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Abstract 25 

Oral consumption of inorganic nitrate, which is abundant in green leafy 26 

vegetables and roots, has been shown to increase circulating plasma nitrite 27 

concentration, which can be converted to NO in low oxygen conditions.  The 28 

associated beneficial physiological effects include a reduction in blood pressure, 29 

modification of platelet aggregation and increases in limb blood flow. 30 

There have been numerous studies of nitrate supplementation in healthy 31 

recreational and competitive athletes, however, the ergogenic benefits are currently 32 

unclear due to a variety of factors including small sample sizes, different dosing 33 

regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial 34 

fitness levels and the types of exercise tests employed.  In clinical populations, the 35 

study results seem more promising, particularly in patients with cardiovascular 36 

diseases who typically present with disruptions in the ability to transport oxygen from 37 

the atmosphere to working tissues and reduced exercise tolerance. Many of these 38 

disease-related, physiological maladaptations including, endothelial dysfunction, 39 

increased reactive oxygen species, reduced tissue perfusion and muscle 40 

mitochondrial dysfunction have been previously identified as potential targets for NO 41 

restorative effects. 42 

This review is the first of its kind to outline the current evidence for inorganic 43 

nitrate supplementation as a therapeutic intervention to restore exercise tolerance 44 

and improve quality of life in patients with cardiovascular diseases.  We summarise 45 

the factors that appear to limit or maximize its effectiveness and present a case for 46 

why it may be more effective in patients with CVD than as ergogenic aid in healthy 47 

populations.  48 

 49 

50 



Introduction 51 

Nitric oxide (NO) is a diatomic, lipid-soluble gas, implicated in numerous 52 

physiological functions including neurotransmission, immune defence, blood flow 53 

regulation, among others.  In the presence of oxygen, NO is produced by the 54 

vascular endothelium via the oxidation of L-arginine to NO and L-citrulline by 55 

endothelial NO-synthase (2).  NO bioavailability is a balance between its rate of 56 

production and subsequent rate of consumption via various biological signaling 57 

pathways and chemical reactions.  Vascular NO bioavailability has been shown to be 58 

essential for cardiovascular health and a reduction in the ability to produce NO by 59 

the vascular endothelium is an early event in the process of atherosclerotic lesion 60 

formation and is associated with cardiovascular risk factors (41, 42, 218), diabetes 61 

(50) and established cardiovascular disease (155).  This dysfunctional endothelium 62 

limits eNOS-dependant therapeutic strategies to increase vascular NO 63 

bioavailability, and approaches utilizing NO-donor compounds have been limited in 64 

their clinical applications primarily due to their systemic vascular effects often 65 

resulting in hypotension.  66 

The short half-life of NO makes it difficult to measure directly in vivo human 67 

models, but its expression has previously been shown to be directly proportional to 68 

plasma nitrite levels(4, 179), suggesting nitrite may be a measurable reflection of 69 

vascular NO bioavailability.  Despite decades long knowledge that nitrite acts as a 70 

vasodilator at supra-physiological (micromolar) concentrations(70), it was regarded 71 

within biological systems as an inactive “NO-sink,” which was ultimately excreted by 72 

the kidneys.  Recently, nitrite (along with S-nitrosothiols(213), N-nitroso proteins and 73 

iron-nitrosyl complexes(178)) have been shown to be reduced back to NO under 74 

hypoxic conditions (134).  This indicates a discrete yet complimentary system to 75 



oxygen-dependant eNOS production, which may enable vascular NO bioavailability 76 

across the oxygen gradient.  Furthermore, it suggests conservation of NO and an 77 

endocrine-like function where delivery via plasma nitrite may target specific tissues 78 

with low oxygen concentrations.  Consequently, mechanisms to increase plasma 79 

nitrite may be particularly useful in conditions associated with tissue ischemia, 80 

including some cardiovascular diseases pathologies and specifically during a 81 

physiological challenge requiring an upregulation in tissue perfusion such as 82 

exercise. 83 

 84 

Inorganic Nitrate Supplementation to Increase Plasma Nitrite 85 

Inorganic nitrate supplementation has been shown to be a simple, non-86 

invasive means of exogenously increasing plasma nitrite concentration and, 87 

consequently, NO bioavailability(132, 133).  Inorganic nitrate is found in relatively 88 

high concentrations, approximately 250mg per 100g, in green leafy vegetables such 89 

as kale, cabbage, lettuce, rocket, spinach, and beetroot(95). It is important to note 90 

that the exact NO3
- content of these vegetable sources can vary depending on 91 

growth environment, geographical location and how they are treated(194). 92 

Oral supplementation with inorganic nitrate works in a two-step process 93 

(Figure 1) whereby following consumption, nitrate is rapidly absorbed in the small 94 

intestine and enters circulation. While a majority (~75%) is subsequently excreted by 95 

the kidneys, approximately 25% becomes highly concentrated in the salivary glands 96 

(up to 10 times the plasma concentration)(211). When this nitrate is released from 97 

the salivary glands, commensal oral bacterial on the dorsal surface of the tongue 98 

reduces nitrate to nitrite(60).  The nitrite is then swallowed and absorbed into 99 

circulation via the intestinal tract(23, 135). Due to this two-pass process, plasma 100 



nitrite concentrations take approximately 2.5 to 3 hours to reach maximal levels 101 

(200 to 400nM), following a single dose of inorganic nitrate.  The half-life of nitrite 102 

appears to be approximately 6 hours(100, 143, 146, 233, 244). Chronic nitrate 103 

supplementation can maintain elevated nitrite levels continuously and helps to avoid 104 

the short-lived bolus effects of direct oral nitrite administration (228, 245). 105 

The circulating plasma nitrite can then undergo one-electron reduction to NO 106 

by numerous nitrite-reductases including deoxyhemoglobin(54), 107 

deoxymyoglobin(204), mitochondrial enzymes(157) and chemical acidification(249).  108 

In this way, inorganic nitrate acts as a targeted supplement, whereby the resulting 109 

nitrite is reduced to NO in tissues with a low partial pressure of oxygen (PO2) which 110 

may facilitate better overall distribution of the available blood flow and allow for 111 

greater oxygen extraction in those with cardiovascular disease (CVD) but also during 112 

exercise stress. 113 

 114 

Inorganic Nitrate Supplementation in Cardiovascular Disease 115 

Several pharmacological agents for CVD enhance NO signalling either via 116 

increasing bioavailability or inhibiting NO breakdown.  The most obvious of these is 117 

organic nitrate (eg. glyceryl trinitrate) which acts via the rapid release of NO causing 118 

nonspecific arterial and venodilation and is subject to the development of tolerance.  119 

Another type is phosphodiesterase-5-inhibitors which are used in patients with 120 

erectile dysfunction and pulmonary hypertension(72).  In addition, HMG-CoA 121 

reductase inhibitors (statins) and angiotensin-converting enzyme inhibitors/receptor 122 

blockers indirectly increase NO bioavailability(162). 123 

Currently several countries recommend dietary interventions high in inorganic 124 

nitrate for patients with cardiovascular conditions.  For example, the Dietary 125 



Approaches to Stop Hypertension (DASH) dietary pattern(10, 192), which 126 

emphasizes fruits, vegetables and low-fat dairy foods, and includes whole grains, 127 

poultry, fish, and nuts can potentially contain up to 20mmol of inorganic nitrate per 128 

day(95).  It is recommended by The National Heart, Lung and Blood Institute(196), 129 

