

Transferring an Analytical Technique from Ecology to the Sport Sciences

This is the Accepted version of the following publication

Woods, Carl, Robertson, Samuel, Collier, Neil, Swinbourne, A and Leicht, AS (2018) Transferring an Analytical Technique from Ecology to the Sport Sciences. Sports Medicine, 48 (3). 725 - 732. ISSN 0112-1642

The publisher's official version can be found at https://link.springer.com/article/10.1007/s40279-017-0775-2 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/36127/

- 1 Transferring an analytical technique from ecology to the sport sciences
- 2
- Carl T. Woods^{1*}, Sam Robertson², Neil French Collier³, Anne L. Swinbourne⁴, Anthony S. Leicht¹
- ¹Discipline of Sport and Exercise Science, James Cook University, Queensland, Australia
- ⁶ ²Institute of Sport, Exercise & Activity Living (ISEAL), Victoria University, Melbourne, Australia
- 7 ³Faculty of Sustainability, Leuphana University Luneburg, Germany
- 8 ⁴Psychology, James Cook University, Queensland, Australia
- 9
- 10 *Corresponding Author
- 11 Carl Woods, Discipline of Sport and Exercise Science, James Cook University, Townsville, Queensland, Australia
- 12 Ph: +61 07 4781 6550 Mob: +61 421254329 Email: carl.woods@jcu.edu.au

13 Abstract

Background: Learning transfer is defined as an individual's capability to apply prior learnt perceptual, motor or conceptual skills to a novel task or performance environment. In the sport sciences, learning transfers have been investigated from an athlete-specific perspective. However, sport scientists should also consider the benefits of cross-disciplinary learning to aid critical thinking and metacognitive skill gained through the interaction with similar quantitative scientific disciplines.

Objective: Using team sports performance analysis as an example, this study aimed to demonstrate the utility ofa common analytical technique in ecology to the sports sciences; namely, non-metric multidimensional scaling.

Methods: To achieve this aim, three novel research examples using this technique are presented, each of which
 enables the analysis and visualisation of athlete (organism), team (aggregation of organisms) and competition
 (ecosystem) behaviours.

24 Results: The first example reveals the technical behaviours of Australian Football League Brownlow medallists

from the 2001 to 2016 seasons. The second example delineates dissimilarity in higher and lower ranked National
Rugby League teams within the 2016 season. Lastly, the third example shows the evolution of game-play in the
basketball tournaments between the 2004 to 2016 Olympic Games.

Conclusions: In addition to the novel findings of each example, the collective results demonstrate that by embracing cross-disciplinary learning and drawing upon an analytical technique common to ecology, novel solutions to pertinent research questions within sports performance analysis could be addressed in a practically meaningful way. Cross-disciplinary learning may subsequently assist sport scientists in the analysis and visualisation of multivariate datasets.

33 Key points

The graphical outputs of non-metric multidimensional scaling (nMDS) enable the recognition of non linear behavioural patterns at the athlete (example one), team (example two) and competition (example
 three) levels.

Accordingly, cross-disciplinary learning may assist sport scientists with the resolution of practically
 meaningful questions in performance analysis.

Sport scientists in other sub-disciplines are encouraged to 'think outside the box' when analysing and
 visualising data.

41 Key words: Transfer of learning; cross-disciplinary learning; sports performance analysis; data visualisation

2

42 1. Introduction

43 An integral component of learning concerns an individual's capability to transfer its production from one 44 performance context to another [1]. This concept, referred to as a transfer of learning [2], typically extends to 45 motor, perceptual or conceptual tasks or variables. It suggests that tasks expressing a similar production, outcome 46 or performance environment may afford greater transference (i.e., a positive transfer of learning) [3, 4]. The 47 principle of learning transfer has been examined in and across a range of scientific disciplines, such as educational 48 science [5], health and medical science [6], rehabilitation science [7], and sport science [8]. With a focus on the 49 sport sciences, there has been a large quantity of work examining motor and perceptual learning transfers between 50 sports or performance environments [9-12]. In each of these studies, athletes have been the target population, with 51 their capability to transfer a prior learnt skill to a relatively novel sport being the outcome of interest.

