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Abstract

In this paper we show that the celebrated Davis-Choi-Jensen’s in-
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1. Introduction

The following result that provides an vector operator version for the Jensen
inequality is well known, see for instance [6] or [7, p. 5]:

Theorem 1. Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m, M with m < M. If f is
a convex function on [m,M ] , then

f (hAx, xi) ≤ hf (A)x, xi(1.1)

for each x ∈ H with kxk = 1.

As a special case of Theorem 1 we have the Hölder-McCarthy inequality
[5]: Let A be a selfadjoint positive operator on a Hilbert space H, then
(i) hArx, xi ≥ hAx, xir for all r > 1 and x ∈ H with kxk = 1;
(ii) hArx, xi ≤ hAx, xir for all 0 < r < 1 and x ∈ H with kxk = 1;
(iii) If A is invertible, then hArx, xi ≥ hAx, xir for all r < 0 and x ∈ H
with kxk = 1.

In [2] (see also [3, p. 16]) we obtained the following additive reverse of
(1.1):

Theorem 2. Let I be an interval and f : I → R be a convex and differ-

entiable function on
◦
I (theinteriorofI)whosederivativef0 is continuous on

I. If A is a selfadjoint operators on the Hilbert space H with Sp (A) ⊂ I,
then

(0 ≤) hf (A)x, xi− f (hAx, xi)

≤
­
f 0 (A)Ax, x

®
− hAx, xi ·

­
f 0 (A)x, x

®
(1.2)

for any x ∈ H with kxk = 1.

This is a generalization of the scalar discrete inequality obtained in [4].
For other reverse inequalities of this type see [3, p. 16].

The following particular cases are of interest: If A is a selfadjoint oper-
ator on H, then we have the inequality:

(0 ≤) hexp (A)x, xi− exp (hAx, xi)

≤ hA exp (A)x, xi− hAx, xi hexp (A)x, xi ,(1.3)

for each x ∈ H with kxk = 1.
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Let A be a positive definite operator on the Hilbert space H. Then we
have the following inequality for the logarithm:

(0 ≤) ln (hAx, xi)− hln (A)x, xi

≤ hAx, xi
D
A−1x, x

E
− 1,(1.4)

for each x ∈ H with kxk = 1.
If p ≥ 1 and A is a positive operator on H, then

(0 ≤) hApx, xi− hAx, xip ≤ p
h
hApx, xi− hAx, xi

D
Ap−1x, x

Ei
,(1.5)

for each x ∈ H with kxk = 1. If A is positive definite, then the inequality
(1.5) also holds for p < 0. If 0 < p < 1 and A is a positive definite operator
then the reverse inequality also holds

(0 ≤) hAx, xip − px, xi ≤ p
h
hAx, xi ·

D
Ap−1x, x

E
− hApx, xi

i
,(1.6)

for each x ∈ H with kxk = 1.
Let H be a complex Hilbert space and B (H) , the Banach algebra of

bounded linear operators acting on H.We denote by Bh (H) the semi-space
of all selfadjoint operators in B (H) .We denote by B+ (H) the convex cone
of all positive operators onH and by B++ (H) the convex cone of all positive
definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [7, p. 18])
we can introduce the following definition:

Definition 1. A map Φ : B (H) → B (K) is linear if it is additive and
homogeneous, namely Φ (λA+ µB) = λΦ (A) + µΦ (B)
for any λ, µ ∈ C and A, B ∈ B (H) . The linear map Φ : B (H)→ B (K) is
positive if it preserves the operator order,i.e. if A ∈ B+ (H) then Φ (A) ∈
B+ (K) . We write Φ ∈ P [B (H) ,B (K)] . The linear map Φ : B (H) →
B (K) is normalised if it preserves the identity operator, i.e. Φ (1H) = 1K .
We write Φ ∈ PN [B (H) ,B (K)] .

