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Key points summary 25 

 26 

• People with insulin resistance or type 2 diabetes can substantially increase their skeletal 27 

muscle glucose uptake during exercise and insulin sensitivity after exercise.  28 

• Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise but 29 

how prior exercise increases insulin sensitivity is unclear. 30 

• In this study we examined if NO is necessary for normal increases in skeletal muscle 31 

insulin sensitivity after contraction ex vivo in mouse muscle. 32 

• Our study uncovers for the first time a novel role for NO in the insulin sensitizing effects 33 

of ex vivo contraction, which is independent of blood flow. 34 

 35 
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Abstract 36 

 37 

The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are 38 

unclear.  We examined whether nitric oxide (NO) is required for the increase in insulin 39 

sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were 40 

contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) 41 

inhibition (L-NMMA; 100µM). 3.5 hrs post contraction/basal, muscles were exposed to 42 

saline or insulin (120µU/ml) with or without L-NMMA during the last 30 min. L-NMMA 43 

had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose 44 

uptake with insulin (57%) was significantly (P<0.05) greater after prior contraction (140% 45 

increase).  NOS inhibition during the contractions had no effect on this insulin-sensitizing 46 

effect of contraction but NOS inhibition during insulin prevented the increase in skeletal 47 

muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, PKG 48 

inhibition or PDE5 inhibition each had no effect on the insulin-sensitizing effect of prior 49 

contraction. In conclusion, NO is required for increases in insulin sensitivity several hours 50 

after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway.  51 

 52 

Abbreviation list:  53 

 54 

EDL, extensor digitorum longus; eNOS, endothelial nitric oxide synthase; GLUT4, 55 

Glucose transporter type 4; HGF, hepatocyte growth factor; IGF-1, insulin-like growth 56 

factor-1; L-NMMA, the NO synthase (NOS) inhibitor NG-monomethyl-L-arginine; NO, 57 

nitric oxide;  NOS,  nitric oxide synthase;  nNOS, neuronal nitric oxide synthase; T2D, type 58 

2 diabetes (T2D) 59 

60 
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Introduction 61 

 62 

Increased physical activity is important for both the prevention and management of type 2 63 

diabetes (T2D) (Wojtaszewski & Richter, 2006). After the initial insulin-independent 64 

increases in glucose uptake post-contraction have worn off in 2-3 hrs (Gao et al., 1994; 65 

Funai et al., 2010), skeletal muscle remains more sensitive to insulin for 24-48 hrs in both 66 

rodents (Cartee et al., 1989) and humans (Mikines et al., 1988).  Three to four hrs after a 60 67 

min bout of single leg exercise in humans, glucose uptake during a hyperinsulinaemic 68 

euglycaemic clamp (“insulin clamp”) increases substantially more in the exercised leg than 69 

the rested leg (Richter et al., 1989; Wojtaszewski et al., 2000). Importantly, acute exercise 70 

increases skeletal muscle insulin sensitivity in both people with T2D and matched controls 71 

(Devlin et al., 1987). Although the insulin sensitizing effect of acute contraction/exercise 72 

has been known for many years but the mechanisms involved are unclear. 73 

 74 

Insulin activates insulin signalling pathways in skeletal muscle which results in GLUT-4 75 

translocation to the plasma membrane and increased glucose transport. Even though there 76 

are increases in insulin-stimulated glucose uptake after acute contraction or exercise, there 77 

is little evidence of greater proximal insulin signalling (Wojtaszewski et al., 2000; 78 

Wojtaszewski & Richter, 2006). However, there are indications that more distal insulin 79 

signalling may be increased by acute exercise (eg phosphorylation of Akt substrate of 160 80 

KDa (AS160, also referred to as TBC1D4) (Arias et al., 2007; Funai et al., 2009; Treebak 81 

et al., 2009; Funai et al., 2010; Castorena et al., 2014; Kjobsted et al., 2015; Sjoberg et al., 82 

2017). Six to 24 hrs after an acute exercise bout increases in protein expression of some of 83 

key proteins such as GLUT-4 are sometimes observed (Hood, 2001). Since this introduces 84 

a confounding variable, studies attempting to uncover the mechanism(s) that acute exercise 85 

increases skeletal muscle insulin sensitivity are generally conducted 3-4 h after exercise 86 

(Richter et al., 1989; Wojtaszewski & Richter, 2006).  87 

 88 

Although never specifically examined, there are some findings in the literature which 89 

suggest that increases in nitric oxide (NO) during contraction/exercise could be involved in 90 
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the increase in insulin sensitivity after contraction/exercise.  Both nNOS and eNOS 91 

deficient mice are insulin resistant (Shankar et al., 2000) and eNOS deficient mice 92 

supplemented with nitrate (NO3), an inorganic anion abundant in vegetables which can be 93 

converted in vivo to NO, improves glucose tolerance (Carlstrom et al., 2010). In addition, 94 

the content of nNOS in skeletal muscle tends to change in parallel with skeletal muscle 95 

insulin sensitivity (Shankar et al., 2000; Bradley et al., 2007).  Supporting this notion we 96 

have found that endurance trained humans, who are known to be insulin sensitive, have 97 

increased skeletal muscle nNOS protein (McConell et al., 2007), while people with insulin 98 

resistance/T2D have reduced nNOS protein levels (Bradley et al., 2007).  Acute and long-99 

term administration of L-Arginine, the substrate for NO formation from NOS, improves 100 

insulin secretion and insulin sensitivity in healthy people and in people with diabetes (Piatti 101 

et al., 2001). NO also increases insulin transport in endothelial cells in skeletal muscle 102 

