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Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling

 Highlights

1. BAC improved the permeability of the CMF by removing a large proportion of biopolymer
2. O3 improved permeability and permeate quality of CMF to a greater extent than BAC
3. O3 removed biopolymers (100%) and HS (84%) to obtain greater permeability of CMF
4. Inclusion of BAC between O3 treatment and ceramic filtration was detrimental
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12 ABSTRACT

13 Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) 

14 filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary 

15 effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall 

16 removal of UV absorbance (UVA254) and colour, and higher permeability than BAC pre-

17 treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall 

18 removal of colour and UVA254 by ceramic filtration of the ozone pre-treated water was 

19 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-

20 treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, 

21 however, was not effective in removal of dissolved organic carbon (DOC). The 

22 permeability of the ozone pre-treated water through the ceramic membrane was found to 

23 decrease to 50% of the original value after 200 minutes of operation, compared to 

24 approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated 
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25 water and the untreated water. The higher permeability of the ozone pre-treated water was 

26 attributed to the excellent removal of biopolymer particles (100%) and high removal of 

27 humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and 

28 ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher 

29 biopolymer removal (96%), lower humic substance (HS) component removal (66%) and 

30 lower normalised permeability (0.1) after 200 minutes of operation than the O3+CMF 

31 process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical 

32 oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the 

33 generation of foulants that are not generated in the O3+CMF process. This study 

34 demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus 

35 improving flux for the CMF of SE compared to O3+BAC pre-treatment.

36 Keywords: ozonation, BAC filtration, ceramic membrane, secondary effluent, biopolymers, 

37 humic substances.

38

39 1 Introduction

40 The application of MF membranes to treat SE from wastewater treatment plants has 

41 focused on membranes made of polymeric materials (Lehman and Liu 2009). Recently, 

42 however, the application of membranes made of ceramic materials in wastewater 

43 treatment is growing. Although the price per square meter of active filtration layer are 

44 typically higher for ceramic membranes than for polymeric membranes (Ciora Jr and Liu 

45 2003), the ability of ceramic membrane to effectively pair with different pre-treatment 

46 options have made them an emerging concept in the wastewater treatment technology to 

47 offset this higher material cost (Dow et al. 2013). One well known example is coagulation 

48 pre-treatment which aggregates particulates prior to membrane filtration, preventing 
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49 particles from entering into membrane pores and depositing on the membrane surface 

50 (Gaulinger 2007, Hendricks 2006). Thus, the permeate quality in the MF system is 

51 enhanced by coagulation pretreatment (Carroll et al. 1999, Hiraide 1992, Mo and Huang 

52 2003, Vickers et al. 1995, Xia et al. 2004).

53 Combination of coagulation and membrane filtration can improve not only the 

54 permeability of membrane but also the quality of produced water (Jang et al. 2006). 

55 Coagulation pretreatment in combination with ceramic MF was observed to reduce the 

56 rate of cleaning operations (Mallevialle et al. 1996). However, it was observed in a study 

57 that the irreversible fouling of low MW polysaccharide compounds cannot be reduced by 

58 coagulation (Lahoussine-Turcaud et al. 1990). The unfavorable results may occur when 

59 coagulation is applied prior to polymeric MF membranes (Mallevialle et al. 1996). The 

60 partial removal of natural organic matter (NOM) by adding coagulant chemicals result in 

61 suppressing fouling in MF membranes. As the chemical residuals are required to be 

62 minimized to ensure the safe water quality, incorporation of ozonation can be an 

63 alternative solution to reduce membrane fouling.

64 When used as a pre-treatment of MF ceramic membrane, ozone can provide higher 

65 permeate flux without any damage of ceramic membrane (Lehman and Liu 2009). Higher 

66 flux leads to lower capital cost and therefore is a key part in the affordability of ceramic 

67 membranes for water treatment. The higher permeate flux obtained by ozone pre-

68 treatment can be attributed to the significant reduction of membrane fouling which is 

69 strongly dependent upon ozone concentration and hydrodynamic conditions (Kim et al. 

70 2008, Yu et al. 2016b). During characterization of NOM in a combined ozone-ceramic 

71 membrane process it was observed that the flux increase (25%) for ozone pre-treated 

72 water was attributable to the decomposition of NOM (Park et al. 2012). Another study on 

73 the effect of ozonation and CMF of SE (pilot plant in Chino, California) showed that 
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74 ozone pre-treatment is effective at degrading colloidal NOM which is likely responsible 

75 for the majority of membrane fouling (Lehman and Liu 2009). Ozone was also found to 

76 improve the permeate flux of samples taken from Lake Lansing (Haslett, Michigan) 

77 through a titania-coated ceramic membrane, which was attributed to the formation of •OH 

78 or other radicals at the membrane surface and oxidative degradation of foulants on the 

79 membrane surface (Karnik et al. 2005). 

80 Ozone pre-treatment can, however, also worsen membrane fouling (Zhu et al. 2009). The 

81 negative effect of ozone has been attributed to the increase in the quantity of large organic 

82 molecules after ozonation. Ozone pre-treatment can kill microorganisms in the feedwater, 

83 thereby releasing cell debris which can foul the membrane. Moreover, ozone pre-

84 treatment can break down high molecular weight (MW) dissolved organic matter (DOM) 

85 to low MW components (Nguyen 2012) that can facilitate bacterial regrowth, resulting in 

86 accelerated membrane bio-fouling (Miettinen et al. 1998, van Der Kooij et al. 1989). The 

87 contradictory and inconclusive performance of ozone on UF membrane fouling observed 

88 in previous studies can be explained by the dependence of ozone effect on both the nature 

89 of raw water and ozone dose (Yu et al. 2017).