We observe that a positive linear map Φ preserves the order relation,
namely

A ≤ B implies Φ (A) ≤ Φ (B)
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and preserves the adjoint operationΦ (A∗) = Φ (A)∗ . If Φ ∈ PN [B (H) ,B (K)]
and α1H ≤ A ≤ β1H , then α1K ≤ Φ (A) ≤ β1K .

If the map Ψ : B (H)→ B (K) is linear, positive and Ψ (1H) ∈ B++ (K)
then by putting Φ = Ψ−1/2 (1H)ΨΨ−1/2 (1H) we get that Φ ∈ PN [B (H) ,B (K)] ,
namely it is also normalised.

A real valued continuous function f on an interval I is said to be oper-
ator convex (concave) on I if

f ((1− λ)A+ λB) ≤ (≥) (1− λ) f (A) + λf (B)

for all λ ∈ [0, 1] and for every selfadjoint operators A, B ∈ B (H) whose
spectra are contained in I.

The following Jensen’s type result is well known:

Theorem 3 (Davis-Choi-Jensen’s Inequality). Let f : I → R be an
operator convex function on the interval I and Φ ∈ PN [B (H) ,B (K)] , then
for any selfadjoint operator A whose spectrum is contained in I we have

f (Φ (A)) ≤ Φ (f (A)) .(1.7)

We observe that if Ψ ∈ P [B (H) ,B (K)] with Ψ (1H) ∈ B++ (K) , then
by taking Φ = Ψ−1/2 (1H)ΨΨ−1/2 (1H) in (1.7) we get

f
³
Ψ−1/2 (1H)Ψ (A)Ψ

−1/2 (1H)
´
≤ Ψ−1/2 (1H)Ψ (f (A))Ψ−1/2 (1H) .

If we multiply both sides of this inequality by Ψ1/2 (1H) we get the
following Davis-Choi-Jensen’s inequality for general positive linear maps

Ψ1/2 (1H) f
³
Ψ−1/2 (1H)Ψ (A)Ψ

−1/2 (1H)
´
Ψ1/2 (1H)

≤ Ψ (f (A)) .(1.8)

It is obvious that, by (1.7) we have the vector inequality

hf (Φ (A)) y, yi ≤ hΦ (f (A)) y, yi(1.9)

for any y ∈ K. By (1.1) we also have

f (hΦ (A) y, yi) ≤ hf (Φ (A)) y, yi(1.10)
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for any y ∈ K, kyk = 1. Therefore, for an operator convex function on I we
have

f (hΦ (A) y, yi) ≤ hf (Φ (A)) y, yi ≤ hΦ (f (A)) y, yi(1.11)

for any y ∈ K, kyk = 1.
It is then natural to ask the following question:
Does the inequality between the first and last term in (1.11) remains

valid in the more general case of convex functions defined on the interval I
?

A positive answer to this question and some reverse inequalities are pro-
vided below. Some applications for important instances of convex (concave)
functions are also given.

2. A Jensen’s Type Inequality

Suppose that I is an interval of real numbers with interior I and f : I → R
is a convex function on I. Then f is continuous on I and has finite left
and right derivatives at each point of I. Moreover, if t, s ∈ I and t < s,
then f 0− (t) ≤ f 0+ (t) ≤ f 0− (s) ≤ f 0+ (s) which shows that both f 0− and f 0+
are nondecreasing function on I. It is also known that a convex function
must be differentiable except for at most countably many points.

For a convex function f : I → R, the subdifferential of f denoted by
∂f is the set of all functions ϕ : I → [−∞,∞] such that ϕ (I) ⊂ R and

f (t) ≥ f (a) + (t− a)ϕ (a) for any t, a ∈ I.(2.1)

It is also well known that if f is convex on I, then ∂f is nonempty, f 0−,
f 0+ ∈ ∂f and if ϕ ∈ ∂f , then

f 0− (t) ≤ ϕ (t) ≤ f 0+ (t) for any t ∈ I.

In particular, ϕ is a nondecreasing function. If f is differentiable and
convex on I, then ∂f = {f 0} .

