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In order to enhance the convergence capability of the central force optimization (CFO) algorithm, an adaptive central force
optimization (ACFO) algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant.
The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems.
The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based
algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances
the performance of CFO in terms of global optimality and solution accuracy.

1. Introduction

Consider the following global optimization problem:

max 𝑓 (𝑥)

subject to 𝑥 ∈ Ω = {𝑥 ∈ 𝑅𝑁𝑑 | 𝑅min ≤ 𝑥 ≤ 𝑅max} ,
(1)

where 𝑓(𝑥) : Ω ⊂ 𝑅𝑁𝑑 → 𝑅 is a real-valued
bounded function and 𝑅min, 𝑅max, and 𝑥 are𝑁

𝑑
-dimensional

continuous variable vectors. Such problem arises in many
applications, for example, in risk management, applied sci-
ences, and engineering design. The function of interest may
be nonlinear and nonsmooth which makes the classical
optimization algorithms easily fail to solve these problems.
Over the last decades, many nature-inspired heuristic opti-
mization algorithms without requiring much information
about the function became themostwidely used optimization
methods such as genetic algorithms (GA) [1], particle swarm
optimization (PSO) [2], ant colony optimization (ACO) [3],
cuckoo search (CS) algorithm [4], group search optimizer
(GSO) [5], and glowworm swarm optimization (GSO1) [6].
These search methods all simulate biological phenomena.
Different from these algorithms, some heuristic optimiza-
tion algorithms based on physical principles have been
developed, for example, simulating annealing (SA) algorithm

[7], electromagnetism-like mechanism (EM) algorithm [8],
central force optimization (CFO) algorithm [9], gravitational
search algorithm (GSA) [10], and charged system search
(CSS) [11]. SA simulates solid material in the annealing
process. EM is based on Coulomb’s force law associated
with electrical charge process. GSA and CFO utilize New-
tonian mechanics law. CSS is based on Coulomb’s force and
Newtonian mechanics laws. Unlike other algorithms, CFO
is a deterministic method. In other words, there is not any
random nature in CFO, which attracts our attention on the
CFO algorithm in this paper.

CFO, which was introduced by Formato in 2007 [9],
is becoming a novel deterministic heuristic optimization
algorithm based on gravitational kinematics. In order to
improve the CFO algorithm, Formato and other researchers
developed many versions of the CFO algorithm [12–23]. In
[12, 13], Formato proposed PR-CFO (Pseudo-Random CFO)
algorithm.The improved implementations are made in three
areas: initial probe distribution, repositioning factor, and
decision space adaptation. Formato presented an algorithm
known as PF-CFO (Parameter Free CFO) in [14, 15]. PF-CFO
algorithm improves and perfects the PR-CFO algorithm in
the aspect of the selection of parameter. Mahmoud proposed
an efficient global hybrid optimization algorithm combining
the CFO algorithm and the Nelder-Mead (NM) method in
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[16]. This hybrid method is called CFO-NM. An extended
CFO (ECFO) algorithm was presented by Ding et al. by
adding the historical information and defining an adaptive
mass in [17] where the convergence of ECFO algorithm was
proved based on the second order difference equation.

In aforementioned CFO algorithms, two updated equa-
tions were used: one for a probe’s acceleration and the other
for its position. In the probe’s position updated equation
which is established based on the laws of motion, the velocity
is defined as zero. But the velocity has influence on the
exploring ability of the CFO algorithm. Therefore, in this
paper, we introduce the velocity in the probe’s position
updated equation, which leads us to build a velocity updated
equation like the CSS algorithm. Since the weight which can
balance the global and local search ability is an important
parameter inmany heuristic algorithms, we introduce weight
in probe’s position updated equation. If the value of weight
is too large, then the probes may move erratically, going
beyond a good solution. On the other hand, if weight is too
small, then the probe’s movement is limited and the optimal
solution may not be reached. Therefore, an appropriate
dynamically changing weight can improve the performance
of the heuristic algorithm. However, in most of the heuristic
algorithms, the changing weight was selected empirically
according to the characteristics of the problems without
theoretical analysis. The gravitational constant has the same
effect on the weight in CFO algorithm. Hence, this paper
will further investigate the weight and gravitational constant
settings by employing the geometry-velocity stability theory
of discrete time-varying dynamic systems. Based on the above
discussion, an adaptive CFO (ACFO) algorithm is proposed
in this paper.

To the best of our knowledge, there is no research on
stability analysis of the CFO algorithm till now. In this paper,
the stability of the ACFO algorithm is analyzed based on
discrete time-varying dynamic systems theory. Based on the
stability analysis of the proposed algorithm, we explore the
weight and gravitational constant settings.