The American Heart Association(11), the American Diabetes Association(21), and 130 

the Dietary Guidelines for Americans(227).  High dietary inorganic nitrate intake has 131 

been shown to decrease blood pressure(71, 112), and lower the risk for heart 132 

disease(108) and stroke(107). 133 

The most consistent applied clinical outcome from increased oral inorganic 134 

nitrate intake is a reduction in blood pressure.  In 2006, 3 days of sodium nitrate 135 

administration (0.1mmol/day) was shown to reduce diastolic blood pressure (DBP) 136 

by 3.7mmHg in healthy volunteers(128).  In 2008, Webb et al., demonstrated an 137 

acute dose of 22.5mmol inorganic nitrate via beetroot juice (500ml) reduced systolic 138 

blood pressure (SBP) and DBP by ≈10 and 8mmHg respectively(233).  Furthermore, 139 

the drop in blood pressure was correlated to plasma nitrite concentrations and both 140 

changes could be abolished by interruption of the enterosalivary conversion of nitrate 141 

to nitrite.  Since this study, similar benefits have been observed in studies of patients 142 

with hypertension(73). A double-blind placebo controlled study where 68 patients 143 

were given a 6mmol dose of inorganic nitrate, via 250ml beetroot juice, for 4 weeks, 144 

demonstrated significant reductions in clinic measured (≈8/2.5mmHg), 24-hour 145 

ambulatory (≈8/5mmHg), and home measured (≈8/4mmHg) blood pressures(112).  146 

These reductions are clinically significant when it is considered that a 1mmHg 147 

increase in SBP is estimated to increase cerebrovascular incident mortality by 2% 148 

and a 1 mmHg increase in DBP may increase stroke mortality by 3%(162, 165). 149 



Other documented benefits for CVD include increased endothelial function, 150 

(86, 126), reduced tissue loss following an myocardial infarction(38, 209) reduced 151 

platelet aggregation(184, 233), and attenuation of pulmonary hypertension(96).  152 

Recently, Bondonno et al.(25),  showed that, after adjusting for other cardiovascular 153 

risk factors and lifestyle components, a higher dietary vegetable nitrate intake over a 154 

period of 14 years was associated with a lower carotid artery intimal-medial 155 

thickness and a lower risk of an ischemic cerebrovascular disease events in 1226 156 

elderly women.  Excellent reviews of other benefits of increased dietary inorganic 157 

nitrate supplementation for cardiovascular and metabolic health have been published 158 

previously(162, 181, 234). 159 

 160 

Inorganic Oral Nitrate Supplementation and Exercise 161 

During resting conditions, peripheral skeletal muscle tissues are usually 162 

adequately perfused, however, during exercise stress the increased metabolic 163 

demands of skeletal muscles can outstrip the ability to supply blood flow and oxygen 164 

causing a decline in pH and inter-myocyte and microvascular oxygen tensions(67, 165 

185, 219).  Given that nitrite is reduced in low oxygen and acidic conditions, this 166 

environment may be ideal to liberate NO and contribute to optimal matching of 167 

perfusion to metabolic demands. 168 

In support of this theory, intravascular consumption of nitrite during physiological 169 

stress in humans was first reported by Gladwin et al., in 2000.  They showed artery 170 

to venous nitrite gradients in the forearm of healthy subjects during L-NMMA infusion 171 

coupled with handgrip exercise(75).  Similarly, our data in subjects with peripheral 172 

arterial disease (PAD) and documented endothelial dysfunction showed a net loss of 173 

plasma nitrite stores following maximal exercise stress.  This was in comparison to 174 



healthier counterparts with a functioning endothelium(3, 7).These studies allow us to 175 

speculate that, in the setting of a depleted or inhibited endogenous source of 176 

vascular NO during exercise-induced tissue ischemia, there is the potential for 177 

significant decrease in the circulating nitrite/NO pool, potentially in an attempt to 178 

normalize blood flow and oxygen delivery to hypoxic tissues. 179 

In addition to increasing tissue perfusion, NO has been shown to have a 180 

variety of potential physiological benefits in exercising skeletal muscle beds (as 181 

outlined below) which may contribute to increasing exercise performance.  They also 182 

suggest the ergogenic benefit of consuming inorganic nitrate may be optimal under 183 

conditions where the cardiorespiratory and musculoskeletal systems are close to or 184 

exceed their maximal capacity to transport oxygen from the lungs to the working 185 

myocyte. 186 

In this review, we will outline the evidence for inorganic nitrate 187 

supplementation as an ergogenic aid and summarise the factors that appear to limit 188 

or maximize its effectiveness.  We will present evidence that suggests inorganic 189 

nitrate supplementation offers a greater opportunity as a therapeutic intervention to 190 

partially restore exercise tolerance and improve quality of life in patients with 191 

cardiovascular diseases than as an ergogenic aid in healthy populations. 192 

 193 

Inorganic Nitrate Supplementation and Exercise Performance in Healthy Subjects 194 

The main physiological parameters during exercise that are documented to be 195 

influenced by inorganic nitrate supplementation include mitochondrial function(110, 196 

148, 204), skeletal muscle contractile efficiency(18, 48, 81), and tissue 197 

perfusion/oxygen delivery(19, 66, 67, 113, 141).   198 

 199 



a) Changes in Mitochondrial Function 200 

A period of intense interest in the role of dietary inorganic nitrate as a potential 201 

ergogenic aid was initiated in 2007 by Larsen and colleagues’ discovery that 3 days 202 

of dietary sodium nitrate supplementation resulted in a reduction in oxygen cost 203 

during submaximal cycling(130).  These changes were observed following a 204 

relatively small dose of nitrate (0.1mmol kg-1 bodyweight day-1) likened to that which 205 

is readily available from everyday dietary sources (150-250g of green leafy 206 

vegetables)(132).   207 

Prior to Larsen’s discovery, the prevailing dogma was that oxygen cost 208 

(ml/kg/min) during sub-maximal exercise at a particular workload was fixed, with 209 

responses being almost identical within and between subjects(174).  While it was 210 

understood that individuals with a period of training could become mechanically 211 

more efficient, the subjects in Larsen’s study had no differences in training status, 212 

heart rate, or blood lactate between tests.  They appeared to have become more 213 

efficient via changes in mitochondrial function. 214 

In a follow-up study, the group investigated the effects of nitrate 215 

supplementation on maximal aerobic exercise capacity (VO2max) during combined 216 

upper and lower body exercise. The results showed that nitrate supplementation 217 

resulted in a lower VO2max but an increased time to exhaustion(129). This occurred 218 

without changes in anaerobic energy consumption (measured by maximal 219 

ventilation), respiratory exchange ratio, blood lactate levels, or heart rate.  They 220 

suggested that this may be due to not only improved muscular efficiency but a 221 

corresponding reduction in mitochondrial proton leakage(129). Further elucidating 222 

the potential mechanisms of dietary nitrate on exercise economy, Larsen showed 223 



that reductions in whole body VO2 occurred simultaneously with increased oxidative 224 

phosphorylation efficiency(127).   225 

Others have shown that nitrite and NO signalling can affect mitochondrial 226 

function at several key steps in order to potentially match respiration to oxygen 227 

availability(22, 204-206).  For example, during low oxygen conditions, nitrite has 228 

been shown to inhibit Complex I (NADH Coenzyme Q oxidoreductase) by S-229 

nitrosylation leading to decreased mitochondrial reactive oxygen species (ROS) 230 

generation.  Similarly, the reduction of nitrite to NO (potentially via deoxymyoglobin 231 

or xanthine oxidase) has been shown to specifically and reversibly inhibit 232 

cytochrome oxidase (complex IV)(34).  In addition, peroxynitrite (ONOO-) may inhibit 233 

multiple respiratory complexes under specific conditions(34).  When oxygen 234 

availability is restored, these inhibitory mechanisms are reversed (NO is oxidized to 235 

nitrite) to resume ATP production, while inhibition of complex I is prolonged to limit 236 

ROS production(206).  These mechanisms have also been implicated in nitrite 237 

mediated cytoprotection following ischemia/reperfusion injury(87, 206, 232).  238 

Interestingly, studies that have employed an NO-blockade approach to measure its 239 

effects on changes in skeletal muscle mitochondrial function and oxygen uptake in 240 

humans have been mainly negative(195).  This may be due to multiple integrated or 241 

redundant mechanisms employed in intact model physiology(226) or potentially 242 

multiple nitration and nitrosylation signalling pathways initiated by exogenous 243 

administration of NO species (as described above).  It may even be a function of the 244 

technology used to take measurements. Recently Heinonen et al.(84), using positron 245 

emission tomography and radiolabelled water, showed that NO blockade enhanced 246 

resting oxygen uptake and when combined with cyclooxygenase (COX) inhibition 247 

muscle oxygen uptake also increased during exercise. 248 



 249 

b) Changes in Skeletal muscle contractile efficiency 250 

A second major area in which inorganic nitrate supplementation may increase 251 

exercise performance is via changes in neuromuscular contractile efficiency.  In 252 