90 The inclusion of a BAC stage after ozonation has the potential to overcome fouling due 

91 to bacterial regrowth that may be facilitated by ozonation. When contaminants are 

92 removed in BAC filtration system, two main parallel mechanisms are involved. The 

93 adsorption due to the presence of adsorption sites on the activated carbon (Walker and 

94 Weatherley 1999) and biodegradation due to microbial activity developing in the gaps of 

95 the media (Lu et al. 2013, Rattier 2012, Servais et al. 1992). The synergistic effect of 

96 adsorption and biodegradation may result in the removal of organic matter including 

97 micro-pollutants, halogenated hydrocarbons, and taste and odour compounds (Velten et 
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98 al. 2007). Moreover, the activated carbon in the BAC column can be used over several 

99 reactivation cycles without having to be replaced for fresh carbon. This reduces the 

100 environmental burden related to the disposal of spent carbon (Van Der Hoek et al. 1999). 

101 Consequently, the BAC filtration system requires low energy requirement and operating 

102 cost (Walker and Weatherley 1999).

103 Numerous studies exist on the effect of combined ozonation and BAC treatment on water 

104 quality. The combination of ozonation and BAC process has shown higher reduction of 

105 biological regrowth potential and better removal of disinfection byproduct (DBP) 

106 precursor than ozonation alone (Cipparone et al. 1997, van Der Kooij et al. 1989). The 

107 application of ozone on SE transforms larger molecules of DOM into smaller ones, thus 

108 increasing the biodegradability of the organic matter (Amy et al. 1987, Volk et al. 1993). 

109 The DOC which can be removed by biodegradation is known as biodegradable dissolved 

110 organic carbon (BDOC). The BDOC produced in ozonation process can be removed by 

111 subsequent BAC treatment (Siddiqui et al. 1997). Combined ozonation and BAC is 

112 recommended for the drinking water treatment by many studies (Geismar et al. 2012, 

113 Huck et al. 1992, Kong et al. 2006, Price 1993, Toor and Mohseni 2007, Van Der Hoek 

114 et al. 1999, Xu et al. 2007, Yapsakli and Çeçen 2010). Combined ozonation and BAC has 

115 also been used in wastewater treatment. While treating SE of wastewater, the combined 

116 ozone and BAC were found to achieve 58, 90, 25, 75 and 90% removal efficiencies of 

117 chemical oxygen demand (COD), NH3–N, total organic carbon (TOC), UVA254 and 

118 colour  respectively (Wang et al. 2008) and 50, 90, 70 and 95% removal efficiencies of 

119 dissolved organic carbon (DOC), trace organic chemicals, non-specific toxicity and 

120 estrogenicity respectively (Reungoat et al. 2012). 

121 The effect of combined ozonation and BAC treatment in water treatment processes 

122 involving membranes has also been studied. The combined effect of ozonation and BAC 
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123 pre-treatment was found to improve the permeate flux of a PVDF membrane for the 

124 treatment of activated sludge effluent (Nguyen and Roddick 2010). However, application 

125 of ozone and/or BAC as pre-treatments for ceramic membrane filtration has not been 

126 investigated for advanced treatment of SE (Li et al. 2005). Understanding the effect of 

127 combined ozone-BAC pre-treatment on the removal efficiency of the organic matters and 

128 reduction in membrane fouling would allow designing the optimized and economic 

129 treatment conditions. The goal of this investigation was to explore the impact of these 

130 pre-treatment approaches on waste water quality and ceramic membrane permeability. 

131

132 2 Materials and methods

133 2.1 Raw water 

134 Raw SE was collected from Melbourne Water’s Western Treatment Plant, where more 

135 than 50% of this Australian city’s sewage is treated by an activated sludge-lagoon 

136 process. The sample water was collected from the maturation lagoon overflow, before 

137 UV disinfection and chlorination, which corresponds to the water that would be fed to a 

138 membrane plant for reuse. The sample water was stored at 4°C until needed. Prior to all 

139 tests, the stored sample was warmed to room temperature (22±1°C) and pre-filtered using 

140 10 µm paper filters (Advantec 5A).

141 2.2 Experimental equipment

142 A schematic representation of the experimental equipment is shown in Figure 1. An A2Z 

143 ozone generator was used to generate ozone. Pure oxygen was supplied to the generator 

144 at a flow rate of 2 L(NTP).min-1. Ozone was injected in the feed sample at a flow rate of 

145 1.4 L(NTP).min-1 through a stone diffuser. The BAC particles (Acticarb BAC GA1000N) 
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146 were obtained from an operating ozone – BAC system in Castlemaine water treatment 

147 plant, Castlemaine, Australia (Zhang et al. 2016). A BAC column with a height of 180 

148 mm and diameter of 50 mm has been used in this test. The BAC feed was pumped at a 

149 flow rate of 15 mL.min-1. The empty bed contact time (EBCT) of the column was 20 min. 