(Wang et al., 2013), and therefore presumably skeletal muscle insulin exposure.  Finally, 103 

we have shown that NO synthase (NOS) inhibition attenuates increases in skeletal muscle 104 

glucose uptake during contraction in mice and rats (Stephens et al., 2004; Ross et al., 2007; 105 

Merry et al., 2010b) and during exercise in healthy controls and in people with T2D 106 

(Bradley et al., 1999; Kingwell et al., 2002).  Therefore, we hypothesized that NOS 107 

inhibition during contraction would attenuate the increase in insulin sensitivity 3.5 hrs after 108 

ex vivo contraction. Ex vivo contractions were chosen since this eliminates any potential 109 

confounding effects of blood flow.   110 

  111 
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Methods 112 

 113 

Ethical approval 114 

Animal care and experimental protocols and collection of human serum for this study were 115 

approved by both the Animal Experimentation Ethics Committee and the Human Research 116 

Ethics Committee of Victoria University and conformed to the Australian National Code of 117 

Practice for the Care and Use of Animals for Scientific Purposes, as described by the 118 

National Health and Medical Research Council (NHMRC) of Australia.  119 

.  120 

Animals and experimental design 121 

 122 

12 to 14 week old male C57BL/6J mice were purchased from Animal Resources Centre 123 

(Perth, WA, Australia).  The mice were individually housed in groups of 2-4 and 124 

maintained in an environmentally controlled animal room at 21o C with a 12:12 h light-dark 125 

cycle with ad libitum access to standard rodent chow (Specialty Feeds, Western Australia) 126 

and water. Food was removed from 8:30am to 12:30pm on the day of an experiment. After 127 

mice were deeply anesthetized with pentobarbital sodium (26 G needle, 60 mg/kg 128 

intraperitoneal; Rhone Merieux, Pinkenba, Queensland, Australia), mice were constantly 129 

monitored for depth of anaesthesia by monitoring their plantar flexion and response to tail 130 

and paw pinch. When slight reflex/response was detected, supplemented doses (1/10 of 131 

original dose) of anaesthesia were administered before tissue removal. Under deeply 132 

anaesthetized, the skin of the hind limbs were removed exposing the limb muscles. 133 

Extensor digitorum longus (EDL) muscles were carefully excised from the mice. Following 134 

the removal of muscles, whilst deeply anaesthetized, the mice were humanely killed by 135 

decapitation.  136 

 137 

Materials and antibodies  138 

All chemicals were purchased from Sigma-Aldrich Chemicals (St. Louis, MO) unless 139 

otherwise stated. 2-Deoxy-D-[1,2-3H]-glucose and D-[1-14C] Mannitol were purchased 140 

from Perkin Elmer (Waltham, MA). Reagents and apparatus for SDS-PAGE and 141 
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immunoblotting were purchased from Bio-Rad (Hercules, CA). RED 660 Protein Assay 142 

Reagent Kit and Neutralizer were purchased from GBiosciences (St. Louis, MO). 143 

SuperSignal West Femto Chemiluminescent Substrate was provided by Thermo Scientific 144 

(Waltham, MA). Primary antibodies for p-Akt (Ser473 and Thr308), Akt, p-TBC1D1 145 

(Thr590, Thr596 and Ser660), TBC1D1, p-TBC1D4 (Thr642), TBC1D4 and actin used in 146 

Western Blotting were purchased from Cell Signalling Technology (Danvers, MA). HRP 147 

conjugated Goat anti-Rabbit IgG (H+L) Secondary Antibody was from Thermo Scientific 148 

(Waltham, MA).  149 

 150 

Collection and treatment of serum 151 

As previously reported (Gao et al., 1994), a serum factor is required for an increase in 152 

insulin sensitivity after ex vivo rat skeletal muscle contraction, and we also found that 153 

serum alone has no effect on mouse skeletal muscle glucose uptake at rest (Levinger et al., 154 

2016).Whether serum is required during ex vivo contraction of mouse skeletal muscle for 155 

increases in insulin-stimulated glucose uptake has not previously been examined.  After an 156 

overnight fast, blood was collected from 4 healthy men via venepuncture. The blood was 157 

allowed to clot at room temperature then centrifuged at 3,000g for 30 min. The serum was 158 

collected and frozen at -80oC until use. All serum used was from the same individuals. 159 

Repeat freeze-thawing of serum was avoided.  160 

 161 

 162 

Muscle dissection, incubation and contraction  163 

Under deep anaesthesia, both EDL muscles were rapidly dissected. The proximal and distal 164 

tendons were tied using 5/0 silk suture with two small aluminum hooks tied to each tendon.  165 

