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Abstract 

Most imaging methods, including peripheral Quantitative Computed Tomography (pQCT), are 

susceptible to motion artefacts particularly in fidgety paediatric populations. Methods 

currently used to address motion artefact include manual screening (visual inspection) and 

objective assessments of the scans. However, previously reported objective methods either 

cannot be applied on the reconstructed image or have not been tested for distal bone sites. 

Therefore, the purpose of the present study was to develop and validate motion artefact 

classifiers to quantify motion artefact in pQCT scans. Whether textural features could provide 

adequate motion artefact classification performance in two adolescent datasets with pQCT 

scans from tibial and radial dia- and epiphysis was tested. The first dataset was split into 

training (66% of sample) and validation (33% of sample) datasets. Visual classification was 

used as the ground truth. Moderate to substantial classification performance (J48 classifier, 

kappa-coefficients from 0.57 to 0.80) was observed in the validation dataset with the novel 

texture-based classifier. In applying the same classifier to the second cross-sectional dataset, 

slight to fair (κ = 0.01 to 0.39) classification performance was observed. Overall, this novel 

textural analysis based classifier provided moderate to substantial classification of motion 

artefact when the classifier was specifically trained for the measurement device and 

population. Classification based on textural features may be used to pre-screen obviously 

acceptable and unacceptable scans, with subsequent human-operated visual classification of 

any remaining scans. 

 

Keywords: Bone QCT; Morphology; Precision; Machine Learning; Repeatability.  
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1. Introduction 

It is widely acknowledged that computed tomography scans are susceptible to 

methodological issues such as partial volume effect and beam hardening, operating errors 

such as positioning errors, and movement of the individual during a scan, the last of which 

manifests as movement artefact (1). While some methodological issues are unavoidable, 

operator errors can be minimised with training, and movement artefacts can be rectified by 

re-scanning. However, re-scanning is not always desirable or practical given the additional 

radiation dose and time required. Moreover, re-scanning may occasionally not be required as 

it is well-established that a limited amount of visible motion artefact does not invalidate a 

scan (1–5). Anecdotally, children are particularly fidgety (1) and the operator is often left with 

a scan that has conspicuous signs of motion artefact (streaking, discontinuity of cortical 

structure (1–6)) and the decision of whether or not to re-scan. The acceptable levels of motion 

artefact have been defined for both high-resolution (2–5) and regular computed tomography 

(1). However, the method developed for regular peripheral computed tomography (pQCT) (1) 

is only applicable to bone shafts and not distal or proximal bone sites with narrow cortices. 

 

The effects caused by motion artefact on the image reconstruction in computed tomography 

were explored by Yang et al. (6), but even with this comprehensive understanding of motion-

caused artefacts, a consistent standard operating procedure for motion artefact 

quantification has yet to emerge. The approaches used to detect motion artefact include 

subjective visual scaling (1, 4, 5, 7), quantification of translation and rotation based on the 

measured sinogram (measured projections) (2–4), and exploring analysis results utilising 

varying analysis thresholds (1). The objective quantification of translation based on the 

sinogram can only be done prior to reconstructing the image with filtered back-projection (2). 
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All computed tomorgraphy devices measure the sinogram, but the sinogram cannot be 

extracted from some devices and hence is not an applicable method in all cases. Although the 

agreement between raters for visual scaling is rather good for normal and high-resolution 

pQCT (1, 4, 5), an automated method may prove helpful in optimising consistency and 

reliability, particularly in very large datasets and multisite studies. 

 

Since visual scaling is based on the appearance of the image after reconstruction, and the 

motion artefact typically includes streaking and discontinuities of the bone cortex (6), textural 

analysis could provide a suitable option for semi-quantitative detection of motion artefact 

from computed tomography scans in the absence of the measured sinogram. Many textural 

analysis approaches capturing various properties of texture in medical imaging have been 

presented in the literature (e.g. reviewed in (8, 9)). Of the various approaches, local binary 

patterns (LBP) appear particularly well-suited for motion artefact detection because LBP 

capture streaking in images (10), have been successfully applied in automated radiographic 

image measurement site annotation in the past (11), and is computationally efficient to 

implement (10). However, LBP has yet to be tested as a feature to quantify motion artefact. 