2010, Bailey et al. demonstrated a reduced oxygen cost of exercise following dietary 253 

nitrate, which they attributed to a reduced ATP turnover in the contracting myocytes 254 

which can influence the stimulus for oxidative metabolism.  Similarly, the sparing of 255 

PCr was associated with improved exercise tolerance in high intensity exercise(18).  256 

Others have shown increased maximal knee extensor speed and power in voluntary 257 

(48, 49, 187, 236) and stimulated muscle contractions(81).  These benefits have 258 

been attributed to increases in NO led activation of sGC, cGMP and subsequent 259 

phosphorylation of myosin(139), although others showed no changes in redox status 260 

and calcium handling proteins(236). 261 

 262 

c) Changes in Skeletal muscle tissue perfusion/oxygen delivery 263 

A third major mechanism of action of inorganic nitrate supplementation is 264 

improving skeletal muscle tissue perfusion.  Oxygen supply to myocytes is a balance 265 

between blood flow delivery and oxygen extraction.  It is essential that perfusion is 266 

optimised to the muscle fibers that are actively contracting.  Microvascular PO2 267 

represents the dynamic balance between oxygen supply and myocyte consumption.  268 

An increase in PO2 suggests enhanced blood flow (supply) and potentially increased 269 

mitochondrial and contractile efficiency during exercise. 270 

Infusion of the vasodilator ATP into the leg at near-maximal intensities of 271 

exercise has been shown to increase vascular conductance but not limb VO2(37).  272 

This suggests a concomitant decrease in arterial-venous oxygen extraction which 273 



may be caused by some of the increased blood flow directed to less-active fibers 274 

(that may normally be under a vasoconstrictive influence)(85).  Given that nitrite is 275 

reduced to liberate NO in low oxygen and acidic conditions, this system may 276 

contribute to optimal matching of perfusion to metabolic demands and allow for 277 

greater oxygen extraction.   278 

Neuronal-NOS (nNOS) is located beneath the sarcolemma of skeletal muscle 279 

fibers and is associated with the dystrophin-g1 ycoprotein complex.  It has been 280 

suggested that the greater distribution of nNOS to type II fibers(177) may play a role 281 

in the differential fiber type responses.  When healthy skeletal muscle is exercised 282 

nNOSμ-derived NO attenuates α-adrenergic vasoconstriction, thus optimizing 283 

perfusion(220).  During high intensity exercise in rats, there are reductions in blood 284 

flow and vascular conductance and the greatest occur in type II fibers. However, no 285 

changes were observed during low-intensity running(52). Humans with Becker 286 

muscular dystrophy lack sarcolemma nNOS, and have been shown to have 287 

functional muscle ischemia which was relieved by a single dose of oral sodium 288 

nitrate.  There was no effect on healthy controls(156).  In addition, the lower levels of 289 

antioxidant enzymes in type II muscle fibers in comparison to type I fibers(102) 290 

suggest that during high intensity activity, exogenous NO bioavailability within the 291 

muscle may also benefit NO-mediated calcium signalling and mitochondrial function 292 

as outlined above.  293 

 In support of these ideas, in animal models, dietary inorganic nitrite 294 

supplementation (via beetroot juice) increased exercise skeletal muscle blood flow 295 

predominantly to type II fibers(65).  Subsequent studies by the same group showed 296 

nitrate supplementation increased the microvascular and myocyte PO2 only in type 297 

IIx/d fibers compared to control(67).  In humans, the data is less clear.  A recent 298 



study employing NOS-inhibition and PET scanning, failed to show differences in 299 

blood flow between the different muscles that make up the quadriceps femoris; 300 

vastus intermedius (VI), rectus femoris (RF), vastus medialis (VM), and vastus 301 

lateralis (VL)(83).  Similarly, Breese et al., using near infra-red spectroscopy saw no 302 

differences in the spatial variance of absolute deoxyhemoglobin+myoglobin kinetics 303 

across the RF, VL and VM muscles following the onset of heavy step cycling(32).   304 

Differences between these human results and those of rat studies are likely 305 

attributable to the fact that only one exercise intensity was used and that human 306 

muscles have less spatial stratification of muscle fibre types than rodents.  Future 307 

human studies may be best served by utilizing several different intensities of 308 

workload and investigating the musculature of the calf, which has more distinct fibre 309 

types in its muscle parts. 310 

A further physiological mechanism to suggest benefits from dietary inorganic 311 

nitrate on fast twitch skeletal muscle fibers is increases in contractile force.  While 312 

the process is not currently fully elucidated, it is clear NO plays a role in skeletal 313 

muscle calcium flux via S-nitrosylation of ryanodine receptor Ca2
+ release channels 314 

in the sarcoplasmic reticulum membrane and that this occurs only at low 315 

physiological PO2 levels.  Following 7 days of inorganic nitrate supplementation in 316 

rats, Hernandez et al.(89), showed an increased rate of muscle force development in 317 

the predominantly fast twitch extensor digitorum longus muscle (but not the 318 

predominantly slow twitch soleus).  This was accompanied by changes in protein 319 

concentrations of the voltage-sensing dihydropyridine receptor (voltage sensor for 320 

excitation coupling located in the transverse tubular membrane) and the calcium 321 

handling protein calsequestrin 1, found in sarcoplasmic reticulum of fast–twitch 322 

fibers.  In humans, however, despite improvements in skeletal muscle contractile 323 



function, there we no changes in calcium handling proteins(236).  The muscle 324 

samples taken in this study were from the vastus lateralis, which is estimated to be 325 

composed of ~50% type I and ~50% type II fibres and may have contributed to a 326 

dilution of potential differences.  327 

In terms of human exercise performance, the preferential effects of dietary 328 

inorganic nitrate on fast twitch muscle fibers suggests ergogenic effects may be most 329 

evident in activities of high intensity and short duration, such as sprint or interval 330 

training. During these short, high-intensity efforts (at greater than 75% VO2Max) there 331 

is an increased activation of type II muscle fibers(231). Bailey et al., showed that 332 

short-term beetroot juice supplementation can increase muscle oxygenation, 333 

expedite the adjustment of oxidative metabolism, and enhance exercise tolerance in 334 

healthy recreationally active subjects when cycling at high-intensities(19, 20).  There 335 

are also several examples that support the fiber-type specific responses in relation to 336 

better tissue muscular power/force generation in repeated sprint activities and team 337 

sports(15, 48, 81, 175, 187, 242, 243). Following an acute dose of inorganic nitrate 338 

supplementation (11.1mmol) collegiate athletes were able to increase their 339 

maximum power output (pre-nitrate: 1160 ± 301W post-nitrate: 1229 ± 317 340 

=W)(187).  In 2016, Porcelli et al.(175), also showed that following 6 days of a high 341 

nitrate diet (8.2mmol/day) in healthy males (VO2max 41.2 ± 4.7 ml/kg-1/min-1) there 342 

was a significant improvement in peak power during repeated sprint ability test in the 343 

final 3 of 5 bouts when compared to a control diet. Improvements in mean power 344 

during repeated sprints have also been demonstrated in team sport athletes (VO2max 345 

58 ± 8 ml/kg-1/min-1) in short duration intervals 24 x 6s with short recovery, but not 346 

long 7 x 30s and 6 x 60s with an extended recovery(242). 347 



 Recently, Thompson et al.(222), sought to exploit the enhanced conversion of 348 

nitrite to NO in low oxygen conditions by combining sprint interval training with nitrate 349 

supplementation.  They reported an increase in proportion of type I and type IIa 350 

muscle fibers (Pre:93 ± 8%, Post: 96 ± 6%), highlighting the potential of nitrate to 351 

influence training adaptations in a positive oxidative fiber-type switching manner. 352 

