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Abstract
Rainfall data in continuous space provide an essential input for most hydrological and water

resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based

point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging

has become a widely used interpolation method to estimate the spatial distribution of climate var-

iables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary

kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic

(inverse distance weighting, radial basis function) interpolation methods for enhanced spatial

interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catch-

ment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the

catchments during 1980–2012 period are used for the analysis. A digital elevation model of each

catchment is used as the supplementary information in addition to rainfall for the OCK and

kriging with an external drift methods. The prediction performance of the adopted interpolation

methods is assessed through cross‐validation. Results indicate that the geostatistical methods

outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate

that among the geostatistical methods, the OCK method is found to be the best interpolator

for estimating spatial rainfall distribution in both the catchments with the lowest prediction error

between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use

of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can

significantly enhance the estimation of rainfall over a catchment.

KEYWORDS

cross‐variogram model, digital elevation model, kriging with an external drift, ordinary cokriging,

positive‐definite condition, variogram model
1 | INTRODUCTION

Rainfall data provide an essential input for many hydrological investiga-

tions and modelling tasks. Accuracy of various hydrological analyses such

as water budget analysis, flood modelling, climate change studies, drought

management, irrigation scheduling, and water management greatly

depends on the correct estimation of the spatial distribution of rainfall

(Delbari, Afrasiab, & Jahani, 2013; Moral, 2010). This usually requires a

dense rain‐gauge network with a large number of stations (Adhikary,

Muttil, & Yilmaz, 2016a). However, the rain‐gauge network is often sparse
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in the field because the number of stations in a network is often restricted

by economic, logistics, and geological factors (Goovaerts, 2000). As a result,

point rainfall data are generally accessible from a limited number of

stations. These limitations increase the need for using suitable spatial esti-

mation methods to obtain the spatial distribution of rainfall and generate

rainfall map from the point rainfall values. Moreover, the network is often

not deployed on a regular grid and rainfall data may not be available in the

target location where it is most required (Adhikary et al., 2016a). In such

cases, spatial interpolation plays a vital role to simulate rainfall in areaswith

no stations based on the observed rainfall values in the surrounding areas.
‐NonCommercial‐NoDerivs License, which permits use and distribution in any

no modifications or adaptations are made.

eyonlinelibrary.com/journal/hyp 2143

http://orcid.org/0000-0001-9899-8531
mailto:sajal.adhikary@live.vu.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1002/hyp.11163
http://wileyonlinelibrary.com/journal/hyp


2144 ADHIKARY ET AL.
Several interpolation methods have been frequently employed to

interpolate rainfall data from rain‐gauge stations and produce the spatial

distribution of rainfall over a catchment. Examples of suchmethods range

from simple conventional (e.g., Thiessen polygons [Thiessen, 1911],

isohyet mapping [ASCE, 1996], simple trend surface interpolation

[Gittins, 1968]), and deterministic methods (i.e., inverse distance

weighting (IDW; ASCE, 1996), radial basis function (RBF;Di Piazza, Conti,

Noto, Viola, & Loggia, 2011) to complex stochastic or geostatistical

methods (i.e., ordinary kriging [OK], ordinary cokriging [OCK] and kriging

with an external drift [KED; Goovaerts, 2000]). Although the conven-

tional and deterministic methods have been improved over time, their

limitations continue to exist. These limitations have been described elab-

orately in Goovaerts (2000) and Teegavarapu and Chandramouli (2005).

Geostatistical methods have been shown superior to the conven-

tional and deterministic methods for spatial interpolation of rainfall

(Goovaerts, 1997; Isaaks & Srivastava, 1989). Several studies have

reported that rainfall is generally characterised by a significant spatial

variation (e.g., Delbari et al., 2013; Lloyd, 2005). This suggests that inter-

polation methods, which are explicitly able to incorporate the spatial

variability of rainfall into the estimation process should be employed.

In view of that, kriging has become the most widely used geostatistical

method for spatial interpolation of rainfall. The ability of kriging to

produce spatial predictions of rainfall has been distinguished in many

studies (e.g., Adhikary et al., 2016a; Goovaerts, 2000; Jeffrey, Carter,

Moodie, & Beswick, 2001; Lloyd, 2005; Moral, 2010; Yang, Xie, Liu, Ji,

& Wang, 2015). The major advantage of kriging is that it takes into

account the spatial correlation between data points and provides

unbiased estimates with a minimum variance. The spatial variability in

kriging is quantified by the variogram model that defines the degree

of spatial correlation between the data points (Webster &Oliver, 2007).

Another key advantage of kriging over the conventional and deter-

ministic methods is that while providing a measure of prediction stan-

dard error (also called kriging variance), it is capable of complementing

the sparsely sampled primary variable, such as rainfall by the correlated

densely sampled secondary variable, such as elevation to improve the

estimation accuracy of primary variable (Goovaerts, 2000; Hevesi,

Istok, & Flint, 1992). This multivariate extension of kriging is referred

to as the cokriging method. The standard form of cokriging is the

OCK method, which usually reduces the prediction error variance and

specifically outperforms kriging method if the secondary variable (i.e.,

elevation) is highly correlated (correlation coefficient higher than .75)

with the primary variable (i.e., rainfall) and is known at many more

points (Goovaerts, 2000). The KED is another commonly applied

cokrigingmethod, which can incorporate the exhaustive secondary var-

iable (i.e., elevation) to give an enhanced estimation of rainfall when

dealing with a low‐density rain‐gauge network. Thus, cokriging includ-

ing the OCK and KED methods has been the increasing preferred

geostatistical methods all over the word. As highlighted by Goovaerts

(2000) and Feki, Slimani, and Cudennec (2012), rainfall and elevation

tend to be related because of the orographic influence of mountainous

topography. Therefore, topographic information such as the digital ele-

vation model (DEM) can be used as a convenient and valuable source of

secondary data for theOCK and KEDmethods. The efficacy of incorpo-

rating elevation into the interpolation procedure for enhanced estima-

tion of rainfall has been highlighted in many studies across the world
(e.g., Di Piazza et al., 2011; Feki et al., 2012; Hevesi et al., 1992; Lloyd,

2005; Martínez‐cob, 1996; Moral, 2010; Phillips, Dolph, & Marks,

1992; Subyani & Al‐Dakheel, 2009).

A wide variety of spatial interpolation methods have been devel-

oped for the interpolation of spatially distributed point rainfall values.

However, it is often challenging to distinguish the best interpolation

method to estimate the spatial distribution of rainfall for a particular

catchment or study area. The reason is that the performance of an

interpolation method depends on a number of factors such as catch-

ment size and characteristics, sampling density, sample spatial distribu-

tion, sample clustering, surface type, data variance, grid size or

resolution, quality of auxiliary information to be used as well as the

interactions among these factors. Moreover, it is unclear how the afore-

mentioned factors affect the performance of the spatial interpolation

methods (Dirks, Hay, Stow, & Harris, 1998; Li & Heap, 2011). Hence,

the best interpolation method for a particular study area is usually

established through the comparative assessment of different interpola-

tion methods (e.g., Delbari et al., 2013; Dirks et al., 1998; Goovaerts,

2000; Hsieh, Cheng, Liou, Chou, & Siao, 2006; Mair & Fares, 2011;

Moral, 2010). The comparison among different interpolation methods

is made through a validation procedure. The interpolation method that

provides better results with lower bias and higher accuracy in rainfall

estimation is identified as the best interpolation method.

In the past, many studies have been devoted to the comparison

and evaluation of different deterministic and geostatistical interpola-

tion methods in a range of different regions and climates around the

world. Dirks et al. (1998) compared four spatial interpolation methods

using rainfall data from a network of 13 rain‐gauges in Norfolk Island

concluding that kriging provided no substantial improvement over

any of the simpler Thiessen polygon (TP), IDW, or areal‐mean

methods. Goovaerts (2000) employed three multivariate geostatistical

methods (OCK, KED, simple kriging with varying local means [SKVM]),

which incorporate a DEM as secondary variable and three univariate

methods (OK, TP, and IDW) that do not take into account the elevation

for spatial prediction of monthly and annual rainfall data available at 36

rain‐gauge stations. The comparison among these methods indicated

that the three multivariate geostatistical methods gave the lowest

errors in rainfall estimation. Martínez‐cob (1996) compared OK, OCK,

and modified residual kriging to interpolate annual rainfall and evapo-

transpiration in Aragón, Spain. The results indicated that OCK was

superior for rainfall estimation, reducing estimation error by 18.7%

and 24.3% compared with OK and modified residual kriging, respec-

tively. Hsieh et al. (2006) evaluated OK and IDW methods using daily

rainfall records from 20 rain‐gauges to estimate the spatial distribution

of rainfall in the Shih‐Men Watershed in Taiwan. The results demon-

strated that IDW produced more reasonable representations than

OK. Moral (2010) compared three univariate kriging (simple kriging

[SK], universal kriging, and OK) with three multivariate kriging methods

(OCK, SKVM, and regression kriging) to interpolate monthly and

annual rainfall data from 136 rain‐gauges in Extremadura region of

Spain. The results showed that multivariate kriging outperformed uni-

variate kriging and among multivariate kriging, SKVM and regression

kriging performed better than OCK.

