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Abstract 13 

Background: Learning transfer is defined as an individual’s capability to apply prior learnt perceptual, motor or 14 

conceptual skills to a novel task or performance environment. In the sport sciences, learning transfers have been 15 

investigated from an athlete-specific perspective. However, sport scientists should also consider the benefits of 16 

cross-disciplinary learning to aid critical thinking and metacognitive skill gained through the interaction with 17 

similar quantitative scientific disciplines.  18 

Objective: Using team sports performance analysis as an example, this study aimed to demonstrate the utility of 19 

a common analytical technique in ecology to the sports sciences; namely, non-metric multidimensional scaling.  20 

Methods: To achieve this aim, three novel research examples using this technique are presented, each of which 21 

enables the analysis and visualisation of athlete (organism), team (aggregation of organisms) and competition 22 

(ecosystem) behaviours.  23 

Results: The first example reveals the technical behaviours of Australian Football League Brownlow medallists 24 

from the 2001 to 2016 seasons. The second example delineates dissimilarity in higher and lower ranked National 25 

Rugby League teams within the 2016 season. Lastly, the third example shows the evolution of game-play in the 26 

basketball tournaments between the 2004 to 2016 Olympic Games. 27 

Conclusions: In addition to the novel findings of each example, the collective results demonstrate that by 28 

embracing cross-disciplinary learning and drawing upon an analytical technique common to ecology, novel 29 

solutions to pertinent research questions within sports performance analysis could be addressed in a practically 30 

meaningful way. Cross-disciplinary learning may subsequently assist sport scientists in the analysis and 31 

visualisation of multivariate datasets. 32 

Key points 33 

• The graphical outputs of non-metric multidimensional scaling (nMDS) enable the recognition of non-34 

linear behavioural patterns at the athlete (example one), team (example two) and competition (example 35 

three) levels. 36 

• Accordingly, cross-disciplinary learning may assist sport scientists with the resolution of practically 37 

meaningful questions in performance analysis. 38 

• Sport scientists in other sub-disciplines are encouraged to ‘think outside the box’ when analysing and 39 

visualising data. 40 

Key words: Transfer of learning; cross-disciplinary learning; sports performance analysis; data visualisation  41 
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1. Introduction 42 

An integral component of learning concerns an individual’s capability to transfer its production from one 43 

performance context to another [1]. This concept, referred to as a transfer of learning [2], typically extends to 44 

motor, perceptual or conceptual tasks or variables. It suggests that tasks expressing a similar production, outcome 45 

or performance environment may afford greater transference (i.e., a positive transfer of learning) [3, 4]. The 46 

principle of learning transfer has been examined in and across a range of scientific disciplines, such as educational 47 

science [5], health and medical science [6], rehabilitation science [7], and sport science [8]. With a focus on the 48 

sport sciences, there has been a large quantity of work examining motor and perceptual learning transfers between 49 

sports or performance environments [9-12]. In each of these studies, athletes have been the target population, with 50 

their capability to transfer a prior learnt skill to a relatively novel sport being the outcome of interest. 51 

However, learning transfers can also be encouraged from the sport scientist’s perspective, in addition to the 52 

athletes they interact with. Cross-disciplinary learning is likely to extend sport scientists critical thinking and 53 

metacognitive skill through novel perspectives generated by the interaction with similar quantitative sciences [13]. 54 

For example, Duarte et al. [14] discussed how sporting teams could be viewed as ‘superorganisms’, in a similar 55 

fashion to how ecologists view aggregated organisms, such as flocks of birds, given that athletes are likely to base 56 

movement decisions on environmental information extracted from opponent (predator) and teammate (organism 57 

aggregate) relative positioning. Considering players and sporting teams in such a nuanced way can provide novel 58 

insights into collective behaviours and patterns in play [14]. However, extracting meaning from these often large, 59 

longitudinal and multivariate datasets can represent an analytical challenge. Further, linear statistical approaches, 60 

which are popular in the sport sciences, may not adequately reveal non-linear behavioural patterns [15]. Thus, 61 

examination of this data may require alternative or ‘outside of the box’ approaches adopted from other disciplines. 62 