The rest of this paper is organized as follows. Section 2
will present the basics of the CFO algorithm and review
the state of the art concerning the algorithm. In Section 3,
we propose an adaptive central force optimization. Some
numerical results are given to test the performance of the
proposed algorithm in Section 4. Finally, we have some
conclusions about the proposed algorithm.

2. Central Force Optimization

CFO solves problem (1) based on the movement of probes
through the decision space (DS) along trajectories computa-
tion by utilizing the gravitational analogy. The DS is defined
by Ω = {(𝑥1, 𝑥2, . . . , 𝑥𝑁𝑑) | 𝑅

min
𝑖
≤ 𝑥
𝑖
≤ 𝑅max
𝑖
, 1 ≤ 𝑖 ≤ 𝑁

𝑑
}. In

CFO, a group of probes are represented as potential solutions,
and each probe 𝑝 is associated with position vector 𝑅𝑝(𝑡)
and acceleration vector 𝐴𝑝(𝑡) at time step 𝑡. The position of
each probe is initialized by a variable initial probe distribution
formed by deploying𝑁

𝑝
/𝑁
𝑑
probes uniformly on each of the

probe lines parallel to the coordinate axes and intersecting
at a point along Ω’s principal diagonal, where𝑁

𝑝
is the total

number of initial probes. The initial acceleration vectors are
usually set to zero. During search process, the acceleration
and position of probe 𝑝 are updated as

𝐴
𝑝

𝑖
(𝑡) = 𝐺

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝑈(𝑀𝑘 (𝑡) − 𝑀
𝑝
(𝑡)) (𝑀

𝑘
(𝑡) − 𝑀

𝑝
(𝑡))
𝛼

⋅
(𝑅𝑘
𝑖
(𝑡) − 𝑅

𝑝

𝑖
(𝑡))

󵄩󵄩󵄩󵄩𝑅
𝑘 (𝑡) − 𝑅𝑝 (𝑡)

󵄩󵄩󵄩󵄩
𝛽
,

(2)

𝑅
𝑝

𝑖
(𝑡 + 1) = 𝑅𝑝

𝑖
(𝑡) +

1
2
𝐴
𝑝

𝑖
(𝑡) Δ𝑡

2, (3)

where 𝐺 is the gravitational constant;𝑀𝑗(𝑡) = 𝑓(𝑅𝑗(𝑡)) is the
fitness value at probe 𝑗’s (𝑗 = 1, 2, . . . , 𝑁

𝑝
) position at time

step 𝑡; 𝛼 and 𝛽 are the parameters; 𝑖 (𝑖 = 1, 2, . . . , 𝑁
𝑑
) is the

coordinate number; 𝑈(⋅) is the unit step function;

𝑈 (𝑧) =
{
{
{

1, 𝑧 ≥ 0

0, else;
(4)

Δ𝑡 is the unit time step increment; define ‖𝑅𝑘(𝑡) − 𝑅𝑝(𝑡)‖ =
√∑
𝑁𝑑

𝑖=1[𝑅
𝑘

𝑖
(𝑡) − 𝑅

𝑝

𝑖
(𝑡)]2. The probe generated by (3) may be

beyond the DS. If the coordinate 𝑅𝑝
𝑖
(𝑡 + 1) of the probe

𝑅𝑝(𝑡 + 1) is less than 𝑅min
𝑖

, then it is assigned to be

𝑅
𝑝

𝑖
(𝑡 + 1) = 𝑅min

𝑖
+ 𝐹rep [𝑅

𝑝

𝑖
(𝑡 − 1) − 𝑅min

𝑖
] . (5)

If 𝑅𝑝
𝑖
(𝑡 + 1) is greater than 𝑅max

𝑖
, then

𝑅
𝑝

𝑖
(𝑡 + 1) = 𝑅max

𝑖
− 𝐹rep [𝑅

min
𝑖
− 𝑅
𝑝

𝑖
(𝑡 − 1)] , (6)

where 𝑅min
𝑖

and 𝑅max
𝑖

are the minimum and maximum
values for 𝑖th component of the decision variable. 𝐹rep is the
reposition factor which starts at an arbitrary initial value
𝐹initialrep < 1 and is incremented by an arbitrary amount Δ𝐹rep
at each iteration. If 𝐹rep ≥ 1, then it is reset to the starting
value. In order to improve convergence speed, the DS size
is adaptively reduced around the best probe 𝑅best. The DS’s
boundary coordinates are reduced as follows:

𝑅
min
𝑖
= 𝑅min
𝑖
+
1
2
[𝑅best − 𝑅

min
𝑖
] ,

𝑅
max
𝑖
= 𝑅max
𝑖
−
1
2
[𝑅max
𝑖
− 𝑅best] .

(7)

The termination criterion is that iterations reach their max-
imum limit 𝑁

𝑡
. We also terminate the CFO algorithm early

if the difference between the average best fitness over 𝑞 steps
(including the current step) and the current best fitness is less
than 10−6.