Roberts et al.(189), generated similar findings using an in vitro model, whereby 353 

nitrate increased the proportion of type I and IIa oxidative fibers.  They also found in 354 

animals and humans that both nitrate and exercise training can stimulate PGC1α-355 

mediated, γ-aminobutyric acid secretion from the muscle. 356 

 357 

Administration and Variability of Inorganic Nitrate Supplementation 358 

The use of inorganic nitrate supplementation to increase the bioavailability of 359 

NO in exercise studies has been achieved mainly through the use of concentrated 360 

beetroot juice (approximately 3/4 of studies)(144) .  This supplementation allows for 361 

easy oral administration and a controlled dosage.  To date the results of these 362 

studies have been mixed.  While some studies focused on submaximal exercise 363 

variables as the primary outcome, including both acute and chronic supplementation 364 

regimens, have shown positive effects (20, 43, 125, 130, 152, 176, 223, 228, 245) 365 

many have also shown no significant benefit (25, 31, 115, 193).  Similarly, in studies 366 

employing incremental exercise tests or time trial approaches (which require 367 

maximal efforts) the results are similarly mixed between positive effects (20, 43, 124, 368 

125, 129, 168), and no significant benefit (24, 25, 45, 152, 167, 193, 238).  Excellent 369 

reviews detailing the specifics of individual studies in detail have been published 370 

previously (17, 104, 105). 371 



The reasons for divergent findings are not entirely clear, but it is evident that 372 

numerous factors may influence and regulate physiological responses to inorganic 373 

dietary nitrate.  For example, several studies have shown that the extent of the 374 

increase in plasma nitrite correlates with improvements in parameters of exercise 375 

tolerance and performance(221, 238, 244).  This suggests that factors which 376 

optimise conversion of an oral inorganic nitrate dose may be important.  377 

As outlined earlier in this text, the function of oral commensal bacteria has 378 

been shown to be essential for conversion of nitrate to nitrite.  This process occurs 379 

through the utilization of nitrate as a terminal respiratory electron acceptor by 380 

bacteria under anaerobic conditions.  Oral nitrate reduction appears to occur mainly 381 

on the dorsal surface of the tongue and is  predominantly mediated via two broad 382 

categories of bacteria; the strict anaerobes Veillonella spp, and the facultative 383 

anaerobes Actinomyces spp(58).  In a subsequent study, which combined 384 

metagenomics and biochemical techniques, Veillonella was again the most abundant 385 

nitrate-reducing genus detected though Prevotella, Neisseria, and Haemophilus 386 

were found at a higher abundance than Actinomyces(97)  Other bacteria have also 387 

been identified which may play supporting or inhibiting roles in these processes.  The 388 

current literature limits our ability to draw far-reaching conclusions about the 389 

importance of the specific species and abundance of nitrate-reducing bacteria in the 390 

oral cavity on the conversion of inorganic nitrate to plasma nitrite.  However, studies 391 

which have eradicated or inhibited these bacteria via the use of anti-septic and anti-392 

bacterial mouthwash treatments have been shown to reduce salivary and plasma 393 

nitrite increases and lead to increases systemic blood pressure(77, 111, 240).   394 

A second contributing factor in the variability of the plasma nitrite 395 

concentration responses following oral inorganic nitrate supplementation involves 396 



differences in the vehicle of administration, nitrate dosage and the number of days of 397 

supplementation.  A recent crossover study in 10 healthy males, showed that an 398 

acute dosage of 4.2, 8.4 and 16.8mmol inorganic nitrate (via beetroot juice) 399 

increased plasma nitrite in a dose-dependent manner with peak concentrations 400 

occurring at approximately 2-3 hours post consumption(244).  Interestingly, the 401 

oxygen cost of moderate-intensity cycling was increased relative to dosage but there 402 

was no additional benefit to severe-intensity cycle exercise above 8mmol.  Peak 403 

reductions in blood pressure also occurred at 8.4mmol dosage.  This suggests a 404 

threshold of at least 8.4mmol may be required to realise exercise benefits.   405 

Comparisons between acute versus chronic dosing of inorganic nitrate 406 

suggest that chronic dosing (15 days) may help maintain exercise economy 407 

benefits(228) but can potentially have a greater effect on peak power output and 408 

time trial performance benefits(25, 228).  A recent systematic review and meta-409 

analysis on endurance exercise performance showed a positive trend toward 410 

improvements in time to exhaustion (TTE) when utilising chronic nitrate 411 

supplementation(144).  It has also been reported that longer-term nitrate 412 

supplementation (5-7 days) can result in changes in mitochondrial(127) and 413 

contractile(89) proteins that would be expected to enhance skeletal muscle 414 

metabolic and mechanical efficiency. It would seem unlikely that these changes 415 

could be fully effected within a few hours of nitrate ingestion and therefore the 416 

duration of nitrate supplementation is likely to introduce variability into the potential 417 

efficacy of nitrate on the physiological responses to exercise.  Overall, these findings 418 

suggest at least 5 days of supplementation may be optimal to realise exercise 419 

benefits. 420 



A third contributor to outcome variability is the training status or fitness level of 421 

an individual (40, 106, 176).  Among well trained subjects, there appears to be a lack 422 

of effect of nitrate supplementation (acute or chronic) on exercise performance and 423 

efficiency(25, 45, 123, 167, 238).  Porcelli et al.,(176), found that 6 days sodium 424 

nitrate supplementation (5.5mmol) resulted in a reduction in oxygen cost during 425 

sub-maximal exercise and improved 3km running time trial in individuals with low 426 

fitness level (VO2max: 38 mL/min/kg) but not a high fitness level (VO2max: 72 427 

mL/min/kg).  There was a strong correlation between changes in plasma nitrite and 428 

changes in exercise performance.  Carriker et al.(40), found similar results when 429 

they compared the effects of 4 days of nitrate supplementation (6.2mmol/day) on 430 

treadmill running at intensities of 45, 60, 70, 80, and 85% VO2max.  Low fitness 431 

individuals (VO2max: 42.4 ± 3.2 mL/min/kg) showed a reduction in oxygen cost at 432 

intensities of 45 and 60% of maximal, but there was no difference for the high fitness 433 

subjects (VO2max: 60.1 ± 4.6 mL/min/kg).  The reasons for the potential 434 

ineffectiveness of inorganic nitrate supplementation in athletes could be several-fold.   435 

Perhaps they have specialized diets that already contain high levels of nitrate(123) .  436 

There may also be a high inter-subject variability in the conversion of nitrate to nitrite, 437 

or nitrite to various NO-signalling species.  Another possibility is that eNOS activity is 438 

already maximized in athletes and endothelial NO production is strongly associated 439 

with exercise performance(180, 224).  440 

In summary, the response to dietary nitrate supplementation on exercise 441 

parameters appears to be highly variable both between studies and between 442 

individual participants.  The majority of the studies undertaken have small sample 443 

sizes (n<15), which may be a contributing factor to the sometimes-conflicting results.  444 



Further studies are required with a focus on the sources and mechanisms by which 445 

this variability occurs and how it can be minimized.   446 

Currently, it appears that nitrate supplementation in individuals of a high 447 

training status results in minimal positive benefits.  Additionally, nitrate 448 

supplementation appears to have the greatest chance of benefit when given for a 449 

prolonged period of time (>5 days) at a dosage above 8mmol per day and the 450 

exercise is of a high intensity (relative to the individual), that relies predominantly on 451 

type II muscle fiber activation.  These conditions may best lead to adequate plasma 452 

(and potentially tissue) nitrite concentrations coupled with low PO2 and high H+ 453 

concentrations in the skeletal muscle, creating an ideal environment for the reduction 454 

of nitrite to NO.  The effects of inorganic nitrate supplementation on long term 455 

training adaptations as part of a chronic exercise regimen is currently not known. 456 

 457 

Inorganic Nitrate Supplementation and Exercise in Hypoxia 458 

Given the reduction of nitrite to NO in hypoxic and acidic conditions, an 459 

innovative way to test the ergogenic effects of inorganic nitrate supplementation is by 460 

a reduction in the pulmonary oxygen supply.  Interest in this area was stimulated by 461 

studies of humans indigenous to high-altitude environments.  In 2007, Erzurum et al. 462 

