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Abstract. Some trace inequalities of Cassels type for operators in
Hilbert spaces are provided. Applications in connection to Grüss inequal-
ity and for convex functions of selfadjoint operators are also given.

1 Introduction

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two positive n-tuples with

0 < m1 ≤ ai ≤M1 <∞ and 0 < m2 ≤ bi ≤M2 <∞; (1)

for each i ∈ {1, . . . , n} , and some constants m1, m2, M1, M2.

The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for
positive sequences of real numbers are well known:

a) Pólya-Szegö’s inequality [44]:∑n
k=1 a

2
k

∑n
k=1 b

2
k(∑n

k=1 akbk

)2 ≤ 14
(√

M1M2

m1m2
+

√
m1m2

M1M2

)2
.
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Trace inequalities of Cassels and Grüss type 75

b) Shisha-Mond’s inequality [48]:∑n
k=1 a

2
k∑n

k=1 akbk
−

∑n
k=1 akbk∑n
k=1 b

2
k

≤

[(
M1

m2

) 1
2

−

(
m1

M2

) 1
2

]2
.

If w = (w1, . . . , wn) is a positive sequence, then the following weighted
inequalities also hold:

c) Cassels’ inequality [15]. If the positive real sequences a = (a1, . . . , an)
and b = (b1, . . . , bn) satisfy the condition

0 < m ≤ ak
bk
≤M <∞ for each k ∈ {1, . . . , n} , (2)

then (∑n
k=1wka

2
k

)(∑n
k=1wkb

2
k

)
(
∑n
k=1wkakbk)

2
≤ (M+m)2

4mM
.

d) Greub-Reinboldt’s inequality [34]. We have(
n∑
k=1

wka
2
k

)(
n∑
k=1

wkb
2
k

)
≤ (M1M2 +m1m2)

2

4m1m2M1M2

(
n∑
k=1

wkakbk

)2
,

provided a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the condition (1) .

For other recent results providing discrete reverse inequalities, see the mono-
graph online [15].

The following reverse of Schwarz’s inequality in inner product spaces holds
[16].

Theorem 1 (Dragomir, 2003, [16]) Let A, a ∈ C and x, y ∈ H, a complex
inner product space with the inner product 〈·, ·〉 . If

Re 〈Ay− x, x− ay〉 ≥ 0, (3)

or equivalently, ∥∥∥∥x− a+A

2
· y
∥∥∥∥ ≤ 12 |A− a| ‖y‖ , (4)

holds, then we have the inequality

0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1
4
|A− a|2 ‖y‖4 . (5)

The constant 1
4 is sharp in (5).
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76 S. S. Dragomir

In 1935, G. Grüss [35] proved the following integral inequality which gives
an approximation of the integral mean of the product in terms of the product
of the integrals means as follows:∣∣∣∣ 1

b− a

∫b
a

f (x)g (x)dx−
1

b− a

∫b
a

f (x)dx · 1

b− a

∫b
a

g (x)dx

∣∣∣∣ (6)

≤ 1
4
(Φ− φ) (Γ − γ) ,

where f, g : [a, b] → R are integrable on [a, b] and satisfy the condition

φ ≤ f (x) ≤ Φ, γ ≤ g (x) ≤ Γ (7)

for each x ∈ [a, b] , where φ, Φ, γ, Γ are given real constants.
Moreover, the constant 1

4 is sharp in the sense that it cannot be replaced by
a smaller one.

In [18], in order to generalize the Grüss integral inequality in abstract struc-
tures the author has proved the following inequality in inner product spaces.

Theorem 2 (Dragomir, 1999, [18]) Let (H, 〈·, ·〉) be an inner product space
over K (K = R,C) and e ∈ H, ‖e‖ = 1. If ϕ, γ, Φ, Γ are real or complex num-
bers and x, y are vectors in H such that the conditions

Re 〈Φe− x, x−ϕe〉 ≥ 0 and Re 〈Γe− y, y− γe〉 ≥ 0 (8)

hold, then we have the inequality

|〈x, y〉− 〈x, e〉 〈e, y〉| ≤ 1
4
|Φ−ϕ| |Γ − γ| . (9)

The constant 1
4 is best possible in the sense that it can not be replaced by a

smaller constant.