For all incubation steps, buffer was continuously maintained at 30°C (Merry et al., 2010b) 166 

and gassed with carbogen (Carbogen; BOC Gases, Australia). Muscles were pre-incubated 167 

with or without 50% human serum in Buffer 1 [Krebs-Henseleit buffer (KHB in mM: 119 168 

NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, pH 7.4) + 0.01% BSA + 169 

2 mM glucose + 8 mM mannitol] for 30 min.  For muscle contraction, muscles were 170 

mounted in incubation chambers containing Buffer 1 with or without serum and stimulating 171 
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platinum electrodes (Zultek Engineering, Australia), and stimulated for 10 min with the 172 

following parameters (12 V, train durations: 350 ms at a frequency of 60 Hz, 12 173 

contractions/min) (Merry et al., 2010b). Non-contracted muscles were treated the same as 174 

contracted muscles except that they were not stimulated to contract. Muscles were 175 

incubated in the presence or absence of the NOS inhibitor L-NMMA (100µM; (Merry et 176 

al., 2010a)) during the pre-incubation and contraction periods (See Fig. 1).    177 

 178 

Muscle treatment post-electrical stimulation and glucose uptake measurements  179 

Immediately after electrical stimulation, all muscles (regardless of whether the previous 180 

incubation was with or without L-NMMA) were transferred to a vial containing buffer 1 for 181 

a 1-min wash. Muscles were then transferred to other baths containing buffer 1 for 3 hrs 182 

with the -buffer changed every 30 min.  183 

After 3 hrs all muscles were incubated with Buffer 2 containing 2 mM pyruvate +8 mM 184 

mannitol with or without insulin for 30 min. For glucose uptake analysis, all muscles were 185 

incubated for 10 min with buffer 3 containing 2 mM 2-Deoxy-D-[1,2-3H]-glucose (2-DG, 186 

0.256µCi/ml) and 16 mM D-[1-14C] Mannitol (0.166µCi/ml), and insulin, if it was present 187 

during the previous incubation with buffer 2. For some muscle pairs L-NMMA (100µM) 188 

was also present during this incubation.   189 

To determine whether NO during insulin exposure was acting through the NO/cGMP/PKG 190 

pathway, the GC inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, which 191 

blocks the NO-mediated increase in cGMP, 10 µM (Merry et al., 2010a)),  or the 192 

phosphodiesterase type 5 inhibitor (T-1032, which inhibits cGMP breakdown and therefore 193 

raises cGMP levels, 27 µM (Mahajan et al., 2003)) or the cGMP-dependent protein kinase 194 

(PKG) inhibitor (Rp-8-Br-PET-cGMPS, 5 µM (Merry et al., 2010a)) were used to block of 195 

the NO/cGMP/PKG pathway (Fig. 3). The concentrations of ODQ and Rp-8-Br-PET-196 

cGMPS used in this study were based on our previous studies using isolated ex vivo 197 

muscles (Merry et al., 2010a; Merry et al., 2010b). In addition,  the PDE 5 inhibitor T1032 198 

was used in our study rather than another PDE-5 inhibitor, zaprinast, since zaprinast has 199 

been shown in our previous study to have no inhibitory effect on insulin-mediated glucose 200 

uptake by muscles in vivo,  while T-1032 showed  the inhibitory effects (Mahajan et al., 201 



 

9 

 

2003).  The muscle pairs were incubated in the presence or absence of the inhibitor ODQ, 202 

or T-1032 or Rp-8-Br-PET-cGMPS during the period of 30 min of insulin and 10 min of 2-203 

DG incubation.     204 

Given that 120 µU/ml of insulin results in maximum insulin-stimulated glucose uptake 205 

(Hamada et al., 2006), it was anticipated that both ODQ and Rp-8-Br-PET-cGMPS would 206 

attenuate the increase in insulin-stimulated glucose uptake after contraction, thus 120 207 

µU/ml of insulin was used for ODQ and Rp-8-Br-PET-cGMPS treatments. On the other 208 

hand, given we anticipated that T-1032 would increase insulin-stimulated glucose uptake 209 

after contraction, we used a submaximal dose of insulin (60 µU/ml) (Hamada et al., 2006) 210 

with T-1032 treatment to provide a greater opportunity to observe any increase in glucose 211 

uptake.  212 

After the 10 min incubation with radioisotopic tracers, muscles were rapidly rinsed, 213 

trimmed and cut in halves and frozen in liquid nitrogen. One half was kept for 214 

immunoblotting and the other half for glucose uptake determination. The muscle for 215 

glucose uptake were homogenized in 1M NaOH at 95°C for 10 min and then neutralized by 216 

1 M HCl followed by centrifuge. The supernatant (200µl) was added to 4 ml of liquid 217 

scintillation cocktail (PerkinElmer, Boston, MA). Radioactivity of both tracers was 218 

measured by a β scintillation counter (Tri-Carb 2910TR, PerkinElmer), and glucose uptake 219 

was calculated as previously described (Merry et al., 2010a; Zhang et al., 2011).  220 

 221 

NOS activity assay 222 

NOS activity was determined in separate EDL muscles based on the catalytic reaction of 223 