150

151 Figure 1: Ozone-BAC+Ceramic membrane filtration equipment.

152 A tubular ceramic membrane (Pall Corporation) with a nominal pore size of 100 nm was 

153 used (7 mm inner diameter, 25 cm length). The inside-out membrane has an aluminium 

154 oxide support layer with a zirconium oxide coating layer on it. A stainless steel Schumasiv 

155 membrane module was used to house the membrane. Stainless steel fittings (Swagelok) 

156 and high pressure tubes were used for connecting the membrane process components.  

157 The membrane feed was pumped using a low speed piston pump (Fluid Metering, Inc, 

158 QG 150) at a flow rate of 15 mL.min-1. Pressure was monitored using a digital manometer 

159 (TPI 665). The temperature for all experiments was 22 ± 1°C. The specifications of the 

160 ozone generator, BAC column and membrane used in this study are given in Table 1.

161
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162 Table 1: Operating conditions of different treatment steps.

Process Stage Parameters Conditions

Filtration area 0.0055 m2

Pore size 100 nm

Filtration mode Dead end

Pump flow rate 15 mL.min-1

Flux 180 L.m-2.h-1

Backwash frequency 30 min

Membrane

Backwash pressure 4 bar

Gas flow rate 1.4 L.min-1

Mass concentration 0.11 g.L-1

Ozone

Production rate 13.05 g.L-1

Empty bed contact time 20 min

Flow rate 15 mL.min-1

BET surface area of particles 502 m2.g-1

BAC

Depth of bed 180 mm

163

164 2.3 Experimental procedure

165 SE was used as the feed for the O3 and/or BAC and/or CMF treatments. The membrane 

166 was operated in inside-out mode as the active layer was on the inside of the ceramic tube, 

167 in a conventional pressurized configuration using a direct filtration (dead-end) constant 

168 flux mode to replicate the operation of real plants by the water industry. Each filtration 

169 was conducted for at least 200 minutes. Transmembrane pressure (TMP) was 

170 continuously monitored and recorded for every 5s. The TMP was temperature corrected 

171 to a reference temperature of 20°C using Equation 1 and Equation 2 (EPA 2005),
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𝑃𝑇 = 20 = 𝑃𝑎𝑏𝑠 ×
𝜇𝑇 = 20

𝜇𝑇
(1) 

𝜇𝑇 = 1.784 ‒ (0.0575 × 𝑇) + (0.0011 × 𝑇2) ‒ (10 ‒ 5 × 𝑇3) (2) 

172 Where, PT=20 is the pressure at 20°C (Pa), Pabs is the absolute pressure (Pa), μT=20 is the 

173 viscosity of water at 20°C and μT is the viscosity of water at temperature T. Hydraulic 

174 (liquid) backwashing was performed periodically via pressurized DI water and a series of 

175 valves. The backwash was set to occur after every 30 min of filtration at a backwash 

176 pressure of 4 bar. Samples were collected before and after each filtration steps to 

177 investigate different water quality parameters. During the O3+BAC+CMF experiment, 

178 the measured residual ozone was between 0.3 and 0.5 mg.L-1 prior to BAC column. 

179 During the O3+CMF experiment, measured residual ozone was 2 to 3 mg.L-1 prior to 

180 ceramic membrane. The higher concentration of residual ozone in the O3+CMF 

181 experiment was to allow the ceramic membrane to facilitate any potential catalytic 

182 reaction with residual ozone. In order to remove the accumulated organic and inorganic 

183 materials, the membrane was cleaned hot water for 10 minutes firsts. After that, 2% (w/v) 

184 NaOH was used to clean the membrane for 20-30 minutes at a temperature of 75-80°C 

185 with a subsequent hot water cleaning. Finally the membrane was cleaned with 2% w/w 

186 nitric acid for 20-30 minutes at a temperature of 75-80°C with a subsequent hot water 

187 cleaning (Pall 2006). The effectiveness of the cleaning procedure was confirmed by 

188 performing clean water test at 180 L.m-2.h-1 for a minimum of one hour and achieving a 

189 TMP of 15 kPa ± 2 kPa. 

190 The normalised permeability and the unified membrane fouling indices (UMFI) were 

191 used to quantify the fouling potential on the ceramic membrane. All TMP data points 
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192 which were already temperature corrected using Equation 1 and 2, were used to calculate 

193 permeability or specific flux (L.m-2.h-1.kPa-1) using Equation 3. The normalised 

194 permeability, J′
s was then calculated by dividing J/ΔP by the initial or clean membrane 

195 condition as shown in Equation 4.

𝐽𝑠 =
𝐽

∆𝑃
(3) 

𝐽 '
𝑠 =

( 𝐽
∆𝑃)𝑉𝑠

( 𝐽
∆𝑃)0

(4) 

196 Where Js is the membrane permeability (L.m-2.h-1.kPa-1), Vs is the specific volume (L.m-

197 2). UMFI was determined experimentally by obtaining normalized specific flux at given 

198 specific permeate volume. The procedure is described in detail in elsewhere (Huang et al. 