For other results of this type, see the recent monograph [21] and the refer-
ences therein.

For other Grüss type results for integral and sums see the papers [1]-[3],
[8]-[10], [17]-[24], [31], and the references therein.

In order to state some reverses of Schwarz and Grüss type inequalities for
trace operators on complex Hilbert spaces we need some preparations as fol-
lows.

Brought to you by | Victoria University Australia
Authenticated

Download Date | 6/18/18 5:40 AM



Trace inequalities of Cassels and Grüss type 77

2 Some facts on trace of operators

Let (H, 〈·, ·〉) be a complex Hilbert space and {ei}i∈I an orthonormal basis of
H. We say that A ∈ B (H) is a Hilbert-Schmidt operator if∑

i∈I
‖Aei‖2 <∞. (10)

It is well know that, if {ei}i∈I and {fj}j∈J are orthonormal bases for H and
A ∈ B (H) then ∑

i∈I
‖Aei‖2 =

∑
j∈I
‖Afj‖2 =

∑
j∈I
‖A∗fj‖2 (11)

showing that the definition (10) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A∗ is a Hilbert-Schmidt operator.

Let B2 (H) the set of Hilbert-Schmidt operators in B (H) . For A ∈ B2 (H)
we define

‖A‖2 :=

(∑
i∈I
‖Aei‖2

)1/2
(12)

for {ei}i∈I an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in l2 (I) , one checks that B2 (H) is a vector space
and that ‖·‖2 is a norm on B2 (H) , which is usually called in the literature as
the Hilbert-Schmidt norm.

Denote the modulus of an operator A ∈ B (H) by |A| := (A∗A)1/2 .
Because ‖|A| x‖ = ‖Ax‖ for all x ∈ H, A is Hilbert-Schmidt iff |A| is Hilbert-

Schmidt and ‖A‖2 = ‖|A|‖2 . From (11) we have that if A ∈ B2 (H) , then
A∗ ∈ B2 (H) and ‖A‖2 = ‖A∗‖2 .

If {ei}i∈I an orthonormal basis of H, we say that A ∈ B (H) is trace class if

‖A‖1 :=
∑
i∈I
〈|A| ei, ei〉 <∞. (13)

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis
{ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .

We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I
〈Aei, ei〉 , (14)
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78 S. S. Dragomir

where {ei}i∈I an orthonormal basis of H. Note that this coincides with the
usual definition of the trace if H is finite-dimensional. We observe that the
series (14) converges absolutely and it is independent from the choice of basis.

Utilising the trace notation we obviously have that

〈A,B〉2 = tr (B∗A) = tr (AB∗) and ‖A‖22 = tr (A∗A) = tr
(
|A|2

)
for any A, B ∈ B2 (H) .

The following Hölder’s type inequality has been obtained by Ruskai in [45]

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|1/α

)]α [
tr
(
|B|1/(1−α)

)]1−α
(15)

where α ∈ (0, 1) and A, B ∈ B (H) with |A|1/α , |B|1/(1−α) ∈ B1 (H) .
In particular, for α = 1

2 we get the Schwarz inequality

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|2

)]1/2 [
tr
(
|B|2
)]1/2

(16)

with A, B ∈ B2 (H) .
For the theory of trace functionals and their applications the reader is re-

ferred to [49].
For some classical trace inequalities see [11], [13], [42] and [53], which are

continuations of the work of Bellman [5]. For related works the reader can
refer to [4], [6], [11], [32], [36], [37], [39], [46] and [50].

We denote by

B+1 (H) := {P : P ∈ B1 (H) , P and is selfadjoint and P ≥ 0} .