52 However, learning transfers can also be encouraged from the sport scientist's perspective, in addition to the 53 athletes they interact with. Cross-disciplinary learning is likely to extend sport scientists critical thinking and 54 metacognitive skill through novel perspectives generated by the interaction with similar quantitative sciences [13]. 55 For example, Duarte et al. [14] discussed how sporting teams could be viewed as 'superorganisms', in a similar 56 fashion to how ecologists view aggregated organisms, such as flocks of birds, given that athletes are likely to base 57 movement decisions on environmental information extracted from opponent (predator) and teammate (organism 58 aggregate) relative positioning. Considering players and sporting teams in such a nuanced way can provide novel 59 insights into collective behaviours and patterns in play [14]. However, extracting meaning from these often large, 60 longitudinal and multivariate datasets can represent an analytical challenge. Further, linear statistical approaches, 61 which are popular in the sport sciences, may not adequately reveal non-linear behavioural patterns [15]. Thus, 62 examination of this data may require alternative or 'outside of the box' approaches adopted from other disciplines. 63 One potential discipline of relevance to sport scientists is ecology, which often seeks to delineate non-linear 64 behavioural patterns across an organism type, an aggregation of organisms or an ecosystem [15, 16]. This 65 analytical cross-disciplinary learning transfer from ecology to the sport sciences may enable the emergence of 66 novel, data visualisation techniques, while simultaneously increasing the sophistication of research questions 67 regarding athlete and team behaviour. Ultimately, this may provide sports coaches or sporting administrators with 68 greater objectivity to support the decisional processes they commonly encounter.

One particular analytical and visualisation approach commonplace in ecology for the study of organism behaviour
is non-metric multidimensional scaling (nMDS) [17]. Fundamentally, nMDS is an indirect gradient analysis,

71 producing an ordination based on a dissimilarity matrix [17]. This matrix is ascertained via isotopic regression, 72 which is a type of non-parametric regression that iteratively searches for a least squares fit based on ranks of the 73 dissimilarities [17, 18]. Accordingly, this is a ranked-based approach, where original distance data is substituted 74 with ranks. The output of this isotopic regression provides a measure of 'stress', which decreases as the rank-75 order agreement between dissimilarities improves; lower 'stress' values (i.e., closer to '0') represent a closer fit 76 [19]. In contrast to other ordination techniques, nMDS makes few assumptions about the data properties. For 77 example, a principal component analysis (PCA) assumes linear relationships between variables within datasets, 78 whereas nMDS does not, enabling its utility in multivariate datasets that contain diverse data properties [17]. 79 Further, while other ordination techniques attempt to maximise the variance between objects in an ordination, 80 nMDS represents, as closely as possible, the pairwise dissimilarity between objects [18, 19]. Subsequently, the 81 graphical output of nMDS provides a map that spatially illustrates the relationships and patterns between samples 82 in a reduced two- or three-dimensional space [18] (Figure 1). Transferred to team sports performance analysis, 83 performance indicators (e.g. behaviours) may be coded as the samples within a multivariate dataset, with the 84 dissimilarity of these samples being analysed between players in a team or group (e.g. organisms in an aggregate), 85 teams in a competition (e.g. aggregates in an ecosystem) or competitions over time (e.g. ecosystem dynamics).

86

**** INSERT FIGURE 1 ABOUT HERE ****

Using team sports performance analysis as the sub-discipline, this study aims to demonstrate the applicability of
nMDS to sport science. To achieve this aim, three original research examples will be independently presented.
Each example was chosen to reflect player (organism), team (aggregation of organisms) and competition
(ecosystem) behaviours, complementing the 'superorganism' perspectives offered by Duarte et al. [14].

91 2. Methodology

92 The datasets used in each proceeding example originate from commercially accessible sources, with institutional 93 ethics declaration being acquired prior to data extraction. Despite nuanced methodologies being described in each 94 proceeding example, all analyses were performed using the 'vegan' package via the *metaMDS* function in *R*, 95 which is a commonly used package for nMDS in ecology [19]. Further, the *R* code used in each example is 96 presented as Supplementary Material.