In order to improve the CFO algorithm, Formato pro-
posed modifications to CFO algorithm, namely, PR-CFO
[12, 13]. The steps of PR-CFO algorithm [13] are shown as
follows;

For𝑁
𝑝
/𝑁
𝑑
= (𝑁
𝑝
/𝑁
𝑑
)start to (𝑁𝑝/𝑁𝑑)max step size is

2.
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For 𝛾 = 𝛾start to 𝛾stop by Δ𝛾

(a.1) compute initial probe distribution with distri-
bution factor 𝛾;

(a.2) compute initial fitness matrix; select the best
probe fitness;

(a.3) assign initial probe acceleration;
(a.4) set initial 𝐹rep = 𝐹

init
rep .

For 𝑡 = 0 to𝑁
𝑡
(or earlier termination criterion)

(b) update probe positions using (3);
(c) retrieve errant probe using (5) and (6);
(d) calculate fitness values; select the best probe

fitness;
(e) compute accelerations using (2);
(f) increment 𝐹rep by Δ𝐹best;

if 𝐹rep > 1 then 𝐹rep = 𝐹
min
rep ;

End If
(g) if 𝑡MOD 10 = 0, then

shrinkΩ around best probe using (7);
End If

Next 𝑡

(h) reset Ω’s boundaries to their starting values
before shrinking.

Next 𝛾

Next𝑁
𝑝
/𝑁
𝑑
.

PR-CFO is further modified in order to create an algorithm
known as PF-CFO (Parameter Free CFO) [14, 15]. This
version is almost identical to PR-CFO and compensates for
the number of parameters that must be chosen by fixing a
wide array of internal parameters at specific values [19]. The
values of parameters borrowed from [19] that are used in PF-
CFO algorithm can be seen in Table 1.

3. Adaptive Central Force
Optimization Algorithm

Qian and Zhang [23] proposed an adaptive central force
optimization algorithm. In [23], the time Δ𝑡 in (3) was
updated based on the fitness value compared with the
average fitness value. In this paper, we introduce adaptive
weight in position update equation, adaptive gravitational
constant in acceleration update equation and the velocity
update formula. The weight and gravitational constant are

Table 1: The values of parameters that are used in PF-CFO
algorithm.

Parameter 𝑁
𝑑

Value
𝑁
𝑡

1000
𝐹initrep 0.5
Δ𝐹rep 0.1
𝐹𝑚𝑖𝑛rep 0.05
𝐺 2
𝛼 1
𝛽 2

(𝑁
𝑝
/𝑁
𝑑
)
𝑚𝑎𝑥

𝑁
𝑑
≤ 6 14

7 ≤ 𝑁
𝑑
≤ 10 12

11 ≤ 𝑁
𝑑
≤ 15 10

16 ≤ 𝑁
𝑑
≤ 20 8

21 ≤ 𝑁
𝑑
≤ 30 6

𝑁
𝑑
> 30 4

updated based on this stability analysis of a discrete time-
varying dynamic system. In ACFO algorithm, the position,
acceleration, and velocity of probe 𝑝 are updated as follows:

𝑅
𝑝

𝑖
(𝑡 + 1) = 𝑅𝑝

𝑖
(𝑡) + 𝜔

𝑝
(𝑡) 𝑉
𝑝

𝑖
(𝑡) Δ𝑡 +

1
2
𝐴
𝑝

𝑖
(𝑡) Δ𝑡

2, (8)

𝐴
𝑝

𝑖
(𝑡 + 1) = 𝐺𝑝 (𝑡 + 1)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝑈(𝑀𝑘 (𝑡 + 1) − 𝑀𝑝 (𝑡 + 1))

⋅ (𝑀𝑘 (𝑡 + 1) − 𝑀𝑝 (𝑡 + 1))
𝛼

⋅
(𝑅𝑘
𝑖
(𝑡 + 1) − 𝑅𝑝

𝑖
(𝑡 + 1))

(𝐷
𝑝𝑘
)
𝛽

,

(9)

𝑉
𝑝

𝑖
(𝑡 + 1) =

𝑅
𝑝

𝑖
(𝑡 + 1) − 𝑅𝑝

𝑖
(𝑡)

Δ𝑡
, (10)

where 𝜔𝑝(𝑡) is the weight; 𝐺𝑝(𝑡) is a gravitational constant
at probe 𝑝’s position at iteration 𝑡; Δ𝑡 = 1; 𝛼 and 𝛽 are the
parameters; 𝑖 (𝑖 = 1, 2, . . . , 𝑁

𝑑
) is the coordinate number; and

𝐷
𝑝𝑘

is defined as follows:

𝐷
𝑝𝑘
=
{
{
{

𝑑
𝑝𝑘
, if 𝑑

𝑝𝑘
≥ 𝑎

𝑎, if 𝑑
𝑝𝑘
< 𝑎,

(11)

where 𝑑
𝑝𝑘

is the Euclidian distance between two probes, 𝑝
and 𝑘, and 𝑎 is a radius constant.