One potential discipline of relevance to sport scientists is ecology, which often seeks to delineate non-linear 63 

behavioural patterns across an organism type, an aggregation of organisms or an ecosystem [15, 16]. This 64 

analytical cross-disciplinary learning transfer from ecology to the sport sciences may enable the emergence of 65 

novel, data visualisation techniques, while simultaneously increasing the sophistication of research questions 66 

regarding athlete and team behaviour. Ultimately, this may provide sports coaches or sporting administrators with 67 

greater objectivity to support the decisional processes they commonly encounter. 68 

One particular analytical and visualisation approach commonplace in ecology for the study of organism behaviour 69 

is non-metric multidimensional scaling (nMDS) [17]. Fundamentally, nMDS is an indirect gradient analysis, 70 
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producing an ordination based on a dissimilarity matrix [17]. This matrix is ascertained via isotopic regression, 71 

which is a type of non-parametric regression that iteratively searches for a least squares fit based on ranks of the 72 

dissimilarities [17, 18]. Accordingly, this is a ranked-based approach, where original distance data is substituted 73 

with ranks. The output of this isotopic regression provides a measure of ‘stress’, which decreases as the rank-74 

order agreement between dissimilarities improves; lower ‘stress’ values (i.e., closer to ‘0’) represent a closer fit 75 

[19]. In contrast to other ordination techniques, nMDS makes few assumptions about the data properties. For 76 

example, a principal component analysis (PCA) assumes linear relationships between variables within datasets, 77 

whereas nMDS does not, enabling its utility in multivariate datasets that contain diverse data properties [17]. 78 

Further, while other ordination techniques attempt to maximise the variance between objects in an ordination, 79 

nMDS represents, as closely as possible, the pairwise dissimilarity between objects [18, 19]. Subsequently, the 80 

graphical output of nMDS provides a map that spatially illustrates the relationships and patterns between samples 81 

in a reduced two- or three-dimensional space [18] (Figure 1). Transferred to team sports performance analysis, 82 

performance indicators (e.g. behaviours) may be coded as the samples within a multivariate dataset, with the 83 

dissimilarity of these samples being analysed between players in a team or group (e.g. organisms in an aggregate), 84 

teams in a competition (e.g. aggregates in an ecosystem) or competitions over time (e.g. ecosystem dynamics). 85 

**** INSERT FIGURE 1 ABOUT HERE **** 86 

Using team sports performance analysis as the sub-discipline, this study aims to demonstrate the applicability of 87 

nMDS to sport science. To achieve this aim, three original research examples will be independently presented. 88 

Each example was chosen to reflect player (organism), team (aggregation of organisms) and competition 89 

(ecosystem) behaviours, complementing the ‘superorganism’ perspectives offered by Duarte et al. [14].  90 

2. Methodology 91 

The datasets used in each proceeding example originate from commercially accessible sources, with institutional 92 

ethics declaration being acquired prior to data extraction. Despite nuanced methodologies being described in each 93 

proceeding example, all analyses were performed using the ‘vegan’ package via the metaMDS function in R, 94 

which is a commonly used package for nMDS in ecology [19]. Further, the R code used in each example is 95 

presented as Supplementary Material.  96 

3. Results 97 

Example 1 – Player Behaviour: Revealing technical skill behaviour in Brownlow Medal winning Australian 98 

Football League players from the 2001 to 2016 seasons 99 
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Introduction: Australian football (AF) is a team invasion sport that requires physical, technical and perceptual 100 

skills [20-22]. At the elite level, the Australian Football League (AFL), game-play is contested between two teams 101 

of 22 players, who field no more than 18 players at a time. Following the conclusion of each 23-week ‘home and 102 

away’ game, the umpires award three votes to the player from either team whom they perceive exemplified the 103 