Ly, Charles, and Degré (2011) used IDW, TP, and several kriging

methods to interpolate daily rainfall at a catchment scale in Belgium.
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The results indicated that integrating elevation into KED and OCK did

not provide improvement in the interpolation accuracy for daily rainfall

estimation. OK and IDW were considered to be the suitable methods

as they gave the smallest error for almost all cases. Mair and Fares

(2011) compared TP, IDW, OK, linear regression, SKVM to estimate

seasonal rainfall in a mountainous watershed concluding that OK pro-

vided the lowest error for nearly all cases. They also found that incor-

porating elevation did not improve the prediction accuracy over OK for

the correlation between rainfall and elevation lower than 0.82. Delbari

et al. (2013) used two univariate methods (IDW and OK), and four mul-

tivariate methods (OCK, KED, SKVM, and linear regression) for map-

ping monthly and annual rainfall over the Golestan Province in Iran.

They reported that KED and OK outperformed all other methods in

terms of root mean square error (RMSE). Jeffrey et al. (2001) derived a

comprehensive archive of Australian rainfall and climate data using a

thin plate smoothing spline to interpolate daily climate variables and

OK to interpolate daily and monthly rainfall. The aforementioned

studies on spatial interpolation of rainfall indicate that each method

has its advantages and disadvantages and thus performs in a dissimilar

way for different regions. There is no single interpolation method that

can work well everywhere (Daly, 2006). Therefore, the best interpolator

for a particular study area or catchment should essentially be achieved

through the comparative assessment of different interpolationmethods.

To date, many studies have been conducted on spatial interpola-

tion of rainfall at a regional and national scale in Australia (Gyasi‐Agyei,

2016; Hancock & Hutchinson, 2006; Hutchinson, 1995; Jeffrey et al.,

2001; Johnson et al., 2016; Jones, Wang, & Fawcett, 2009; Li & Shao,

2010; Woldemeskel, Sivakumar, & Sharma, 2013; Yang et al., 2015).

However, none of these studies was conducted at a local or catchment

scale. Likewise, elevation and rainfall relations locally have been rela-

tively little studied in Australia and no such studies have been under-

taken specifically within the Yarra River catchment and the Ovens

River catchment in Victoria, Australia. Sharma and Shakya (2006)

highlighted that any analysis of hydroclimatic variables should be car-

ried out at the local scale rather than at a large or global scale because

of the variations of hydroclimatic situations from one region to

another. Therefore, the main aim of this study is to assess if relatively

more complex geostatistical interpolation methods that take into

account the elevation and rainfall relation provide any benefits over

simpler methods for enhanced estimation of rainfall within the Yarra

River catchment and the Ovens River catchment in Victoria, Australia.

The specific focus is to evaluate the effectiveness of the cokriging

methods including OCK and KED that make use of elevation as a sec-

ondary variable over those methods including OK, IDW, and RBF that

do not make use of such information to estimate the spatial distribu-

tion of rainfall within the catchment. This study is expected to provide

an important contribution towards the enhanced estimation of rainfall

in the aforementioned two Australian catchments using the cokriging

methods by incorporating elevation as an auxiliary variable in addition

to rainfall data. One specific contribution of this paper is in explaining

how rainfall varies with elevation from catchment to catchment.

The Yarra River catchment and the Ovens River catchment in

Victoria are selected for this study because they are two important

water resources catchments in Australia in terms of water supply and

agricultural production (Adhikary, Yilmaz, & Muttil, 2015; EPA Victoria,
2003; Schreider, Jakeman, Pittock, & Whetton, 1996; Yu, Cartwright,

Braden, & de Bree, 2013). TheYarra River catchment is a major source

of water for more than one third of Victoria's population in Australia

(Barua, Muttil, Ng, & Perera, 2012). Although the catchment is not

large with respect to other Australian catchments, it produces the

fourth highest water yield per hectare of the catchment in Victoria

(Adhikary et al., 2015). There are seven storage reservoirs in the catch-

ment that supports about 70% of drinking water supply in Melbourne

city (Barua et al., 2012). The Ovens River catchment is another impor-

tant source of water in northeast Victoria, which forms a part of the

Murray‐Darling basin (Yu et al., 2013). The Ovens River is consid-

ered one of the most important tributaries of the Murray‐Darling

Basin due to the availability of sufficient volume of water with accept-

able quality and its good ecological condition. The average annual flow

of the river constitutes approximately 7.3% of the total flow of the state

of Victoria (Schreider et al., 1996). The catchment contributes approxi-

mately 14% of Murray‐Darling basin flows in spite of its relatively small

catchment area of less than 1% of the total Murray‐Darling basin area

(EPAVictoria, 2003; Yu et al., 2013). Thus, both the catchments have sig-

nificant contribution towards the sustainable development of Victoria's

economy. However, high rainfall variation and diverse water use

activities in these catchments has complicated the water management

tasks, which has further created strong burden on the water managers

and policymakers for effectivewater resourcesmanagement. Therefore,

enhanced estimation of rainfall and its spatial distribution is important,

which could be beneficial for effective water supply and demand man-

agement, and sustainable agricultural planning in both the catchments.

The rest of the paper is arranged as follows. First, a brief descrip-

tion of the study area and data used are presented, which is followed

by the detailed description of the methodology adopted in this study.

The results are summarized next, and finally, the conclusions drawn

from this study are presented.
2 | STUDY AREA AND DATA USED

2.1 | The study area

This study considers two catchments in Victoria as the case study area,

which includes the Middle Yarra River catchment and Ovens River

catchment in south‐eastern Australia. Figure 1 shows the approximate

location of the case study area. TheYarra River catchment is located in

northeast of Melbourne covering an area of 4,044 km2. The water

resources management is an important and multifaceted issue in the

Yarra River catchment because of its wide range of water uses as well

as its downstream user requirements and environmental flow provi-

sions (Barua et al., 2012). The catchment significantly contributes to

the water supply in Melbourne and has been playing an important role

in the way Melbourne has been developed and grown (Adhikary et al.,

2015). The Yarra River catchment consists of three distinctive sub‐

catchments including Upper, Middle, and Lower Yarra segments based

on different land use activities (Barua et al., 2012). This study concen-

trates on the Middle segment of the Yarra River catchment, which

forms part of the case study area in Figure 1. The Upper Yarra segment

includes mainly the forested and mountainous areas with minimum

human settlement, which is mainly used as a closed water supply



FIGURE 1 Location and topography of (a) MiddleYarra River catchment and (b) Ovens River catchment in Victoria with existing rain‐gauge stations
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catchment for Melbourne and has been reserved for more than

100 years for water supply purposes. TheMiddleYarra segment, starting

from the Warburton Gorge to Warrandyte Gorge, is notable as the only

part of the catchment with an extensive flood plain, which is mainly used

for agricultural activities. The Lower Yarra segment of the catchment,

which is located downstream of Warrandyte, is mainly characterized

by the urbanized floodplain areas of Melbourne city (Adhikary, Muttil,

& Yilmaz, 2016b). Most of the land along rivers and creeks in the middle

and lower segments has been cleared for the agricultural or urban

development (Barua et al., 2012; Melbourne Water, 2015).