Let

𝜑
𝑘 (𝑡) =

𝑈 (𝑀𝑘 (𝑡) − 𝑀𝑝 (𝑡)) (𝑀𝑘 (𝑡) − 𝑀𝑝 (𝑡))
𝛼

(𝐷
𝑝𝑘
)
𝛽

,

𝜑 (𝑡) =

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) .

(12)
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It is clear that 𝜑
𝑘
(𝑡) and 𝜑(𝑡) are nonnegative. By (8), (9),

and (10), the position and velocity updated equations can be
written as follows:

𝑅
𝑝

𝑖
(𝑡 + 1) = (1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡)) 𝑅

𝑝

𝑖
(𝑡) + 𝜔

𝑝
(𝑡) 𝑉
𝑝

𝑖
(𝑡)

+
1
2
𝐺𝑝 (𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡) ,

𝑉
𝑝

𝑖
(𝑡 + 1) = −1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝑅

𝑝

𝑖
(𝑡) + 𝜔

𝑝
(𝑡) 𝑉
𝑝

𝑖
(𝑡)

+
1
2
𝐺𝑝 (𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡) .

(13)

Equations (13) are written in matrix form as follows:

(
𝑅
𝑝

𝑖
(𝑡 + 1)

𝑉
𝑝

𝑖
(𝑡 + 1)

) = (
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

)(
𝑅
𝑝

𝑖
(𝑡)

𝑉
𝑝

𝑖
(𝑡)
)

+
1
2
𝐺𝑝 (𝑡)

(
(

(

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

)
)

)

.

(14)

Let

𝑥 (𝑡 + 1) = (
𝑅
𝑝

𝑖
(𝑡 + 1)

𝑉
𝑝

𝑖
(𝑡 + 1)

) ,

𝑔 (𝑡, 𝑥 (𝑡)) = (
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

)(
𝑅
𝑝

𝑖
(𝑡)

𝑉
𝑝

𝑖
(𝑡)
)

+
1
2
𝐺𝑝 (𝑡)

(
(

(

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

)
)

)

.

(15)

Equation (14) can be expressed as a discrete time-varying
dynamic system as follows:

𝑥 (𝑡 + 1) = 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 = 1, 2, . . . . (16)

Lemma 1 (see [24]). Let𝑥(𝑡+1) = 𝑔(𝑡, 𝑥(𝑡)) be a discrete time-
varying dynamic system; if 𝑔(𝑡, 𝑥(𝑡)) satisfies the condition

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩𝜐 ≤ V (𝑡) ‖𝑥 (𝑡)‖𝜐 + 𝑐, (17)

under a certain vector norm ‖ ⋅ ‖
𝜐
, then the system is geometry-

velocity stable in the bounded set 𝐿 = {𝑥 | ‖𝑥‖
𝜐
< 𝑐/(1 − 𝜗)},

where 𝑐 is constant and 0 ≤ V(𝑡) ≤ 𝜗 < 1.

Cui and Zen presented a selection of the parameters in
PSO algorithm based on Lemma 1 in [24]. Now we analyze
the stability of ACFO algorithm and give a selection of weight
and gravitational constant based on Lemma 1.

If ‖ ⋅ ‖
𝜐
in Lemma 1 is considered as an infinite norm, then

we have

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

‖𝑥 (𝑡)‖∞

+
1
2
󵄨󵄨󵄨󵄨𝐺
𝑝
(𝑡)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(

(

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

)
)

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

.

(18)

Since 𝐺𝑝(𝑡) is a nonnegative finite number for any 𝑡 and
𝑓(⋅) is a bounded function, we assume that 𝐺𝑝(𝑡) ≤ 𝐺 and
‖𝑓(⋅)‖ ≤ 𝑀 = max

𝑥∈Ω
|𝑓(𝑥)|. Thus, we can obtain

0 ≤ 𝑈 (𝑀𝑘 (𝑡) − 𝑀𝑝 (𝑡)) (𝑀𝑘 (𝑡) − 𝑀𝑝 (𝑡))
𝛼

≤ 𝑀𝛼. (19)

By (11), one has 𝐷
𝑝𝑘
≥ 𝑎. Therefore, we have 𝜑

𝑘
(𝑡) ≤ 𝑀𝛼/𝑎𝛽.

