝑃
1
− 𝜀

1
𝑁

𝑇

𝐿
𝑁

𝐿
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐶
,

Υ
13

= −𝜀
1
𝑁

𝑇

𝐿
𝑁

𝐿𝑑
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐶𝑑
,

Υ
14

= −𝜀
1
𝑁

𝑇

𝐿
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐷
,

Υ
33

= 𝑄
3
− 𝜀

1
𝑁

𝑇

𝐿𝑑
𝑁

𝐿𝑑
− 𝜀

2
𝑁

𝑇

𝐶𝑑
𝑁

𝐶𝑑
,

Υ
34

= −𝜀
1
𝑁

𝑇

𝐿𝑑
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐶𝑑
𝑁

𝐷
,

Υ
44

= 𝐼 − 𝜀
1
𝑁

𝑇

𝐺
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐷
𝑁

𝐷
.

(54)

Moreover, a suitable 𝑙
2
-𝑙

∞
filter is given by

𝐴
𝑓

= 𝐴
𝑓
𝐹

−1

2
, 𝐵

𝑓
= 𝐵

𝑓
, 𝐶

𝑓
= 𝐶

𝑓
𝐹

−1

2
,

𝐷
𝑓

= 𝐷
𝑓
.

(55)

Proof. Firstly, replace matrices𝐴,𝐴
𝑑
, 𝐵,𝐶,𝐶

𝑑
, and𝐷 in (44)

with𝐴+Δ𝐴,𝐴
𝑑
+Δ𝐴

𝑑
,𝐵+Δ𝐵, 𝐶+Δ𝐶,𝐶

𝑑
+Δ𝐶

𝑑
, and𝐷+Δ𝐷,

respectively, and the following inequality is obtained:

Ω + sym (Ω
𝑇

1
Δ

𝑇

1
Ω

𝑇

3
) + sym (Ω

𝑇

2
Δ

𝑇

2
Ω

𝑇

4
) < 0, (56)

where Ω
𝑖
, 𝑖 = 1, . . . , 4 are defined in (52). Then by using

Lemma 4, the above inequality holds if and only if

Ω + 𝜀
3
Ω

𝑇

1
Ω

1
+ 𝜀

−1

3
Ω

3
Ω

𝑇

3
+ 𝜀

4
Ω

𝑇

2
Ω

2
+ 𝜀

−1

4
Ω

4
Ω

𝑇

4
< 0. (57)

Then by using Schur complement equivalence, the inequality
in (57) is equivalent to (44). Substituting 𝐿, 𝐿

𝑑
, and 𝐺 in (45)

with 𝐿 + Δ𝐿, 𝐿
𝑑
+ Δ𝐿

𝑑
, and 𝐺 + Δ𝐺, respectively, we can get

Υ + sym (Υ
𝑇

1
Δ

𝑇

3
Υ

𝑇

3
) + sym (Υ

𝑇

2
Δ

𝑇

2
Υ

𝑇

4
) > 0, (58)

where

Υ
1
= [𝑁𝐿

𝑁
𝐿𝑑

𝑁
𝐺

0] , Υ
2
= [𝑁𝐶

𝑁
𝐶𝑑

𝑁
𝐷

0]

Υ
3
= [0 0 0 𝑀

𝑇

3
] , Υ

4
= [0 0 0 𝑀

𝑇

2
𝐷

𝑇

𝑓
] .

(59)
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By following the similar line, the equivalence between (58)
and (53) can be proved.

4. Illustrative Example

In this section, the following example is given to demonstrate
the effectiveness of the proposed approach.

Example 1. Firstly, consider a nominal discrete-time delay
system in (1) with the following parameters:

𝐴 = [
0.1 −0.5

0.2 0.5
] , 𝐴

𝑑
= [

0.1 0

0 0.2
] ,

𝐵 = [
−1

1
] , 𝐶 = [−0.1 −1] , 𝐶

𝑑
= [−0.1 0.6] ,

𝐿 = [1 0.2] , 𝐿
𝑑
= [0.5 0.6] , 𝐷 = 0.1,

𝐺 = −0.5.

(60)
For different delay cases, the different minima of 𝛾 can be
calculated by solving the LMIs inTheorem 9.When the upper
bound of the time-varying delay is 5, that is, 𝑑

2
= 5, the

minima of 𝛾 for a given 𝑑
1
are listed in Table 1.

Moreover, when 𝑑
1
= 2, 𝑑

2
= 5, the corresponding 𝑙

2
-𝑙

∞

filter is given as follows:

𝐴
𝑓

= [
2.6553 −1.9535

2.2783 −1.5631
] , 𝐵

𝑓
= [

−1.5405

−1.9024
] ,

𝐶
𝑓

= [−1.3230 1.0479] , 𝐷
𝑓

= 0.2378.

(61)

When uncertainty appears in the system, Theorem 10 will be
used for the desired filter design. The following uncertainty
parameters are considered:

𝑀
1
= [

0.35 0

−0.2 0.1
] , 𝑁

𝐴
= [

0.2 0.4

0 0.5
] ,

𝑁
𝐴𝑑

= [
0.1 0

0 0.2
] , 𝑁

𝐵
= [

0.3

0.1
] ,

𝑀
2
= 0.2, 𝑁

𝐶
= [0.15 −0.22] ,

𝑁
𝐶𝑑

= [−0.3 0.2] , 𝑁
𝐷

= −0.5,

𝑀
3
= −0.4, 𝑁

𝐿
= [−0.25 −0.2] ,

𝑁
𝐿𝑑

= [0.13 0.32] , 𝑁
𝐷

= 0.2.

(62)

Similarly, the allowed minimal values of 𝛾 can be obtained
by solving the LMIs in Theorem 10. For 𝑑

2
= 5, the different

minimum allowed 𝛾 are listed in Table 2 for the uncertain
system with different 𝑑

1
.

Moreover, when 𝑑
1
= 2, 𝑑

2
= 5, the desired filter is given

as follows:

𝐴
𝑓

= [
−0.1261 0.2147

−0.3333 0.5671
] , 𝐵

𝑓
= [

−0.1725

−0.2622
] ,

𝐶
𝑓

= [−0.0076 0.0125] , 𝐷
𝑓

= 0.1106.

(63)

Table 1: Minimum allowed 𝛾 for 𝑑
2
= 5.

Methods 𝑑
1

1 2 3 4
Theorem 9 1.8371 1.5652 1.3585 1.1861

Table 2: Minimum allowed 𝛾 for 𝑑
2
= 5.

Methods 𝑑
1

1 2 3 4
Theorem 10 3.4157 2.6514 2.1568 1.8405

5. Conclusions

The robust 𝑙
2
-𝑙

∞
filtering has been studied for uncertain

discrete-time systems with time-varying delay in this paper.
Based on reciprocally convex approach, the sufficient 𝑙

2
-𝑙

∞

performance analysis conditions in terms of LMIs have been
proposed to render the filtering error systems asymptotically
stable with an 𝑙

2
-𝑙

∞
performance. Then the desired filter has

been designed for the filtering error systemwith time-varying
delay.The results presented in this paper are in terms of strict
LMIs which make the conditions more tractable. Finally, a
numerical example is given to demonstrate the effectiveness
of our methods. For future research topic, the results can be
extended to the system with actuator/sensor failures which
may lead to unsatisfactory performance and has attracted
many researchers’ attention such as faulty diagnosis [23, 24]
and fault tolerant control [25].
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