Rainfall varies significantly through different segments of the Yarra

River catchment. The mean annual rainfall varies across the catchment

from 600 mm in the Lower Yarra segment to 1,100 mm in the Upper

Yarra segment (Daly et al., 2013). The Middle Yarra segment (part of

the case study area in Figure 1) covers an area of 1,511 km2 and consists

of three storage reservoirs. Decreasing rainfall patterns in the catchment

will reduce the streamflows, which in turn will lead to the reduction in

reservoir inflows and hence impact the overall water availability in the

catchment.Moreover, the reduced streamflowsmay cause increased risk

of bushfires. Conversely, increasing rainfall patterns and the occurrence

of extreme rainfall events (as reported in Yilmaz and Perera [2014] and

Yilmaz, Hossain, and Perera [2014]) will result in excess amount of

streamflows that may cause flash floods in the urbanized lower segment

and makes it vulnerable and risk‐prone. The urbanized lower part of the

catchment is also dependent on the water supply from the storage

reservoirs mainly located in the middle and upper segments of the

catchment (Adhikary et al., 2015). Therefore, accurate spatial distribution

of rainfall in the middle and upper segments of the catchment could be

useful for accurate estimation of future streamflows for optimal reservoir

operation and effective flood control in the urbanized lower part.
The Ovens River catchment in northeast Victoria is also consid-

ered as a part of the case study area in this study, which is shown in

Figure 1. The catchment covers an area of 7,813 km2 (Yu et al.,

2013), which extends from the Great Dividing Range in the south

to the Murray River in the north, with the Yarrawonga Weir forming

the downstream boundary. It is considered to be one of the least

modified catchments within the Murray‐Darling basin. The catchment

contributes approximately 14% to the average flows of the Murray

River in spite of its relatively small size (0.75 percent of the total

Murray‐Darling Basin area; EPA Victoria, 2003; Yu et al., 2013). The

Ovens River is the main river in the catchment, which originates on

the northern edges of the Victorian Alps and flows in a north‐west-

erly direction until its junction with the Murray River near Lake

Mulwala. The riverine plains and alluvial flats are primarily cleared

for agricultural use, while the hills and mountains are covered by

forests with native plant species (Yu et al., 2013). Total average water

use in the catchment is about 30,000 million litres per year, 64% of

which is diverted from the Ovens River and its tributaries. A major

part of this water use is irrigation, which constitutes more than

16,000 million litres annually (Schreider et al., 1996). The river itself

provides natural conditions suitable for many significant native fish

species, particularly the endangered Murray Cod (EPA Victoria,

2003). Thus, the catchment is considered to be important, not only

at a regional scale, but also at the national scale in terms of its water

supply volume for domestic and agricultural production, and high

environmental value.

The climate of the Ovens River catchment varies considerably

with topography and elevation (Yu et al., 2013). The average annual

rainfall varies from 1,127 mm in the Alpine region at Bright to

636 mm on the alluvial plains in Wangaratta with most rainfall
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occurring in winter months (Yu et al., 2013). Approximately 45% of the

annual rainfall occurs during the winter (June to September) whereas

the summer is warm and dry. Winter snowfalls are common at alti-

tudes above 1,000 m (EPA Victoria, 2003). Therefore, enhanced esti-

mation of rainfall and its spatial distribution could be useful for the

effective management of water supply and agricultural activities in

the catchment.
2.2 | Data used

In this study, historical rainfall data from existing rain‐gauge stations in

the Middle Yarra River catchment and the Ovens River catchment

(Figure 1) for 1980–2012 period are considered. There are 19 rain‐

gauge stations in the Middle Yarra River catchment, whereas the

Ovens River catchment includes 42 rain‐gauge stations operated by

the Australian Bureau of Meteorology. Daily rainfall data are collected

from the Scientific Information for Land Owners climate database

(http://www.longpaddock.qld.gov.au/silo/) and compiled to generate

monthly and annual rainfall, which are then used for the analysis. Sum-

mary statistics of monthly rainfall data are given inTable 1. The annual

average rainfall in the MiddleYarra River catchment for the aforemen-

tioned period varies from 710 mm to 1422 mm with a mean value of

1082 mm. The southern and south‐eastern part experiences the

highest rainfall, whereas the lowest rainfall occurs in the north‐western
TABLE 1 Summary statistics for monthly rainfall data of Middle Yarra Rive

Month Mean (mm) Minimum (mm) Maximum

Middle Yarra River catchment

January 67.3 1.8 201

February 56.4 0.0 269

March 66.3 9.2 217

April 84.7 15.2 246

May 88.3 10.2 239

June 106.4 13.8 300

July 102.1 17.9 303

August 108.6 21.1 289

September 112.5 25.3 350

October 101.6 4.0 333

November 96.1 15.3 258

December 91.3 8.2 301

Ovens River catchment

January 55.8 0.0 364

February 51.3 0.0 421

March 53.7 0.3 418

April 54.5 1.0 234

May 74.6 2.0 360

June 95.4 1.4 457

July 112.9 6.0 622

August 105.2 5.8 468

September 86.3 5.2 484

October 73.4 0.1 410

November 73.6 0.6 290

December 64.1 0.2 374

aLinear correlation coefficient between rainfall and elevation data.
part in the study area. September is the wettest month (rainfall amount

equals to 112.5 mm) with the highest variation in rainfall. The driest

month is February (rainfall amount equals to 56.4 mm) with the second

highest variability. On the other hand, the annual average rainfall for

the same period in the Ovens River catchment varies from 231 to

2,473 mm with a mean value of 913 mm. The wettest month is July

(rainfall amount equals to 112.9 mm) with the highest variability and

February (rainfall amount equals to 51.3 mm) appears to be the driest

month with the third highest variation in rainfall.

For the OCK analysis, a DEM of both the catchments with 10 m

resolution (shown in Figure 1) is collected from the Geoscience

Australia. The elevation of the Middle Yarra River catchment varies

from 25 m (lowest‐mainly in central, north‐western, and western part)

to 1,243 m (highest‐mainly in northern, north‐eastern, and eastern

part) with a mean elevation of 621 m above mean sea level. Whereas,

the elevation of the Ovens River catchment varies from 124 m (lowest‐

mainly in the upper north‐western part) to 1903 m (highest‐mainly in

the lower southern, south‐eastern and eastern part) with a mean eleva-

tion of 874 m above mean sea level. Monthly and annual rainfall gen-

erally tend to increase with the higher elevations caused by the

orographic effect of mountainous terrain (Goovaerts, 2000). Several

studies have revealed that rainfall usually shows good correlation with

elevation. For example, Goovaerts (2000) showed that a good to signif-

icant correlation exists between the monthly rainfall and elevation,
r catchment and Ovens River catchment

(mm) Standard deviation (mm)
Correlation coefficient
(versus elevation)a

.4 31.23 0.79

.5 53.40 0.69

.8 36.89 0.77

.0 45.81 0.74

.7 42.47 0.67

.2 46.18 0.70

.9 48.95 0.73

.7 50.67 0.72

.3 56.98 0.67

.9 50.86 0.69

.7 47.60 0.77

.2 52.88 0.74

.7 51.41 0.49

.9 65.66 0.26

.1 51.01 0.49

.6 38.63 0.72

.7 56.71 0.61

.0 62.99 0.65

.4 71.92 0.60

.0 68.94 0.61

.1 55.44 0.65

.8 61.61 0.67

.8 47.70 0.68

.6 54.79 0.68

http://www.longpaddock.qld.gov.au/silo/


FIGURE 2 Methodological framework adopted in this study.
IDW = inverse distance weighting; KED = kriging with an external
drift; OCK = ordinary cokriging; OK = ordinary kriging; RBF = radial
basis function
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which varies from .33 to .83. Subyani and Al‐Dakheel (2009) found

that good correlation ranging from .34 to .77 exists between seasonal

rainfall and elevation in the Southwest Saudi Arabia. Moral (2010)

identified a good correlation ranging from .33 to .67 between monthly

and annual rainfall and elevation in the southwest region of Spain.

As can be seen inTable 1, the correlation coefficient (CC) between

the monthly average rainfall and elevation for the Middle Yarra River

catchment varies from .67 to .79, where 8 months have the CC values

greater than .70. This indicates that a strong correlation exists between

the monthly rainfall and elevation in the catchment, suggesting that

elevation may enhance the monthly rainfall estimates when used as a

secondary variable in the OCK analysis. On the contrary, the CC

between the monthly average rainfall and elevation for the Ovens

River catchment varies from .26 to .72, where 6 months exhibit the

CC values higher than .65. Apart from the driest month of February,

the correlation ranges from .49 to .72 in the Ovens River catchment.

