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Abstract. Some trace inequalities of Cassels type for operators in
Hilbert spaces are provided. Applications in connection to Griiss inequal-
ity and for convex functions of selfadjoint operators are also given.

1 Introduction
Let a = (aj,...,a,) and b = (by,...,by) be two positive n-tuples with
O<m <ag<Mi<ooand 0 <my < b; <M < o (1)

for each 1€ {1,...,n}, and some constants my, my, M, Mj.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for
positive sequences of real numbers are well known:

a) Polya-Szegd’s inequality [44]:
2
Tl Y b <1< /M1Mz+\/W>
2 i .
(ZE:] akbk> 4 mim; MM,
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Trace inequalities of Cassels and Griiss type 75

b) Shisha-Mond’s inequality [48]:

1 172
S0k X abe _ <M1> 2 <m1> 2
ZE:] axby 22:1 bi - my M,
If w = (ws,...,wy) is a positive sequence, then the following weighted
inequalities also hold:

c) Cassels’ inequality [15]. If the positive real sequences a = (aj,...,an)

and b = (by,...,by,) satisfy the condition
O<m§%§M<ooforeachk€{1,...,n}, (2)
k
then

(Z§:1 Wkai) (ZQ:1 Wk‘?ﬁ) _ (M4+m)
(Z iy wicaiby)? - 4mM
d) Greub-Reinboldt’s inequality [34]. We have

n n 2 n 2
MiM; + mim;)
2 2| o (MiM,

k=1

provided a = (ay,...,an) and b = (by,..., by,) satisfy the condition (1).

For other recent results providing discrete reverse inequalities, see the mono-
graph online [15].

The following reverse of Schwarz’s inequality in inner product spaces holds
[16].

Theorem 1 (Dragomir, 2003, [16]) Let A, a € C andx,y € H, a complex
inner product space with the inner product (-,-). If

Re (Ay —x,x —ay) > 0, (3)
or equivalently,
at+A 1
w252y < gA—dlll, (@)

holds, then we have the inequality

0 < |7 [yll* = It )P < 7 1A = al Jlyll*. ()

I

The constant JT is sharp in (5).
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76 S. S. Dragomir

In 1935, G. Griiss [35] proved the following integral inequality which gives
an approximation of the integral mean of the product in terms of the product
of the integrals means as follows:

b b b
‘blajaf(x)g(x)dx—blaLf(x)dx-blaLg(x)dx

1
<@ 0)(T—v),
where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
P<f(x) <@, y<gx)<T (7)

for each x € [a,b], where ¢, @, vy, I' are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced by
a smaller one.

In [18], in order to generalize the Griiss integral inequality in abstract struc-
tures the author has proved the following inequality in inner product spaces.

Theorem 2 (Dragomir, 1999, [18]) Let (H,(:,-)) be an inner product space
over K (K=R,C) and e € H, |le|| = 1. If @, v, ©, T are real or complex num-
bers and x, Yy are vectors in H such that the conditions

Re (Oe —x,x — @e) > 0 and Re (e —y,y —ye) >0 (8)

hold, then we have the inequality

o) — o) (e )l < 7 10— olIP 1. ©

The constant % is best possible in the sense that it can not be replaced by a
smaller constant.

For other results of this type, see the recent monograph [21] and the refer-
ences therein.

For other Griiss type results for integral and sums see the papers [1]-[3],
[8]-[10], [17]-[24], [31], and the references therein.

In order to state some reverses of Schwarz and Griiss type inequalities for
trace operators on complex Hilbert spaces we need some preparations as fol-
lows.
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Trace inequalities of Cassels and Griiss type 7

2 Some facts on trace of operators

Let (H,(-,-)) be a complex Hilbert space and {ei};c; an orthonormal basis of
H. We say that A € B(H) is a Hilbert-Schmidt operator if

> JAei* < 0. (10)

iel

It is well know that, if {ei};c; and {fj}j cj are orthonormal bases for H and
A € B(H) then

2 2 e |12
D lAel® =) [Af]17 =D [Af]| (11)

iel jel jel

showing that the definition (10) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let B, (H) the set of Hilbert-Schmidt operators in B (H). For A € B, (H)

we define
12
Al = (Z IIAein) (12)

iel
for {ei};c; an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in 1% (I), one checks that B, (H) is a vector space
and that |||, is a norm on B; (H), which is usually called in the literature as
the Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)V2.