199 2009). UMFI was calculated as the ratio of the difference in 1/ J′
s to the difference in Vs 

200 measured between the beginning of a filtration cycle to a specific endpoint as shown in 

201 Equation 5.

𝑈𝑀𝐹𝐼 =
𝐽' ‒ 1

𝑠 ‒ 1

𝑉𝑠
(5) 

202

203 If the endpoint chosen was at the completion of the filtration cycle, the UMFI calculated 

204 represents the total fouling rate (UMFIT) observed in this cycle. In multi-cycle filtration, 

205 hydraulically irreversible fouling refers to the fouling that cannot be reversed by 

206 backwashing with deionised water. Hydraulically irreversible fouling potentials were 
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207 evaluated by UMFII, which was calculated by selecting the endpoint at the beginning of 

208 subsequent filtration cycle. Hydraulically reversible fouling potentials UMFIR were 

209 obtained by subtracting UMFII from UMFIT (Huang et al. 2009). 

210

211 2.4 Analytical method

212 The SE UVA254, DOC, colour and constituent molecular weight distribution were 

213 determined before and after different treatments. The UVA254 was measured using a 

214 HACH spectrophotometer (DR 5000) with a 1 cm quartz cell. DOC was measured using 

215 a Shimadzu Total Organic Carbon Analyzer (TOC-VCSH), which was equipped with an 

216 auto-sampler. DOC concentration was indirectly obtained by subtracting the two directly 

217 measured parameters: the total carbon (TC) and the inorganic carbon (IC). All samples 

218 were filtered through 0.45 µm cellulose acetate membrane filter prior to the DOC 

219 analysis. Colour was measured in PtCo units using HACH spectrophotometer (DR 5000) 

220 with a 10 cm quartz cell. The excitation-emission spectrums were measured using a 

221 Perkin-Elmer LS-55 Fluorescence Spectrometer, which used a xenon excitation source. 

222 The scans were performed from 200 to 550 nm at increments of 5 nm. The total number 

223 of scans per sample in the spectrometer was 70.

224 The molecular weight distributions of the wastewater components were achieved by 

225 Liquid Chromatography (LC) analyses with a PDA and fluorescence detector in series. 

226 The LC Method was performed using a TSK gel column (G3000 SW, C-No.SW3600482) 

227 at room temperature with a phosphate buffer (10 mM KH2PO4 + 10 mM Na2HPO4) as the 

228 mobile phase. The column was operated with a flow-rate of 0.5 mL.min-1 and a 50 mL 

229 injection volume. This was coupled with sequential on-line detectors consisting of a UV 

230 visible photodiode array (λ = 200 - 800 nm) and a fluorescence detector (RF-10AXL). 
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231 The fluorescence excitation (Ex) and emission (Em) wavelengths of 280 nm/352 nm 

232 (Ex/Em) were used for detection of protein-like compounds, and 330 nm/425 nm (Ex/Em) 

233 for detection of humic substances. Polystyrene sulphonate (PSS) molecular weight 

234 standards of 3420, 4600, 6200, 15650 and 39000 Da were used to calibrate the LC 

235 column.

236 The concentrations of dissolved ozone in the experimental reaction solutions were 

237 determined by the Indigo Method (Bader and Hoigné 1981). The method is based on 

238 decolourization of the indigo reagent by ozone, where the loss of colour is directly 

239 proportional to the ozone concentration. High purity indigo trisulfonate (>80%, Sigma 

240 Aldrich) was used as the indigo reagent which has a molar absorptivity of about 20,000 

241 M-1cm-1 at 600 nm. To measure the residual ozone the absorbance of indigo trisulfonate 

242 after reaction with sample was subtracted from that of an ozone free blank. The 

243 absorbance at 600 nm was measured using a DR 5000 spectrophotometer (HACH).

244

245 3 Results and Discussion

246 3.1 Raw water characterization

247 The characteristics of the raw SE used in these experiments is compared to those in the 

248 literature in Table 2. The pH, UVA254, conductivity and COD values of the sample were 

249 found to be very similar to literature values. The colour, turbidity and the total dissolved 

250 solid (TDS) of the sample were found to be lower than the literature values. However, the 

251 DOC of the sample was found to be higher than the literature values. The dissimilarity is 

252 due to the different types of secondary treatment in different treatment plants. 

253
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254 Table 2: Characteristics of SE used in this work, and comparison to 

255 other studies reported in literature.

Parameters Values Other studies

pH 7.7-7.9 7.3 (Zheng et al. 2010), 7.8 (Kalkan et 

al. 2011), 7.4-8 (Pramanik et al. 2016)

UVA254, cm-1 0.218±0.02 0.14 (Zhu et al. 2012). 0.22 (Kalkan et 

al. 2011), 0.34 (Nguyen and Roddick 

2010)

Colour, Pt-Co 35-37 109 (Nguyen and Roddick 2010), 56-85 

(Pramanik et al. 2016)

Turbidity, NTU 0.9±0.1 7.3 (Zhu et al. 2012), 1.5 (Zheng et al. 

2010)

Conductivity, µS cm-1 1665±35 1065 (Nguyen and Roddick 2010), 

1620-1950 (Pramanik et al. 2016)

Total dissolved solid (TDS), mg.L-1 883±5 1038 (Fan et al. 2008)

Dissolved organic carbon (DOC), mg.L-

1

13±0.5 11.7 (Zheng et al. 2010), 11.4 (Kalkan 

et al. 2011)

Chemical oxygen demand (COD), 

mg.L-1

27.9±1 27 (Fan et al. 2008), 52.5 (Wang et al. 