97 **3. Results**

98 Example 1 – Player Behaviour: Revealing technical skill behaviour in Brownlow Medal winning Australian
 99 Football League players from the 2001 to 2016 seasons

100 Introduction: Australian football (AF) is a team invasion sport that requires physical, technical and perceptual 101 skills [20-22]. At the elite level, the Australian Football League (AFL), game-play is contested between two teams 102 of 22 players, who field no more than 18 players at a time. Following the conclusion of each 23-week 'home and 103 away' game, the umpires award three votes to the player from either team whom they perceive exemplified the 104 'best and fairest' on the ground. To assist with this 'voting' process, the umpires are provided with a range of 105 player technical skill involvements immediately following each game. At the conclusion of the season, the player 106 who accrues the greatest number of votes is then awarded the Brownlow Medal; or more colloquially, the 107 competition's 'best and fairest' player. Understanding the technical characteristics of these winners would be of 108 scientific and practical interest by offering insight into the evolution of the performance of the best players in the 109 AFL. This example aims to reveal the technical skill characteristics of Brownlow medallists between the 2001 to 110 2016 AFL seasons using nMDS.

111 Methodology: Brownlow medallists from the 2001 to 2016 seasons were identified (n=19), with three separate 112 winners awarded in the 2003 season and two separate winners in the 2012 season. Fifteen individual performance 113 indicators were extracted for each player within the analysed period from a commercial source 114 (http://www.afl.com.au/stats). Using the individual performance indicators, a dissimilarity matrix was built with 115 the Bray-Curtis measure and plotted in two dimensions. The ordination surfaces were fitted using generalised 116 additive models that employed an isotopic smoother via thin-plate regression splines [18]. Further, 'arrows' were 117 used to denote the progression of profiles across the ordination surface using the geom_point, geom_segment, and 118 geom_path functions in the 'ggplot2' package [23].

119 *Results*: The dissimilarity matrix solution was reached after 20 iterations (stress = 0.15, rmse = 1.4×10^{-4} , 120 maximum residual = 4.8×10^{-4}). The ordination plot of the matrix showed a high seasonal dissimilarity (Figure 121 2). Notably, the profile of the 2001 winner was markedly dissimilar to the 2002 winner. Further, despite two of 122 the three winners in the 2003 season possessing similar ordination positions, the third winner for that season 123 possessed a relatively dissimilar position (Figure 2). Following the 2003 season, the player profiles then 124 'zigzagged' across the ordination surface, displaying large season-to-season dissimilarity. Relative to the seasonal 125 positioning of each player, the largest ranked dissimilarity was observed between the profiles of the 2014 and 126 2015 winners.

127

**** INSERT FIGURE 2 ABOUT HERE ****

128 Conclusions: Using nMDS, the results of this example showed high dissimilarity in the technical skill 129 characteristics of AFL Brownlow medallists between the 2001 to 2016 seasons; enabling three main conclusions 130 to be drawn. Firstly, the objective multivariate qualities that umpires deemed worthy of votes may have seasonally 131 changed. Secondly, the objective player profiles reflective of a dominant performance may be continually 132 evolving. Thirdly, changing rule interpretations throughout the analysed period may have influenced how players 133 obtained ball possession or interacted with their opponents, potentially impacting on an umpires' perceptions of 134 'best and fairest' play.

Example 2 – Team Behaviour: Revealing dissimilarity in higher and lower ranked teams within the 2016 National Rugby League season

137 Introduction: Rugby league (RL) is a team invasion sport characterised by a diverse set of multidimensional 138 performance qualities [24]. The elite competition in Australia and New Zealand is the National Rugby League 139 (NRL), which currently consists of 16 teams who compete in a 26-week 'premiership' season. Within this season, 140 teams are awarded two points for a win, with the accumulation of these points being used to rank teams on a 141 ladder (16 being the lowest rank and one being the highest rank). The eight highest ranked teams at the conclusion 142 of the premiership season then compete in a finals series for the opportunity to compete in the NRL grand final. 143 Resolving the technical dissimilarity of team's ranked high or low on the ladder may assist coaches with the design 144 of game-plans for prospective seasons. Additionally, objective insights into opponent dissimilarity would likely 145 assist with team selection strategies by enabling coaches to select rostered players to generate a (mis)match 146 between an opponent's characteristics. Using nMDS, this example aims to delineate the dissimilarity of teams 147 ranked high or low on the ladder at the conclusion of the 2016 NRL premiership season.