‘best and fairest’ on the ground. To assist with this ‘voting’ process, the umpires are provided with a range of 104 

player technical skill involvements immediately following each game. At the conclusion of the season, the player 105 

who accrues the greatest number of votes is then awarded the Brownlow Medal; or more colloquially, the 106 

competition’s ‘best and fairest’ player. Understanding the technical characteristics of these winners would be of 107 

scientific and practical interest by offering insight into the evolution of the performance of the best players in the 108 

AFL. This example aims to reveal the technical skill characteristics of Brownlow medallists between the 2001 to 109 

2016 AFL seasons using nMDS. 110 

Methodology: Brownlow medallists from the 2001 to 2016 seasons were identified (n=19), with three separate 111 

winners awarded in the 2003 season and two separate winners in the 2012 season. Fifteen individual performance 112 

indicators were extracted for each player within the analysed period from a commercial source 113 

(http://www.afl.com.au/stats). Using the individual performance indicators, a dissimilarity matrix was built with 114 

the Bray-Curtis measure and plotted in two dimensions. The ordination surfaces were fitted using generalised 115 

additive models that employed an isotopic smoother via thin-plate regression splines [18]. Further, ‘arrows’ were 116 

used to denote the progression of profiles across the ordination surface using the geom_point, geom_segment, and 117 

geom_path functions in the ‘ggplot2’ package [23]. 118 

Results: The dissimilarity matrix solution was reached after 20 iterations (stress = 0.15, rmse = 1.4 x 10-4, 119 

maximum residual = 4.8 x 10-4). The ordination plot of the matrix showed a high seasonal dissimilarity (Figure 120 

2). Notably, the profile of the 2001 winner was markedly dissimilar to the 2002 winner. Further, despite two of 121 

the three winners in the 2003 season possessing similar ordination positions, the third winner for that season 122 

possessed a relatively dissimilar position (Figure 2). Following the 2003 season, the player profiles then 123 

‘zigzagged’ across the ordination surface, displaying large season-to-season dissimilarity. Relative to the seasonal 124 

positioning of each player, the largest ranked dissimilarity was observed between the profiles of the 2014 and 125 

2015 winners. 126 

**** INSERT FIGURE 2 ABOUT HERE **** 127 



6 
 

Conclusions: Using nMDS, the results of this example showed high dissimilarity in the technical skill 128 

characteristics of AFL Brownlow medallists between the 2001 to 2016 seasons; enabling three main conclusions 129 

to be drawn. Firstly, the objective multivariate qualities that umpires deemed worthy of votes may have seasonally 130 

changed. Secondly, the objective player profiles reflective of a dominant performance may be continually 131 

evolving. Thirdly, changing rule interpretations throughout the analysed period may have influenced how players 132 

obtained ball possession or interacted with their opponents, potentially impacting on an umpires’ perceptions of 133 

‘best and fairest’ play.  134 

Example 2 – Team Behaviour: Revealing dissimilarity in higher and lower ranked teams within the 2016 135 

National Rugby League season 136 

Introduction: Rugby league (RL) is a team invasion sport characterised by a diverse set of multidimensional 137 

performance qualities [24]. The elite competition in Australia and New Zealand is the National Rugby League 138 

(NRL), which currently consists of 16 teams who compete in a 26-week ‘premiership’ season. Within this season, 139 

teams are awarded two points for a win, with the accumulation of these points being used to rank teams on a 140 

ladder (16 being the lowest rank and one being the highest rank). The eight highest ranked teams at the conclusion 141 

of the premiership season then compete in a finals series for the opportunity to compete in the NRL grand final. 142 