2008)

256 The fluorescence excitation-emission matrix (EEM) spectra of the SE are shown in Figure 

257 2. Two major peak locations (280 nm/352 nm, 330 nm/425 nm, Ex/Em) were found in 

258 the matrix. Fluorescence peaks with Em < 380 nm represent protein-like substances 

259 (tyrosine and tryptophan), and fluorescence peaks with Em > 380 nm represent humic-

260 like substances were used (Chen et al. 2003, Ishii and Boyer 2012, Murphy et al. 2011, 

261 Wang and Zhang 2010). Her et al. used two pairs of excitation and emission wavelengths 

262 specific to protein-like and fulvic-like humic substances (HS) at Ex: 278 nm/Em: 353 nm 

263 and Ex: 337 nm/ Em: 423 nm respectively for the fluorescence detector (Her et al. 2003). 
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264 Additionally, Salanis et al. has shown that tryptophan containing proteins fluoresce at Ex: 

265 278-280 nm/Em: 320-350 nm (Salanis et al. 2011). Excitation and emission wavelengths 

266 of 278 and 353 nm were selected for detecting tryptophan containing protein substances, 

267 and 330 and 425 nm were selected for detecting fulvic like humic substances. 

268

269 Figure 2: EEM of SE feed solution.

270

271 3.2 Effect of pre-treatment options on feedwater quality

272 The average removal percentages of DOC, UVA254 and colour by the individual 

273 application of BAC filtration and ozonation are compared to CMF in Figure 3. Both BAC 

274 and ozone were found to be more effective for removal of colour and UVA254 absorbance 

275 than CMF. This finding confirms the well-known effect of ozone and BAC treatment for 

276 improving treated water aesthetics (Pramanik et al. 2014). The DOC removal for the O3 

277 and CMF options (4.6% and 5.3%) were lower than for BAC treatment (14%). This is 

278 consistent with literature studies that show that O3 treatment degrades large dissolved 

279 organic constituents to smaller compounds without removing them from solution 
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280 (Miettinen et al. 1998, Nguyen 2012, van Der Kooij et al. 1989, Von Gunten 2003), 

281 whereas the BAC treatment removes the organic constituents via adsorption and 

282 biodegradation (Lu et al. 2013, Rattier 2012, Walker and Weatherley 1999). Ozonation 

283 has been found to transform higher MW biopolymers into smaller compounds (Stüber et 

284 al. 2013). Ozone is known to decompose the humic substances into low MW substances 

285 (Camel and Bermond 1998, Takahashi et al. 1995, Von Gunten 2003). An increase in low 

286 MW compounds by ozonation was also found in a study conducted by Gonzalez et al. 

287 (González et al. 2013).

288
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289 Figure 3: Removal of DOC, UVA254 and colour by individual CMF, BAC 

290 filtration and ozonation processes. 

291

292 3.3 Effect of pre-treatment options on CMF permeate quality 

293 The removal percentages of DOC, UVA254 and colour by the BAC+CMF, O3+CMF and 

294 O3+BAC+CMF options are compared to CMF alone in Figure 4(a). Overall, ozonation 

295 was the most effective pre-treatment, increasing the permeate UVA254 removal from 6% 
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296 (CMF alone) to 63% (O3+CMF) and the colour removal from 29% (CMF alone) to 97% 

297 (O3+CMF). BAC treatment was slightly less effective (6% to 48% removal of UVA254 

298 and 29% to 86% removal of Colour). The inclusion of a BAC stage after the ozonation 

299 (i.e., the O3+BAC+CMF option) was found to be mildly worse than the ozone pre-

300 treatment alone (i.e., the O3+CMF option) for both of these parameters. 

301 The influence of each treatment step on the overall removal results shown in Figure 4(a) 

302 are shown Figures 4(b), 4(c) and 4(d). It can be seen that the water quality changes that 

303 occur during pre-treatment decrease the contribution of the CMF to the overall removal 

304 result. The CMF colour removal achieved in the O3+CMF process (9%, Figure 4(c)), for 

305 example, is less than the CMF colour removal achieved without pre-treatment (29%, 

306 Figure 4(a)). The ozonation degrades wastewater components that would otherwise be 

307 caught by the membrane, allowing them to pass through the membrane. Generally, 

308 aromatic compounds are most reactive with ozone (Kasprzyk-Hordern et al. 2006, Park 

309 et al. 2012). 

310 The DOC and colour removal by BAC filtration were found to be 13% and 69% 

311 respectively (see Figure 4(b)). These removal values are marginally lower than those 

312 observed by Pramanik et al. (2014). They studied the BAC filtration as a pre-treatment 

313 for reducing the organic fouling of a MF membrane in the treatment of SE and found the 

314 reduction in DOC and colour by the BAC stage were 32% and 78% respectively 

315 (Pramanik et al. 2014). The removal of DOC can be attributed to the simultaneous 

316 adsorption of bio-refractory compounds and bio-oxidation of biodegradable organic 

317 matter by the BAC. 

318 The removal of DOC by ozonation was low (7%) but ozonation effectively removed 

319 UVA254 (63%) and colour (88%) (see Figure 4(c)) as observed by others in the literature. 
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320 Dow et al. investigated the performance of ceramic MF membrane to treat SE with ozone 

321 and/or coagulation pre-treatment (Dow et al. 2013) and found that ozone reduced DOC, 

322 UVA254 and colour by 5%, 52% and 85% respectively. 

323 The measured contribution of each of the process stages to the overall removals by the 

324 O3+BAC+CMF option is shown in Figure 4(d). The negative value in the removal 

325 percentages of UVA254 for the ozonized effluent through BAC filtration was attributed to 

326 an increase in UVA254 resulting from improved clarity of the treated water by ozonation, 

327 enabling better light absorbance in the spectrophotometer (Dow et al. 2013). Ozone 

328 played a key role in removal of UVA254 and colour, and since BAC followed ozone, its 

329 removal contribution was not as strong as when BAC is used without ozone (Figure 4(b)). 