Thus,

1
2
󵄨󵄨󵄨󵄨𝐺
𝑝
(𝑡)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(

(

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

)
)

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
1
2
𝐺

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡) 𝑅

𝑘

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1
2
𝐺

𝑁𝑝

∑
𝑘=1
𝑘 ̸=𝑝

𝜑
𝑘 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑅
𝑘

𝑖
(𝑡)
󵄨󵄨󵄨󵄨󵄨

≤
(𝑁
𝑝
− 1)𝑀𝛼

2𝑎𝛽

⋅ max
1≤𝑖≤𝑁𝑑

{max{𝑅max
𝑖
,

−𝑅min
𝑖
}}.

(20)

In addition,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) 𝜔𝑝 (𝑡)

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ max {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝜔𝑝 (𝑡) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝜔𝑝 (𝑡)} .

(21)
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Table 2: Comparison of ACFO with RP-CFO and RF-CFO.

𝐹 𝑁
𝑑

𝐹
𝑚𝑖𝑛

PR-CFO PF-CFO ACFO
Best fitness 𝑁eval Best fitness 𝑁eva Best fitness 𝑁eva

Unimodal functions
𝑓
1

30 0 −4.8438𝐸 − 8 507060 0∗ 222960 0∗ 159600
𝑓
2

30 0 −4𝐸 − 8 716400 0∗ 237540 0∗ 200340
𝑓
3

30 0 −6𝐸 − 8 1534260 −6.1861E − 5 397320 0∗ 187200
𝑓
4

30 0 −4.2𝐸 − 7 332340 0∗ 484260 0∗ 133200
𝑓
5

30 0 −1.09289𝐸 − 3 845640 −4.8623E − 5 436680 0∗ 156000
𝑓
6

30 0 0∗ 350280 0∗ 176580 0∗ 216000∗

𝑓
7

30 0 −4.29𝐸 − 5∗ 1983960 −1.2919E − 4 399960 −1.4232E − 4 220620
Multimodal functions, many local minima

𝑓
8

30 −12569.5 12569.487∗ 448800 12569.4865 415500 12569.4785 174000
𝑓
9

30 0 −2.05𝐸 − 6 680640 0∗ 397080 0∗ 145200
𝑓
10

30 0 −1.5𝐸 − 7 904980 −4.9905E − 18 518820 −8.8818E − 21∗ 111600
𝑓
11

30 0 −9.97293𝐸 − 2 489060 −1.7075E − 2 235800 0∗ 191040
𝑓
12

30 0 −2.067𝐸 − 5∗ 341400 −2.1541E − 5 292080 −9.87E − 2 192540
𝑓
13

30 0 −3.2853𝐸 − 3 679620 −1.8293E − 3∗ 360000 −9.5E − 3 174180
Multimodal functions, few local minima

𝑓
14

2 1 −0.9980∗ 141076 −0.9980∗ 78176 −0.9980∗ 37120
𝑓
15

4 −3.075𝐸 − 5 −4.889𝐸 − 4 304664 −5.6967E − 4 143152 −3.886E − 4∗ 98400
𝑓
16

2 −1.0316285 1.031626∗ 124340 1.03158 87240 1.0303 52640
𝑓
17

2 0.398 −0.3979 108340 −0.3979 82096 −0.3980∗ 94520∗

𝑓
18

2 3 −3∗ 180472 −3∗ 100996 −3∗ 91320
𝑓
19

3 −3.86 3.8627 200268 3.8628 160338 3.8627 49680
𝑓
20

6 −3.32 3.32173 730212 3.3219∗ 457836 3.3218 87120
𝑓
21

4 −10 10.1532∗ 336712 10.1532∗ 251648 10.1532∗ 128000
𝑓
22

4 −10 10.4029∗ 386176 10.4029∗ 316096 10.4029∗ 143508
𝑓
23

4 −10 10.5363 394320 10.5364∗ 304312 10.5363 141848

Set 𝑐 = ((𝑁
𝑝
− 1)𝑀𝛼/2𝑎𝛽)max1≤𝑖≤𝑁𝑑{max{𝑅max

𝑖
, −𝑅min
𝑖
}}.

If

max {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − 1

2
𝐺𝑝 (𝑡) 𝜑 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝜔𝑝 (𝑡) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝜔𝑝 (𝑡)}

≤ 𝜃 < 1,
(22)

then by Lemma 1, system (16) is geometry-velocity stable in
the bounded set 𝐿 = {𝑥 | ‖𝑥‖

∞
≤ 𝑐/(1 − 𝜃)}.