We have:

Theorem 1. Let f : I → R be a convex function on the interval I and Φ :
B (H)→ B (K) a normalised positive linear map. Then for any selfadjoint
operator A whose spectrum Sp (A) is contained in I we have

f (hΦ (A) y, yi) ≤ hΦ (f (A)) y, yi(2.2)

for any y ∈ K, kyk = 1.
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Proof. Let m, M with m < M and such that Sp (A) ⊆ [m,M ] ⊂ I.
Then m1H ≤ A ≤ M1H and since Φ ∈ PN [B (H) ,B (K)] we have that
m1K ≤ Φ (A) ≤ M1K showing that hΦ (A) y, yi ∈ [m,M ] for any y ∈ K,
kyk = 1.

By the gradient inequality (2.1) we have for a = hΦ (A) y, yi ∈ [m,M ]
that

f (t) ≥ f (hΦ (A) y, yi) + (t− hΦ (A) y, yi)ϕ (hΦ (A) y, yi)
for any t ∈ I.

Using the continuous functional calculus for the operator A we have for
a fixed y ∈ K with kyk = 1 that

f (A) ≥ f (hΦ (A) y, yi) 1H + ϕ (hΦ (A) y, yi) (A− hΦ (A) y, yi 1H) .

(2.3)

Since Φ ∈ PN [B (H) ,B (K)] , then by taking the functional Φ in the
inequality (2.3) we get

Φ (f (A)) ≥ f (hΦ (A) y, yi) 1K + ϕ (hΦ (A) y, yi) (Φ (A)− hΦ (A) y, yi 1K)

(2.4)

for any y ∈ K with kyk = 1.
This inequality is of interest in itself.
Taking the inner product in (2.4) we have for any y ∈ K with kyk = 1

that
hΦ (f (A)) y, yi
≥ f (hΦ (A) y, yi) kyk2 + ϕ (hΦ (A) y, yi)

³
hΦ (A) y, yi− hΦ (A) y, yi kyk2

´
= f (hΦ (A) y, yi)

and the inequality (2.2) is proved. 2

Corollary 1. Let f : I → R be a convex function on the interval I and
Ψ ∈ P [B (H) ,B (K)] with Ψ (1H) ∈ B++ (K). Then for any selfadjoint
operator A whose spectrum Sp (A) is contained in I we have
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f

µ hΨ (A) v, vi
hΨ (1H) v, vi

¶
≤ hΨ (f (A)) v, vihΨ (1H) v, vi

(2.5)

for any v ∈ K with v 6= 0.

Proof. If we write the inequality (2.2) for Φ = Ψ−1/2 (1H)ΨΨ−1/2 (1H)
we have

f
³D
Ψ−1/2 (1H)Ψ (A)Ψ

−1/2 (1H) y, y
E´

≤
D
Ψ−1/2 (1H)Ψ (f (A))Ψ

−1/2 (1H) y, y
E

for any y ∈ K, kyk = 1.
Now, let v ∈ K with v 6= 0 and take y = 1

kΨ1/2(1H)vkΨ
1/2 (1H) v in (2)

to get

f

Ã*
Ψ−1/2 (1H)Ψ (A)Ψ

−1/2 (1H)
Ψ1/2 (1H) v°°Ψ1/2 (1H) v°° , Ψ

1/2 (1H) v°°Ψ1/2 (1H) v°°
+!

≤
*
Ψ−1/2 (1H)Ψ (f (A))Ψ

−1/2 (1H)
Ψ1/2 (1H) v°°Ψ1/2 (1H) v°° , Ψ

1/2 (1H) v°°Ψ1/2 (1H) v°°
+

that is equivalent to

f

Ã*
Ψ (A) v°°Ψ1/2 (1H) v°° , v°°Ψ1/2 (1H) v°°

+!
≤
*
Ψ (f (A)) v°°Ψ1/2 (1H) v°° , v°°Ψ1/2 (1H) v°°

+

and since °°°Ψ1/2 (1H) v°°°2 = hΨ (1H) v, vi
for v ∈ K with v 6= 0, then we obtain the desired inequality (2.5). 2