NOS converting radiolabeled L-[14C] arginine to radiolabeled L-[14C] citrulline, as 224 

described previously (Merry et al., 2010a). NOS activity was determined from the 225 

difference between samples incubated with and without L-NAME and was expressed as 226 

picomoles of L-[14C] citrulline formed per minute per milligram of muscle protein. 227 

 228 

Sample Preparation and Immunoblotting 229 

Sample preparation for immunoblotting was initially described by Murphy RM (Murphy, 230 

2011). Briefly, 10 20-µm thickness muscle sections  were homogenized with 100µl of 231 
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solubilizing buffer (0.125 M Tris–Cl [pH 6.8], 4% w/v SDS, 10% glycerol, 10 mM EGTA, 232 

0.1 M DTT (dithiothreitol) and protease inhibitor cocktail). Protein concentration was 233 

determined by a Red 660 assay kit (G-Biosciences, St. Louis, MO). Proteins (5 µg loaded 234 

per well) were separated with 10% SDS–PAGE gels, then transferred to PVDF for 120 min 235 

at 100 V. Following transfer, the membrane was blocked with 5% (w/v) skim milk powder 236 

dissolved in TBST (Tris-Buffered Saline, 0.1% Tween-20) at room temperature for 1 h. 237 

The primary antibodies were diluted in 5% (w/v) BSA in TBST and applied and incubated 238 

overnight at 4°C. After a1 h incubation with secondary antibody at room temperature, 239 

images were exposed to SuperSignal West Femto Chemiluminescent Substrate and 240 

VersaDocTM Imaging System and densitometry was performed using the Quantity One 241 

software (Bio-Rad Laboratories, Hercules, CA, USA). All phosphorylation data is 242 

presented relative to the total protein of the protein of interest. 243 

 244 

Statistical analysis 245 

All data are expressed as means ± SEM. Statistical testing was performed with SPSS 246 

statistical package 22 or Graph Pad Prism 6.  For multiple comparisons, one-way ANOVA 247 

and two-way ANOVA with or without repeat measurement (between factor: insulin and 248 

treatment condition – for glucose uptake and protein expression) were used. Tukey's post 249 

hoc test or Fisher’s LSD testwas performed when ANOVA revealed significance.  The 250 

Statistical significance was accepted at p ≤0.05.  251 
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Results 252 

 253 

The effect of serum exposure during ex vivo contraction on mouse skeletal muscle 254 

insulin sensitivity 3.5 hrs post-contraction 255 

First we examined the effect of serum on mouse skeletal muscle insulin-stimulated glucose 256 

uptake post ex vivo contraction with slight modifications to that which has been previously 257 

described (Funai et al., 2010) (Fig. 1A).  It has been previously shown during an insulin 258 

dose response (0, 60, 120 and 20,000 µU/ml) that glucose uptake in isolated mouse skeletal 259 

EDL from sedentary mice is maximal at 120 µU/ml and tends (P=0.08) to be increased at 260 

the submaximal dose of 60 µU/ml (Hamada et al., 2006). In addition, Kjobsted et.al 261 

recently reported that submaximal insulin (100 µU/ml ) and to a greater extent maximal 262 

insulin (10,000 µU/ml), enhance glucose uptake ex vivo in isolated EDL muscle from wild 263 

type mice 3 hours after in situ contraction (Kjobsted et al., 2017).  264 

We anticipated that L-NMMA would attenuate the insulin-stimulated glucose uptake after 265 

prior contraction.  Therefore, 120 µU/ml of insulin was used in our study except where 266 

indicated.  Our data showed that electrical stimulated contraction in serum-free buffer did 267 

not increase basal (no insulin) or 120µU/ml insulin-stimulated skeletal muscle glucose 268 

uptake in mouse EDL measured 3.5 hrs post electrical stimulation (Fig.1B). In contrast, 269 

stimulation of glucose uptake by insulin was markedly enhanced (p<0.05) 3.5 hrs post ex 270 

vivo contractile activity in muscles stimulated to contract while immersed in 50% human 271 

serum in buffer 1 (Fig. 1B). Therefore, 50% human serum in buffer 1 was used for all 272 

experiments, which differs to the 100% serum used previously in rats (Gao et al., 1994; 273 

Funai et al., 2010).  274 

 275 

NOS inhibition during insulin exposure blocks the increase in the insulin-stimulated 276 

glucose uptake after contraction 277 

As we have shown that NO synthase (NOS) inhibition attenuates the increase in skeletal 278 

muscle glucose uptake during contraction in mice and rats (Stephens et al., 2004; Ross et 279 

al., 2007; Merry et al., 2010b) and during exercise in healthy controls and in people with 280 
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T2D (Bradley et al., 1999; Kingwell et al., 2002), in order to examine whether NO is 281 

required for the increase in insulin sensitivity post ex vivo contraction (Fig. 2A), muscles 282 

were treated with the NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA, 283 

100 µM) either 1) during the period of the pre-incubation (30 min) and the muscle 284 

contraction (10 min) (NOS inhibition during contraction), or 2) during vehicle or the 285 