 

The purpose of the present study was to develop and validate automated motion artefact 

classifiers to quantify motion artefact in pQCT scans. Specifically, the aim was to evaluate 

whether LBP could provide better classification performance using visual inspection as the 

ground truth compared to applying current state of the art objective motion artefact 

measures as classification features.  
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2. Materials and Methods 

The present study is a reanalysis of previously published AMPitup (12) (described below) and 

Griffith University Bone Densitometry Research Laboratory (13–20) datasets (described in 

section 2.7).  

 

2.1. AMPitup dataset 

The AMPitup Program is an exercise intervention program for adolescents with a movement 

disorder (21), being conducted at the University of Notre Dame Australia, and is reported as 

the AMPitup dataset in the present paper. The initial bone results of the program have been 

published previously (12). In brief, participants were aged between 12 and 18 years and were 

eligible for the AMPitup program if they had a Neuromuscular Development Index (NDI) of 85 

or below (≤ 1SD compared to the healthy mean) (mild motor disability) using the McCarron 

Assessment of Neuromuscular Development (MAND) (22, 23), and/or a history of movement 

difficulties (such as poor coordination or clumsiness, slowness and inaccuracy of motor skills 

that negatively impact daily living, school, leisure and play activities (24)). Participants with 

significant intellectual or physical disabilities that limited their ability to participate in the 

exercise program were excluded. This study was approved by the University of Notre Dame 

Australia Human Research Ethics Committee. Prior to enrolment, written informed consent 

was provided by the primary caregiver and assent was given by the adolescents. 

 

2.2. Anthropometry 

Height was measured using a stadiometer (Mentone Educational Centre; Victoria, Australia), 

and recorded to the nearest 0.1 centimetre (cm), and weight was measured to the nearest 

0.1 kilogram (kg) using a digital weight scale (HoMEDICS; Victoria, Australia). 
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2.3. Bone assessments 

Peripheral Quantitative Computed Tomography (pQCT, XCT-3000, Stratec Medizintechnik 

GmbH, Pforzheim, Germany) was used to evaluate cross-sections of the tibia and radius at 4% 

and 66% (defined from a scout view) of the tibial (from medial malleolus towards the knee 

joint cleft) and ulnar (from styloid process of ulna towards the olecranon) lengths from the 

distal endplates respectively (in-plane pixel size 0.4 x 0.4 mm, slice thickness 2.3 mm). All 

AMPitup participant scans were conducted at Princess Margaret Hospital for Children in the 

Department of Radiology, Perth, Western Australia. Participants were seated in a stationary 

chair, adjusted to their height. The pQCT scans were taken from the stance leg during kicking 

and the dominant hand used for writing.  

 

2.4. pQCT analysis 

All pQCT analyses were conducted using a custom-written Matlab (R2015b, Mathworks, Inc., 

Natick, MA, USA) script (see supplementary materials). A 3 x 3 median filter was applied prior 

to further analysis. Thereafter, cortical bone area and density were measured by creating 

binary masks. The first step was to identify the limb by applying a threshold of ≥ -40 mg/cm³ 

(limb mask, anything below the threshold was air). Subsequently pixel groups ≥ 550 mg/cm³ 

were outlined and filled resulting in two regions in the mask (tibia and fibula/radius and ulna, 

anything below the threshold is not cortical bone). The larger region was chosen as the tibial 

region of interest for the lower extremity scans, whereas the most central region within the 

upper limb mask was used to identify the radius (bone mask). 
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2.5. Motion artefact quantification 

Analysis for three different motion artefact features was implemented: 1) ‘positive 

movement’ proposed by Blew et al. (1), 2) objective translation and rotation based on the 

measured sinogram per Pauchard et al. (2), and 3) novel textural analysis (using rotation 

invariant local binary pattern [LBPriu] histogram (25)) developed in the present study. 

 

In brief, two thresholds, low (149 mg/cm³) and high (710 mg/cm³), were applied to quantify 

positive movement artefact. The number of pixels within the limb mask above the threshold 

was counted and multiplied by pixel area (0.4 mm x 0.4 mm) to produce cortical areas with 

low and high thresholds (Ct.Arlow and Ct.Arhigh, respectively). The ratio of Ct.Arlow to Ct.Arhigh 

was used as the positive movement motion artefact feature. 