By taking some example of fundamental convex (concave) functions, we
can state the following results:

Let Φ : B (H)→ B (K) be a normalised positive linear map.
(i) If A is a selfadjoint operator on H and r ≥ 1, then we have

|hΦ (A) y, yi|r ≤ hΦ (|A|r) y, yi(2.6)
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and in particular

|hΦ (A) y, yi| ≤ hΦ (|A|) y, yi(2.7)

for all y ∈ K, kyk = 1. We have the norm inequality

kΦ (A)kr ≤ kΦ (|A|r)k .(2.8)

(ii) If A is a positive operator on a Hilbert space H, then for any p ≥ 1
(p ∈ (0, 1)) we have

hΦ (A) y, yip ≤ (≥) hΦ (Ap) y, yi(2.9)

for all y ∈ K, kyk = 1. We have the norm inequality

kΦ (A)kp ≤ (≥) kΦ (Ap)k .(2.10)

If A is a positive definite operator on a Hilbert space H, then for any
p < 0 we have

hΦ (A) y, yip ≤ hΦ (Ap) y, yi(2.11)

for all y ∈ K, kyk = 1.
(iii) If A is a selfadjoint operator on H then we have

exp (hΦ (A) y, yi) ≤ hΦ (exp (A)) y, yi(2.12)

for all y ∈ K, kyk = 1. We have the norm inequality

exp (kΦ (A)k) ≤ kΦ (exp (A))k .(2.13)

Let Pj ∈ B (H) , j = 1, ..., k be contractions with

kX
j=1

P ∗j Pj = 1H .(2.14)

The map Φ : B (H)→ B (H) defined by [7]

Φ (A) :=
kX

j=1

P ∗j APj

is a normalized positive linear map on B (H) . Therefore, if f : I → R be
a convex function on the interval I and A is selfadjoint operator whose
spectrum Sp (A) is contained in I, we have by (2.2) that
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f

⎛⎝ kX
j=1

D
P ∗j APjy, y

E⎞⎠ ≤ * kX
j=1

P ∗j f (A)Pjy, y

+
(2.15)

for all y ∈ K, kyk = 1.
If we take k = 1 and P1 = 1H in (2.15), then we recapture Jensen’s

inequality (1.1).
We then have for any selfadjoint operator A and r ≥ 1 that¯̄̄̄

¯̄ kX
j=1

D
P ∗j APjy, y

E¯̄̄̄¯̄
r

≤
*

kX
j=1

P ∗j |A|r Pjy, y
+

(2.16)

and

exp

⎛⎝ kX
j=1

D
P ∗j APjy, y

E⎞⎠ ≤ * kX
j=1

P ∗j (expA)Pjy, y

+
(2.17)

for all y ∈ K, kyk = 1. In the case r = 1 we have¯̄̄̄
¯̄ kX
j=1

D
P ∗j APjy, y

E¯̄̄̄¯̄ ≤
*

kX
j=1

P ∗j |A|Pjy, y
+
.(2.18)

By taking the supremum over y ∈ K, kyk = 1 we also have the norm
inequalities °°°°°°

kX
j=1

P ∗j APj

°°°°°°
r

≤

°°°°°°
kX

j=1

P ∗j |A|r Pj

°°°°°° , r ≥ 1(2.19)

and

exp

⎛⎝°°°°°°
kX

j=1

P ∗j APj

°°°°°°
⎞⎠ ≤

°°°°°°
kX

j=1

P ∗j (expA)Pj

°°°°°° .(2.20)

In the case r = 1 we have°°°°°°
kX

j=1

P ∗j APj

°°°°°° ≤
°°°°°°

kX
j=1

P ∗j |A|r Pj

°°°°°° .(2.21)

If A is a positive operator on a Hilbert space H, then for any p ∈
(−∞, 0) ∪ [1,∞) (p ∈ (0, 1)) we have by (2.15) for power function that
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*
kX

j=1

P ∗j APjy, y

+p

≤ (≥)
*

kX
j=1

P ∗j A
pPjy, y

+
(2.22)

for all y ∈ K, kyk = 1.
If we take k = 1 and P1 = 1H in (2.22), then we recapture Hölder-

McCarthy’s inequality.