(63), showed that native Tibetans who reside at 4,200m, offset physiological hypoxia 463 

and achieve normal tissue oxygen delivery by means of higher blood flow, enabled 464 

by higher levels of bioactive forms of NO.  The authors suggested this was due to 465 

increased eNOS production, which has been shown to be impaired with increasing 466 

altitude in native lowlanders (59).  Interestingly, circulating nitrogen species, 467 

including nitrate and nitrite, seem to increase as part of the altitude acclimatization 468 

process and those individuals with the highest levels of S-nitrosohemoglobin were 469 



able to walk the furthest in a six-minute walk test(101).  Subsequent studies then 470 

confirmed that dietary nitrate supplementation may hold promise as a prophylactic 471 

for acute altitude sickness(88). 472 

 In a laboratory setting, several studies have shown that dietary nitrate has the 473 

potential to minimize the ergolytic effect of hypoxia on exercise capacity(115, 141, 474 

151, 229).  In 2011, Vanhatalo et al.(229), demonstrated that an acute dose of 475 

dietary nitrate via beetroot juice (~9.3mmol) during the 24hour run up to testing 476 

improved time to exhaustion during maximal knee-extension exercise by ~21% while 477 

breathing reduced oxygen air (FiO2 14.5%).  These improvements were attributed to 478 

reduced muscle perturbations related to fatigue.  At lower oxygen conditions (FiO2 479 

11%), Masschelein et al. showed that a chronic dose of beetroot juice (6 days ~5 480 

mmol/day nitrate) improved exercise efficiency via lower VO2 uptake during 481 

submaximal exercise (~45% VO2peak) and increased overall exercise tolerance(141).  482 

This and a second recent study suggest improvements in skeletal muscle tissue 483 

oxygenation, measured via near-infrared spectroscopy, may be mediators of this 484 

benefit(141, 198).  In more applied conditions, acute beetroot juice supplementation 485 

(~5mmol nitrate) reduced submaximal VO2 and improved 16km cycle race time when 486 

performed breathing FiO2 of 15%(151).   487 

 Interestingly, similar to the data in normoxia, nitrate supplementation appears 488 

to be less effective for increasing exercise efficiency or performance in hypoxic 489 

conditions when ingested by well-trained athletes(13, 28, 136).  For example, in well-490 

trained individuals (VO2max>65ml/kg/min) there were no changes in exercise 491 

economy or endurance in a simulated 10km cycling time trial following a single 492 

~6.5mmol dose (beetroot juice) 2 hours before testing at FiO2~15%(136).  Similarly, 493 

despite having a longer supplementation period (3 days ~7mmol/day oral sodium 494 



nitrate) there were no improvements in time to completion of a 15km cycle time trial 495 

at FiO2~11% of the inspired air(28). 496 

 Overall, in low oxygen conditions, such as at altitude, inorganic nitrite 497 

supplementation appears to hold promise as prophylactic.  In fact, it has even been 498 

suggested that hypoxic conditions may be optimal to reveal ergogenic benefits of 499 

dietary nitrate supplementation(115).  However, nitrate’s role in short term hypoxic 500 

exposures in highly trained athletes appears limited.  This suggests nitrate 501 

supplementation is most effective in conditions of low tissue oxygenation when 502 

coupled with dysfunctional cellular metabolism, such as what is seen in patients with 503 

chronic cardiovascular disease. 504 

 505 

Cardiovascular Disease and Exercise 506 

Patients with CVD usually experience significant levels of disability due to a 507 

reduction in exercise capacity and a loss of physical function.  This results in a lower 508 

quality of life and increased morbidity and mortality.  In many populations with CVD, 509 

despite differences in disease aetiologies, exercise capacity, in the form VO2peak, is a 510 

strong independent predictor of survival(158).  For example, patients with PAD are 511 

primarily limited by leg claudication pain whereas those with chronic heart failure 512 

(CHF) suffer from dyspnoea and fatigue.  In both cases, the end result is 30-55% 513 

lower VO2peak than their healthy counterparts(14, 82). 514 

Conversely, even modest improvements in exercise tolerance have been 515 

shown to lower all cause-mortality and morbidity in these individuals.  For example, a 516 

~6% improvement in VO2peak reduced all-cause morbidity and mortality in CHF by 517 

5%(53, 217).  Additionally, data from a widely used six-minute walk test, which may 518 



better represent a measure daily function(142), shows that an improvement of just 519 

45 meters is deemed to be a clinically meaningful change in patients with CHF(207). 520 

The relationship between exercise capacity and physical function and health 521 

outcomes has led to a plethora of exercise based studies in clinical CVD 522 

populations.  However, the burden of exercise participation for individuals with CVD 523 

may be increased due to numerous peripheral tissue maladaptations borne of 524 

chronic under-perfusion and underuse.  Peripheral tissue abnormalities common to 525 

multiple chronic CVD disease states are shown in figure 2 and include endothelial 526 

dysfunction/reduced NO bioavailability(199, 201), capillary density rarefaction(14, 527 

119, 188), and skeletal muscle hypo-perfusion(78, 216), increased reactive oxygen 528 

species(1, 191, 237) and inflammation(109), increased insulin resistance, 529 

mitochondrial dysfunction(190), reduced aerobic enzyme activity(215), and a 530 

preferential loss of type I oxidative fibers(119).  Overall this results in patients 531 

exhibiting a glycolytic phenotype which, in addition to any central cardiovascular 532 

limitations, promotes the early onset of fatigue and exercise intolerance.  In turn, this 533 

may contribute to an increased burden of exercise participation for these individuals, 534 

ultimately leading to higher recidivism rates in training regimens. 535 

Inorganic nitrate supplementation has been shown to play a key role in 536 

exercise capacity in numerous studies in healthy subjects (as previously illustrated). 537 

The intent in this cohort is to use nitrate supplementation as an “ergogenic” to 538 

augment “normal” levels of bioavailable NO in exercising tissues in order to enhance 539 

physical performance, stamina or recovery.  Supplementation within the clinical 540 

cohort, however, takes a “therapeutic” approach with the aim of restoring deficient 541 

NO bioavailability, correcting physiological dysfunctions, and recovering exercise 542 

capacity/performance and health. 543 



In this section, we will build on the data presented in healthy supplementation 544 

studies and focus on known physiological maladaptations that reduce exercise 545 

tolerance in individuals with PAD, CHF, and Type II Diabetes Mellitus (T2DM).  We 546 

will highlight the potential mechanisms by which inorganic nitrate consumption, and 547 

the associated increase in circulating nitrite and NO bioavailability, may act as a 548 

therapeutic to attenuate these dysfunctions and increase exercise tolerance. 549 

 550 

Inorganic Nitrate Supplementation and Exercise Performance in Peripheral Arterial 551 

Disease 552 

Peripheral artery disease is caused by atherosclerotic plaque formation in the 553 

large arteries of the legs, resulting in reduced blood flow to the lower extremities(9).  554 

It is estimated that the worldwide prevalence of PAD has increased by 23.5% in the 555 

last decade and now affects 202 million people(68).  Intermittent claudication (IC) is 556 

the major clinical manifestation of PAD and occurs when arterial occlusive disease 557 

reduces blood flow to the peripheral vasculature during exercise.  Among subjects 558 

with intermittent claudication from PAD, 1/3rd have pain during light activity at home 559 

and an additional 1/3rd have pain walking a short distance (one block)(91).  These 560 

patients suffer from a markedly impaired quality of life and a high perception of 561 

disability(161). Increased pain free walking capacity is a primary goal of therapy for 562 

patients with PAD. 563 

Although measures of conduit vessel and gross limb blood flow, such as ankle 564 

brachial systolic blood pressure index (ABI), are used to diagnose PAD, they show a 565 

poor relationship with functional capacity(29, 92, 93, 138, 171, 248).  Additionally, 566 

surgical revascularization, which improves blood flow, does not normalize exercise 567 



performance(183) and conversely exercise performance can be increased without 568 

changes in conduit vessel hemodynamics(153, 154, 210). 569 

It appears that the key to increasing functionality in patients with IC may lie at 570 

the resistance arteries, arterioles and capillaries that serve the skeletal muscle tissue 571 

distal to the site of stenosis.  These are the vessels which are responsible for much 572 

of the oxygen delivery(225) and become hypoxic during the increased demands for 573 

perfusion accompanying physical exertion.  Therefore, inorganic nitrate 574 

supplementation may be a novel intervention to improve oxygenation to these areas 575 

of skeletal muscle ischemia and increase physical function.  This would be a 576 

significant step forward in the treatment of PAD. 577 

In 2010, our group(7) demonstrated increases in time to claudication onset 578 

pain (66%) and peak walking time (52%) in subjects with PAD following three 579 

months of supervised exercise training.  The strongest independent predictor of 580 

these changes was the ability to increase plasma nitrite concentrations during 581 

maximal exercise, which was most likely as a result of an increase in endothelial NO 582 

production.  In a follow-up repeated measures crossover study, we orally 583 

administered 500ml of beetroot juice containing 9mmol nitrate (compared to an 584 

orange juice placebo) in 8 subjects (4 male, 4 female) age 67+13years with IC (ABI 585 

in the incident leg of 0.64+0.2).  The results of a maximal graded treadmill test 586 