 

The rotation and translation measures developed by Pauchard et al. only work on the 

sinogram prior to reconstruction (2), and the sinogram is not stored in the files produced by 

the Stratec measurement system used in the present study. Instead, Stratec stores the 

projections recorded by the 12 detectors for each of the 15 rotational translations the device 

makes during scanning. The sinograms for the AMPitup dataset were reassembled from the 

recorded projections using the projection files from scans categorised as I (no motion artefact, 

section 2.6) as a calibration dataset to calculate the rotation centres of the recorded 

projections for each of the 12 detectors using the approach described by Azevedo et al (26). 

In brief, attenuation was calculated from the recorded detector values as  

 

𝑔𝑔(𝑠𝑠,𝜃𝜃) = 𝑙𝑙𝑙𝑙 �𝐼𝐼0(𝑠𝑠,𝜃𝜃)
𝐼𝐼(𝑠𝑠,𝜃𝜃) � (Equation 1) 
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where g = attenuation, s = position along the linear translation along a projection, 𝜃𝜃  = 

rotational translation for a given projection, 𝐼𝐼0 = transmitted radiation (the median of 

detector values higher than 90% of the range of measured values was used), I = detector 

value. The centre of rotation was calculated based on the attenuation values for each of the 

15 rotations recorded by a given detector, and the 15 projection centre of mass locations 

were used to solve Equation 2. 

 

𝑠𝑠𝑟𝑟(𝜃𝜃𝑖𝑖) =  𝑐𝑐𝑠𝑠 + 𝑥𝑥 cos𝜃𝜃𝑖𝑖 + 𝑦𝑦 sin𝜃𝜃𝑖𝑖  (Equation 2) 

 

Where 𝑠𝑠𝑟𝑟= projection centre of mass, 𝜃𝜃 = rotational translation angle of a given projection, 

i = index of the projection, 𝑐𝑐𝑠𝑠= detector centre of rotation, and x and y are the object centre 

of mass coordinates. This overdetermined linear group of equations was solved using the least 

squares method. During experimentation it was noticed that noise in the sinogram led to a 

jagged centre of mass location trace and a cut-off value based on trial-and-error 

experimentation was utilised. It was found that setting attenuation values less than 10% of 

the attenuation range to zero prior to calculating the projection centres of mass produced a 

smooth sinogram. 

 

The detector centres of rotations sinograms were subsequently reassembled by linearly 

interpolating values from − 1
√2
∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ  to 1

√2
∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ  around 

the detector centre of rotation (values out of the recorded projection were given a value of 

0) (Figure 1). 
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PLEASE INSERT FIGURE 1 AROUND HERE 

 

The reconstructed sinogram was used to quantify translational (εT) and rotational motion (εR) 

in the scans following the approach described by Pauchard et al (2). Again, 10% of the low-

end attenuations were zeroed prior to further calculations. Briefly, projection centres of mass 

and second central moments were calculated. For εT, projection centres of mass were least 

squares fitted to a sinusoid (the same equation used for centre of rotation, i.e. 𝑠𝑠𝑟𝑟(𝜃𝜃𝑖𝑖) =

 𝑐𝑐𝑠𝑠 + 𝑥𝑥 cos𝜃𝜃𝑖𝑖 + 𝑦𝑦 sin𝜃𝜃𝑖𝑖) and εT was calculated as the root mean squared difference between 

the measured and the fitted projection centres of mass. For εR projection second central 

moments were calculated and least-squares fitted to Equation 3: 

 

𝜎𝜎2(𝜃𝜃) = 𝐴𝐴 + 𝐵𝐵 cos(2𝜃𝜃) +𝐶𝐶 sin(2𝜃𝜃) Equation 3 

 

Where 𝜎𝜎2 = projection second central moment, 𝜃𝜃 = rotational translation angle, and A, B, 

and C are fit coefficients. εR was subsequently calculated as the root mean squared difference 

between the calculated and fitted second central moments normalised to the resultant of B 

and C fit coefficients. εT and εR were used as the Pauchard et al. objective motion artefact 

features. 