Thus, it seems beneficial taking into account this exhaustive secondary

variable (elevation in this study) into the enhanced estimation and

mapping of rainfall in both the catchments. Goovaerts (1997) men-

tioned that use of multiple elevation data other than the colocated

positions of rain‐gauges can lead to unstable cokriging systems

because the correlation between near elevation data is much greater

than the correlation between distant rainfall data. Therefore, the

colocated elevation data are used for the OCK analysis in this study,

which are extracted at the same positions of rain‐gauge stations from

the DEM of the catchments.
3 | METHODOLOGY

The methodological framework adopted in this study for spatial inter-

polation of rainfall includes three kriging‐based geostatistical (OK,

OCK, and KED) and two deterministic (IDW and RBF) interpolation

methods, which is shown in Figure 2. A brief description of these

methods is presented in this section. The variogram and its estimation

technique are also summarised with each of the kriging methods

because it is a key component of kriging. For a more detailed descrip-

tion of the methods used in the current study, readers are referred to

several recent geostatistical textbooks including Journel and

Huijbregts (1978); Isaaks and Srivastava (1989), Goovaerts (1997),

Chilès and Delfiner (1999), Wackernagel (2003), and Webster and

Oliver (2007).
3.1 | Ordinary kriging

Kriging refers to a family of generalized least‐squares regression

methods in geostatistics that estimate values at unsampled locations

using the sampled observations in a specified search neighborhood

(Goovaerts, 1997; Isaaks & Srivastava, 1989). OK is a geostatistical

interpolation method based on spatially dependent variance, which

gives unbiased estimates of variable values at target location in space

using the known sampling values at surrounding locations. The unbi-

asedness in the OK estimates is ensured by forcing the kriging weights

to sum to 1. Thus, the OK estimator may be stated as a linear combina-

tion of variable values, which is given by
bZOK s0ð Þ ¼ ∑
n

i¼1
ωOK

i Z sið Þ with ∑
n

i¼1
ωOK

i ¼ 1 (1)

where bZOK s0ð Þ is the estimated value of variable Z (i.e., rainfall) at target

(at which estimation is to be made) unsampled location s0; ωOK
i indi-

cates the OK weights linked with the sampled location si with respect

to s0; and n is the number of sampling points used in estimation. While

giving the estimation at target location, OK provides a variance mea-

sure to signify the reliability of the estimation.

OK is known as the best linear unbiased estimator (Isaaks &

Srivastava, 1989). It is linear in the sense that it gives the estimation

based on the weighted linear combinations of observed values. It is

best in the sense that the estimate variance is minimized while interpo-

lating the unknown value at desired location. And it is unbiased

because it tries to have the expected value of the residual to be zero

(Adhikary et al., 2016b). The weight constraint in Equation 1 ensures

the unbiased estimation in OK. For OK, the kriging weights are deter-

mined to minimize the estimation variance and ensure the unbiased-

ness of the estimator.

The OK weightsωOK
i can be obtained by solving a system of (n + 1)

simultaneous linear equations as follows:

∑
n

i¼1
γ si−sj
� �

ωOK
i þ μOK

1 ¼ γ sj−s0
� �

for j ¼ 1;…………; n

∑
n

i¼1
ωOK

i ¼ 1
(2)

where γ(si − sj) is the variogram values between sampling locations si

and sj, γ(sj − s0) is the variogram values between sampling location sj

and the target location, s0, and μOK
1 is the Lagrange multiplier parame-

ter. Equation 2 indicates that OK highly depends on a mathematical
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function called variogram model that indicates the degree of spatial

autocorrelation in datasets.

For OK interpolation of variables, first an experimental variogrambγ dð Þ is derived by

bγ dð Þ ¼ 1
2N dð Þ ∑

N dð Þ

i¼1
Z si þ dð Þ−Z sið Þ½ �2 (3)

where Z(si) and Z(si + d) are the variable values at corresponding sam-

pling locations si and (si + d), respectively, located at d distance apart

and N(d) is the number of data pairs. A variogram cloud is initially gen-

erated using Equation 3 for observations at any two data points, in

which all semivariance values are plotted against their separation dis-

tance. The experimental variogram is computed from the variogram

cloud by subdividing it into a number of lags and taking an average

of each lag interval (Johnston, VerHoef, Krivoruchko, & Lucas, 2001;

Robertson, 2008). A variogram model γ(d) is then fitted to the experi-

mental variogram. A typical variogram cloud based on Equation 3 and

a typical experimental variogram with a typical fitted model is shown in

Figure 3.

Exponential, Gaussian, and spherical are the most commonly used

variogram models for kriging applications in hydrology (Adhikary et al.,

2015), which are also used to model the experimental variogram. The
FIGURE 3 (a) a typical variogram cloud for a finite set of discrete lags,
and (b) a typical experimental variogram based on the variogram cloud
fitted by a typical variogram model with its parameters
functional forms these variogram models are given in Table 2. The

three models are fitted to the experimental variogram using regression

by noting the residual sum of squares (RSS) between the experimentalbγ dkð Þ and modelled γ(dk) variogram values (Mair & Fares, 2011) with a

trial‐and‐error approach for different lag sizes and lag intervals

(Goovaerts, 1997) such that the RSS is minimum. RSS is given by

RSS ¼ ∑
K

k¼1
bγ dkð Þ−γ dkð Þ½ �2 (4)

RSS in Equation 4 provides an exact measure of how well the

variogram model fits the experimental variogram (Robertson, 2008).

Lag sizes and number of lags are varied based on a general rule of

thumb, in which the lag size times the number of lags should be about

half of the largest distance among all data pairs in the variogram cloud

(Johnston et al., 2001, p. 66). The variogram parameters (nugget, sill,

and range) are also iteratively changed to obtain the best fitted model.

The model with its corresponding parameters that minimizes RSS is

selected as the best variogram model and finally used in OK analysis.

Variogrammodel fitting is performed using GS+ geostatistical software

(Robertson, 2008) and OK is implemented through ArcGISv9.3.1 soft-

ware (ESRI, 2009) and its geostatistical analyst extension (Johnston

et al., 2001).

3.2 | Ordinary cokriging

OCKmethod is a modification of the OKmethod. The key advantage of

OCK is that it can make use of more than one variable rather than using

only a single variable in the estimation process. The OCK method is

used to enhance the estimation of primary variable by using secondary

variable assuming that the variables are correlated to each other (Isaaks

& Srivastava, 1989). In this study, rainfall and elevation are considered,

respectively, as the primary and secondary variables in the OCK

method. Like OK method, the aim of the OCK method is to estimate

the primary variable. The OCK estimator (Goovaerts, 1997) considering

one secondary variable (i.e., elevation), which is cross‐correlated with

the primary variable (i.e., rainfall) may be written as

bZOCK s0ð Þ ¼ ∑
n

i1¼1
ωOCK

i1
Z si1ð Þ þ ∑

m

i2¼1
ωOCK

i2
V si2
� �

with ∑
n

i1¼1
ωOCK

i1
¼ 1; ∑

m

i2¼1
ωOCK

i2
¼ 0

(5)

where bZOCK s0ð Þ is the estimated value of primary variable at target

unsampled location s0,ωOCK
i1

andωOCK
i2

are the kriging weights associated

with the sampling locations of the primary and secondary variables Z
TABLE 2 Commonly used positive‐definite variogram models

Model name Model equation

Exponential γ dð Þ ¼ C0 þ C1 1− exp − 3d
a

� �� �
Gaussian γ dð Þ ¼ C0 þ C1 1− exp − 3d2

a2

� �h i
Spherical γ dð Þ ¼ C0 þ C1

3
2

d
a

� �
− 1

2
d3

a3

� �h i
; d<a

=C0 + C1 , d ≥ a

C0 = nugget coefficient, C0 + C1 = Sill, a = range of variogram model.

d = distance of separation between two locations.
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and V, respectively, n and m are the number of sampling points for the

primary and secondary variables.

The OCK weights are obtained by solving a system of (n + 2) simul-

taneous linear equations (Goovaerts, 1997) that can be given by

∑
n

i1¼1
γzz si1−sj1

� �
ωOCK

i1
þ ∑

m

i2¼1
γzv si2−sj1

� �
ωOCK

i2
þ μOCK

1 ¼ γzz sj1−s0
� �

for j1 ¼ 1;……; n

∑
n

i1¼1
γvz si1−sj2

� �
ωOCK

i1
þ ∑

m

i2¼1
γvv si2−sj2

� �
ωOCK

i2
þ μOCK

2 ¼ γvz sj2−s0
� �

for j2 ¼ 1;……;m

∑
n

i1¼1
ωOCK

i1
¼ 1

∑
m

i2¼1
ωOCK

i2
¼ 0

(6)

where γzv si2−sj1
� �

and γvz si1−sj2
� �

are the cross‐variogram values

between sampled Z and V values, and μOCK
1 and μOCK

2 are the Lagrange

multiplier parameters accounting for the two unbiased conditions.