(Gardner protocol) showed an increase in average exercise time before the subject 587 

reported the onset of claudication pain (COT) of 18% (32sec), and an increase in 588 

maximal walking time of 17% (65sec) respectively(116).  This is a clinically 589 

meaningful and statistically significant increase for a disease state characterized by 590 

reduced physical function and quality of life(170, 207).  Additionally, there were no 591 

changes in ABI or endothelial function, suggesting no increase in endogenous 592 



vascular NO production.  The increases in performance were accompanied by a 593 

reduction in fractional oxygen extraction at the working tissues, measured by near 594 

infra-red spectroscopy (NIRS) suggesting increased perfusion to working tissues.   595 

Currently, there are two clinical trials listed as in progress on clinical trials.gov 596 

investigating the effects supplementation of either beetroot juice (NCT02553733) or 597 

Neo 40 (a tablet containing beetroot powder, L-citrulline and sodium nitrite) 598 

(NCT02934438) on walking performance in PAD, but there are no other results that 599 

we are aware of at the time of submission. 600 

Studies in animal models of PAD are also promising with a dose dependent 601 

relationship between nitrite dose (via intraperitoneal injection twice daily for 7 days) 602 

and improved tissue perfusion via angiogenesis in a murine model with permanent 603 

femoral artery ligation of the hind limb(121).  Co-administration of the NO scavenger 604 

carboxy-PTIO with the nitrite completely abrogated the increase in perfusion 605 

suggesting the mechanism of effect is NO mediated.  606 

 While it is premature to speculate on overall clinical utility of a nitrate based 607 

therapy for peripheral artery disease, the early data appears encouraging.  Additional 608 

large clinical trials and basic science studies are required to determine important 609 

molecular mediators conveying beneficial effects of nitrite therapy during specific 610 

disease states. 611 

 612 

Inorganic Nitrate Supplementation and Exercise Performance in Chronic Heart 613 

Failure 614 

Chronic heart failure is characterised by the inability of the heart to pump 615 

sufficient blood to meet the body’s metabolic needs. It affects approximately 23 616 

million people worldwide with a direct cost of $36 billion per year in the U.S. 617 



alone(131).  While there are unique aetiologies associated with the development of 618 

CHF, the hallmark symptom experienced by patients is exercise intolerance.  In 619 

comparison to healthy controls, patients with CHF have significantly lower VO2peak 620 

(~50% reduction) with accompanying reductions in cardiac output by 52-53% 621 

during maximal exercise(57, 82, 214). As exercise capacity (and in particular 622 

VO2peak) is a strong independent predictor of mortality and morbidity in patients 623 

with CHF, targeting this deficit is of clinical importance(12, 137).  Endothelial 624 

dysfunction and reduced NO bioavailability have been linked to both the initiation 625 

and progression of CHF(140). More specifically, imbalances in the production and 626 

utilization of NO contribute to the elevated cardiac filling pressures, symptoms of 627 

dyspneoa, the severity of the disease, and the functional capacity of the 628 

patient(145, 200) 629 

It was historically assumed that this inability to augment cardiac output 630 

during exercise (central dysfunction) was the main contributor to the exercise 631 

intolerance experienced by patients with CHF(173).  However, more recently, 632 

maladaptation’s within the peripheral tissues (secondary to the initial central 633 

dysfunction) have been highlighted as crucial limiters in exercise capacity.  634 

Chronic peripheral tissue under perfusion (due to reduced cardiac output) results 635 

in capillary density rarefaction, decreased mitochondrial function and a preferential 636 

loss of type I oxidative fibres, which cumulatively shift individuals with CHF to a 637 

more glycolytic phenotype(47, 61, 172, 215, 216, 239).  These conditions are ideal 638 

for inorganic nitrate targeted therapeutics. 639 

CHF is not a single uniform state, but rather a multifarious syndrome that 640 

presents generally as one of two classifications depending on whether the patient 641 

has a preserved ejection fraction (HFpEF) or a reduced ejection fraction 642 



(HFrEF)(36). There are key etiological characteristics that differentiate the two 643 

classes.  HFrEF often has a sudden onset following a myocardial infarction 644 

whereas patients with HFpEF are typically older, more commonly female, and 645 

usually have multiple comorbidities associated with a slower onset(122).  Patients 646 

with HFrEF characteristically present with reduced cardiac output (Q) at rest and 647 

during exercise. Patients with HFpEF usually have a normal resting Q but exhibit 648 

increased left ventricular (LV) filling pressures which become pronounced under 649 

stress(182), and are associated with exertional dyspnoea and reduced exercise 650 

cardiac output (16, 57).  Despite the heterogeneity of the two classes of CHF, the 651 

growing body of literature suggests that nitrate supplementation remains 652 

potentially efficacious in both syndromes.  653 

 654 

a) HFpEF studies 655 

Interestingly studies of inorganic nitrate supplementation in patients with 656 

HFpEF have shown more positive outcomes than those in HFrEF(62, 246, 247). 657 

There are two potential explanations for these findings. First, peripheral under-658 

perfusion and an inability to extract oxygen at the tissue level has been found to be 659 

more significant in patients with HFpEF, as evidenced by significantly lower a-660 

vO2diff during exercise than both HFrEF and controls(57).  Second, a recent study 661 

by Borlaug et al.(27) has demonstrated that a sodium nitrite infusion in patients 662 

with HFpEF significantly reduced LV filling pressures during exercise. While the 663 

focus of this review is on natural product supplementation, these mechanistic 664 

benefits from nitrate/nitrite products lend promise to the use of similar more natural 665 

options. 666 



In 2015, Zamani et al.(246), used a single dose of beetroot juice (12.9mmol 667 

nitrate), in 17 patients with HFpEF.  They showed significant improvements in 668 

VO2peak and time to exhaustion (TTE) during a maximal exercise test. The authors 669 

postulated that the beneficial changes in exercise capacity were due to an 670 

accompanying decrease in systemic vascular resistance, thus reducing afterload and 671 

increasing Q. Surprisingly, they showed no improvements to exercise efficiency, 672 

suggesting nitrate may have differential effects on the mitochondrial function in 673 

aging/diseased populations when compared to healthy individuals (as described 674 

previously).  675 

Similarly, in 2016, Eggebeen et al.(62), used beetroot juice to examine the 676 

effects of both a single dose (6.1mmol) and 1 week dosing (6.1mmol/day) to 677 

determine the effects of nitrate supplementation in HFpEF during a submaximal 678 

cycling endurance exercise bout (at 75% of measure maximal power). They found no 679 

significant benefits in exercise performance with acute supplementation, but the 680 

chronic dosing elicited a 24% increase in TTE.  Their data also suggested that the 681 

improvements were likely due to decreases in systemic vascular resistance (SVR) 682 

(62).  To complement these findings, other mechanistic studies utilizing infusions or 683 

nebulized inorganic sodium nitrite have demonstrated improvements in SVR (26, 684 