 

Textural analysis feature was implemented using LBPriu (25) and was calculated using the 

implementation from (http://www.cse.oulu.fi/wsgi/CMV/Downloads/LBPSoftware) ported 

to java (implementation included in the supplementary material). The LBPriucalculation is 



10 

 

described in detail in (25) and the only deviation in the present implementation was to use 

10 mg/cm³ as the intensity difference (as opposed to 1 mg/cm3) in identifying the local 

patterns. Such modification makes the measure less sensitive to noise. LBPriu results in 10 

possible local patterns for each pixel (refer (25) and supplementary material for further 

details) (Figure 2). A histogram of the whole image LBPriu was calculated and normalised to 

the number of pixels within the image resulting in a 10 bin histogram with a sum of one. The 

histogram was used as the textural analysis motion artefact feature. 

 

PLEASE INSERT FIGURE 2 AROUND HERE 

 

2.6. Developing a classifier 

The bone scans were visualised and manually categorised into five levels according to the 

amount of visible motion artefact by one rater (TR) following the scaling reported by Blew et 

al. (1) (Figure 3). The five categories were subsequently recategorised as: I through III = 

acceptable, IV and V = unacceptable, as has been reported previously (1, 4, 7). This 

classification was used as the ground truth classification for subsequent machine learning 

classifier training and validation. All AMPitup dataset scans were computer-randomised into 

training and validation datasets using a 66% training 33% validation split. 

 

PLEASE INSERT FIGURE 3 AROUND HERE 

 

Decision tree classifiers (J48 classifier from Weka package version 3.8 (27), confidence 

threshold = 0.25, minimum number of instances = 2) were trained using the training dataset 

for each of the different motion artefact features (i.e. one each for positive motion, 
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objective translation and rotation, and texture-based). Decision trees were chosen as the 

machine learning approach due to the ease of human interpretation of the classifier. During 

analysis other approaches were tested. For example logistic regression, which would also 

offer ease of human interpretation, provided poorer classification performance. None of the 

other approaches matched the overall classification performance of the decision tree 

classifiers, and hence the decision tree classifier results are reported. 

 

2.7. Griffith dataset 

As an additional external validation step, we applied the objective translation and rotation, 

and novel texture-based classifiers trained with the AMPitup training dataset to the second 

pQCT dataset collected in the Bone Densitometry Research Laboratory at Griffith University 

(QLD, Australia) (Griffith dataset).  The Griffith dataset comprised scans from healthy 

ambulant adolescents and young adults recruited for a number of cross-sectional and 

prospective studies through advertisements in the local community (data previously reported 

in (13–20)). We extracted scans from individuals aged between 11 and 19 years-of-age to 

match the age-span used to train the classifier. The scan sites were, and the measurement 

device brand and type were the same as in the AMPitup dataset, but the in-plane voxel size 

was 0.5x0.5 mm. The bone scans were subsequently visualised and manually categorised for 

motion artefact (TR) following the procedure explained above for the AMPitup dataset. 

 

2.8. Statistical analysis 

The validation datasets (AMPitup validation dataset [33% of the dataset], and the full Griffith 

datasets) were classified using the J48 decision tree classifiers trained using the AMPitup 

training dataset (66% of the dataset). True and false positives (confusion matrices), and 
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kappa-coefficients (< 0 poor, 0.00 – 0.20 slight, 0.21 – 0.40 fair, 0.41 – 0.60 moderate, 0.61-

0.80 substantial, ≥0.81 almost perfect (28)) from the validation datasets were presented to 

describe classification performance. 

 

3. Results 

3.1. AMPitup dataset 

A total of 704 scans (for measurement sites, see Table 1) from N = 16 girls/women, and N = 

28 boys/men aged 12 to 18 years-of-age (age = 14.5 (SD 1.4) years, height = 166 (11) cm, body 

mass = 65.4 (17.3) kg) were analysed from the AMPitup database. Some individuals had been 

scanned on multiple occasions and one or more bone sites may have been scanned more than 

once at the same visit (e.g. if motion artefact was noticed). The split of different visual motion 

artefact classifications for the four bone sites is given in Table 1. 