The elementary step in the OCK method is to establish an appro-

priate model for cross continuity and dependency between the pri-

mary (rainfall) and secondary (elevation) variable. This positive

correlation between variables is referred to as the cross‐regionalization

or coregionalization (Goovaerts, 1997; Wackernagel, 2003), which can

be quantified by cross‐variogram or cross‐covariance. These models

are used to define the cross continuity and dependency between

two variables in the OCK method (Subyani & Al‐Dakheel, 2009). The

cross‐variogram models between the primary (rainfall) and secondary
FIGURE 4 Experimental variograms and fitted variogram models for the m
ordinary kriging interpolation method
(elevation) variables in the OCK method are obtained by fitting with

an experimental cross‐variogram that is given by

bγzv ¼ bγvz ¼ 1
2N dð Þ ∑

N dð Þ

i¼1
Z si þ dð Þ−Z sið Þ½ �× V si þ dð Þ−V sið Þ½ � (7)

It is important to note that the variogram models must satisfy the

positive‐definite condition (PDC) in kriging. For a single variable (rain-

fall) in the OK method, the condition is satisfied by using the posi-

tive‐definite variogram model functions given in Table 2. However,

the OCK method considering two variables (rainfall and elevation) con-

sists of one cross‐variogram and two direct variograms, and additional

requirement for satisfying the PDC (Goovaerts, 1999). In order to

make sure that the cross‐variogram model is positive‐definite (all

eigenvalues are positive), an indicator called the Cauchy‐Schwarz

inequality (Journel & Huijbregts, 1978; Phillips et al., 1992) must be

satisfied for all distance values d, which is given by

γzv dð Þ≤ γzz dð Þγvv dð Þ½ �12 (8)

where γzv(d) is the cross‐variogram model between primary and sec-

ondary variables, and γzz(d) and γvv(d) are the direct variogram models

for primary and secondary variables, respectively. Based on the indica-

tor shown in Equation 8, Hevesi et al. (1992) suggested a graphical test

of PDC for the fitted models as follows:
onthly rainfall data of the Middle Yarra River catchment used in the
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PDC ¼ γzz dð Þγvv dð Þ½ �12 (9)

The model is considered positive‐definite if the absolute value of

the cross‐variogram model γzv(d) in Equation 8 is less than the slope

and corresponding absolute value of PDC curve in Equation 9 for all

distance values d. In the OCK method, direct and cross‐variogram

models are fitted as linear combination of the same set of basic models

given in Table 2 such that the RSS value by Equation 4 is minimum

under the requirement of PDC. Variogram model fitting is performed

using GS+ geostatistical software (Robertson, 2008) and OCK is imple-

mented through ArcGISv9.3.1 software (ESRI, 2009) and its

geostatistical analyst extension (Johnston et al., 2001).

3.3 | Kriging with an external drift

KED is a particular type of universal kriging that gives the estimation of

a primary variable Z, known only at a small number of locations in the

study catchment, through a secondary variable V, exhaustively known

in the same area (Feki et al., 2012). The trend or local mean of the pri-

mary variable is first derived using the secondary variable (Goovaerts,

1997; Wackernagel, 2003) and then simple kriging is carried out on

residuals from the local mean. The KED estimator (Wackernagel,

2003) is generally given as
TABLE 3 Results of fitted variogram models for monthly rainfall data for u

Month Model name

Variogr

Nugget, C0 (mm2) Sill

Middle Yarra River catchment

January Spherical 0.15

February Spherical 0.20

March Spherical 0.00

April Spherical 1.25

May Spherical 1.10

June Spherical 0.10

July Spherical 0.10

August Spherical 4.00

September Spherical 1.00

October Spherical 0.00

November Spherical 0.00

December Spherical 0.00

Ovens River catchment

January Spherical 92.00

February Spherical 83.00

March Spherical 85.00

April Gaussian 93.00

May Spherical 109.00

June Spherical 50.00

July Gaussian 180.00

August Spherical 58.00

September Spherical 25.00

October Spherical 102.00

November Spherical 19.00

December Spherical 35.00

Note. OK = ordinary kriging; SM = standardized mean error; SRMS = standardiz
bZKED s0ð Þ ¼ ∑
n

i¼1
ωKED

i Z sið Þ with ∑
n

i¼1
ωKED

i ¼ 1 (10)

The KED weights ωKED
i can be obtained by solving a system of

(n + 2) simultaneous linear equations as follows:

∑
n

i¼1
γR si−sj

� �
ωKED

i þ μKED
0 þ μKED

1 V sj
� � ¼ γR sj−s0

� �
for j ¼ 1;……; n

∑
n

i¼1
ωKED

i ¼ 1

∑
n

i¼1
ωKED

i V sið Þ ¼ V s0ð Þ

(11)

where γR(si − sj) is the residual variogram values between sampling

locations si and sj, γR(sj − s0) is the residual variogram values between

sampling location sj and the target location, s0, and μKED
0 and μKED

1 are

the Lagrange multiplier parameters.

OCK and KED differ in the way the secondary variable V is used.

The secondary variable (e.g., elevation in this study) gives only the

trend information in KED, whereas estimation with OCK is directly

influenced by it (Delbari et al., 2013). In case of KED, the primary

and secondary variables should exhibit a linear relationship. In addition,

estimation with KED requires the secondary variable values at all the
sing in the OK interpolation method

am parameters Cross‐validation statistics

, C0 + C1 (mm2) Range, a (km) SM SRMS

163.65 25.20 0.068 0.998

58.70 24.75 0.059 1.000

205.38 25.25 0.059 0.863

270.75 24.85 0.054 0.897

327.20 25.25 0.039 0.916

727.60 26.85 0.041 0.847

849.60 27.00 0.031 0.795

839.00 26.11 0.035 0.851

816.00 27.07 0.045 0.883

390.00 24.18 0.049 0.903

292.50 21.53 0.058 0.861

320.00 22.00 0.060 0.863

455.00 109.50 ‐0.048 0.992

360.00 70.00 0.007 1.024

501.00 107.10 ‐0.021 0.991

793.00 162.29 ‐0.060 1.000

1016.00 108.60 ‐0.047 1.016

1240.00 90.00 ‐0.039 1.001

2030.00 80.50 ‐0.083 0.992

1420.00 65.00 ‐0.040 0.990

937.00 67.00 ‐0.028 0.997

519.00 75.40 ‐0.027 1.001

430.00 68.00 0.001 0.988

296.00 89.10 ‐0.028 0.988

ed root mean square error.



FIGURE 5 Experimental variograms and fitted variogram models
based on the collocated elevation data for (a) Middle Yarra River
catchment, and (b) Ovens River catchment
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estimation grid nodes as well as all the sampling locations si. The resid-

ual variogram models are fitted based on the basic models in Table 2

such that the RSS value between the experimental and modelled

variogram values by Equation 4 is minimum. Variogram model fitting

and estimation with KED are performed using GS+ geostatistical soft-

ware (Robertson, 2008).

3.4 | Inverse distance weighting

IDW interpolation method (ASCE, 1996) gives a linear weighted aver-

age of several neighbouring observations to estimate the variable value

at target location. This method assumes that each observation point

has local influence that diminishes with distance. IDW assigns greater

weights to observation points near to the target location, and the

weights diminish as a function of distance (Johnston et al., 2001).

The estimation by IDW can be written as

bZ s0ð Þ ¼ ∑
n

i¼1
ωiZ sið Þ where ωi ¼ d−ki0 = ∑

n

i¼1
d−ki0 (12)

where bZ s0ð Þ is the estimated rainfall value at desired location s0, Z(si) is

the Z value at location si, ωi is the weight assigned to observation

points, di0 is the distance between the sampling point at locations si

and s0, n is the number of sampling points, and k is a power, which is

referred to as a control parameter.

As “k” approaches zero and the weights becomes more similar,

IDW estimates approach the simple average of the surrounding obser-

vations. However, the effect of the farthest observations on the

estimated value is diminished with the increase of k. The value of k

ranges from 1 to 6 (Teegavarapu & Chandramouli, 2005). Several stud-

ies have investigated with variations in a power to examine its effects

on the spatial distribution of information from rainfall observations

(Chen & Liu, 2012). Therefore, k value is varied in the range of 1 to 6

with an increment of 0.1 in the current study. The optimal k value is

selected based on the lowest RMSE value between the observed and

estimated values. All rain‐gauge stations are considered in the search

neighbourhood in the estimation process. IDW interpolation is per-

formed by ArcGISv9.3.1 software (ESRI, 2009) and its geostatistical

analyst extension (Johnston et al., 2001).

3.5 | Radial basis function

RBF (Chilès & Delfiner, 1999) is an exact interpolation method, which

stands for a diverse group of interpolation methods. The RBF estima-

tor can be viewed as a weighted linear function of distance from grid

point to data point plus a bias factor, which is given by

bZ s0ð Þ ¼ ∑
n

i¼1
ωi∅ si − s0k kð Þ þ μ (13)

where ∅(r) is the radial basis function (r = ‖si − s0‖), r is the radial dis-

tance from target point s0 to sampling points si, ωi are the weights

and μ is the Lagrangian multiplier. The weights are obtained by solving

of a system of (n + 1) simultaneous linear equations.