We obtained recently the following result [29]:

Theorem 3 For any A, C ∈ B (H) and P ∈ B+1 (H)\{0} we have the inequality∣∣∣∣tr (PAC)tr (P)
−

tr (PA)

tr (P)

tr (PC)

tr (P)

∣∣∣∣
≤ inf
λ∈C
‖A− λ · 1H‖

1

tr (P)
tr

(∣∣∣∣(C−
tr (PC)

tr (P)
1H

)
P

∣∣∣∣)

≤ inf
λ∈C
‖A− λ · 1H‖

tr
(
P |C|2

)
tr (P)

−

∣∣∣∣tr (PC)tr (P)

∣∣∣∣2
1/2 ,

(17)

where ‖·‖ is the operator norm.

In the following we establish other similar results for trace that generalize
the classical Cassels’ inequality stated in the introduction.
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Trace inequalities of Cassels and Grüss type 79

3 Cassels type trace inequalities

For two given operators T, U ∈ B (H) and two given scalars α, β ∈ C consider
the transform

Cα,β (T,U) = (T∗ − ᾱU∗) (βU− T) .

This transform generalizes the transform

Cα,β (T) := (T∗ − ᾱ1H) (β1H − T) = Cα,β (T, 1H) ,

where 1H is the identity operator, which has been introduced in [27] in order
to provide some generalizations of the well known Kantorovich inequality for
operators in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space
(H, 〈·, ·〉) is called accretive if Re 〈Ty, y〉 ≥ 0 for any y ∈ H.

Utilizing the following identity

Re 〈Cα,β (T,U) x, x〉 = Re 〈Cβ,α (T,U) x, x〉

=
1

4
|β− α|2 ‖Ux‖2 −

∥∥∥∥Tx− α+ β

2
·Ux

∥∥∥∥2
=
1

4
|β− α|2

〈
|U|2 x, x

〉
−

〈∣∣∣∣T −
α+ β

2
·U
∣∣∣∣2 x, x

〉 (18)

that holds for any scalars α, β and any vector x ∈ H, we can give a simple
characterization result that is useful in the following:

Lemma 1 For α, β ∈ C and T, U ∈ B(H) the following statements are equiv-
alent:

(i) The transform Cα,β (T,U) (or, equivalently, Cβ,α (T,U)) is accretive;

(ii) We have the norm inequality∥∥∥∥Tx− α+ β

2
·Ux

∥∥∥∥ ≤ 12 |β− α| ‖Ux‖ (19)

for any x ∈ H;

(iii) We have the following inequality in the operator order∣∣∣∣T −
α+ β

2
·U
∣∣∣∣2 ≤ 14 |β− α|2 |U|2 .
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80 S. S. Dragomir

As a consequence of the above lemma we can state:

Corollary 1 Let α, β ∈ C and T, U ∈ B(H). If Cα,β (T,U) is accretive, then∥∥∥∥T −
α+ β

2
·U
∥∥∥∥ ≤ 12 |β− α| ‖U‖ . (20)

Remark 1 In order to give examples of linear operators T, U ∈ B(H) and
numbers α, β ∈ C such that the transform Cα,β (T,U) is accretive, it suffices
to select two bounded linear operator S and V and the complex numbers z, w
(w 6= 0) with the property that ‖Sx− zVx‖ ≤ |w| ‖Vx‖ for any x ∈ H, and, by
choosing T = S, U = V, α = 1

2 (z+w) and β = 1
2 (z−w) we observe that T

and U satisfy (19), i.e., Cα,β (T,U) is accretive.

The following result also holds:

Lemma 2 Let, either P ∈ B+ (H) , A, B ∈ B2 (H) or P ∈ B+1 (H) , A, B ∈
B (H) and γ, Γ ∈ C. Then

Re (tr [P (A∗ − γB∗) (ΓB−A)]) ≥ 0 (21)

if and only if

tr

(
P

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2
)
≤ 1
4
|Γ − γ|2 tr

(
P |B|2

)
. (22)

To simplify the writing, we the say that (A,B) satisfies the P-(γ, Γ)-trace prop-
erty.