330

331 Figure 4: Removal of DOC, UVA254 and colour by a. all four sequences using 

332 ceramic membrane; unit contribution for each stages of b. BAC+CMF; c. 

333 Ozone+CMF; d. Ozone-BAC+CMF system.
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334 High performance liquid chromatography – size exclusion chromatography (HPLC-SEC) 

335 was used to study the chemical and physical changes taking place during treatment. The 

336 resulting apparent molecular weight distributions for the treated and untreated water are 

337 shown in Figure 5 and Figure 6.  

338 These figures represent the fluorescence spectrum at 280 nm/352 nm (Ex/Em) for 

339 proportion of  protein substances that contain tryptophan and 330 nm/425 nm (Ex/Em) 

340 for fulvic-like humic substances respectively. A small peak is observed at approximately 

341 43 kDa (Figures 5(a-d)). Generally the biopolymers have a MW range of greater than 20 

342 kDa (Nguyen and Roddick 2010, Penru et al. 2013). Myat et al. (2012) in a study of 

343 organic matter in wastewater observed a peak at 50 kDa (fluorescence spectrum at 278 

344 nm/304 nm (Ex/Em)) and attributed this to proportion of protein substances that contain 

345 tryptophan (Myat et al. 2012). In Figures 6, multiple peaks are observed in the range of 0 

346 to 5000 Da. Generally, the HS are ranged from 100 to 5,000 Da (Sutzkover-Gutman et al. 

347 2010). 

348 The rejections of tryptophan containing protein biopolymers and of HS by the different 

349 treatment steps relative to the feed water quality, calculated from the peak areas from 

350 Figure 5 and Figure 6, are shown in Table 3. The tryptophan containing protein 

351 biopolymers detected at 280 nm/352 nm (Ex/Em) were significantly removed by the CMF 

352 without pre-treatment (97%) while the HS detected at 330 nm/425 nm (Ex/Em) were only 

353 slightly removed by the membrane (7%). These removals are different to those obtained 

354 by others using polymeric membranes. Pramanik et al. found that the tryptophan 

355 containing protein biopolymer rejection and HS rejections were 20% and 10% rejection 

356 in their wastewater treatment using a hydrophilic PVDF membrane with a nominal pore 

357 size of 0.1 µm (Pramanik et al. 2015). The higher rejection of biopolymers by the CMF 

358 in this study (nominal pore also 0.1 µm) can be attributed to the narrower pore size 
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359 distribution of the ceramic membrane (Ishizaki et al. 1998). As ceramic membranes have 

360 higher proportions of smaller pores and less larger pores, greater quantity of high MW 

361 biopolymers can be rejected by CMF. 

362 In the BAC+CMF process, a partial reduction of biopolymers (59%) and HS (50%) were 

363 observed by BAC filtration. The high MW tryptophan containing protein biopolymers 

364 may have been biodegraded by microorganisms formed in the BAC while the HS may 

365 have been adsorbed by the activated carbon of the BAC (Pramanik et al. 2014, 2016). 

366 Following the BAC, CMF effectively removed biopolymers (99% removal) but gave rise 

367 to little additional HS removal (55%). Pramanik et al. studied the effect of BAC prior to 

368 0.1 µm hydrophilic PVDF membrane while treating biologically treated SE (Pramanik et 

369 al. 2016). It was observed that, for the BAC treated effluent, high MW biopolymers and 

370 HS were retained by the membrane, playing an important role in membrane fouling. 

371 In the O3+CMF process, a high amount of biopolymers were removed by ozonation 

372 (100%). This was also found in literature studies (Filloux et al. 2012). The removal effect 

373 of ozone is attributed to the transformation of biopolymers into smaller compounds 

374 (Stüber et al. 2013). Ozonation, with or without CMF, significantly reduced the quantity 

375 of HS (84% removal). The significant removal of this fraction can be attributed to the 

376 high aromaticity of the HS components (González et al. 2013). The biopolymer 

377 components removal after ceramic filtration, however, was lower (86%) than before 

378 ceramic filtration (100%). This suggests that some of the degraded biopolymer 

379 components combine to form larger MW species as they are forced through the membrane 

380 pores (Kim et al. 2007).

381 In the O3+BAC+CMF process, samples taken after the ozonation stage showed that this 

382 stage removed a high proportion of biopolymers and HS (100% and 83% respectively). 
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383 Samples taken after the BAC stage, however, exhibited lower removals (75% and 66% 

384 respectively), indicating that the BAC is adding biopolymers and HS to the process 

385 stream. These increases can be attributed to the chemical oxidation and release by the 

386 ozone of the adsorbed material and biofilms on the BAC. Ceramic filtration after 

387 O3+BAC pre-treatment then removes most of the biopolymers (96%) but does not 

388 improve the HS component removal.
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389
390 Figure 5: Fluorescence spectrum at 280 nm/352 nm (Ex/Em) for treatment by a. CMF alone; b. BAC+CMF; c. ozone-CMF; d. ozone-

391 BAC+CMF system.
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392
393 Figure 6: Fluorescence spectrum at 330 nm/425 nm (Ex/Em) for treatment by a. CMF alone; b. BAC+CMF; c. ozone-CMF; d. ozone-

394 BAC+CMF system.
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395 Table 3: Biopolymers and HS removal (%) relative to the feed water 

396 quality during different treatment steps of CMF (calculated by peak area 

397 from Figures 5 and 6).