 

PLEASE INSERT TABLE 1 AROUND HERE 

 

At the 66% radial shaft, positive motion classifier identified 75% (kappa = 0.51) of the scans 

correctly, objective translation and rotation classifier identified 84% (κ = 0.67), and the 

textural analysis classifier identified 84% (κ = 0.67) of the validation dataset correctly (Table 

2). The corresponding values for 4% distal radius were 83% (κ = -0.06), 82% (κ = 0.46), and 

95% (κ = 0.79), respectively. At the 66% tibial shaft, positive motion classifier identified 92% 

(κ = 0.76) of the validation dataset correctly, whereas the objective translation and rotation 

classifier identified 90% (κ = 0.73), and the textural analysis classifier identified 86% (κ = 0.57) 

of the validation dataset correctly. The corresponding values for 4% distal tibia were 80% (κ = 

0.36), 88% (κ = 0.56) and 93% (κ = 0.80), respectively. 
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PLEASE INSERT TABLE 2 AROUND HERE 

 

3.2. Griffith dataset 

A total of 720 scans (for a split between measurement sites see Table 3) from N = 88 

girls/women, and N = 116 boys/men aged 11 to 19 years-of-age (height = 164 (12) cm, body 

mass = 56.5 (17.7) kg) were analysed. Some individuals had been scanned on multiple 

occasions and one or more bone sites may have been scanned more than once at the same 

visit (e.g. if motion artefact was noticed). The split of different visual motion artefact 

classification for the four bone sites is given in Table 3. 

 

PLEASE INSERT TABLE 3 AROUND HERE 

 

At the 66% radial shaft, the objective translation and rotation classifier trained on AMPitup 

data identified 86% (κ = 0.52), and textural analysis classifier identified 72% (κ = 0.35) of the 

Griffith dataset correctly (Table 4). The corresponding values for 4% distal radius were 95% (κ 

= 0.40) and 88% (κ = 0.23), respectively. For the 66% tibial shaft, the objective translation and 

rotation classifier trained on AMPitup data identified 91% (κ = 0.53), and textural analysis 

classifier identified 16% (κ = 0.01) of the Griffith dataset correctly. The corresponding values 

at 4% distal tibia were 88% (κ = 0.09) and 92% (κ = 0.39), respectively.  

 

PLEASE INSERT TABLE 4 AROUND HERE 
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4. Discussion 

The aim of the current work was to examine classification performance of three methods of 

quantifying motion artefact from pQCT scans. We found that our novel textural analysis based 

classifier outperformed or was on par with both the positive motion (suggested by Blew et al. 

(1)) and the objective translation and rotation (developed by Pauchard et al. (2)) based 

classifiers at three of four bone sites. In contrast, at the tibial shaft (66% site), both of the pre-

existing motion artefact feature-based classifiers outperformed the novel texture-based 

classifier developed in the present study. Application of the novel texture-based classifier to 

an independent dataset with similar participant characteristics to the training dataset 

resulted in overall poor classification performance, suggesting that the classifier is sensitive 

to variations in the relative area of the scan. That is, the proportion of area taken up by the 

limb varies depending on the site of the scan, which affects the proportion of various textural 

features captured by the LBPriu histogram and affects the classification. 

 

As reports of previous attempts to develop an objective measure for automated motion 

artefact classification have not included true or false positive rates, or confusion matrices (1, 

4), it is difficult to compare the present results to the existing literature. In the present study, 

the objective translation and rotation method based on the measured sinogram (projections) 

developed for high-resolution pQCT by Pauchard et al. (2–4) had higher agreement with 

manual visual classification compared to the positive motion method developed by Blew et 

al. (1). Interestingly, the novel texture-based classifier developed for the present study 

performed better than the objective translation and rotation measures for motion artefact 

classification at distal bone sites (although this was not replicated in the independent Griffith 

dataset) (considering the true and false positive rates in confusion matrix Tables 2 and 4). To 
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evaluate this somewhat unexpected finding in more detail we replicated Yang et al. (6) motion 

artefact simulation (please see Figure 4 for visualisation and supplementary material for the 

implementation). In line with Yang et al. (6) we observed that with the same amount of 

rotation or translation, motion artefact was more easily visually discernible at the shaft 

compared to distal bone sites (Figure 4). Because manual classification used as the ground 

truth is based on visual information this could explain why our novel texture-based classifier 

exhibited better classification performance in comparison with the objective translation and 

rotation classifier.  