Resolving the technical dissimilarity of team’s ranked high or low on the ladder may assist coaches with the design 143 

of game-plans for prospective seasons. Additionally, objective insights into opponent dissimilarity would likely 144 

assist with team selection strategies by enabling coaches to select rostered players to generate a (mis)match 145 

between an opponent’s characteristics. Using nMDS, this example aims to delineate the dissimilarity of teams 146 

ranked high or low on the ladder at the conclusion of the 2016 NRL premiership season. 147 

Methodology: Fifteen team performance indicators were extracted from a commercial source 148 

(http://www.nrl.com/stats) for each of the 16 NRL teams following the 2016 season. Teams were apriori classified 149 

into quartiles based upon their ladder ranking; these being the top four (1-4), upper middle four (5-8), lower middle 150 

four (9-12) and bottom four (13-16). Using the team performance indicators, a dissimilarity matrix was built with 151 

the Bray-Curtis measure and plotted in two dimensions. The ordination surfaces were fitted using generalised 152 

additive models employing an isotopic smoother via thin-plate regression splines [18]. Accordingly, teams were 153 

labelled and colour coded relative to their ladder position on the ordination using the geom_label and 154 

geom_segment functions, while their progression across the ordination surface was illustrated using the 155 

geom_path function [23]. 156 
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Results: The dissimilarity matrix solution was reached after 20 runs (stress = 0.07, rmse = 3.6 x 10-6, maximum 157 

residual = 1.1 x 10-5). The ordination plot shows a similarity in the positioning of teams relative to their quartile 158 

(Figure 3). However, despite placing in quartile three, the West Tigers displayed a profile that expressed relative 159 

similarity to the teams ranked in quartile two. Certain team profiles appeared more similar than others, with the 160 

Raiders and Cowboys showing similarity relative to the other top four teams, while the Sea Eagles and Eels (who 161 

are located below the Sea Eagles on Figure 3) possessed an almost identical positioning on the ordination surface. 162 

**** INSERT FIGURE 3 ABOUT HERE **** 163 

Conclusions: A high dissimilarity was observed between NRL teams grouped in different quartiles following the 164 

2016 season. Specifically, teams in quartile one were located at the bottom left of the ordination surface, while 165 

teams in quartile four located the top right of the ordination surface. This indicates that the top four teams 166 

generated unique profiles relative to their lower performing opponents in the 2016 season. Further, the positioning 167 

of certain teams on the ordination surface revealed similar profiles, which suggests similar game-plans and/or 168 

player types. 169 

Example 3 – Competition Behaviour: The evolution of game-play in an Olympic basketball tournament from 170 

2004 to 2016 171 

Introduction: Basketball is team court sport consisting of physical, technical and perceptual components [26, 27]. 172 

Arguably the most recognised international basketball tournament is within the summer Olympic Games. For 173 

males, it was first introduced at the summer Olympics in 1936, with participating countries currently competing 174 

against one another in two separate pools consisting of six teams. At the conclusion of this round robin ‘group 175 

stage’, the four highest placed teams in each pool then compete in knockout quarterfinal, semi-final and ‘gold 176 

medal’ games. Understanding how game-play in this tournament has evolved would be of interest to performance 177 

analysts and coaches, as it would likely assist with the continued design of ‘contemporary’ game-plans. 178 

Accordingly, this example examines the evolution of game-play in male Olympic basketball tournaments from 179 

2004 to 2016. 180 

Methodology: Twelve team performance indicators were collected from a commercially accessible source 181 

(http://www.eurobasket.com/Olympic-Games/basketball.asp) for each male team participating in 2004, 2008, 182 