Proof. We have the equalities

1

4
|Γ − γ|2 P |B|2 − P

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2
= P

[
1

4
|Γ − γ|2 |B|2 −

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2
]

= P

[
1

4
|Γ − γ|2 |B|2 −

(
A−

γ+ Γ

2
B

)∗(
A−

γ+ Γ

2
B

)] (23)
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Trace inequalities of Cassels and Grüss type 81

= P

[
1

4
|Γ − γ|2 |B|2 − |A|2 +

γ+ Γ

2
B∗A+

γ+ Γ

2
A∗B−

∣∣∣∣γ+ Γ

2

∣∣∣∣2 |B|2
]

= P

[
− |A|2 +

γ+ Γ

2
B∗A+

γ+ Γ

2
A∗B+

(
1

4
|Γ − γ|2 −

∣∣∣∣γ+ Γ

2

∣∣∣∣2
)
|B|2

]

= P

[
− |A|2 +

γ+ Γ

2
B∗A+

γ+ Γ

2
A∗B− Re (Γγ) |B|2

]
for any bounded operators A, B, P and the complex numbers γ, Γ ∈ C.

Taking the trace in (23) we get

1

4
|Γ − γ|2 tr

(
P |B|2

)
− tr

(
P

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2
)

(24)

= −tr
(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+
γ+ Γ

2
tr (PB∗A) +

γ+ Γ

2
tr (PA∗B)

= −tr
(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+
γ+ Γ

2
tr (PB∗A) +

γ+ Γ

2
tr (PB∗A)

= −tr
(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+
γ+ Γ

2
tr (PB∗A) +

γ+ Γ

2
tr (PB∗A)

= −tr
(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ 2Re

[
γ+ Γ

2
tr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
.

Since

Re (tr [P (A∗ − γB∗) (ΓB−A)])

= Re [tr (ΓPA∗B+ γPB∗A− γΓPB∗B− PA∗A)]

= Re
[
Γtr
(
PA∗B

)
+ γtr (PB∗A)

]
− γΓtr

(
P |B|2

)
− tr

(
P |A|2

)]
= Re

[
Γtr (PB∗A) + γtr (PB∗A)

]
− tr

(
P |B|2

)
Re (γΓ) − tr

(
P |A|2

)
,

then we get

1

4
|Γ − γ|2 tr

(
P |B|2

)
− tr

(
P

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2
)

= Re (tr [P (A∗ − γB∗) (ΓB−A)]) ,

(25)
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82 S. S. Dragomir

which proves the desired equivalence. �

Corollary 2 Let, either P ∈ B+ (H) , A, B ∈ B2 (H) or P ∈ B+1 (H) , A,
B ∈ B (H) and γ, Γ ∈ C. If the transform Cγ,Γ (A,B) is accretive, then (A,B)
satisfies the P-(γ, Γ)-trace property.

We have the following result:

Theorem 4 Let, either P ∈ B+ (H) , A, B ∈ B2 (H) or P ∈ B+1 (H) , A, B ∈
B (H) and γ, Γ ∈ C with Re (Γγ) = Re (Γ)Re (γ) + Im (Γ) Im (γ) > 0.

(i) If (A,B) satisfies the P-(γ, Γ)-trace property, then we have

tr
(
P |A|2

)
tr
(
P |B|2

)
≤ 1
4
· [Re (γ+ Γ)Re tr (PB∗A) + Im (γ+ Γ) Im tr (PB∗A)]2

Re (Γ)Re (γ) + Im (Γ) Im (γ)

≤ 1
4
· |γ+ Γ |2

Re (Γγ)
|tr (PB∗A)|2 .

(26)

(ii) If the transform Cγ,Γ (A,B) is accretive, then the inequality (26) also
holds.

Proof. (i) If (A,B) satisfies the P-(γ, Γ)-trace property, then, on utilizing the
calculations above, we have

0 ≤ 1
4
|Γ − γ|2 tr

(
P |B|2

)
− tr

(
P

∣∣∣∣A−
γ+ Γ

2
B

∣∣∣∣2 )
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re [γtr (PB∗A)] + Re

[
Γtr (PB∗A)

]
= −tr

(
P |A|2

)
− Re (Γγ) tr

(
P |B|2

)
+ Re

[(
γ+ Γ

)
tr (PB∗A)

]
,

which implies that

tr
(
P |A|2

)
+ Re (Γγ) tr

(
P |B|2

)
≤ Re

[(
γ+ Γ

)
tr (PB∗A)

]
= Re (γ+ Γ)Re tr (PB∗A) + Im (γ+ Γ) Im tr (PB∗A) .