 

PLEASE INSERT FIGURE 4 AROUND HERE. 

 

In the application of the objective rotation and translation and the texture-based classifiers 

to the external validation Griffith dataset it was found that the novel texture-based classifier 

performance was poor, whereas the objective rotation and translation classifier maintained 

moderate classification performance with the notable exception of distal tibia (Tables 2 and 

4). For the novel texture-based classifier, this result indicates that the approach is sensitive to 

variations in the relative area of the scan and possible measurement device-specific variations 

in typical noise patterns. This sensitivity to variations is caused by the texture of the image 

being summarised by a histogram normalised to one. For example, for a given limb, the 

circumference will accumulate a varying proportion of counts into the LBPriu bin capturing 

lines depending on the scan area. In practical terms, this means that in order to utilise the 

approach, a classifier has to be trained for each set of scan settings and locations. In the case 

of the objective rotation and translation classifier, the poor performance at the distal tibia in 

the external validation dataset vs the training dataset was probably caused by differences in 
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measurement protocols between laboratories. The AMPitup dataset did not contain anything 

other than the measured limb in the distal tibia scan, whereas some Griffith dataset scans had 

a support visible in the distal tibia scan. All of the scans with the support were classified as 

having motion artefact due to the projection centres of mass becoming non-smooth due to 

the support. This could be a side-effect of the way the projection centres were calculated and 

the need to set the value of paths through air to a constant or possibly attributable to a beam 

hardening effect, although we did not explore this in detail. The end result was a discontinuity 

in the projection centres of mass and subsequent increased value of the objective translation 

estimates. Otherwise on the other measurement sites, the objective translation and rotation 

method performed well when applied to the external validation dataset and thus may be 

relatively independent of the specific measurement device and measurement parameters 

used for the scan. 

 

Unfortunately, the pQCT used for the experiments reported in the present study only allowed 

us to replicate Pauchard et al. (2) approach with calibration of the rotation centres and 

required access to the manufacturer’s documentation to enable projection data to be read 

from the files recorded by the manusfacturer’s software. The manufacturer has chosen not 

to make their file format public so the Pauchard et al. (2) approach can only be replicated with 

assistance from the manufacturer. Moreover, having an object other than the scanned limb 

in the scan caused issues in the implementation developed (we were unable to rectify these 

issues in our implementation despite considerable efforts) for the present paper. This limits 

the usefulness of the objective translation and rotation based classification method for this 

particular brand of pQCT. It is unclear whether other brands of pQCTs would be susceptible 

to the same limitation. While the shift between projections can be visually observed by 



17 

 

extracting the projections from a reconstructed scan by taking a radon transform, the 

approach developed by Pauchard et al. (2) only works on the sinogram prior to reconstruction 

(computed tomography images are reconstructed from the recorded projections with filtered 

back projection, which is typically implemented with an inverse radon transform). On the 

other hand, the novel texture-based method developed in the present study operates on the 

reconstructed scan and does not need access to the sinogram. 

 

The primary limitation of the proposed texture-based method pertains to the relatively large 

proportion of the scan filled by air. This part of the image contains noise, and as can be seen 

in Figure 2, contributes significantly to the overall LBPriu histogram used as the textural feature 

in the present study. During development of the method, limiting the textural analysis to the 

limb area was tested by only including the limb mask pixels in the LBPriu histogram, but this 

did not result in observed improvements in the classification (the opposite in fact, presumably 

because motion-caused streaking is obvious in the area filled by air as well). An additional 

limitation was the use of only one human-classifier for the ground truth, although this was 

considered sufficient to explore whether textural analysis could provide a feasible 

classification approach for motion artefact. 

 

In conclusion, our novel textural analysis-based classifier provided moderate to good 

classification of motion artefact when visual classification was used as the ground truth. The 

classification performance may be considered insufficient for fully automated motion artefact 

classification. A prudent strategy to utilise the method developed in the present sutdy might 

include classifying obviously acceptable and unacceptable scans automatically with 

subsequent human-operated classification of the doubtful scans.. 
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FIGURE LEGENDS 

 

Figure 1. Sample of the recorded projection detector values, and a corresponding 

reconstructed attenuation sinogram. 