148 Methodology: Fifteen team performance indicators were extracted from a commercial source 149 (http://www.nrl.com/stats) for each of the 16 NRL teams following the 2016 season. Teams were apriori classified 150 into quartiles based upon their ladder ranking; these being the top four (1-4), upper middle four (5-8), lower middle 151 four (9-12) and bottom four (13-16). Using the team performance indicators, a dissimilarity matrix was built with 152 the Bray-Curtis measure and plotted in two dimensions. The ordination surfaces were fitted using generalised 153 additive models employing an isotopic smoother via thin-plate regression splines [18]. Accordingly, teams were 154 labelled and colour coded relative to their ladder position on the ordination using the geom label and 155 geom segment functions, while their progression across the ordination surface was illustrated using the 156 geom path function [23].

157*Results*: The dissimilarity matrix solution was reached after 20 runs (stress = 0.07, rmse = 3.6×10^{-6} , maximum158residual = 1.1×10^{-5}). The ordination plot shows a similarity in the positioning of teams relative to their quartile159(Figure 3). However, despite placing in quartile three, the West Tigers displayed a profile that expressed relative160similarity to the teams ranked in quartile two. Certain team profiles appeared more similar than others, with the161Raiders and Cowboys showing similarity relative to the other top four teams, while the Sea Eagles and Eels (who162are located below the Sea Eagles on Figure 3) possessed an almost identical positioning on the ordination surface.

163

**** INSERT FIGURE 3 ABOUT HERE ****

164 *Conclusions*: A high dissimilarity was observed between NRL teams grouped in different quartiles following the 165 2016 season. Specifically, teams in quartile one were located at the bottom left of the ordination surface, while 166 teams in quartile four located the top right of the ordination surface. This indicates that the top four teams 167 generated unique profiles relative to their lower performing opponents in the 2016 season. Further, the positioning 168 of certain teams on the ordination surface revealed similar profiles, which suggests similar game-plans and/or 169 player types.

Example 3 – Competition Behaviour: The evolution of game-play in an Olympic basketball tournament from 2004 to 2016

172 Introduction: Basketball is team court sport consisting of physical, technical and perceptual components [26, 27]. 173 Arguably the most recognised international basketball tournament is within the summer Olympic Games. For 174 males, it was first introduced at the summer Olympics in 1936, with participating countries currently competing 175 against one another in two separate pools consisting of six teams. At the conclusion of this round robin 'group 176 stage', the four highest placed teams in each pool then compete in knockout quarterfinal, semi-final and 'gold 177 medal' games. Understanding how game-play in this tournament has evolved would be of interest to performance 178 analysts and coaches, as it would likely assist with the continued design of 'contemporary' game-plans. 179 Accordingly, this example examines the evolution of game-play in male Olympic basketball tournaments from 180 2004 to 2016.

181 Methodology: Twelve team performance indicators were collected from a commercially accessible source 182 (http://www.eurobasket.com/Olympic-Games/basketball.asp) for each male team participating in 2004, 2008, 183 2012 and 2016 summer Olympic Games. This resulted in 48 teams across the four Olympic Games. Using the 184 team performance indicators, a dissimilarity matrix was built with the Bray-Curtis measure and plotted in two 185 dimensions, with ordination surfaces being fit via generalised additive models employing an isotopic smoother via thin-plate regression splines [18]. Additionally, convex hulls were overlayed on the ordination surface to
cluster each Olympic Games using the *geom_polygon* function [23], while teams were plotted on the ordination
surface using the *geom_point* function [23].

Results: The dissimilarity matrix solution was reached after 20 runs (stress = 0.21, rmse = 1.4×10^{-4} maximum residual = 7.6×10^{-4}). Despite the 2004 and 2008 tournaments showing dissimilarity noted by the spread of teams on the boundary of the convex hulls, team similarity progressively increases over the 12 years. Specifically, team profiles are moving toward the top right corner of the ordination surface (Figure 4). Relative to the 2004, 2008 and 2012 tournaments, the 2016 tournament displayed the greatest similarity in the profiles of competing teams, shown by their grouping within the purple convex hull (i.e., smaller surface area) (Figure 4).