27).  Significantly, Borlaug et al.(27), noted that the improvements in cardiac function 685 

following nitrite ingestion were actually more pronounced during exercise, again 686 

supporting nitrite’s preferential effects in low oxygen environments and its potential 687 

utility as a targeted approach to treating HFpEF. 688 

A second, more recent study by Zamani et al.(247), utilizing a high chronic 689 

dose of potassium nitrate (6mmol/day for 1 week, increasing to 18mmol per day for 690 

the second week) also found significant improvements in TTE as well as decreases 691 



in CHF symptoms (via the Kansas City Cardiomyopathy Questionnaire). While they 692 

did not assess muscle fibre composition or recruitment, the authors suggested that 693 

the maximal exercise approach employed during testing may provide preferential 694 

conditions to optimise the benefits of inorganic nitrate supplementation (hypoxia and 695 

greater type II fibre recruitment).  696 

In an effort to discover if nitrate supplementation may have an additive 697 

beneficial effect on physical function when consumed in conjunction with exercise 698 

training, Shaltout et al.(197), recently gave beetroot juice (6.1mmol nitrate) plus 699 

exercise training for 3 days per week for 4 weeks versus exercise alone.  While, as 700 

expected, they saw significant improvements in aerobic capacity in both groups, the 701 

nitrate did not have a significant additive benefit. However, given the sample size 702 

was small for a study using an exercise comparison group (exercise alone elicits 703 

relative large benefit), a short treatment period, and a low dosage regimen, this 704 

additive approach may be worth of greater exploration.   705 

 706 

b) HFrEF studies 707 

Patients with HFrEF usually demonstrate reductions in Q at both rest and 708 

during exercise(57, 64) and chronotropic incompetence (the inability to sufficiently 709 

augment HR during exercise) substantially contributes to the reductions in VO2peak.  710 

Interestingly (and in contrast to HFpEF) peripheral oxygen extraction during 711 

exercise (a-VO2diff) appears to remain similar to that of healthy cohorts(35, 57).  712 

However, they still demonstrate skeletal muscle abnormalities that contribute to 713 

exercise intolerance(46, 118, 230).  The potential therapeutic benefits of 714 

nitrate/nitrite interventions were highlighted by a recent study in HFrEF rats.  Glean 715 

et al.(76), demonstrated that a single dose of sodium nitrate lead to significant 716 



elevation (10%) in vascular conductance within the hind limb skeletal muscles. 717 

Moreover, the hind limb skeletal muscles that showed increases in vascular 718 

conductance and blood flow following dosing were primarily comprised of (63%) 719 

type IIb + IId/x fast twitch fibers.  This further supports nitrate/nitrite’s potential as 720 

particularly effective intervention for those individuals known to be more type II 721 

fiber dominant, as is the case for patients with CHF. 722 

Unfortunately, to date there is only one study of exercise capacity in 723 

individuals with HFrEF, following nitrate supplementation.  In an elegantly designed 724 

cross-over study, Hirai et al., found that 9 days of beetroot juice supplementation 725 

(12.1mmol/day) did not result in any improvements in exercise tolerance (TTE or 726 

VO2peak).  They also saw no significant changes in central hemodynamics, skeletal 727 

muscle oxygenation, or the oxygen cost of exercise(94).  The authors suggest the 728 

negative findings could be due to the aforementioned relatively normal peripheral 729 

oxygen extraction in comparison to HFpEF.  However, future studies in this cohort 730 

are warranted and should aim to optimize both the dosing amount and duration.  731 

There has been a second study in patients with HFrEF but this examined isokinetic 732 

knee extensor power in isolation(49).  They showed that a single dose of inorganic 733 

nitrate (11.2mmol) via beetroot juice, improved maximal power output by 13%, which 734 

is much larger than the 6% increase observed in healthy controls following nitrate 735 

supplementation. They proposed the response was mediated by NO’s known 736 

stimulation of guanyl cyclase which increases c-GMP levels. As activation of c-GMP 737 

increases max power, especially in type II fibers, this type of intervention could be 738 

particularly efficacious in CHF where the fast-twitch fibres are more readily recruited 739 

(234). 740 



 It is clear that inorganic nitrate supplementation holds a good deal of promise 741 

in patients with CHF.  To date, results are predominantly in support of an exercise 742 

benefit in patients with HFpEF, which is logical given our understanding of nitrates 743 

mechanism of action in the peripheral tissues and the greater deficits in a-vO2diff in 744 

HFpEF.  However, patients with HFrEF are currently understudied and as of yet 745 

there is no direct comparison of HFpEF and HFrEF in the same study design to 746 

provide an accurate assessment of any differential benefits of inorganic nitrate 747 

supplementation between the two classifications. 748 

 749 

Inorganic Nitrate Supplementation and Exercise Performance in Diabetes Mellitus 750 

The incidence of diabetes mellitus has quadrupled since 1980, from 108 to 751 

422 million people(241).  Despite medical treatment diabetics die approximately 5-10 752 

years earlier than non-diabetics, with approximately 50% of deaths being attributed 753 

to cardiovascular disease(69, 150).  Regular participation in physical activity (along 754 

with diet and pharmacotherapy) is a cornerstone of the treatment forT2DM(51, 98). 755 

Exercise has been shown to increase insulin sensitivity, glucose uptake, and reduce 756 

cardiovascular morbidity. However, the burden of exercise participation for 757 

individuals with T2DM appears to be increased due to several skeletal muscle tissue 758 

maladaptations(78, 114, 159, 163, 164).  The function of skeletal muscle is of 759 

particular importance for individuals with T2DM given that it is responsible for 760 

approximately 80% of whole body glucose uptake following hyperinsulinemia and 761 

exercise(55). The increase in glucose uptake is correlated closely with increase in 762 

blood flow (approx. nine-fold) in the exercising muscle(55).  763 

Individuals with T2DM appear to have several defects in NO production and 764 

transport that could contribute to exercise intolerance and to a decline in 765 

cardiovascular health. One study showed that impaired endothelial production of NO 766 



during acute exercise stress in subjects with T2DM was the strongest predictor of 767 

exercise intolerance, in a multivariate regression model(3). The ability to conserve 768 

and transport NO via the plasma and red blood cells (RBC) (as described in an 769 

earlier section) may be dysfunctional in individuals with diabetes(99, 147, 212).  One 770 

mechanism outlined for this deficiency is the preferential binding of NO to 771 

glycosylated RBC’s and decrease in disassociation with changes in PO2. Ultimately 772 

this results in decreased NO bioavailability in the microvasculature as well as 773 

reductions in NO and O2 delivery to peripheral tissues. Furthermore, individuals with 774 

T2DM have a number of other pathologies that may cause inactivation of NO, for 775 

instance, an increase in superoxide production which interacts with NO to produce 776 

peroxynitrite(80, 149). 777 

Compared to patients with PAD, those with concomitant T2DM failed to 778 

increase endogenous vascular NO production and exercise capacity following 3 779 

months of supervised exercise training(8).  This suggests the possibility that they are 780 

less able to increase endogenous endothelial NO production which may be reflected 781 

in reduced plasma nitrite concentration following exercise and reduced hyperaemic 782 

response following ischemic stimuli(5, 120).  783 

Patients with T2DM present several potential therapeutic opportunities for 784 

dietary nitrate supplementation to improve their metabolic and cardiovascular health. 785 

In animal models, it has been demonstrated that NO bioavailability influences 786 

several aspects of glucose-insulin homeostasis including regulation of mitochondrial 787 

function, insulin secretion, glucose uptake and blood flow(39, 90, 103, 160, 169). 788 

The seminal work by Carlstrom and colleagues(39), demonstrated that eNOS 789 

deficient mice with several of key features of diabetes, benefitted from chronic nitrate 790 

supplementation. Restoring NO bioavailability resulted in improvements in glucose 791 



tolerance, glycosylated haemoglobin, fasting glucose, and circulating triglycerides.  792 