120µU/ml insulin incubation (30 min) and 2-DG tracer incubation (10 min); NOS 286 

inhibition during contraction). In the absence of insulin skeletal muscle glucose uptake was 287 

similar (P> 0.05) 3.5 hrs after no contraction, contraction, NOS inhibition during 288 

contraction and NOS inhibition during insulin (Fig. 2B). This indicates that the effect of 289 

prior contraction had worn off. Contraction significantly (P<0.01) increased insulin-290 

stimulated glucose uptake 3.5 hrs post-contraction and this increase was not affected by 291 

NOS inhibition during the pre-incubation and contraction periods (Fig. 2B). Surprisingly, 292 

NOS inhibition during insulin (and 2-DG tracer) incubation prevented the increase in 293 

insulin-stimulated glucose uptake in response to prior contraction (Fig. 2B). The 294 

incremental (delta) increase in insulin-stimulated glucose uptake (insulin-stimulated 295 

glucose uptake minus basal glucose uptake) was significantly higher in the contraction and 296 

the contraction plus NOS inhibition during contraction groups than the non contraction and 297 

contraction plus NOS inhibition during insulin groups(Fig. 2B). 298 

 299 

 300 

NOS activity 301 

NOS activity was significantly reduced by NOS inhibition during insulin treatment to a 302 

level significantly below the basal state (Fig. 2C). NOS activity has a tendency to increase 303 

in the NOS inhibition during contraction group although this was not significant (P=0.08) 304 

(Fig. 2C).   305 

 306 

The NO-mediated insulin-sensitizing effect of prior contraction does not involve 307 

cGMP/PKG downstream signaling  308 

Since NO signalling involves activation of the soluble form of guanylate cyclase to produce 309 

cGMP, the NO/cGMP/PKG signalling pathway is generally considered to be the major 310 
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downstream target of NO (Stamler & Meissner, 2001) (Fig. 3A). To explore the 311 

mechanism(s) that NO acts to increase insulin-stimulated skeletal muscle glucose uptake 312 

post contraction, and specifically whether this NO signalling is through cGMP/PKG, the 313 

soluble guanylate cyclase (sGC) inhibitor ODQ (which blocks the NO-mediated increase in 314 

cGMP), the PDE 5 inhibitor T1032 (which inhibits cGMP breakdown and therefore raises 315 

cGMP levels) and the cGMP-dependent protein kinase (PKG) inhibitor Rp-8-Br-PET-316 

cGMPS were applied to block this pathway as per our previous studies (Mahajan et al., 317 

2003; Merry et al., 2010a; Merry et al., 2010b). We found that the insulin sensitizing 318 

effects of prior contraction were not affected by the presence of these inhibitors during 319 

insulin incubation 3.5 hrs post-contraction (Fig. 3B).   320 

To exclude the possibility that there was a physical interaction between insulin and the 321 

inhibitors which may have prevented them having an effect on insulin-stimulated glucose 322 

uptake, the resting muscles were co-incubated with or without L-NMMA, ODQ or T1032 323 

with insulin for 30 min, then were incubated with [3H]-2-deoxyglucose and [14C]-mannitol 324 

for 10 min to measure glucose uptake (Fig. 3C). As can be seen in Fig. 3D, there was no 325 

difference between insulin and insulin plus any of these inhibitors, indicating that no 326 

physical interaction could explain the effect of L-NMMA and the lack of effect of these 327 

other agents.   328 

 329 

Insulin signalling  330 

There was little Akt Thr308 and Akt Ser473 phosphorylation in the absence of insulin and 331 

no significant differences between the treatments (Fig. 4). Insulin significantly (P<0.001) 332 

increased phosphorylation of Akt at both Thr308 and Ser473 with no differences observed 333 

between the four treatments (Fig. 4B-C).  Insulin significantly increased phosphorylation of 334 

TBC1D1 at Thr590 (P<0.01) and Thr596 (P<0.001) but not at Ser660 with no greater 335 

insulin-stimulated phosphorylation at these sites 3.5hrs following prior contraction (Fig. 336 

5A-D). Although TBC1D4 Thr642 phosphorylation per se did significantly increase with 337 

insulin (data not shown, P<0.05), given the variability of the total TBC1D4 data (data not 338 

shown, P>0.05), this increase was not significant when TBC1D4 Thr642 phosphorylation 339 

was presented relative to the total TBC1D4 (Fig. 5E-F). NOS inhibition either during 340 
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contraction or during insulin had no significant effect on TBC1D1 or TBC1D4 341 

phosphorylation at the sites that we examined (Fig. 5).    342 
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Discussion 343 

 344 

We report that in mouse muscle, as has been shown in rat muscle, ex vivo contraction 345 

increases insulin sensitivity several hours after contraction. In contrast to our hypothesis, 346 

NOS inhibition during contraction had no effect on insulin-stimulated glucose uptake 3.5 347 

hrs later. However, remarkably, NOS inhibition during the insulin treatment 3.5 hrs after 348 

contraction prevented the insulin sensitizing effect of the prior contraction. Our results also 349 

suggest that nitric oxide’s effects on insulin sensitivity after contraction may not act via the 350 

classic NO/cGMP/PKG signalling pathway. Given that the measurements were conducted 351 

in isolated muscles, these observed effects of NOS inhibition cannot be due to alterations in 352 

other confounders such as blood flow so must relate to muscle effects per se. 353 