195

**** INSERT FIGURE 4 ABOUT HERE ****

196 Conclusions: There was a distinctive progression in the positioning of team profiles on the ordination surface from 197 the 2004 tournament to the 2016 tournament. The 2016 season shows the highest relative similarity based on the 198 size of the convex hull, with teams clustering in the top right corner of the ordination surface. This indicates that 199 game-play in the Olympics has become more homogenised, with teams expressing similar profiles. It could be 200 speculated that the dominance shown by certain countries in this tournament may therefore be reducing, with the 201 team standards equalising as coaches become more strategically equipped to match the profiles of more dominant 202 countries. Beyond the confines of basketball, this example shows the power of nMDS to reveal the evolution of 203 competition dynamics both between teams and across multiple seasons.

204 4. Discussion

205 Using an analytical technique common to ecology, this study aimed to demonstrate the utility of nMDS in team 206 sport performance analysis. To achieve this aim, three original research examples were presented, each orienting 207 player (organism), team (aggregation of organisms) and competition (ecosystem) behaviours. Despite each 208 example yielding idiosyncratic findings, the collective results demonstrate the capability of nMDS to 209 simultaneously analyse and visualise non-linear behaviours extracted from multivariate datasets. Accordingly, 210 each example displays how coaches and competition administrators can obtain decisional support through the 211 interpretation of multivariate data signatures uncovered by nMDS, rather than generating inferences based upon 212 univariate model sets [25]. While it is known that sport scientists already engage in cross-disciplinary learning 213 (for an example, see Pion et al. [28]), this work offers a comprehensive basis for how they may wish to continually draw upon analyses or theories ingrained in other quantitative sciences to assist with the resolution of questionsin their respective sub-discipline of sport science.

216 As briefly discussed in each example, the graphical output of nMDS is likely to be compelling for coaches or 217 sports administrators in numerous ways. Firstly, although example one shows the dissimilarity between AFL 218 Brownlow medallists, the methodology could be extended to inform team selection strategies by highlighting the 219 level of (dis)similarity between players on a roster or between players in a competition. This information, would 220 be critical when attempting to replicate certain player 'types' or when selecting players that generate a (mis)match 221 to an opponent in an effort to generate a competitive advantage. However, given the dyadic requirements of team 222 sports, it would be beneficial for coaches or analysts to consider player-to-player interactions when using nMDS 223 as a basis for team selection. The second example may assist coaches with the establishment of team profiles that 224 explicitly express (dis)similarity to an opposition, enabling them to establish both unique and innovative 225 multivariate profiles or to match the profile of a more dominant opponent. Lastly, the third example could be used 226 to show how environmental changes (such as rule changes) alter the dynamics of team profiles at the competition 227 level. Knowledge of this information is likely to offer sports administrators with an objective basis to assist with 228 decisions orienting how game-play may progress in prospective seasons.

229 This study offers a unique perspective of the transferability of analytical methods between scientific disciplines. 230 Indeed, it is possible that more common analyses within the sport sciences may have offered similar results by observing magnitudinal changes between individual performance indicators across players, teams or competitions. 231 232 However, linear and univariate approaches are limited in what information they can extract from multivariate 233 datasets [25]. As shown, nMDS enables the analysis and visualisation of data in multiple dimensions 234 simultaneously, which is important within sports performance analysis when addressing questions that orient how 235 collective player, team or competition behaviours (dimension one) change over time (dimension two) [25]. 236 Further, and perhaps practically most important for coaches and competition administrators, the graphical outputs 237 of nMDS enable the interpretation of object interactions, such as the similarity between players in a team, teams 238 in a competition or competitions over time [25].

Beyond team sports performance analysis and the three examples presented here, the authors perceive that nMDS could yield implications for other areas of sport science. For example, it is common for strength and conditioning specialists to record multiple metrics when quantifying training load [29]. The data properties of these metrics are often diverse, with practitioners typically integrating continuous measures of external load such as distances run 243 above certain velocity thresholds with categorical measures of internal load such as perceived exertion [29]. 244 Accordingly, given that nMDS is a rank-based approach, makes few assumptions about underlying data properties 245 and does not assume linear relationships between variables within a dataset [17], strength and conditioning 246 practitioners could use this ordination technique to simultaneously analyse and visualise multivariate training load 247 datasets to delineate relationships between athletes at different levels of experience (e.g. 1st year compared to +5 248 year athletes) or phases of a season(s). Concomitantly, it is common for talent identifiers to integrate both objective 249 and subjective measures to inform decisions surrounding player recruitment [30]. Given the likely diverse 250 properties of such data, nMDS may assist talent recruiters with the recognition of youngsters who express similar 251 multivariate qualities to elite senior (rostered) athletes. Specifically, the positioning of youngsters on an ordination 252 surface relative to their elite senior counterparts may enable the identification of similar player 'types', which 253 would be pertinent information when attempting to compensate weaknesses on a playing roster. However, despite 254 the promising utility of this analysis for the sports sciences, it does possess limitations that warrant resolution. 255 Primarily, it does not enable coaches to gain insights from qualitative skill qualities that would likely be of value 256 when basing decisions around factors such as player recruitment or team selection. Accordingly, while this 257 analysis is likely to offer quantitative support, coaches may wish to consider its use complementary to qualitative 258 sources to optimise its decisional support.