These findings have subsequently been reproduced and further investigated by 793 

several others(103, 160, 169, 208). From a mechanistic perspective, nitrate or nitrite 794 

supplementation results in an increase in glucose uptake by increased GLUT4 795 

translocation via AMPK pathway(56, 103), similar to the pathways activated by 796 

exercise(186). Collectively, these animal models provide an in-depth investigation 797 

into the promising metabolic benefits of nitrate or nitrite supplementation for 798 

metabolic conditions, in particular T2DM. However, to date, no studies in animal 799 

models have assessed the effects of nitrate supplementation on exercise in T2DM.  800 

Unfortunately, positive metabolic findings from animal models have failed to 801 

translate into humans with T2DM.  This is despite acute and chronic nitrate 802 

supplementation studies producing significant increases in plasma nitrite(44, 74, 803 

202).  Cermak et al(44). showed no differences in an oral glucose tolerance test, 804 

following single dose sodium nitrate (~10.5mmol) and Shepherd et al.(202), failed to 805 

observe changes in the oxygen cost of exercise or exercise tolerance following 4 806 

days of beetroot juice (6.43mmol/day).  In a longer period of supplementation, two 807 

weeks of nitrate (7.5mmol/day) where the median plasma nitrite reached 390 nM, 808 

Gilchrist and colleagues(74), found no effects on endothelial function or insulin 809 

sensitivity. 810 

Possible explanations for the lack of physiological changes following nitrate 811 

supplementation in humans include the aforementioned defects in NO production 812 

and transport. Additionally, the duration of diabetes may be much longer in human 813 

patients compared to in animal studies and possibly most significantly, there could 814 

be interference effects from diabetic medications.  For instance, metformin, the most 815 

prescribed first-line medication for diabetics (used to lower blood glucose), may 816 



interfere with beneficial effects of dietary nitrate on aspects of exercise related 817 

parameters. A mechanism of action for increased glucose uptake via metformin 818 

involves the non-competitive inhibition of the skeletal muscle mitochondrial electron 819 

transport chain at complex 1. This causes a decrease in mitochondrial respiration, 820 

mitochondrial dysfunction and a decreased ATP production(33, 235), which although 821 

beneficial for glucose uptake, produces a negative effect on muscle function and a 822 

reduction in exercise capacity(30, 166).  This is in contrast to the role that nitrite 823 

alone may play on the efficiency of mitochondrial respiration in both human whole 824 

body and isolated muscle fiber experiments (as described earlier).  Additionally, 825 

nitrite exhibits beneficial effects in normoxia for glucose uptake via mitochondrial 826 

fusion activation of protein kinase A(110, 117).  For further information on this area 827 

see: (79, 203).  This mechanism may be especially pertinent in T2DM where tissue 828 

perfusion is reduced during exercise and a glycolytic phenotype dominates in the 829 

skeletal muscle.  830 

Given that only one study has assessed this (and only at a relatively low 831 

exercise intensity using the 6-minute walk), future studies may wish to further 832 

examine the effects of longer term supplementation on exercise. These studies 833 

should also aim to target individuals who are newly diagnosed or who have 834 

prediabetes.   835 

 836 

Conclusion 837 

In summary, over the last 10 years there has been tremendous growth of 838 

interest in the role of inorganic nitrate supplementation, especially in the form of 839 

beetroot juice, on exercise performance.  The majority of the studies have been 840 



focused on healthy populations with mixed results.  Much of the variation may be 841 

attributed to small sample sizes and differences in dosing regimens.   842 

It appears that a chronic dosing strategy, consisting of ~8mmol per day, for at 843 

least 5 days provides the greatest likelihood of achieving plasma nitrite 844 

concentrations greater than 400nM and a subsequent ergogenic benefit.  However, 845 

at this time there is demonstrated within and between subject variability in the 846 

conversion of nitrate to nitrite, as well as in the physical function benefits following 847 

treatment.  This has led to the potential of individuals being classed as “responders” 848 

or “non-responders” within an otherwise homogeneous sample. This is a current 849 

area of intense research, with investigations into the role of the oral and gut 850 

microbiome or particular interest.   851 

It appears that nitrate supplementation in individuals with a high training 852 

status in lower intensity aerobic-type activities, has a low chance of positive results. 853 

Elite athletes are well adapted to maintain adequate microvascular perfusion and 854 

match oxygen delivery to the increased requirements of the working muscle during 855 

the majority of exercise conditions. Thus, it is logical that there would be mixed 856 

results following nitrate supplementation when we consider that nitrite is 857 

preferentially reduced to NO in conditions of low PO2 and low pH.  It also provides a 858 

potential explanation for why high-intensity activities that rely predominantly on fast –859 

twitch muscle fibers have shown the greatest potential for an ergogenic benefit in 860 

healthy, trained individuals. 861 

Along the same lines, patients with CVD develop multiple peripheral tissue 862 

abnormalities, often as a maladaptation to chronic under perfusion, which result in an 863 

overall glycolytic phenotype.  This, coupled with endothelial dysfunction (an inability 864 

to endogenously upregulate NO) and increased NO scavenging, make nitrate 865 



supplementation a particularly promising intervention for patients with CVD. This 866 

theory is supported by encouraging data showing restorative effects on time to 867 

claudication pain onset and peak walk times in PAD as well as muscle contractile 868 

function and exercise performance in patients with CHF.  Interestingly, to date no 869 

benefits in exercise performance following inorganic nitrate supplementation have 870 

been shown in patients with T2DM, although the role of metformin in mitochondrial 871 

function may be a mitigating factor to be further investigated. 872 

In summary, inorganic nitrate supplementation within the CVD cohort shows 873 

promise as a potential “therapeutic” with the aim of restoring deficient NO 874 

bioavailability, correcting physiological dysfunctions and recovering exercise 875 

capacity/performance and health.  Given the well documented relationship between 876 

reduced exercise capacity with morbidity and mortality it may be an intervention 877 

which provides significant functional and clinical benefits to patients with CVD. 878 

  879 
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Figure Legends 1745 

Figure 1: Nitrate-Nitrite-Nitric Oxide Formation/Recycle Pathways.   1746 

In the presence of oxygen endothelial nitric oxide synthase (eNOS) catalyzes the 1747 

oxidation L-arginine to NO.  NO may also be rapidly oxidized to nitrite (NO2-) and 1748 

nitrate (NO3-).  A secondary source of vascular NO is via diet.  Consumption of food 1749 

stuffs high in inorganic nitrate (green leafy vegetables, beetroot) have been shown to 1750 

increase plasma nitrate which can be secreted in saliva and reduced to nitrite by 1751 

commensal bacteria in the mouth.  Nitrite can then be further reduced to NO (and 1752 

other biologically active nitrogen oxides) via several mechanisms which are 1753 

expedited under hypoxic conditions.  Hence, although some of the circulating nitrate 1754 

and nitrite are excreted in the kidneys they are also able to be recycled back to NO 1755 

Adapted from (6) 1756 

 1757 

Figure 2: Peripheral Tissue Maladaptation’s in Cardiovascular Disease Populations 1758 

and Potential Therapeutic benefits of Inorganic Nitrate Supplementation 1759 

 1760 
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 CHF type Author N Duration Design Dose/Administration Exercise Outcomes 

 
 
 
 
 
HFpEF 

Zamani, 
2015  

17 Acute Double-blind, randomized, 
crossover 

Beetroot Juice-12.9mmol Nitrate No change in maximal exercise efficiency  
Increase in VO2peak (p=0.005)  
Increase in time to exhaustion (p=0.02) 

Eggebeen, 
2016 

18 Acute A:   Cross-over design Beetroot Juice-6.1mmol Nitrate No change in sub-max time to exhaustion 

Chronic  
 

B:  All treated Beetroot Juice 7 days-6.1mmol 
Nitrate 

Increase in sub-maximal time to 
exhaustion (p=0.02) 

Zamani, 
2017 

12 Chronic 
 

Single Blind Potassium Nitrate 7days 12mmol 
followed by  
Potassium Nitrate 7days 18mmol 

No change in VO2peak 
Increase in Time to exhaustion: (p=0.002) 

 
HFrEF 

Hirai, 2017 10 Chronic 
 

 Double-blind, randomized 
crossover  

Beetroot Juice 9 days-12.9mmol 
Nitrate 

No change in exercise performance 
measures 
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