 354 

Several previous studies in rats  (Gao et al., 1994; Funai et al., 2010) have reported that ex 355 

vivo muscle contraction increases  skeletal muscle insulin-stimulated glucose uptake ~3 hrs 356 

later, which is consistent with human exercise studies (Richter et al., 1989; Wojtaszewski et 357 

al., 2000). Our results extend these findings to mice which is important because this means 358 

that studies with genetically modified mice are now possible. As has been shown in rats 359 

(Gao et al., 1994; Funai et al., 2010), we found in mice that it was necessary to include 360 

serum during the ex vivo muscle contractions in order to observe the insulin sensitizing 361 

effects of contraction. Furthermore, we found that a mixture of 50% serum with 50% KHB 362 

buffer rather than 100% serum as used in rats was sufficient to induce greater insulin-363 

stimulated glucose uptake ~3 hrs after ex vivo contraction in mouse skeletal muscle (Fig. 1).   364 

 365 

NOS inhibition during contraction in mice and during exercise in humans attenuates the 366 

increase in glucose uptake during contraction/exercise (Bradley et al., 1999; Kingwell et 367 

al., 2002; Ross et al., 2007; Merry et al., 2010a; Merry et al., 2010b). As such, we 368 

hypothesized that NOS inhibition during contraction would attenuate the increase in insulin 369 

sensitivity 3.5 hrs after contraction.  However, our hypothesis was not confirmed as NOS 370 

inhibition during contraction had no effect on later insulin sensitivity. We have found 371 

previously that addition of L-arginine can overcome the inhibitory effects of NOS 372 
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inhibition during contraction (Hong et al., 2015). Therefore, it is possible that the effects of 373 

the NOS inhibitor were somewhat nullified by the presence of serum during contraction 374 

because L-arginine is present in healthy human serum at a concentration of ~100 µM.  375 

 376 

Importantly, NOS inhibition during insulin incubation blocked the increase in insulin 377 

sensitivity in response to earlier contraction (Fig.2B).  The mechanism(s) involved are 378 

unclear at this stage.  The relationship between skeletal muscle, NO production, NOS 379 

activity, diabetes, exercise and insulin sensitivity are complex. Insulin has been shown to 380 

increase nNOS phosphorylation in C2C12 muscle cells and in mouse skeletal muscle 381 

(Hinchee-Rodriguez et al., 2013) and skeletal muscle NOS activity increases during a 382 

euglycaemic hyperinsulinaemic clamp in healthy humans (Kashyap et al., 2005). Therefore, 383 

it is possible that insulin activates increases in skeletal muscle NO production to increase 384 

glucose uptake and that the NOS inhibitor then prevented this effect. Indeed, in line with 385 

the prevention of the contraction-stimulated increase in insulin sensitivity, NOS activity 386 

was significantly reduced in the presence of NOS inhibition during insulin treatment (Fig. 387 

2C).  388 

 389 

Most studies in rodents and humans find little effect of prior exercise or contraction on 390 

proximal insulin signalling (Wojtaszewski et al., 2000; Hamada et al., 2006; Funai et al., 391 

2010; Castorena et al., 2014). In line with this, we found there was no difference in insulin-392 

stimulated Akt phosphorylation with or without prior ex vivo contraction (Fig. 4). Despite 393 

unaltered proximal signalling, some studies have reported greater downstream insulin 394 

signalling at the level of TBC1D4 3 hrs after exercise in rats and humans (Funai et al., 395 

2009; Treebak et al., 2009; Castorena et al., 2014). Although previous studies found 396 

increases in mouse EDL TBC1D4 Thr642 phosphorylation with insulin (Chen et al., 2011; 397 

Kjobsted et al., 2015; Kjobsted et al., 2017), in the current study we found no significant 398 

increase in TBC1D4 Thr642 phosphorylation with insulin when TBC1D4 Thr642 399 

phosphorylation was presented relative to the total TBC1D4. However, TBC1D4 Thr642 400 

phosphorylation per se did increase with insulin  but given variability with total TBC1D4, 401 
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this effect was lost when TBC1D4 Thr642 phosphorylation was divided by total TBC1D4 402 

(Fig. 5F). 403 

 404 

It has now been shown in our human study that skeletal muscle pTCB1D4 Thr704 405 

(pTCB1D4 Thr711in mice) is increased 4 hours after exercise (Sjoberg et al., 2017).  In 406 

addition, the increase in pTCB1D4 Thr704 during a euglycemic hyperinsulinemic clamp is 407 

greater in previously exercised muscle than in non-exercised muscle in humans (Sjoberg et 408 

al., 2017).  It is not known if similar responses of pTCB1D4 Thr711 are observed in mice 409 

as unfortunately an antibody for TBC1D4 704/711 phosphorylation was not commercially 410 

available when we conducted this study. Future mouse studies should examine this site.    411 