Post-stage 

Sample Point

Biopolymers Removal 

(%)

(40 kDa-45 kDa)

Humic Substances 

Removal (%)

(0.1 kDa-5.5kDa)
Process

Ex/Em: 280/352 nm Ex/Em : 330/425 nm

CMF CMF 97 7

BAC 59 50BAC+CMF

CMF 99 55

O3 100 84O3+CMF

CMF 86 84

O3 100 83

BAC 75 66

O3+BAC+CMF

CMF 96 66

398

399 3.4 Effect of pre-treatment options on the permeability of CMF 

400 The normalized permeability with time and total fouling index (UMFIT) for the four 

401 different filtration options are shown in Figure 7. In Figure 7(a) it can be seen that the 

402 permeability decreases as the membrane becomes fouled by the wastewater constituents 

403 and this permeability is only partially restored during the DI water backwashes (every 30 

404 minutes). 
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405 The membrane permeabilities with raw water, BAC treated water and the O3+BAC water 

406 treated water were found to be similar. A large decrease in flux was found to occur in the 

407 first filtration period. After 6 backwashes and 7 successive filtration cycles, the 

408 normalized permeability was reduced from 1.0 to approximately 0.1 for these options. 

409 The results for the ozone treated water, however, were much better. A much lower level 

410 of fouling occurred in the first filtration period for the ozone treated water than for the 

411 BAC treated water. The normalised permeability only decreased from 1.0 to 0.5 during 

412 these 7 filtration cycles. 

413 The low fouling nature of the ozone treated water can be seen from the total fouling index 

414 data ((UMFIT), Figure 7(b)) and the reversible (UMFIR) and irreversible (UMFII) fouling 

415 index data (Figure 8). The UMFIT for the raw water was found to increase in a linear 

416 fashion from 0.14 m2.L-1 to 0.73 m2.L-1. The BAC and ozone-BAC pre-treated feedwater 

417 were found to exhibit a slower increase to 0.34 m2.L-1. The UMFIT of the ozone pre-

418 treated feedwater, however, exhibited a very low increase from 0.02 to 0.03 m2.L-1. This 

419 can be attributed to the removal of biopolymers and HS (see Table 3). Ozone was found 

420 to improve the permeability of ceramic membrane in other studies using ozone combined 

421 with ceramic membranes to treat SE (Alpatova et al. 2013, Guo et al. 2014, Karnik et al. 

422 2005, Kim et al. 2008). 

423
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424
425 Figure 7: a. Normalized permeability with time and b. total fouling index 

426 (UMFIT) during multi-cycle treatment by CMF, BAC+CMF, Ozone-CMF and 

427 Ozone-BAC+CMF system.

428 The reversible fouling index (UMFIR) for the untreated feedwater was higher than the 

429 irreversible fouling index (UMFII) (Figure 8), indicating that the majority of raw water 

430 foulants were loosely attached to the membrane surface to form cake layers (Pramanik et 

431 al. 2015) and could be removed by the backwashing procedure. The role of biopolymers 

432 to form cake layers on the membrane surface was found in other studies (Gray et al. 2007, 

433 Pramanik et al. 2014) since the organics mostly rejected by the membrane are 
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434 biopolymers and would logically accumulate on the surface. Laine et al.  showed that 

435 high MW biopolymers are known to be the major component of the cake layer (Laine et 

436 al. 1989). Pore fouling can also occur from materials that pass through the membrane 

437 (Polyakov and Zydney 2013). 

438 Comparison of Figure 8(a) and Figure 8(b) shows that the lower UMFIT of BAC treatment 

439 than untreated water is largely due to the decrease in reversible fouling (UMFIR), but the 

440 irreversible fouling index was increased by the BAC pre-treatment. The overall 

441 improvement can be attributed to the partial removal (59%) of biopolymers by the BAC 

442 (see Table 3). The removal of low molecular weight HS (50%) seems to contribute to 

443 increased irreversible fouling component. These results are consistent with the 

444 biodegradation of HS components to more powerful foulants, allowing more to enter the 

445 pores of the membrane and contribute to in-pore fouling (Polyakov and Zydney 2013). 

446 Comparison of Figure 8(b) and Figure 8(d) shows that irreversible fouling is strongly 

447 increased after O3+BAC pre-treatment.  Nguyen et al. investigated the effect of ozonation 

448 followed by BAC filtration on the characteristics and UF performance of activated sludge 

449 effluent. Irreversible fouling in their study was reduced after ozonation while BAC 

450 filtration did not cause any further decrease in this type of fouling (Nguyen and Roddick 

451 2010). It was identified in a previous study that some microorganisms can be released due 

452 to sloughing of the biomass and transport on granular activated carbon fines (Gottinger 

453 et al. 2011). Moreover, when drinking water is treated by O3+BAC process, microbial 

454 degradation can result in membrane clogging and reduce membrane flux (Jin et al. 2013). 