By (22), one has 0 < (1/2)𝐺𝑝(𝑡)𝜑(𝑡) < 1. If 0 < (1/2)𝐺𝑝(𝑡)
𝜑(𝑡) < 0.5, that is, 0 < 𝐺𝑝(𝑡) < 1/𝜑(𝑡), then (1/2)𝐺𝑝(𝑡)𝜑(𝑡) +
𝜔𝑝(𝑡) < 1 − (1/2)𝐺𝑝(𝑡)𝜑(𝑡) + 𝜔𝑝(𝑡) ≤ 𝜃; that is, 0 < 𝜔𝑝(𝑡) ≤
(1/2)𝐺𝑝(𝑡)𝜑(𝑡) + 𝜃 − 1. If 0.5 ≤ (1/2)𝐺𝑝(𝑡)𝜑(𝑡) < 1, that is,
1/𝜑(𝑡) ≤ 𝐺𝑝(𝑡) < 2/𝜑(𝑡), then 1 − (1/2)𝐺𝑝(𝑡)𝜑(𝑡) + 𝜔𝑝(𝑡) ≤
(1/2)𝐺𝑝(𝑡)𝜑(𝑡) + 𝜔𝑝(𝑡) ≤ 𝜃; that is, 0 < 𝜔𝑝(𝑡) ≤ 𝜃 −
(1/2)𝐺𝑝(𝑡)𝜑(𝑡).

From the above discussion, in order to guarantee the
geometry-velocity stability of system (16), parameters 𝜔𝑝(𝑡)
and 𝐺𝑝(𝑡) are selected as follows:

𝐺𝑝 (𝑡) =
2
𝜑 (𝑡)

rand (0, 1) ,

𝜔𝑝 (𝑡) =

{{{{{{{{{{
{{{{{{{{{{
{

(
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) + 𝜃 − 1) rand (0, 1) ,

if 0 < 𝐺𝑝 (𝑡) < 1
𝜑 (𝑡)

,

(𝜃 −
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡)) rand (0, 1) ,

if 1
𝜑 (𝑡)

≤ 𝐺𝑝 (𝑡) <
2
𝜑 (𝑡)

,

(23)

where rand(0, 1) is a random number in the interval [0, 1].
However, CFO algorithm is a deterministic method which
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should not contain any random nature. Therefore, we take
parameters 𝜔𝑝(𝑡) and 𝐺𝑝(𝑡) as follows:

𝐺𝑝 (𝑡) = min{2, 𝜇 2
𝜑 (𝑡)

} , (24)

𝜔𝑝 (𝑡) =

{{{{{{{{{{
{{{{{{{{{{
{

𝜂(
1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡) − 0.1) ,

if 0 < 𝐺𝑝 (𝑡) < 1
𝜑 (𝑡)

,

𝜂 (0.9 − 1
2
𝐺𝑝 (𝑡) 𝜑 (𝑡)) ,

if 1
𝜑 (𝑡)

≤ 𝐺𝑝 (𝑡) <
2
𝜑 (𝑡)

,

(25)

where 𝜇 and 𝜂 are two constants between 0 and 1.
The specific iterative steps of ACFO algorithm are listed

as follows.

For𝑁
𝑝
/𝑁
𝑑
= 2 to (𝑁

𝑝
/𝑁
𝑑
)max step size is 2.

For 𝛾 = 𝛾start to 𝛾stop by Δ𝛾

(a.1) compute initial probe distribution with distri-
bution factor 𝛾;

(a.2) compute initial fitness matrix; select the best
probe fitness;

(a.3) assign initial probe’s accelerations and velocities;
(a.4) set initial 𝐹rep = 𝐹

init
rep and 𝐺init.

For 𝑡 = 0 to𝑁
𝑡
(or earlier termination criterion)

(b) compute weights using (25);
(c) update probe positions using (8);
(d) retrieve errant probe using (5) and (6);
(e) calculate fitness values; select the best probe

fitness;
(f) update gravitational constant using (24);
(g) compute accelerations using (9) and velocities

using (10);
(h) increment 𝐹rep by Δ𝐹best;

if 𝐹rep > 1 then 𝐹rep = 𝐹
min
rep ;

End If
(i) if 𝑡MOD 10 = 0, then

shrinkΩ around best probe using (7);
End If

Next 𝑡

(l) reset Ω’s boundaries to their starting values
before shrinking.

Next 𝛾
Next𝑁

𝑝
/𝑁
𝑑
.

In ACFO algorithm, the initial acceleration and velocities
vectors are set to zero and ⃗𝑒 = ∑

𝑁𝑑

𝑘=1 0.01 ⃗𝑒𝑘, where ⃗𝑒
𝑘
is the

unit vector along the 𝑘-axis.

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Iterate steps

PR-CFO
PF-CFO
ACFO

lo
g(
1
+

be
st

fit
ne

ss
 so

 fa
r)

Figure 1: Convergence curves of three algorithms on 𝑓1.
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Figure 2: Convergence curves of three algorithms on 𝑓2.