The basis kernel functions in the RBF method are analogous to

variograms in kriging, which makes it similar to geostatistical interpola-

tion methods. However, RBF does not have the advantage of a prior
analysis of spatial correlation unlike kriging. When interpolating a grid

node, the basis kernel functions define the optimal set of weights to be

used with the sampling points. There are several radial basis functions

available (Johnston et al., 2001) However, thin plate spline is the most

commonly used radial basis function for interpolation (e.g., Boer, de

Beurs, & Hartkamp, 2001; Di Piazza et al., 2011; Hutchinson, 1995).

In this study, thin plate spline is also used as the radial basis function,

which is given by

∅ rð Þ ¼ crð Þ2 ln crð Þ (14)

where c is the smoothing parameter, which is obtained through cross‐

validation process. The optimal value of the smoothing parameter is

selected based on the lowest RMSE value between the observed and

estimated values. RBF interpolation method is performed by

ArcGISv9.3.1 software (ESRI, 2009) and its geostatistical analyst

extension (Johnston et al., 2001).

3.6 | Assessment of interpolation methods

The performance of different interpolation methods (OK, OCK, KED,

IDW, and RBF) used in this study are evaluated and compared through

cross‐validation process. The cross‐validation is a simple leave‐one‐out
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validation procedure (Haddad, Rahman, Zaman, & Shrestha, 2013) in

which observations are removed one at a time from the dataset and

then re‐estimated from the remaining observations using the adopted

model. Cross‐validation provides important evidence of the perfor-

mance measures for the interpolation methods. In this study, the per-

formance of all the interpolation methods for rainfall estimation is

compared based on mean bias error (MBE), RMSE, and coefficient of

determination (R2) values between the observed and estimated rainfall

values, which are given by Equations 15–17.

MBE ¼ 1
n
∑
n

i¼1
Z sið Þ−bZ sið Þ
h i

(15)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Z sið Þ−bZ sið Þ
h i2s

(16)

R2 ¼
∑n
i¼1 Z sið Þ−Zmf g bZ sið Þ−bZm

n oh i2
∑n
i¼1 Z sið Þ−Zmf g2∑n

i¼1
bZ sið Þ−bZm

n o2
(17)

In Equations 15–17, Z(si) and bZ sið Þ are the observed and predicted

values, Zm and bZm are the mean of the observed and predicted values,

and n is the number of sampled data points. The interpolation method
FIGURE 6 Experimental cross‐variograms with the fitted cross‐variogram
rainfall and collocated elevation data for the Middle Yarra River catchment
with the lowest MBE and RMSE values and the highest R2 value is cho-

sen as the best interpolation method.

As has been mentioned earlier, kriging gives the prediction

standard error while giving the estimation of unsampled variables,

the adequacy of the variogram model for kriging and cokriging estima-

tion should also be tested to produce correct interpolation results

(Johnston et al., 2001; Phillips et al., 1992). Therefore, two additional

standardized cross‐validation statistics are used in this study, which

are standardized mean error (SM) and standardized root mean square

error (SRMS) as given by Equations 18–19

SM ¼ 1
n
∑
n

i¼1

Z sið Þ−bZ sið Þ
h i

bσ sið Þ (18)

SRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1

Z sið Þ−bZ sið Þbσ sið Þ

" #2
vuut (19)

where bσ sið Þ is the prediction standard error for location si. SM should

be close to 0 if the estimates using the adopted variogram model are

unbiased. SRMS should be close to 1 if the estimation variances are

consistent and the variability of the prediction is correctly assessed

(Adhikary et al., 2015; Johnston et al., 2001).
models and positive‐definite condition curve based on the monthly
used in the ordinary cokriging interpolation method
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4 | RESULTS AND DISCUSSION

4.1 | Variogram models for OK analysis

The OK analysis requires the estimation of the direct variogrammodels

for rainfall data. In this study, an isotropic experimental variogram is

estimated from the rainfall dataset for each month assuming an identi-

cal spatial correlation in all directions and neglecting the influence of

anisotropy on the variogram parameters. Isotropy is assumed for the

methodological simplicity. Isotropy is a property of a natural process

or data where directional influence is considered insignificant and spa-

tial dependence (autocorrelation) changes only with the distance

between two locations (Johnston et al., 2001). Under the isotropic con-

dition, the semivariance is assumed the same for a given distance,

regardless of direction. Initially, the directional experimental variograms

are estimated from each monthly rainfall dataset. However, the direc-

tional variograms are found noisy because of the less number of rain‐

gauge stations in the study area. Therefore, the directional influence

is ignored in the experimental variogram calculation. The experimental

variogram is then fitted with three predefined variogram model func-

tions (exponential, Gaussian, and spherical as given inTable 2) to obtain

the variogram models for each monthly rainfall dataset.
TABLE 4 Results of fitted cross‐variogram models between monthly rainf

Month Model name

Variogr

Nugget, C0 (mm2) Sill

Middle Yarra River catchment

January Gaussian 1.0

February Gaussian 40.0

March Gaussian 1.0

April Gaussian 150.0

May Gaussian 80.0

June Gaussian 300.0

July Gaussian 55.0

August Gaussian 57.5

September Gaussian 179.4

October Gaussian 114.5

November Gaussian 3.4

December Gaussian 1.7

Ovens River catchment

January Gaussian 485.2

February Gaussian 525.8

March Gaussian 635.1

April Gaussian 373.7

May Gaussian 595.0

June Gaussian 342.6

July Gaussian 652.2

August Gaussian 919.2

September Gaussian 733.6

October Gaussian 256.0

November Gaussian 413.5

December Gaussian 123.5

Note. OCK = ordinary cokriging; SM = standardized mean error; SRMS = standa
For convenience in this study, results obtained for the Middle

Yarra River catchment are presented and discussed elaborately and

compared with that obtained for the Ovens River catchment.

Figure 4 shows the experimental variograms and fitted variogram

models with optimal variogram parameters (i.e., nugget, sill, and range)

for monthly rainfall data of the Middle Yarra River catchment, which

are used in OK analysis. The best fitted variogram models are selected

based on the minimum RSS values using a trial‐and‐error process with

different lag intervals. The variogram parameters are iteratively

changed to get the best fitted model, which yields the minimum RSS.

As can be seen from Figure 4, the spherical model is the best fitted

variogram model for all months having spatial structure of

.66 < R < .97 (results of R not shown in Figure). It can be also noted that

10 months (except November and December) have R values greater

than .75. The optimal variogram parameters for each monthly rainfall

dataset for both the catchments are provided in Table 3. As can be

seen from Table 3, the ratio of nugget coefficient to sill of the

variogram model is small for all months for both the catchments. This

evidently indicates that a strong spatial correlation exists between

the monthly mean rainfall and the spatial distribution of the rain‐gauge

stations over the study area. This supports the use of geostatistical

interpolation methods such as OK, OCK, and KED, which consider
all and elevation for using in the OCK interpolation method

am parameters Cross‐validation statistics

, C0 + C1 (mm2) Range, a (km) SM SRMS

1387.0 12.65 0.053 1.001

801.0 16.19 0.067 1.000

1545.0 14.36 0.055 1.006

1653.0 18.35 0.057 1.004

1651.0 19.40 0.042 1.019

1874.5 19.75 0.055 1.001

3081.2 13.50 0.008 1.002

2872.9 12.10 0.007 1.006

2746.0 14.25 0.042 1.002

1860.9 15.85 0.053 1.004

1804.4 12.00 0.034 1.000

1774.7 15.66 0.096 1.002

2197.9 60.98 ‐0.020 0.989

2540.3 50.56 0.001 1.119

2349.5 52.45 ‐0.012 1.093

2209.3 36.01 ‐0.019 0.904

3170.7 32.99 ‐0.015 1.090

3961.7 52.48 ‐0.022 1.117

4175.6 71.62 ‐0.030 1.028

4223.1 96.48 ‐0.024 1.095

3717.8 66.49 ‐0.018 1.000

2048.1 29.73 ‐0.010 1.010

1925.5 64.09 ‐0.013 1.050

1935.7 32.60 ‐0.021 1.007

rdized root mean square error.
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the spatial correlation in the estimation process. The range of influence

and the sill of the variogram model vary from one month to another,

but the variogram exhibit a same spherical structure in all months. This

may be caused due to the control of the relief on the spatial distribu-

tion of rainfall (Delbari et al., 2013). The range of influence is lowest

for November (21.53 km) and highest for September (27.07 km). Fur-

thermore, the cross‐validation statistics in Table 3 for both the catch-

ments confirm that the fitted variogram models for all monthly

rainfall data satisfy the unbiased condition and thus can be used for

the OK analysis.