By taking the supremum over y ∈ K, kyk = 1 we also have the norm
inequality °°°°°°

kX
j=1

P ∗j APj

°°°°°°
p

≤ (≥)

°°°°°°
kX

j=1

P ∗j A
pPj

°°°°°° ,(2.23)

where p ≥ 1 (p ∈ (0, 1)) .

3. A Reverse Inequality

We have:

Theorem 1. Let I be an interval and f : I → R be a convex and differen-
tiable function on I whose derivative f 0 is continuous on I. If Φ : B (H)→
B (K) is a normalised positive linear map and A is a selfadjoint operators
on the Hilbert space H with Sp (A) ⊂ I, then

0 ≤ hΦ (f (A)) y, yi− f (hΦ (A) y, yi)
≤ hΦ (Af 0 (A)) y, yi− hΦ (A) y, yi hΦ (f 0 (A)) y, yi(3.1)

for any y ∈ K, kyk = 1.

Proof. From the gradient inequality (2.1) we have

f (t) ≥ f (s) + (t− s) f 0 (s)(3.2)

for any t, s ∈ I.

Let y ∈ K, kyk = 1. If we take in (3.2) t = hΦ (A) y, yi ∈ I, then we get

f (hΦ (A) y, yi) ≥ f (s) + (hΦ (A) y, yi− s) f 0 (s)

for any s ∈ I that can be written as

(s− hΦ (A) y, yi) f 0 (s) ≥ f (s)− f (hΦ (A) y, yi)
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for any s ∈ I.
Let y ∈ K, kyk = 1. Using the continuous functional calculus for the

operator A we have

Af 0 (A)− hΦ (A) y, yi f 0 (A) ≥ f (A)− f (hΦ (A) y, yi) 1H .(3.3)

Since Φ ∈ PN [B (H) ,B (K)] , then by taking the functional Φ in the
inequality (3.3) we have

Φ
¡
Af 0 (A)

¢
− hΦ (A) y, yiΦ

¡
f 0 (A)

¢
≥ Φ (f (A))− f (hΦ (A) y, yi) 1K ,(3.4)

for any y ∈ K, kyk = 1.
This is an inequality of interest in itself.
Taking the inner product in (3.4) we obtain the desired result (3.1). 2

Corollary 2. Let I be an interval and f : I → R be a convex and dif-
ferentiable function on I whose derivative f 0 is continuous on I. If Ψ ∈
P [B (H) ,B (K)] with Ψ (1H) ∈ B++ (K) and A is a selfadjoint operators
on the Hilbert space H with Sp (A) ⊂ I, then

0 ≤ hΨ(f(A))v,vi
hΨ(1H)v,vi − f

³
hΨ(A)v,vi
hΨ(1H)v,vi

´
≤ hΨ(Af 0(A))v,vi

hΨ(1H)v,vi −
hΨ(A)v,vi
hΨ(1H)v,vi

hΨ(f 0(A))v,vi
hΨ(1H)v,vi

(3.5)

for any v ∈ K with v 6= 0.

The proof follows from the inequality (3.1) by a similar argument to
the one from the proof of Corollary 1 and the details are omitted.