4. Numerical Experiments

In this section, the performance of ACFO algorithm is
compared with the existing algorithms, GSO, GA, PSO, PR-
CFO, PF-CFO, CFO-NM, and EPSO, using a suite of the
former twenty-three benchmark functions provided in [25].
In ACFO algorithm, internal parameters 𝛾start = 0 and
Δ𝛾 = 0.1. Other internal parameters are the same as the
parameters of RF-CFOalgorithm except parameter𝑁

𝑡
= 500,

which are listed in Table 1. We choose other parameters 𝜇 =
0.9, 𝜂 = 1, and 𝑎 = 0.01. In our experiment, the codes
were written in MATLAB 7.0 and run on PC with 2.00GB
RAM memory, 2.10GHz CPU, and Windows 7 operation
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Table 3: Comparison of ACFO with GA, PSO, GSO, CFO-NM, and ECFO.

Test function GA PSO GSO CFO-NM ECFO ACFO
Unimodal functions

𝑓
1

3.711 3.6927𝐸 − 37 1.9481𝐸 − 8 8.86597𝐸 − 25 7.5137𝐸 − 7 0∗

𝑓
2

0.5771 2.9168𝐸 − 24 3.7039𝐸 − 5 9.46909𝐸 − 5 4.8954𝐸 − 7 0∗

𝑓
3

9749.9145 1.1979𝐸 − 3 5.7829 5.89019𝐸 − 9 9.7713𝐸 − 7 0∗

𝑓
4

7.9610 0.4123 10.7𝐸 − 2 6.40640𝐸 − 3 9.7203𝐸 − 7 0∗

𝑓
5

338.5616 37.3582 49.8359 1.12593𝐸 − 7 4.3433𝐸 − 5 0∗

𝑓
6

3.69701 0.1460 1.600𝐸 − 2 — 2.2016𝐸 − 7 0∗

𝑓
7

0.1045 9.9024𝐸 − 3 7.3773𝐸 − 2 — 2.525𝐸 − 5∗ 1.4850𝐸 − 4

Multimodal functions, many local maxima
𝑓
8

−12566.0977 −9659.6993 −12569.4882∗ −12569.486618 −837.9657 −12569.4785

𝑓
9

6.509𝐸 − 1 20.7863 1.0179 6.89347𝐸 − 23 7.5095𝐸 − 5 0∗

𝑓
10

0.8678 1.3404𝐸 − 3 2.6548𝐸 − 5 1.49081𝐸 − 11 6.8426𝐸 − 5 8.8818𝐸 − 21∗

𝑓
11

1.0038 0.2323 3.0792𝐸 − 2 4.99600𝐸 − 15 4.6279𝐸 − 5 0∗

𝑓
12

4.3572𝐸 − 2 3.9503𝐸 − 2 2.7648𝐸 − 11 1.93296𝐸 − 21∗ 1.6471𝐸 − 5 9.87𝐸 − 2

𝑓
13

0.1681 5.0519𝐸 − 2 4.6948𝐸 − 5∗ — 6.1817𝐸 − 5 9.5𝐸 − 3

Multimodal functions, few local maxima
𝑓
14

0.9989 1.0239 0.9980∗ — — 0.9980∗

𝑓
15

7.0878𝐸 − 3 3.8074𝐸 − 4 3.7713𝐸 − 4∗ — — 3.886𝐸 − 4

𝑓
16

−1.0298 −1.0160 −1.031628 −1.03163∗ — −1.0303

𝑓
17

0.4040 0.4040 0.3979 0.39700∗ — 0.3980

𝑓
18

7.5027 3.0050 3∗ 3.00000∗ 3∗

𝑓
19

−3.8624 −3.8582 −3.8628 — — −3.8627

𝑓
20

−3.2627 −3.1846 −3.2697 — — −3.3218∗

𝑓
21

−5.1653 −7.5439 −6.09 — — −10.1532∗

𝑓
22

−5.4432 −8.3553 −6.5546 — — −10.4029∗

𝑓
23

−4.9108 −8.9439 −7.4022 — — −10.5362∗

system. The stopping condition is that iterations reach their
maximum limit 𝑁

𝑡
. We also early stop the ACFO algorithm

if the difference between the average best fitness over 30 steps
(including the current step) and the current best fitness is less
than 10−6.

In Table 2, 𝐹, 𝑁
𝑑
, 𝑓min, and 𝑁eval stand for the test

function, the dimension of decision space, the optimum
minimum value for each function, and the total number
of function evaluations, respectively. The statistical data in
Table 2 for RP-CFO and RF-CFO are reproduced from [13]
and [15], respectively. The best fitness is the optimum maxi-
mum (note the negative of each of the benchmark functions).
The set of twenty-three benchmark functions are divided into
unimodal functions (𝑓1 to 𝑓7), multimodal functions (𝑓8 to
𝑓13), and low-dimensional multimodal functions (𝑓14 to𝑓23).
Table 3 summarizes the obtained optimumminimum results
which are compared with other optimization algorithms,
such as GA, PSO, GSO, CFO-NM, and ECFO. The statistical
data for CFO-NM and ECFO is from [16, 17] while the other
statistical data is from [5]. In Tables 2 and 3, the star ∗
denotes that the numerical result is the best one among all the
comparative algorithms. In Table 3, the symbol “—” means
that the problem is not calculated in the original references.