For elevation data, an isotropic experimental variogram is com-

puted ignoring the directional influence. The experimental variogram

is then fitted with the aforementioned three variogram model func-

tions. The best fitted variogram model is selected using the same pro-

cedure described above. The Gaussian variogram model gives the best

fitted model for both the catchments with the lowest RSS value, which

is shown in Figure 5. The optimal variogram parameters for both the

catchments are also shown in the figure. In order to avoid possible

inconsistencies in the subsequent modelling of direct and cross‐

variograms in OCK analysis (Goovaerts, 1997, 2000), the colocated

elevation data (see Figure 1) are used for estimating the variogram of

elevation, not the entire DEM of the catchment. Therefore, the

cokriging method adopted in this study is referred to as the colocated

OCK method (Wackernagel, 2003).
FIGURE 7 Experimental residual variograms and fitted residual variogram m
external drift interpolation method
4.2 | Cross‐variogram models for OCK analysis

The OCK analysis requires the simultaneous estimation of the direct

and cross‐variogram models for the rainfall and elevation variables.

The three variogram models are fitted as a linear combination of the

same set of standard models given in Table 2 so that the RSS value is

minimum under the constraints of PDC (Goovaerts, 1999). Figure 6

shows the experimental and fitted cross‐variogram models for the

MiddleYarra River catchment. The number of data pairs in each lag size

is the same for all the three direct and cross‐variogram models.

Figure 6 also shows the PDC curve computed based on Equation 9

to examine the positive‐definiteness criteria of the cross‐variogram

models obtained for the catchment. Additionally, the cross‐validation

statistics are used for identifying the adequacy and final selection of

the adopted cross‐variogram model for the OCK analysis. The cross‐

validation results obtained using all the adopted cross‐variogram

models for both the catchments are presented inTable 4. The results in

Table 4 indicate that the cross‐variogram models of all monthly

datasets are suitable for the OCK analysis considering all

neighbourhoods for both the catchments.

As can be seen from Figure 6, the Gaussian variogram model fits

well for all monthly datasets of the Middle Yarra River catchment,

which also satisfy the PDC criteria defined by Equation 9. Further-

more, the correlation between monthly rainfall and elevation for all
odels for the MiddleYarra River catchment used in the kriging with an
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months in Table 1 indicates that elevation will contribute to enhance

the monthly rainfall estimation in the catchment. The figure also shows

that the values of the sample cross‐variogram increase for distances

from 0 to 25 km (more than half of the maximum interstation distance)

for almost all months. This indicates that a positive spatial cross‐

correlation exists between rainfall and elevation in the catchment. This

wide ranges may be due to the high correlation (.67 < R < .79) between

the monthly rainfall and elevation (Table 1). Such high correlation con-

firms that the monthly rainfall in the Middle Yarra River catchment is

mainly caused by the orographic effects.
Figure 6 also shows the PDC curves, which are computed to

examine the positive‐definite conditions of the cross‐variogram

models of the catchment. It is worth pointing out that the PDC curve

may give a qualitative indication for the degree of correlation. As can

be observed from Figure 6, the plotted PDC curve for most of the

months showed a close fit to the cross‐variogram model for smaller

distances with few exceptions (February, April, May, and June

months). For example, the PDC curve is closer to the cross‐variogram

model in the case of January, March, July, November, and December

months depending on the degree of correlation. This conclusion holds

true based on the higher correlation for these months as given in

Table 1.
TABLE 5 Results of fitted residual variogram models for using in the KED

Month Model name

Variogr

Nugget, C0 (mm2) Sill

Middle Yarra River catchment

January Spherical 0.10

February Spherical 0.01

March Spherical 0.10

April Spherical 0.10

May Spherical 0.10

June Spherical 39.90

July Spherical 5.70

August Spherical 0.10

September Spherical 0.10

October Spherical 0.10

November Spherical 0.10

December Spherical 0.10

Ovens River catchment

January Spherical 38.90

February Spherical 60.10

March Spherical 13.40

April Gaussian 67.20

May Spherical 217.00

June Spherical 60.00

July Spherical 5.00

August Gaussian 250.00

September Spherical 1.00

October Spherical 42.10

November Spherical 6.00

December Spherical 31.00

Note. KED = kriging with an external drift; SM = standardized mean error; SRM
4.3 | Residual variogram models for KED analysis

In order to implement the KED analysis, experimental residual

variograms are estimated based on the residuals obtained from linear

regression between rainfall and elevation data neglecting the influence

of anisotropy on the variogram parameters. The experimental residual

variogram is then fitted using the three standard models given in

Table 2. Figure 7 shows the experimental and fitted residual variogram

models for all monthly datasets of the MiddleYarra River catchment. It

can be seen from the figure that the spherical model gives the best

fitted model for all monthly datasets. The optimal variogram parame-

ters and the corresponding cross‐validation statistics of the selected

residual variogram models for both the catchments are presented in

Table 5. As can be also seen from Figure 7 and Table 5, the residual

variogram models exhibit relatively smaller sills than those obtained

from the actual rainfall datasets (see Figure 4) but they follow very sim-

ilar structure. This is not unexpected because the residual variograms

from the linear regression represents variation, which remains after

removing the trend (Lloyd, 2005). The cross‐validation statistics shown

in Table 5 also indicate that the residual variogram models of all

monthly datasets for both the catchments are satisfactory for the

KED analysis.
interpolation method

am parameters Cross‐validation statistics

, C0 + C1 (mm2) Range, a (km) SM SRMS

43.14 8.86 0.029 1.022

23.11 13.10 0.025 0.981

56.69 9.35 0.060 0.999

75.70 10.76 0.010 1.000

115.80 11.61 ‐0.034 1.031

298.70 27.03 0.005 0.981

257.70 11.59 ‐0.024 0.990

265.00 11.57 ‐0.013 0.984

283.50 11.77 0.027 0.982

139.40 10.60 ‐0.010 1.004

84.94 9.69 0.054 0.992

100.70 10.61 0.058 0.990

239.40 42.90 ‐0.017 1.012

320.90 32.72 0.004 1.029

246.20 26.80 ‐0.011 0.996

188.00 103.05 ‐0.043 1.008

597.00 108.40 ‐0.026 1.071

841.00 70.20 ‐0.044 1.028

1713.00 106.00 ‐0.092 1.005

2084.00 90.54 ‐0.045 1.001

975.00 100.85 ‐0.027 1.029

383.60 87.00 ‐0.018 1.041

367.30 92.30 ‐0.012 0.989

192.50 88.75 ‐0.028 0.993

S = standardized root mean square error.
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4.4 | Spatial prediction of rainfall

In this study, different geostatistical and deterministic interpolation

methods including OK, OCK, KED, IDW, and RBF are adopted to

estimate the spatial distribution of monthly mean rainfall in the

Middle Yarra River catchment and the Ovens River catchment in

Australia. Several performance measures including MBE, RMSE, and

R2 are frequently used to indicate how accurately an interpolator

predicts the observed data. Smaller values of MBE and RMSE with

a higher R2 value of an interpolator indicate better prediction by

the corresponding method. In case of the scatter plot, the better pre-

diction is that if all scattered points lay close to the 450 line with the

highest R2 value between the predicted and observed values

(Adhikary et al., 2016a).