Let Φ : B (H)→ B (K) be a normalised positive linear map.
(i) If A is a selfadjoint operator on H, then we have

0 ≤ hΦ (exp (A)) y, yi− exp (hΦ (A) y, yi)
≤ hΦ (A exp (A)) y, yi− hΦ (A) y, yi hΦ (exp (A)) y, yi(3.6)

for all y ∈ K, kyk = 1.
(ii) If A is a positive (positive definite) operator on a Hilbert space H, then
for any p ≥ 1 (p ∈ (−∞, 0)) we have

0 ≤ hΦ (Ap) y, yi− hΦ (A) y, yip
≤ p

£
hΦ (Ap) y, yi− hΦ (A) y, yi

­
Φ
¡
Ap−1¢ y, y®¤(3.7)
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for all y ∈ K, kyk = 1.
If A is a positive operator on a Hilbert space H, then for any p ∈ (0, 1)

we have

0 ≤ hΦ (A) y, yip − hΦ (Ap) y, yi
≤ p

£
hΦ (A) y, yi

­
Φ
¡
Ap−1¢ y, y®− hΦ (Ap) y, yi

¤(3.8)

for all y ∈ K, kyk = 1.
(iii) If A is a positive definite operator on a Hilbert space H, then

0 ≤ ln (hΦ (A) y, yi)− hΦ (lnA) y, yi

≤ hΦ (A) y, yi
D
Φ
³
A−1

´
y, y

E
− 1

(3.9)

for all y ∈ K, kyk = 1.
Let Pj ∈ B (H) , j = 1, ..., k be contractions with the property (2.14).

If f : I → R is a convex function on the interval I and A is selfadjoint
operator whose spectrum Sp (A) is contained in I, then we have by (3.1)
that

0 ≤
DPk

j=1 P
∗
j f (A)Pjy, y

E
− f

³Pk
j=1

D
P ∗j APjy, y

E´
≤
DPk

j=1 P
∗
j Af

0 (A)Pjy, y
E
−
DPk

j=1 P
∗
j APjy, y

EDPk
j=1 P

∗
j f

0 (A)Pjy, y
E

(3.10)
for all y ∈ K, kyk = 1. This is a generalization of (1.2).

In particular, if A is a selfadjoint operator on H, then we have

0 ≤
DPk

j=1 P
∗
j exp (A)Pjy, y

E
− exp

³Pk
j=1

D
P ∗j APjy, y

E´
≤
DPk

j=1 P
∗
j A exp (A)Pjy, y

E
−
DPk

j=1 P
∗
j APjy, y

EDPk
j=1 P

∗
j expPjy, y

E
(3.11)
for all y ∈ K, kyk = 1.

If A is a positive (positive definite) operator on a Hilbert space H, then
for any p ≥ 1 (p ∈ (−∞, 0)) we have

0 ≤
DPk

j=1 P
∗
j A

pPjy, y
E
−
³Pk

j=1

D
P ∗j APjy, y

E´p
≤ p

hDPk
j=1 P

∗
j A

pPjy, y
E
−
DPk

j=1 P
∗
j APjy, y

EDPk
j=1 P

∗
j A

p−1Pjy, y
Ei

,
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(3.12)

for all y ∈ K, kyk = 1. However, when p ∈ (0, 1) and A is a positive, then

0 ≤
³Pk

j=1

D
P ∗j APjy, y

E´p
−
DPk

j=1 P
∗
j A

pPjy, y
E

≤ p
hDPk

j=1 P
∗
j APjy, y

EDPk
j=1 P

∗
j A

p−1Pjy, y
E
−
DPk

j=1 P
∗
j A

pPjy, y
Ei

,

(3.13)
for all y ∈ K, kyk = 1.

If A is a positive definite operator on H, then

0 ≤ ln
³Pk

j=1

D
P ∗j APjy, y

E´
−
DPk

j=1 P
∗
j (lnA)Pjy, y

E
≤
DPk

j=1 P
∗
j APjy, y

EDPk
j=1 P

∗
j A

−1Pjy, y
E
− 1

(3.14)

for all y ∈ K, kyk = 1.
These inequalities generalize the corresponding results from (1.4)-(1.6).
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in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators
on a Hilbert Space, Element, Zagreb, (2005).

S. S. Dragomir
Mathematics,
College of Engineering & Science
Victoria University, P. O. Box 14428
Melbourne City,
MC 8001,
Australia
e-mail : sever.dragomir@vu.edu.au