 

Figure 2. Visualisation of rotation invariant local binary patterns used to capture textural 

information from a tibial shaft slice with clear visible motion artefact. Left:, the original 

image image prior to any processing; right: LBPriu of the image. 

 

Figure 3. Sample image of the five motion artefact classification (I through V following Blew 

et al. 2014 classification (1)) for each of the different bone sites (radius 4%, radius 66%, tibia 

4% and tibia 66%). 

 

Figure 4. Simulated motion artefact caused by 2 degree rotation after the first 44 projections 

added to tibial shaft (top row) and distal tibia scans (bottom row). Original scans on the left, 

scans with simulated motion artefact on the right. Clear visible streaking can be observed on 

the shaft scan, whereas very little visible sign of motion artefact can be seen in the distal scan. 
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TABLES 

 

Table 1. AMPitup dataset motion artefact classifications. 

  Acceptable   Unacceptable     

  I II III   IV V   Total 

Radius 66% 17 21 36  53 54 
 

181 

Radius 4% 69 39 35  18 19 
 

180 

Tibia 66% 77 38 23  22 15 
 

175 

Tibia 4% 83 34 20  16 15 
 

168 

       
 

 

Total 246 132 114   109 103   704 
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Table 2. Confusion matrices, true (TP) and false (FP) positive rates for positive motion, 

objective translation and rotation, and textural analysis J48 decision tree classifiers on the 

AMPitup validation data. 

  Positive Motion 
Objective Translation & 

Rotation 
Textural Analysis 

 

Classified 

as 
  

Classified 

as 
  

Classified 

as 
  

 

U A 
TP 

rate 

FP 

Rate 
U A 

TP 

rate 

FP 

Rate 
U A 

TP 

rate 

FP 

Rate 

Radius 66%                       

Manual U 25 9 0.735 0.222 30 4 0.882 0.222 28 6 0.824 0.148 

Manual A 6 21 0.778 0.265 6 21 0.778 0.118 4 23 0.852 0.176 

Radius 4%            

Manual U 0 8 0 0.038 7 1 0.875 0.192 7 1 0.875 0.038 

Manual A 2 50 0.962 1 10 42 0.808 0.125 2 50 0.962 0.125 

Tibia 66%            

Manual U 11 4 0.733 0.023 12 3 0.800 0.068 7 8 0.467 0 

Manual A 1 43 0.977 0.267 3 41 0.932 0.200 0 44 1 0.533 

Tibia 4%            

Manual U 5 6 0.455 0.111 6 5 0.545 0.044 11 0 1 0.089 

Manual A 5 40 0.889 0.545 2 43 0.956 0.455 4 41 0.911 0 

U = unacceptable, A = acceptable, TP = true positive, FP = false positive.  
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Table 3. Griffith dataset motion artefact classifications. 

  Acceptable   Unacceptable     

  I II III   IV V   Total 

Radius 66% 53 53 28  18 7 
 

159 

Radius 4% 126 22 8  3 2 
 

161 

Tibia 66% 110 54 17  17 4 
 

202 

Tibia 4% 130 45 12  7 4 
 

198 

       
 

 

Total 419 174 65   45 17   720 
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Table 4. Confusion matrices, true (TP) and false (FP) positive rates for positive rates for 

objective translation and rotation, and textural analysis J48 decision tree classifiers on the 

Griffith dataset. 

  Objective Translation & Rotation Textural Analysis 

 
Classified as   Classified as   

 
U A TP rate FP Rate U A TP rate FP Rate 

Radius 66%               

Manual U 17 8 0.680 0.104 22 3 0.880 0.313 

Manual A 14 120 0.896 0.320 42 92 0.687 0.120 

Radius 4%        

Manual U 3 2 0.600 0.038 2 3 0.400 0.109 

Manual A 6 150 0.962 0.400 17 139 0.891 0.600 

Tibia 66%        

Manual U 13 8 0.619 0.061 21 0 1 0.934 

Manual A 11 170 0.939 0.381 169 12 0.066 0 

Tibia 4%        

Manual U 2 9 0.182 0.075 6 5 0.545 0.059 

Manual A 14 173 0.925 0.818 11 176 0.941 0.455 

U = unacceptable, A = acceptable, TP = true positive, FP = false positive. 
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