259 Analytical cross-disciplinary learning transfers have been discussed elsewhere [13]. Notably, Cutler et al. [31] 260 demonstrated the utility of the random forest algorithm (a machine learning technique used in computational 261 sciences) for classification and prediction in ecology. Additionally, Huang et al. [32] transferred analytical 262 knowledge from computational science to economics by using support vector machines to forecast stock market 263 variations. Coupled, these studies demonstrate the benefit of cross-disciplinary learning to address pertinent 264 research questions within their respective fields. Thus, while nMDS was the analytical technique discussed here, 265 a concomitant outcome of this work is to encourage sport scientists to 'think outside the box' when analysing 266 data. By doing so, it is conceivable that sport scientists can approach research questions with novel and informative 267 analyses, providing coaches with greater objective support.

268 5. Acknowledgments

Carl T. Woods, Sam Robertson, Neil French Collier, Anne L. Swinbourne and Anthony S. Leicht declare that
they have no conflict of interest. Furthermore, no funding was acquired or provided during the completion of this
work.

272 References

- Magill RA, Anderson DI. Motor learning and control: concepts and applications. 10th ed. McGraw-Hill
 Education; 2014.
- 275 2. Woodworth RS, Thorndike EL. The influence of improvement in one mental function upon the efficiency
 276 of other functions. Psychol. Rev. 1901;8:247-61.
- 277 3. Causer J, Ford PR. "Decisions, decisions, decisions": transfer and specificity of decision-making skill
 278 between sports. Cogn Process. 2014;15:385-389.
- 4. Adolph KE. Learning in the development of infant locomotion. Monogr Soc Res Child Dev. 1997;62:1-158.
- 5. Lindeblad E, Nilsson S, Gustafson S, Svensson I. Assistive technology as reading interventions for children
 with reading impairments with a one-year follow up. Disabil Rehabil Assist Technol. 2016; [Epub ahead of
 print].
- 6. Breckwoldt J, Lingemann C, Wagner P. Resuscitation training for lay persons in first aid courses: transfer
 of knowledge, skills and attitude. Anaesthesist. 2016;65:22-6.
- 7. Bonney E, Jelsma D, Ferguson G, Smits-Engelsman B. Variable training does not lead to better motor
 learning compared to repetitive training in children with and without DCD when exposed to active video
 games. Res Dev Disabil. 2017;62:124-36.
- Rienhoff R, Hopwood MJ, Fischer L, Strauss B, Baker J, Schorer J. Transfer of motor and perceptual skills
 from basketball to darts. Front Psychol. 2013;12:593.
- 9. Bullock N, Gulbin JP, Martin DT, Ross A, Holland T, Marino F. Talent identification and deliberate
 programming in skeleton: ice novice to winter Olympian in 14 months. 2009; J Sports Sci;15:397-404.
- 292 10. Seifert L, Wattebled L, L'hermette M, Bideault G, Herault R, & Davids K. Skill transfer, affordances and
 293 dexterity in different climbing environments. Hum Mov Sci. 2013;32:1339-52.
- 294 11. MacNamara A, Collins D. Second chances: investigating athletes' experiences of talent transfer. PLoS One.
 2015 doi: 10.1371/journal.pone.0143592
- 12. Halson S, Martin DT, Gardner AS, Fallon K, Gulbin J. Persistent fatigue in a female sprint cyclist after a
 talent-transfer initiative. Int J Sports Physiol Perform. 2006;1:65-9.
- 13. Ivanitskaya L, Clark D, Montgomery G, Primeau R. Interdisciplinary learning: process and outcomes.
 Innovative Higher Education. 2002;27:95-11.