(27)

Making use of the elementary inequality

2
√
pq ≤ p+ q, p, q ≥ 0,
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Trace inequalities of Cassels and Grüss type 83

we also have

2

√
Re (Γγ) tr

(
P |A|2

)
tr
(
P |B|2

)
≤ tr

(
P |A|2 big) + Re (Γγ) tr

(
P |B|2

)
. (28)

Utilising (27) and (28) we get√
tr
(
P |A|2

)
tr
(
P |B|2

)
≤ Re (γ+ Γ)Re tr (PB∗A) + Im (γ+ Γ) Im tr (PB∗A)

2
√

Re (Γγ)

(29)

that is equivalent with the first inequality in (26).
The second inequality in (26) is obvious by Schwarz inequality

(ab+ cd)2 ≤
(
a2 + c2

)(
b2 + d2

)
, a, b, c, d ∈ R.

The (ii) is obvious from (i). �

Remark 2 We observe that the inequality between the first and last term in
(26) is equivalent to

0 ≤ tr
(
P |A|2

)
tr
(
P |B|2

)
− |tr (PB∗A)|2 ≤ 1

4
· |γ− Γ |2

Re (Γγ)
|tr (PB∗A)|2 . (30)

Corollary 3 Let, either P ∈ B+ (H) , A ∈ B2 (H) or P ∈ B+1 (H) , A ∈ B (H)
and γ, Γ ∈ C with Re (Γγ) = Re (Γ)Re (γ) + Im (Γ) Im (γ) > 0.

(i) If A satisfies the P-(γ, Γ)-trace property, namely

Re (tr [P (A∗ − γ1H) (Γ1H −A)]) ≥ 0 (31)

or, equivalently

tr

(
P

∣∣∣∣A−
γ+ Γ

2
1H

∣∣∣∣2
)
≤ 1
4
|Γ − γ|2 tr (P) , (32)

then we have

tr
(
P |A|2

)
tr (P)

≤ 1
4
·

[
Re (γ+ Γ) Retr(PA)

tr(P) + Im (γ+ Γ) Imtr(PA)
tr(P)

]2
Re (Γ)Re (γ) + Im (Γ) Im (γ)

≤ 1
4
· |γ+ Γ |2

Re (Γγ)

∣∣∣∣tr (PA)

tr (P)

∣∣∣∣2 .
(33)
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84 S. S. Dragomir

(ii) If the transform Cγ,Γ (A) is accretive, then the inequality (26) also holds.
(iii) We have

0 ≤
tr
(
P |A|2

)
tr (P)

−

∣∣∣∣tr (PA)tr (P)

∣∣∣∣2 ≤ 14 · |γ− Γ |2

Re (Γγ)

∣∣∣∣tr (PA)tr (P)

∣∣∣∣2 . (34)

Remark 3 The case of selfadjoint operators is as follows.
Let A, B be selfadjoint operators and either P ∈ B+ (H) , A, B ∈ B2 (H) or

P ∈ B+1 (H) , A, B ∈ B (H) and m, M ∈ R with mM > 0.
(i) If (A,B) satisfies the P-(m,M)-trace property, then we have

tr
(
PA2

)
tr
(
PB2

)
≤ (m+M)2

4mM
[tr (PBA)]2 (35)

or, equivalently

0 ≤ tr
(
PA2

)
tr
(
PB2

)
− [tr (PBA)]2 ≤ (m−M)2

4mM
[tr (PBA)]2 . (36)

(ii) If the transform Cm,M (A,B) is accretive, then the inequality (35) also
holds.

(iii) If (A−mB) (MB−A) ≥ 0, then (35) is valid.
We observe that the inequality (35) is the operator trace inequality version

of Cassels’ inequality from Introduction.