455 It was also observed in another study that ozonation might lyse algae, releasing polymeric 

456 substances from algal cell wall (Plummer and Edzwald 2001). In this study, it is therefore 

457 possible that the broken pieces of biopolymers created by ozonation were captured at the 

458 retention time of HS through porous channals of membrane, as the molecular mass of 
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459 biopolymers is about one order of magnitude higher than the molecular mass of HS 

460 (Siembida-Losch et al. 2015). This assumption can further be strenthened by another 

461 study of UF membrane where, the formation of irreversible fouling is attributed to the 

462 interaction between colloidal/particulate matter together with protein like substances and 

463 HS (Peiris et al. 2013).

464 The performance of the combined O3+BAC pre-treatment can further be improved by 

465 design optimization (e.g., improved EBCT), which enables better control of membrane 

466 fouling in a cost effective and eco-friendly manner. Coagulation can be added as a 

467 complement of the combined pre-treatment process. The MF ceramic membrane can be 

468 coated with MnO2 in order enhance the catalytic decomposition of ozone to hydroxyl 

469 radicals and increase hydrophobicity of the membrane surface (Yu et al. 2016a). The 

470 effect of ozone on the microorganisms of BAC column needs to be further investigated 

471 in detail. 

472

473

474

475

476
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479 Figure 8: Reversible fouling (UMFIR) and irreversible fouling (UMFII) with 

480 a. Raw feedwater; b. BAC pre-treatment; c. O3 pre-treatment; d. O3+BAC pre-

481 treatment.

482 4 Conclusions

483 This study has shown that, individually, BAC pre-treatment and ozone pre-treatment lead 

484 to better water quality and lower membrane fouling than without pre-treatment, but that 

485 the combination of both pre-treatments with ozone followed by BAC leads to worse water 

486 quality and more membrane fouling than the use of ozone pre-treatment alone. 

487 BAC pre-treatment improved the overall permeability of the ceramic membranes and the 

488 quality of the resulting permeate, primarily due to removal of a large proportion of 

489 biopolymer component (~60%) which fouls the membrane by reversible cake layer 

490 formation. BAC treatment also removed a large proportion of the humic substances 
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491 (~50%), but the net effect was associated an increase in irreversible fouling. The overall 

492 removal of colour and UVA254 of the BAC pre-treated water by ceramic filtration was 

493 86% and 48% respectively, compared to 29% and 6% respectively for the untreated water. 

494 The BAC pre-treatment only increased DOC removal from 6% without pre-treatment to 

495 13% with pre-treatment. This is consistent with poor adsorption of low molecular weight 

496 organic components onto the BAC column. 

497 Ozone pre-treatment improved permeability and permeate quality to a greater extent than 

498 BAC pre-treatment. This was attributed to the excellent removal of biopolymers (100%) 

499 and high removal of HS components (84%). This pre-treatment was found to decrease 

500 both the reversible and irreversible fouling. The overall removal of colour and UVA254 

501 for the ozone treated water by ceramic filtration was 97% and 63% respectively, 

502 compared to 29% and 6% respectively for the raw untreated water. Ozone pre-treatment, 

503 however, only increased DOC removal from 6% without pre-treatment to 7% with pre-

504 treatment. This is consistent with a process that breaks down large organic constituents 

505 to smaller ones without removing them from solution.

506 The inclusion of a BAC stage between ozone treatment and ceramic filtration 

507 (O3+BAC+CMF option) was detrimental. The O3+BAC+CMF process was found to 

508 yield lower HS component removal (66%) than the O3+CMF process (84%), resulting in 

509 poorer permeability. This was tentatively attributed to the chemical oxidation effect of 

510 ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants 

511 that are not generated in the O3+CMF process. This study provided new insights into the 

512 O3, BAC and O3+BAC pre-treatment processes prior to CMF of SE. Based on the results, 

513 it can be concluded that ozone pre-treatment could be an effective pre-treatment for 

514 reducing organic fouling and improving flux compared to O3+BAC pre-treatment.
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515 Abbreviations

516 ATR-FTIR: Attenuated total reflection-Fourier transform infrared

517 BAC: Biological activated carbon

518 BDOC: Biodegradable dissolved organic carbon

519 BET: Brunauer–Emmett–Teller

520 BOD: Biological oxygen demand

521 CMF: Ceramic membrane filtration

522 COD: Chemical oxygen demand

523 DBP: Disinfection byproduct

524 DOC: Dissolved organic carbon

525 DOM: Dissolved organic matter

526 EBCT: Empty bed contact time

527 EEM: Excitation-emission matrix

528 Em: Emission

529 Ex: Excitation

530 HPLC-SEC: High performance liquid chromatography – size exclusion

531 chromatography

532 LC: Liquid Chromatography

533 MF: Microfiltration

534 MW: Molecular weight

535 NOM: Natural organic matter

536 PDA: Photodiode array detector

537 PVDFl: Polyvinylidenefluoride

538 RO: Reverse osmosis

539 TDS: Total dissolved solid
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540 TMP: Trans-membrane pressure

541 TOC: Total organic carbon

542 UF: Ultrafiltration

543 UMFI: Unified membrane fouling index 

544 UMFII: Hydraulically irreversible fouling potential

545 UMFIR: Reversible fouling potential

546 UMFIT: Total fouling index

547 UV: Ultra violate

548
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