 412 

It is important to note that Funai et al (Funai et al., 2010) reported additive effects of prior 413 

in vivo exercise and ex vivo contraction on insulin stimulated glucose uptake, suggesting 414 

that in vivo exercise and ex vivo contraction may enhance insulin sensitivity by different 415 

mechanisms. Along these lines, we recently found that NOS inhibition in humans 416 

overcomes the greater insulin sensitivity in a leg that exercise 4 hrs earlier compared with a 417 

rested leg.  In that study (Sjoberg et al., 2017), like in this study, NOS inhibition had no 418 

effect on insulin signalling in either the contracted on non-contracted muscle.  However, in 419 

that study it appeared that the reduction in blood flow with NOS inhibition, especially in 420 

microvascular blood flow, was the major reason for the NOS inhibition, like in the current 421 

study, overcoming/preventing the increased insulin sensitivity due to earlier exercise.  422 

However, in the current study there is no blood flow component.  These results support the 423 

suggestion that in vivo exercise and ex vivo contraction may enhance insulin sensitivity by 424 

different mechanisms, with both involving NO.  Further research is required to clarify this.  425 

 426 

Akt, TBC1D1 and TBC1D4 phosphorylation were not affected by NOS inhibition during 427 

insulin treatment and therefore do not appear to account for the observed effects of NOS 428 

inhibition preventing the increase in insulin sensitivity after contraction. The mechanisms 429 

responsible for this remarkable effect of NOS inhibition on insulin-stimulated glucose 430 

uptake after contraction are not clear.  Recent evidence indicates that the cytoskeleton is 431 
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important for skeletal muscle glucose uptake in response to both contraction and insulin (Su 432 

et al., 2005; Wang, 2011; Sylow et al., 2013a) and given that skeletal muscle nNOS is 433 

associated with the cytoskeleton (Percival et al., 2010), it is possible that this could be 434 

playing a role. Depolymerization of the actin cytoskeleton decreases glucose uptake (Sylow 435 

et al., 2013b) and rearrangement of the actin cytoskeleton by Rac1 (Ras-related C3 436 

botulinum toxin substrate 1), a small Rho family GTPase, is necessary for insulin-437 

stimulated GLUT4 translocation in L6 myotubes (Ueda et al., 2008). In addition, Rac1 and 438 

its downstream target, PAK1, are activated by contraction/exercise in human and mouse 439 

skeletal muscle and insulin-stimulated GLUT4 translocation is impaired in skeletal muscle 440 

from Rac1 knockout mice (Sylow et al., 2013a; Sylow et al., 2013b). Inhibition of Rac1 or 441 

Rac1 knockout reduces both contraction-stimulated and insulin-stimulated glucose uptake 442 

in mouse muscle (Sylow et al., 2013a; Sylow et al., 2013b). There is also some evidence of 443 

interactions between Rac1 and NO, including in C2C12 muscle cells (Su et al., 2005; Cheng 444 

et al., 2006; Godfrey & Schwarte, 2010). Follow up studies should examine whether NOS 445 

inhibition during insulin exposure attenuates increases in pPAK1 after prior ex vivo skeletal 446 

muscle contraction. 447 

 448 

The cGMP/PKG pathway, which is present in skeletal muscle,  is generally considered to 449 

be the major downstream signaling pathway of NO (Stamler & Meissner, 2001). However, 450 

modification of cGMP/PKG signalling with the soluble guanylate cyclase inhibitor ODQ 451 

(guanylate cyclase produces cGMP in response to NO), the PDE 5 inhibitor T1032 (PDE5 452 

breaks down cGMP) and the cGMP-dependent protein kinase (PKG) inhibitor Rp-8-Br-453 

PET-cGMPS, had no significant effect on the insulin-sensitizing effects of prior contraction 454 

in mouse muscle ex vivo (Fig. 3A-B). These results suggest that NO increases skeletal 455 

muscle insulin sensitivity post-contraction via cGMP/PKG independent mechanism(s). This 456 

is similar to what we have found previously during ex vivo contractions where L-NMMA 457 

attenuates the increase in skeletal muscle glucose uptake during ex vivo contractions but 458 

there is no effect of inhibition of sGC or PKG (Merry et al., 2010a). Moreover, Wang et al. 459 

(Wang et al., 2013) found in endothelial cells and Kaddai et al (Kaddai et al., 2008) found 460 
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in adipocytes that the stimulatory effect of NO donors on insulin transport was not through 461 

cGMP/PKG but through S-nitrosylation.  462 

 463 

The alternatively-spliced isoform of nNOS, nNOSµ, is the primary source of skeletal 464 

muscle NO during contraction in mouse muscle (Silvagno et al., 1996)  and in contracting 465 

muscle cells (Hirschfield et al., 2000). Indeed, it has been shown contraction increases 466 

cGMP during ex vivo skeletal muscle contraction in normal mice and eNOS KO mice but 467 

not in nNOSµ KO mice (Lau et al., 2000). Therefore, it is possible that in the current study 468 

skeletal muscle NO production was from nNOSµ.  Follow up studies should examine 469 

whether the increase in insulin sensitivity after ex vivo contraction is attenuated in nNOSµ 470 

mouse muscle.  In addition, studies with NOS inhibition in humans could be conducted to 471 