4 Trace inequalities of Grüss type

Let P be a selfadjoint operator with P ≥ 0. The functional 〈·, ·〉2,P defined by

〈A,B〉2,P := tr (PB∗A) = tr (APB∗) = tr (B∗AP)

is a nonnegative Hermitian form on B2 (H) , i.e. 〈·, ·〉2,P satisfies the properties:
(h) 〈A,A〉2,P ≥ 0 for any A ∈ B2 (H) ;
(hh) 〈·, ·〉2,P is linear in the first variable;

(hhh) 〈B,A〉2,P = 〈A,B〉2,P for any A, B ∈ B2 (H) .
Using the properties of the trace we also have the following representations

‖A‖22,P := tr
(
P |A|2

)
= tr

(
APA∗

)
= tr

(
|A|2 P

)
and

〈A,B〉2,P = tr (APB∗) = tr (B∗AP)

for any A, B ∈ B2 (H) .
The same definitions can be considered if P ∈ B+1 (H) and A, B ∈ B (H) .
We have the following Grüss type inequality:
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Theorem 5 Let, either P ∈ B+ (H) , A, B, C ∈ B2 (H) or P ∈ B+1 (H) , A,

B, C ∈ B (H) with P |A|2 , P |B|2 , P |C|2 6= 0 and λ, Γ, δ, ∆ ∈ C with Re (Γγ) ,
Re
(
∆δ
)
> 0. If (A,C) has the trace P-(λ, Γ)-property and (B,C) has the trace

P-(δ, ∆)-property, then∣∣∣∣∣tr (PB∗A) tr
(
P |C|2

)
tr (PC∗A) tr (PB∗C)

− 1

∣∣∣∣∣ ≤ 14 · |γ− Γ | |δ− ∆|√
Re (Γγ)Re

(
∆δ
) . (37)

Proof. We prove in the case that P ∈ B+ (H) and A, B, C ∈ B2 (H) .
Making use of the Schwarz inequality for the nonnegative hermitian form
〈·, ·〉2,P we have

|〈A,B〉2,P |
2 ≤ 〈A,A〉2,P 〈B,B〉2,P

for any A, B ∈ B2 (H).
Let C ∈ B2 (H) , C 6= 0. Define the mapping [·, ·]2,P,C : B2 (H)× B2 (H) → C

by

[A,B]2,P,C := 〈A,B〉2,P ‖C‖
2
2,P − 〈A,C〉2,P 〈C,B〉2,P .

Observe that [·, ·]2,P,C is a nonnegative Hermitian form on B2 (H) and by
Schwarz inequality we also have∣∣∣〈A,B〉2,P ‖C‖22,P − 〈A,C〉2,P 〈C,B〉2,P∣∣∣2

≤
[
‖A‖22,P ‖C‖

2
2,P − |〈A,C〉2,P |

2
] [
‖B‖22,P ‖C‖

2
2,P − |〈B,C〉2,P |

2
]

for any A, B ∈ B2 (H) , namely∣∣∣tr (PB∗A) tr
(
P |C|2

)
− tr (PC∗A) tr (PB∗C)

∣∣∣2
≤
[
tr
(
P |A|2

)
tr
(
P |C|2

)
− |tr (PC∗A)|2

]
×
[
tr
(
P |B|2

)
tr
(
P |C|2

)
− |tr (PB∗C)|2

]
,

(38)

where for the last term we used the equality |〈B,C〉2,P |
2 = |〈C,B〉2,P |

2 .

Since (A,C) has the trace P-(λ, Γ)-property and (B,C) has the trace P-(δ, ∆)
-property, then by (30) we have

0 ≤ tr
(
P |A|2

)
tr
(
P |C|2

)
− |tr (PC∗A)|2 ≤ 1

4
· |γ− Γ |2

Re (Γγ)
|tr (PC∗A)|2 (39)
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and

0 ≤ tr
(
P |B|2

)
tr
(
P |C|2

)
− |tr (PB∗C)|2 ≤ 1

4
· |δ− ∆|

2

Re
(
∆δ
) |tr (PB∗C)|2 . (40)

If we multiply the inequalities (39) and (40) we get[
tr
(
P |A|2

)
tr
(
P |C|2

)
− |tr (PC∗A)|2

]
×
[
tr
(
P |B|2

)
tr
(
P |C|2

)
− |tr (PB∗C)|2

]
≤ 1

16
· |γ− Γ |2

Re (Γγ)

|δ− ∆|2

Re
(
∆δ
) |tr (PC∗A)|2 |tr (PB∗C)|2 .