- 300 14. Duarte R, Araújo D, Correia V, Davids K. Sports teams as superorganisms: implications for sociobiological
 301 models of behaviour for research and practice in team sports performance analysis. Sports Med.
 302 2012;42:633-42.
- 303 15. De'arth G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological
 304 data analysis. Ecology. 2000;81:3178-3192.
- 305 16. Stein M, Janetzko H, Seebacher D, et al. How to make sense of team sport data: from acquisition to data
 306 modelling and research aspects. Data. 2017 doi: 10.3390/data2010002
- 307 17. Kenkel NC, Orloci L. Applying metric and nonmetric multidimensional scaling to ecological studies: some
 308 new results. Ecology. 1986;67:919-928.
- 309 18. Hout MC, Goldinger SD, Brady KJ. MM-MDS: a multidimensional scaling database with similarity ratings
- for 240 object categories from the massive memory picture database. PLoS One. 2014 doi:
 org/10.1371/journal.pone.0112644
- 312 19. Oksanen J, Blanchet GF, Kindt R, et al. Vegan: community ecology package. 2015. https://cran.r313 project.org/web/packages/vegan of subordinate document. Accessed 22 Feb 2017.
- 20. Coutts AJ, Quinn J, Hocking J, Castagna C, Rampinini E. Match running performance in elite Australian
 rules football. J Sci Med Sport. 2009;13:543-48.
- 316 21. Dawson B, Hopkinson R, Appleby B, Stewart G, Roberts C. Player movement patterns and game activities
 317 in the Australian football league. J Sci Med Sport. 2004;7:278-91.
- Woods CT, Raynor AJ, Bruce L, McDonald Z, Robertson S. The application of a multidimensional approach
 to talent identification in Australian football. J Sports Sci. 2016;34:1340-5
- 320 23. Wickham H. Package 'ggplot2'. 2016. https://cran.r-project.org/web/packages/ggplot2 of subordinate
 321 document. Accessed 22 Feb 2017.
- 322 24. Gabbett TJ. Effects of physical, technical, and tactical factors on final ladder position in semiprofessional
 323 rugby league. Int J Sports Physiol Perform. 2014;9:680-88
- 324 25. Gauch HG. Multivariate Analysis and Community Structure. Cambridge University Press, Cambridge;
 325 1982.
- 326 26. Gomez MA, Lorenzo A, Sampaio J, Ibanez SJ, Ortega E. Game-related statistics that discriminant winning
 and losing teams from the Spanish men's professional basketball teams. Collegium Antropol. 2008;32:315-
- **328** 19.

- 329 27. Scanlan AT, Dascombe BJ, Reaburn P, Dalbo VJ. The physiological and activity demands experienced by
 330 Australian female basketball players during competition. J Sci Med Sport. 2012;15:341-7.
- 28. Pion J, Hohmann A, Liu T, Lenoir M, Segers V. Predictive models reduce talent development costs in female
 gymnastics. J Sport Sci. 2017;35:806-811.
- 333 29. Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J
 334 Sports Physiol Perf. 2017;12:161-70.
- 335 30. Mann D, Dehgansai N, Baker J. Searching for the elusive gift: advances in talent identification in sport. Curr
 336 Opin Psychol. In-press. 2017 doi: 10.1016/j.copsyc.2017.04.016
- 337 31. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. Random forests for
 338 classification in ecology. Ecology. 2007;88:2783-92.
- 339 32. Huang W, Nakamori Y, Wang SY. Forecasting stock market movement direction with support vector
- 340 machine. Comput Oper Res. 2005;32:2513-2522

341	Figure 1. An example of an ordination plot using nMDS of a dissimilarity matrix calculated from organism
342	behaviour in an ecosystem

343

- 344 Figure 2. The ordination plot using nMDS of a dissimilarity matrix calculated from individual performance
- 345 indicators of Brownlow medallists from 2001 to 2016
- 346
- 347 Figure 3. An ordination plot using nMDS of a dissimilarity matrix calculated from team performance indicators
- 348 of each NRL team in the 2016 season

349

- 350 Figure 4. An ordination plot using nMDS of a dissimilarity matrix calculated from team performance indicators
- for each country participating in the 2004, 2008, 2012 and 2016 male Olympic basketball tournaments

352