2012 and 2016 summer Olympic Games. This resulted in 48 teams across the four Olympic Games. Using the 183 

team performance indicators, a dissimilarity matrix was built with the Bray-Curtis measure and plotted in two 184 

dimensions, with ordination surfaces being fit via generalised additive models employing an isotopic smoother 185 
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via thin-plate regression splines [18]. Additionally, convex hulls were overlayed on the ordination surface to 186 

cluster each Olympic Games using the geom_polygon function [23], while teams were plotted on the ordination 187 

surface using the geom_point function [23]. 188 

Results: The dissimilarity matrix solution was reached after 20 runs (stress = 0.21, rmse = 1.4 x 10-4 maximum 189 

residual = 7.6 x 10-4). Despite the 2004 and 2008 tournaments showing dissimilarity noted by the spread of teams 190 

on the boundary of the convex hulls, team similarity progressively increases over the 12 years. Specifically, team 191 

profiles are moving toward the top right corner of the ordination surface (Figure 4). Relative to the 2004, 2008 192 

and 2012 tournaments, the 2016 tournament displayed the greatest similarity in the profiles of competing teams, 193 

shown by their grouping within the purple convex hull (i.e., smaller surface area) (Figure 4). 194 

**** INSERT FIGURE 4 ABOUT HERE **** 195 

Conclusions: There was a distinctive progression in the positioning of team profiles on the ordination surface from 196 

the 2004 tournament to the 2016 tournament. The 2016 season shows the highest relative similarity based on the 197 

size of the convex hull, with teams clustering in the top right corner of the ordination surface. This indicates that 198 

game-play in the Olympics has become more homogenised, with teams expressing similar profiles. It could be 199 

speculated that the dominance shown by certain countries in this tournament may therefore be reducing, with the 200 

team standards equalising as coaches become more strategically equipped to match the profiles of more dominant 201 

countries. Beyond the confines of basketball, this example shows the power of nMDS to reveal the evolution of 202 

competition dynamics both between teams and across multiple seasons. 203 

4. Discussion 204 

Using an analytical technique common to ecology, this study aimed to demonstrate the utility of nMDS in team 205 

sport performance analysis. To achieve this aim, three original research examples were presented, each orienting 206 

player (organism), team (aggregation of organisms) and competition (ecosystem) behaviours. Despite each 207 

example yielding idiosyncratic findings, the collective results demonstrate the capability of nMDS to 208 

simultaneously analyse and visualise non-linear behaviours extracted from multivariate datasets. Accordingly, 209 

each example displays how coaches and competition administrators can obtain decisional support through the 210 

interpretation of multivariate data signatures uncovered by nMDS, rather than generating inferences based upon 211 

univariate model sets [25]. While it is known that sport scientists already engage in cross-disciplinary learning 212 

(for an example, see Pion et al. [28]), this work offers a comprehensive basis for how they may wish to continually 213 
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draw upon analyses or theories ingrained in other quantitative sciences to assist with the resolution of questions 214 

in their respective sub-discipline of sport science. 215 

As briefly discussed in each example, the graphical output of nMDS is likely to be compelling for coaches or 216 

sports administrators in numerous ways. Firstly, although example one shows the dissimilarity between AFL 217 

Brownlow medallists, the methodology could be extended to inform team selection strategies by highlighting the 218 

level of (dis)similarity between players on a roster or between players in a competition. This information, would 219 

be critical when attempting to replicate certain player ‘types’ or when selecting players that generate a (mis)match 220 

to an opponent in an effort to generate a competitive advantage. However, given the dyadic requirements of team 221 

sports, it would be beneficial for coaches or analysts to consider player-to-player interactions when using nMDS 222 

as a basis for team selection. The second example may assist coaches with the establishment of team profiles that 223 

explicitly express (dis)similarity to an opposition, enabling them to establish both unique and innovative 224 

multivariate profiles or to match the profile of a more dominant opponent. Lastly, the third example could be used 225 

to show how environmental changes (such as rule changes) alter the dynamics of team profiles at the competition 226 

level. Knowledge of this information is likely to offer sports administrators with an objective basis to assist with 227 

decisions orienting how game-play may progress in prospective seasons. 228 

This study offers a unique perspective of the transferability of analytical methods between scientific disciplines. 229 

Indeed, it is possible that more common analyses within the sport sciences may have offered similar results by 230 

observing magnitudinal changes between individual performance indicators across players, teams or competitions. 231 