(41)

If we use (38) and (41) we get∣∣∣tr (PB∗A) tr
(
P |C|2

)
− tr (PC∗A) tr (PB∗C)

∣∣∣2
≤ 1

16
· |γ− Γ |2

Re (Γγ)

|δ− ∆|2

Re
(
∆δ
) |tr (PC∗A)|2 |tr (PB∗C)|2 . (42)

Since P, A, B, C 6= 0 then by (39) and (40) we get tr (PC∗A) 6= 0 and
tr (PB∗C) 6= 0. Now, if we take the square root in (42) and divide by |tr (PC∗A)
tr (PB∗C) | we obtain the desired result (37). �

Corollary 4 Let, either P ∈ B+ (H) , A, B ∈ B2 or P ∈ B+1 (H) , A, B ∈ B (H)
with P |A|2 , P |B|2 6= 0 and λ, Γ, δ, ∆ ∈ C with Re (Γγ) , Re

(
∆δ
)
> 0. If A has

the trace P-(λ, Γ)-property and B has the trace P-(δ, ∆)-property, then∣∣∣∣tr (PB∗A) tr (P)

tr (PA) tr (PB∗)
− 1

∣∣∣∣ ≤ 14 · |γ− Γ | |δ− ∆|√
Re (Γγ)Re

(
∆δ
) . (43)

The case of selfadjoint operators is useful for applications.

Remark 4 Assume that A, B, C are selfadjoint operators. If, either P ∈
B+ (H) , A, B, C ∈ B2 (H) or P ∈ B+1 (H) , A, B, C ∈ B (H) with PA2, PB2,
PC2 6= 0 and m, M, n, N ∈ R with mM, nN > 0. If (A,C) has the trace
P-(m,M)-property and (B,C) has the trace P-(n,N)-property, then∣∣∣∣∣ tr (PBA) tr

(
PC2

)
tr (PCA) tr (PBC)

− 1

∣∣∣∣∣ ≤ 14 · (M−m) (N− n)√
mnMN

. (44)
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If A has the trace P-(k, K)-property and B has the trace P-(l, L)-property, then∣∣∣∣tr (PBA) tr (P)

tr (PA) tr (PB)
− 1

∣∣∣∣ ≤ 14 · (K− k) (L− l)√
klKL

, (45)

where kK, lL > 0.
We observe that, if 0 < k1H ≤ A ≤ K1H and 0 < l1H ≤ B ≤ L1H, then by

(46) we have

|tr (PBA) tr (P) − tr (PA) tr (PB)| ≤ 1
4
· (K− k) (L− l)√

klKL
tr (PA) tr (PB) (46)

or, equivalently∣∣∣∣tr (PBA)tr (P)
−

tr (PA)

tr (P)

tr (PB)

tr (P)

∣∣∣∣ ≤ 14 · (K− k) (L− l)√
klKL

tr (PA)

tr (P)

tr (PB)

tr (P)
. (47)

5 Applications for convex functions

In the paper [30] we obtained amongst other the following reverse of the Jensen
trace inequality:

0 ≤ tr (Pf (A))

tr (P)
− f

(
tr (PA)

tr (P)

)
≤ tr (Pf′ (A)A)

tr (P)
−

tr (PA)

tr (P)
· tr (Pf′ (A))

tr (P)

≤


1
2 [f
′ (M) − f′ (m)]

tr
(
P
∣∣∣A− tr(PA)

tr(P)
1H

∣∣∣)
tr(P)

1
2 (M−m)

tr

(
P

∣∣∣∣f′(A)− tr(Pf′(A))
tr(P)

1H

∣∣∣∣)
tr(P)

≤


1
2 [f
′ (M) − f′ (m)]

[
tr(PA2)
tr(P) −

(
tr(PA)
tr(P)

)2]1/2

1
2 (M−m)

[
tr(P[f′(A)]2)

tr(P) −
(
tr(Pf′(A))

tr(P)

)2]1/2
≤ 1
4

[
f′ (M) − f′ (m)

]
(M−m) .