From Table 2, it is clearly seen that the ACFO algo-
rithm yields significantly better performance than PR-CFO

algorithm on benchmark functions 𝑓1–𝑓5. But the ACFO
algorithm has a worse result on 𝑓

7
and same result on

𝑓6 compared to PR-CFO algorithm. From the comparisons
between ACFO algorithm and PF-CFO algorithm, we can
find that ACFO algorithm performs better than PF-CFO
algorithm on 𝑓3 and 𝑓5 and obtains the same results yielded
by PF-CFO algorithm on 𝑓1, 𝑓2, 𝑓4, 𝑓6, and 𝑓7. But it
should be noted that both the ACFO and PF-CFO algorithm
can obtain optimum minimum value of 𝑓1, 𝑓2, 𝑓4, and
𝑓6.

The set of benchmark functions 𝑓8–𝑓13 are multimodal
functions with many local minima. From Table 2, we can
see that the ACFO algorithm outperforms PR-CFO and PF-
CFO algorithm except functions 𝑓8, 𝑓12, and 𝑓13, but PR-
CFO and PF-CFO algorithm are superior to ACFO algorithm
on benchmark function 𝑓8 by a very small percentage of
6.683𝐸 − 07 and 6.285𝐸 − 07, respectively.

The other set of benchmark functions 𝑓14–𝑓23 are low
dimensions multimodal functions. From the comparison
shown in Table 2, it can be obviously seen that the best fitness
generated by ACFO, PR-CFO, and PF-CFO algorithm are
almost the same on 𝑓14–𝑓23.

From Table 2, we can also see that ACFO algorithm is
superior to the PR-CFO and PF-CFO algorithms for the total
number of function evaluations except functions 𝑓6 and 𝑓17.
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Figure 3: Convergence curves of three algorithms on𝑓3.
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Figure 4: Convergence curves of three algorithms on 𝑓4.

In Table 3, we can clearly see that the ACFO algo-
rithm outperforms GA, PSO, GSO, CFO-MN, and ECFO
algorithms on test functions 𝑓1–𝑓7. The only exception is
function 𝑓7 in which the ECFO algorithm is superior to
ACFO algorithm. It is seen that, for test functions 𝑓8–𝑓13,
ACFO algorithm performs better than GA and PSO algo-
rithms except function 𝑓12. In addition, ACFO algorithm
outperformsGSO,CFO-NM, andECFOon functions𝑓9–𝑓11.
For functions 𝑓14–𝑓23, we can also find that the ACFO
algorithm generates better results than the GA and PSO.
The only exception is function 𝑓15 in which the ACFO
algorithm yields a similar result compared to PSO. From the
comparisons between ACFO and GSO algorithm, we can see
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Figure 5: Convergence curves of three algorithms on 𝑓5.
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Figure 6: Convergence curves of three algorithms on 𝑓6.

that the ACFO algorithm outperforms GSO algorithm on
functions 𝑓20–𝑓23 and has similar results to GSO algorithm
on functions 𝑓14–𝑓19. In addition, ACFO algorithm has also
similar result to CFO-NM algorithm on functions 𝑓16–𝑓18.
From the comparisons between ACFO and other algorithms,
it is found that the ACFO algorithm performs better than the
other algorithms.

Figures 1–7 show only convergence curves of PR-CFO,
PF-CFO, and ACFO algorithms on 𝑓1–𝑓7. The vertical axis
is the logarithmic function value of (1 + best function
value), and horizontal axis is the number of iterates. From
Figures 1–6, we can obviously see that ACFO algorithm tends
to find the global optimum faster than other algorithms and
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Figure 7: Convergence curves of three algorithms on 𝑓7.

hence has a higher convergence rate. According to Figure 7,
ACFO and PR-CFO algorithms have similar convergence
rates, but ACFO algorithm has good convergence rate com-
pared with PF-CFO algorithm.

5. Conclusion

This paper presents ACFO algorithm which enhances the
convergence capability of the CFO algorithm. The ACFO
algorithm introduces a weight and updates the equation
that generates the probe’s position. Based on the stability
theory of discrete time-varying dynamic systems, we define
adaptive weight and gravitational constant. In order to test
ACFO algorithmperformance, ACFO algorithm is compared
with improved CFO algorithms and other state-of-the-art
algorithms. The simulation results show that the ACFO is
better than other algorithms.
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