determine if NO production plays a role in the insulin sensitizing effects of exercise in 472 

humans.  We have infused local NOS inhibitors into the femoral artery of humans during 473 

exercise in studies examining the role of NO in glucose uptake during exercise  (Bradley et 474 

al., 1999).  Similar methods could be used with infusion of a NOS inhibitor during insulin 475 

several hours after acute exercise.  It has been shown that 4 hours after single leg exercise 476 

there is 50% or greater increases in insulin-stimulated glucose uptake into the exercised leg 477 

compared with the rested leg (Richter et al., 1989).     478 

 479 

Due to technical difficulties and the small muscle mass we were unable to measure soluble 480 

guanylate cyclase activity to confirm the efficacy of ODQ or to measure PKG activity to 481 

confirm the efficacy of Rp-8-Br-PET-cGMP in our study. It should be considered, 482 

however, that we have found that the same concentration of ODQ used in the current study 483 

prevents NO donor stimulated increases in glucose uptake in EDL muscle (Merry et al., 484 

2010a).   485 

 486 

In conclusion, we have shown that NO is required for normal increases in insulin sensitivity 487 

several hours after ex vivo contraction of mouse muscle.  NOS inhibition during contraction 488 

had no effect on insulin sensitivity 3.5 hrs later but, remarkably, NOS inhibition during 489 

insulin exposure post-contraction prevented the increases in insulin sensitivity following ex 490 
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vivo contraction.  Although we found NOS inhibition during insulin treatment post-491 

contraction had no effect on Akt, TBC1D1 or TBC1D4 phosphorylation at the sites that we 492 

examined, future mouse studies should examine other sites of TBC1D4 phosphorylation, 493 

especially the increase in pTCB1D4 Thr704 in response to insulin in humans (pTCB1D4 494 

Thr711 in mice) is greater ~5 hrs after exercise. Finally, given that blocking soluble 495 

guanylate cyclase and PKG during insulin exposure had no effect on the increase in insulin 496 

sensitivity after contraction, this suggests that NO acts independently of the cGMP/PKG 497 

pathway to increase insulin sensitivity after contraction.  498 

 499 
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Figures and Legends 731 

Figure 1. Effect of ex vivo muscle contraction with and without serum on insulin 732 

sensitivity of glucose uptake. Insulin 120µU/ml.  A. Experimental design. B. 2-DG 733 

uptake. Mean ± SEM, n=3-4 per group, *P<0.05 vs no insulin, #p<0.05 vs no serum. 734 

White bars: no insulin; Black bars: insulin.  735 

 736 

Figure 2. NOS inhibition during insulin exposure prevents the increase in insulin-737 

stimulated glucose uptake and NOS activity 3.5 hrs post-contraction in mouse skeletal 738 

EDL muscles. A. Experimental design. B. The effect of NOS inhibition (L-NMMA; 739 

100µM)) during contraction and during insulin (120µU/ml) exposure on glucose uptake 740 

3.5 hrs after ex vivo contraction. Mean ± SEM, N=6-12 *P<0.05 vs no insulin treatment; 741 

#P<0.05 vs rest plus insulin group and vs contraction and then NOS inhibition during 742 

insulin group. C. NOS activity of EDL muscles in the presence of insulin. Mean ± SEM, 743 

n=6 per group. #P<0.05 vs rest and vs contraction and then NOS inhibition during 744 

contraction group. 745 

 746 

 747 

Figure 3. Agents modifying the cGMP/PKG pathway had no effect on insulin-stimulated 748 

glucose uptake 3.5 hrs after contraction.  Soluble guanylate cyclase (sGC) inhibition by 749 

ODQ (10 µM), PDE5 inhibition by T-1032 (27 µM), and PKG inhibition by Rp-8-Br-750 

PET-cGMPS (5 µM). 120µU/ml of insulin was used in all experiments except in T-1032 751 

treatment where 60µU/ml was used. A. Relationship of the inhibitors used with the 752 

cGMP/PKG pathway. B. 2-DG glucose uptake. Mean ± SEM, n=4-6 per group. #P<0.05 753 

vs rest.  White bars: vehicle; Black bars: inhibitor. C. Experimental design to examine 754 

any possible physical interaction between insulin and the inhibitors used. The inhibitors 755 

(L-NMMA, ODQ and T1032) were incubated with insulin for 30 min. D. No physical 756 

interaction between insulin and the examined inhibitors. Mean ± SEM, n=4-6, * P<0.05 757 

vs no insulin.  758 

 759 
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Figure 4. Akt phosphorylation 3.5 hrs after ex vivo contraction in mouse skeletal muscle. 760 

N = 6 per group. Insulin (120µU/ml). All values are shown as means ± SEM; * P < 0.05 761 

or ** P<0.01 or *** P<0.001 vs no insulin.  762 

  763 

Figure 5. TBC1D1 and TBC1D4 phosphorylation in response to insulin 3.5 hrs after ex 764 

vivo contraction in mouse skeletal muscle. Insulin (120µU/ml). N = 6 in each group. All 765 

values are shown as means ± SEM; * P < 0.05 or ** P<0.01 or *** P<0.001 vs no 766 

insulin.  767 
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