Table 6 presents the different performance measures of the

adopted interpolation methods (or interpolators) for estimating

monthly rainfall over both the study catchments. The different interpo-

lation methods are quantitatively compared based on these perfor-

mance measures in order to identify the best interpolator for each of
TABLE 6 Performance of different interpolation (OK, OCK, KED, IDW, an

Month

MBE (mm)

OK OCK KED IDW RBF OK OCK

Middle Yarra River catchment

January 0.98 0.63 0.73 1.76 1.56 8.92 6.96

February 0.51 0.38 0.41 0.73 0.85 5.25 3.80

March 0.97 0.65 0.70 1.67 1.78 8.71 6.79

April 1.03 0.83 0.89 1.70 2.27 9.80 8.26

May 0.78 0.72 ‐0.40 1.43 2.41 11.55 10.78

June 1.19 1.26 1.17 2.25 3.29 15.15 13.77

July 0.89 0.11 ‐0.36 1.73 2.77 15.50 14.63

August 1.05 0.03 ‐0.20 2.08 3.04 16.75 15.94

September 1.38 0.87 0.92 2.69 3.52 16.79 15.73

October 1.07 0.79 ‐0.11 1.86 2.32 12.34 10.70

November 1.23 0.55 0.58 2.16 2.28 11.00 8.25

December 1.31 1.07 1.08 2.25 2.28 11.43 7.93

Average 1.03 0.66 0.45 1.86 2.36 11.93 10.29

Ovens River catchment

January ‐0.62 ‐0.56 ‐0.25 ‐1.78 ‐1.13 12.86 12.39

February 0.11 ‐0.01 0.08 ‐0.96 1.26 17.51 16.32

March ‐0.28 ‐0.22 ‐0.15 ‐1.26 ‐0.25 13.13 12.30

April ‐0.62 ‐0.38 ‐0.41 ‐0.53 ‐0.58 10.31 9.19

May ‐1.07 ‐0.59 ‐0.60 ‐1.94 ‐1.56 23.18 21.16

June ‐0.92 ‐0.87 ‐0.94 ‐1.19 ‐0.81 22.13 21.98

July ‐1.94 ‐1.36 ‐2.01 ‐3.53 ‐2.09 23.16 22.89

August ‐0.94 ‐0.92 ‐1.05 ‐1.35 ‐1.16 22.24 21.92

September ‐0.62 ‐0.55 ‐0.62 ‐0.46 ‐0.87 20.39 20.01

October ‐0.53 ‐0.31 ‐0.35 ‐0.63 ‐0.41 19.37 17.65

November 0.01 ‐0.33 ‐0.05 0.18 0.30 10.52 9.37

December ‐0.27 ‐0.21 ‐0.11 ‐0.41 ‐0.22 9.67 8.59

Average ‐0.64 ‐0.53 ‐0.54 ‐1.15 ‐0.63 17.42 16.15

Note. IDW = inverse distance weighting; KED = kriging with an external drift;
R2 = coefficient of determination; RBF = radial basis function; RMSE = root me
the catchment. As can be seen from the table, geostatistical (OK,

OCK, and KED) interpolation methods perform better than determinis-

tic (IDW and RBF) interpolation methods for monthly rainfall estima-

tion in the study area. The OCK method gives the best results for

rainfall estimation over the study area for all months when considering

all the performance measures. The KED method gives the second best

results, which is very close to the performance of the OCK method but

performs better than the OK method for both the catchments. IDW

and RBF give similar performance with higher error in rainfall estima-

tion over the study area. For the Middle Yarra River catchment,

Table 6 also shows that in some months, the RBF method performs

better than the OK method for rainfall estimation. However, no

remarkable differences are seen between them when considering all

the performance measures.

For OK, OCK, KED, IDW, and RBF methods, the average RMSE

values (Table 6) for the Middle Yarra River catchment are 11.93,

10.29, 10.85, 12.66, and 12.22 mm, respectively, whereas the average

RMSE values for the Ovens River catchment are 17.42, 16.15, 16.65,

17.54, and 23.41 mm, respectively. For OK, OCK, KED, IDW, and
d RBF) methods for monthly rainfall estimation in the study area

RMSE (mm) R2

KED IDW RBF OK OCK KED IDW RBF

7.99 8.96 9.99 0.40 0.66 0.56 0.42 0.31

4.45 5.26 5.46 0.42 0.71 0.59 0.42 0.42

8.41 9.58 9.50 0.54 0.73 0.58 0.45 0.46

8.75 10.68 10.04 0.54 0.67 0.64 0.46 0.55

11.98 11.58 11.80 0.49 0.56 0.51 0.49 0.55

13.44 17.26 15.15 0.61 0.67 0.69 0.49 0.63

14.84 16.85 15.01 0.65 0.69 0.68 0.59 0.68

14.67 18.19 16.12 0.59 0.63 0.69 0.52 0.64

15.38 18.46 17.17 0.57 0.62 0.63 0.48 0.57

11.56 12.05 12.48 0.53 0.64 0.60 0.56 0.56

9.10 11.43 11.72 0.50 0.73 0.66 0.47 0.46

9.58 11.65 12.17 0.51 0.78 0.66 0.50 0.48

10.85 12.66 12.22 0.53 0.67 0.62 0.49 0.54

12.45 13.68 18.42 0.41 0.44 0.42 0.34 0.18

17.34 17.53 25.64 0.15 0.23 0.19 0.11 0.02

12.87 14.44 17.14 0.44 0.59 0.51 0.33 0.32

9.58 11.00 14.91 0.56 0.71 0.66 0.49 0.31

22.89 23.27 34.19 0.18 0.29 0.25 0.15 0.01

22.04 22.21 32.50 0.52 0.66 0.61 0.57 0.30

22.92 23.01 31.35 0.62 0.68 0.65 0.64 0.44

21.97 22.27 30.01 0.66 0.70 0.68 0.68 0.49

20.08 20.44 28.12 0.50 0.57 0.54 0.56 0.32

19.01 19.64 26.24 0.23 0.39 0.32 0.19 0.04

9.48 12.17 11.61 0.73 0.80 0.78 0.65 0.70

9.12 10.82 10.83 0.63 0.71 0.69 0.54 0.61

16.65 17.54 23.41 0.47 0.57 0.53 0.44 0.31

MBE = mean bias error; OCK = ordinary cokriging; OK = ordinary kriging;
an square error.
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RBF methods, the average R2 values (Table 6) for the Middle Yarra

River catchment are .53, .67, .62, .49 and .54, respectively whereas

the average R2 values for the Ovens River catchment are .47, .57,

.53, .44, and .31, respectively. The higher R2 value in the OCK and

KED methods indicate that using elevation as a secondary variable

brings more information in the rainfall estimation process under the

kriging‐based geostatistical analysis framework.

As explained by Delbari et al. (2013), using elevation as a second-

ary variable may not always improve the prediction accuracy through

the OCK analysis if the spatial continuity of elevation is weaker than

that of rainfall despite a high correlation exists between rainfall and

elevation. In this study, the relative nugget effect (i.e., ratio of nugget
FIGURE 8 Spatial distribution of monthly rainfall in the Middle Yarra Rive
study) interpolation method
coefficient to sill) of the direct variogram models for rainfall (Table 3)

and elevation (Figure 5), and the cross‐variogram models for rainfall‐

elevation (Table 4) for both the catchments are found very small in

all months. This results in the improvement in the rainfall estimation

by the OCK method, which is thus selected as the best interpolator

for the study area in this study. Therefore, the OCK method (the best

interpolator) is used to generate a continuous rainfall dataset of the

monthly average rainfall for each of the catchments, which are shown

in Figure 8 and Figure 9. The created datasets are expected to be very

useful in various hydrological and water resources planning studies

within the Yarra River catchment and the Ovens River catchment

in Australia.
r catchment using the ordinary cokriging (the best interpolator in this



FIGURE 9 Spatial distribution of monthly rainfall in the Ovens River catchment using the ordinary cokriging (the best interpolator in this study)
interpolation method
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5 | CONCLUSIONS

In this study, three kriging‐based geostatistical (OK, OCK, and KED)

and two deterministic (IDW and RBF with thin plate spline) interpola-

tion methods are used for estimating spatial distribution of monthly

mean rainfall in the MiddleYarra River catchment and the Ovens River

catchment in Victoria, Australia. The objective is to compare the per-

formances of these interpolation methods to select the best interpola-

tion method for generating a high quality continuous rainfall dataset in

the form of a rainfall map for the study area. The elevation data

obtained from a DEM of the study area is used as a supplementary var-

iable in addition to rainfall records for the cokriging analysis using the

ordinary cokriging and kriging with an external drift methods. Results
show that the geostatistical methods outperform the deterministic

methods for spatial interpolation of rainfall over the study area. Specif-

ically, the performance of the cokriging methods (OCK and KED) is

better than that of other geostatistical methods. The performance of

the RBF with thin plate spline is found practically as good as the ordi-

nary kriging method for rainfall estimation, whereas the IDW method

is shown to have the worst results for the study area. OCK performs

the best among all the interpolators and gives the improved estimates

of rainfall in all months for both the catchments. It provides the lowest

estimation errors and the highest correlations between the estimated

and observed monthly average rainfall. Thus, ordinary cokriging is

identified as the best interpolator in this study for estimating spatial

distribution of rainfall in both the catchments. The obtained results
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indicate that making use of elevation as an auxiliary variable in addition

to rainfall data can enhance the estimation of rainfall in a catchment

with the mountainous and/or complex terrain. This study thus recom-

mends the use of cokriging for the generation of continuous rainfall

map especially in catchments with high spatial variation of rainfall as

well as elevation.
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