(48)

Let Mn (C) be the space of all square matrices of order n with complex
elements and A ∈ Mn (C) be a Hermitian matrix such that Sp (A) ⊆ [m,M]
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for some scalars m, M with m <M. If f is a continuously differentiable convex
function on [m,M] , then by taking P = In in (48) we get

0 ≤ tr (f (A))

n
− f

(
tr (A)

n

)
≤ tr (f′ (A)A)

n
−

tr (A)

n
· tr (f′ (A))

n

≤


1
2 [f
′ (M) − f′ (m)]

tr
(∣∣∣A− tr(A)

n
1H

∣∣∣)
n

1
2 (M−m)

tr

(∣∣∣∣f′(A)− tr(f′(A))
n

1H

∣∣∣∣)
n

≤


1
2 [f
′ (M) − f′ (m)]

[
tr(A2)
n −

(
tr(A)
n

)2]1/2

1
2 (M−m)

[
tr([f′(A)]2)

n −
(
tr(f′(A))

n

)2]1/2
≤ 1
4

[
f′ (M) − f′ (m)

]
(M−m) .

(49)

The following reverse inequality also holds:

Proposition 1 Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M] for some scalars m, M with 0 < m < M. If f
is a continuously differentiable convex function on [m,M] with f′ (m) > 0 and
P ∈ B1 (H) \ {0} , P ≥ 0, then we have

0 ≤ tr (Pf (A))

tr (P)
− f

(
tr (PA)

tr (P)

)
≤ tr (Pf′ (A)A)

tr (P)
−

tr (PA)

tr (P)
· tr (Pf′ (A))

tr (P)

≤ 1
4
· (M−m) [f′ (M) − f′ (m)]√

mMf′ (m) f′ (M)

tr (PA)

tr (P)

tr (Pf′ (A))

tr (P)
.

(50)

The proof follows by the inequality (47) and the details are omitted.
Let A ∈Mn (C) be a Hermitian matrix such that Sp (A) ⊆ [m,M] for some

scalars m, M with m <M. If f is a continuously differentiable convex function
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on [m,M] with f′ (m) > 0 then by taking P = In in (50) we get

0 ≤ tr (f (A))

n
− f

(
tr (A)

n

)
≤ tr (f′ (A)A)

n
−

tr (A)

n
· tr (f′ (A))

n

≤ 1
4
· (M−m) [f′ (M) − f′ (m)]√

mMf′ (m) f′ (M)

tr (A)

n

tr (f′ (A))

n
.

(51)

We consider the power function f : (0,∞) → (0,∞) , f (t) = tr with t ∈
R\ {0} . For r ∈ (−∞, 0) ∪ [1,∞), f is convex while for r ∈ (0, 1), f is concave.

Let r ≥ 1 and A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M] for some scalars m, M with 0 < m < M. If
P ∈ B+1 (H) \ {0} , then

0 ≤ tr (PAr)

tr (P)
−

(
tr (PA)

tr (P)

)r
≤ r

[
tr (PAr)

tr (P)
−

tr (PA)

tr (P)
·

tr
(
PAr−1

)
tr (P)

]

≤ 1
4
r
(M−m)

(
Mr−1 −mr−1

)
mr/2Mr/2

tr (PA)

tr (P)

tr
(
PAr−1

)
tr (P)

.

(52)

If we take the first and last term in (52) we get the inequality:

0 ≤ tr (P) tr (PAr)

tr (PA) tr (PAr−1)
−

tr (P) [tr (PA)]r−1

tr (PAp−1) [tr (P)]r−1

≤ 1
4
r
(M−m)

(
Mr−1 −mr−1

)
mr/2Mr/2

.

(53)
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Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on
a Hilbert Space, Element, Zagreb, 2005.

[34] W. Greub and W. Rheinboldt, On a generalisation of an inequality of
L.V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407–415.
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