However, linear and univariate approaches are limited in what information they can extract from multivariate 232 

datasets [25]. As shown, nMDS enables the analysis and visualisation of data in multiple dimensions 233 

simultaneously, which is important within sports performance analysis when addressing questions that orient how 234 

collective player, team or competition behaviours (dimension one) change over time (dimension two) [25]. 235 

Further, and perhaps practically most important for coaches and competition administrators, the graphical outputs 236 

of nMDS enable the interpretation of object interactions, such as the similarity between players in a team, teams 237 

in a competition or competitions over time [25]. 238 

Beyond team sports performance analysis and the three examples presented here, the authors perceive that nMDS 239 

could yield implications for other areas of sport science. For example, it is common for strength and conditioning 240 

specialists to record multiple metrics when quantifying training load [29]. The data properties of these metrics are 241 

often diverse, with practitioners typically integrating continuous measures of external load such as distances run 242 
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above certain velocity thresholds with categorical measures of internal load such as perceived exertion [29]. 243 

Accordingly, given that nMDS is a rank-based approach, makes few assumptions about underlying data properties 244 

and does not assume linear relationships between variables within a dataset [17], strength and conditioning 245 

practitioners could use this ordination technique to simultaneously analyse and visualise multivariate training load 246 

datasets to delineate relationships between athletes at different levels of experience (e.g. 1st year compared to +5 247 

year athletes) or phases of a season(s). Concomitantly, it is common for talent identifiers to integrate both objective 248 

and subjective measures to inform decisions surrounding player recruitment [30]. Given the likely diverse 249 

properties of such data, nMDS may assist talent recruiters with the recognition of youngsters who express similar 250 

multivariate qualities to elite senior (rostered) athletes. Specifically, the positioning of youngsters on an ordination 251 

surface relative to their elite senior counterparts may enable the identification of similar player ‘types’, which 252 

would be pertinent information when attempting to compensate weaknesses on a playing roster. However, despite 253 

the promising utility of this analysis for the sports sciences, it does possess limitations that warrant resolution. 254 

Primarily, it does not enable coaches to gain insights from qualitative skill qualities that would likely be of value 255 

when basing decisions around factors such as player recruitment or team selection. Accordingly, while this 256 

analysis is likely to offer quantitative support, coaches may wish to consider its use complementary to qualitative 257 

sources to optimise its decisional support. 258 

Analytical cross-disciplinary learning transfers have been discussed elsewhere [13]. Notably, Cutler et al. [31] 259 

demonstrated the utility of the random forest algorithm (a machine learning technique used in computational 260 

sciences) for classification and prediction in ecology. Additionally, Huang et al. [32] transferred analytical 261 

knowledge from computational science to economics by using support vector machines to forecast stock market 262 

variations. Coupled, these studies demonstrate the benefit of cross-disciplinary learning to address pertinent 263 

research questions within their respective fields. Thus, while nMDS was the analytical technique discussed here, 264 

a concomitant outcome of this work is to encourage sport scientists to ‘think outside the box’ when analysing 265 

data. By doing so, it is conceivable that sport scientists can approach research questions with novel and informative 266 

analyses, providing coaches with greater objective support. 267 
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Figure 1. An example of an ordination plot using nMDS of a dissimilarity matrix calculated from organism 341 

behaviour in an ecosystem 342 

 343 

Figure 2. The ordination plot using nMDS of a dissimilarity matrix calculated from individual performance 344 

indicators of Brownlow medallists from 2001 to 2016 345 

 346 

Figure 3. An ordination plot using nMDS of a dissimilarity matrix calculated from team performance indicators 347 

of each NRL team in the 2016 season 348 

 349 

Figure 4. An ordination plot using nMDS of a dissimilarity matrix calculated from team performance indicators 350 

for each country participating in the 2004, 2008, 2012 and 2016 male Olympic basketball tournaments  351 

  352 
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