Because [||A|x|| = [|Ax]| for all x € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||Al], = |||All|,. From (11) we have that if A € B, (H), then
A* € By (H) and [Al], = |A%].

If {ei};; an orthonormal basis of H, we say that A € B(H) is trace class if

AL =D (IAlei ;) < oo (13)
il

The definition of ||Al|; does not depend on the choice of the orthonormal basis
{ei}icr - We denote by By (H) the set of trace class operators in B (H).
We define the trace of a trace class operator A € B; (H) to be

tr(A):=) (Aeie), (14)
iel
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78 S. S. Dragomir

where {ei};c; an orthonormal basis of H. Note that this coincides with the

usual definition of the trace if H is finite-dimensional. We observe that the

series (14) converges absolutely and it is independent from the choice of basis.
Utilising the trace notation we obviously have that

(A,B), = tr (B*A) = tr (AB*) and ||A[2 = tr (A*A) = tr (|A|2)
for any A, B € B, (H).
The following Hoélder’s type inequality has been obtained by Ruskai in [45]
1—
tr (AB)] < tr (AB]) < [ex (1A)]" [ex (B/0=) ] (15)

where « € (0,1) and A, B € B(H) with |A]"*, B|Y1~% € B, (H).
In particular, for o« = % we get the Schwarz inequality

e (AB)] < tr (1AB) < [t (1AR)] " [er (1B2)] " (16)

with A, B € B, (H).

For the theory of trace functionals and their applications the reader is re-
ferred to [49].

For some classical trace inequalities see [11], [13], [42] and [53], which are
continuations of the work of Bellman [5]. For related works the reader can
refer to [4], [6], [11], [32], [36], [37], [39], [46] and [50].

We denote by

BT (H):={P: P e By (H), P and is selfadjoint and P > 0}.
We obtained recently the following result [29]:

Theorem 3 For any A, C € B(H) and P € B (H)\{0} we have the inequality
tr (PAC)  tr PA tr PC ’

tr (P) tr (
(5wl

)
u (PICE) (o]
tr (P) tr (P)

< 1nf ”A A 1HH

<inf |[A—A-T
—iréc” Hl

)

where ||-|| is the operator norm.

In the following we establish other similar results for trace that generalize
the classical Cassels’ inequality stated in the introduction.
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Trace inequalities of Cassels and Griiss type 79

3 Cassels type trace inequalities

For two given operators T, U € B (H) and two given scalars «, B € C consider
the transform
Cop (TU) = (T" — ™) (BU—T).

This transform generalizes the transform
Cop (T) == (T" —&Ip) (BTH —T) =Cop (T, T1),

where 1y is the identity operator, which has been introduced in [27] in order
to provide some generalizations of the well known Kantorovich inequality for
operators in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space
(H, (-,-)) is called accretive if Re (Ty,y) > 0 for any y € H.

Utilizing the following identity

Re <Coc,B (T) U) X, X> = Re <C[3,oc (Ta U) Xy X>

. 1 2 2 x + B 2
1 o« + 2
:4|B—oc|2<|ulzx,x>—<‘T— ZB.U x,x>

that holds for any scalars «, 3 and any vector x € H, we can give a simple
characterization result that is useful in the following:

Lemma 1 For «, f € C and T, U € B(H) the following statements are equiv-
alent:

(i) The transform Cyp (T,U) (or, equivalently, Cp « (T,U)) is accretive;
(ii) We have the norm inequality

HTx— arp '“"H < 518 —al x| (19)

for any x € H;

(iii) We have the following inequality in the operator order

2

o+ P <

2

u B — U,

A=

'T_
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80 S. S. Dragomir

As a consequence of the above lemma we can state:
Corollary 1 Let o, B € C and T, U € B(H). If Cop (T, U) is accretive, then

o+ 3
2

7= 58 < e - alpur. (20)

Remark 1 In order to give examples of linear operators T, U € B(H) and
numbers o, 3 € C such that the transform Cyp (T,U) is accretive, it suffices
to select two bounded linear operator S and V and the complex numbers z, w
(w #£ 0) with the property that ||Sx — zVx|| < [w|||Vx]| for any x € H, and, by
choosing T=S, U=V, a = % (z+w) and B = % (z—w) we observe that T
and U satisfy (19), i.e., Cxp (T, U) is accretive.

The following result also holds:

Lemma 2 Let, either P € By (H), A, B € By(H) or P € B{ (H), A, B €
B(H) and vy, T € C. Then

Re (tr [P (A* —¥B*) (TB—A)]) >0 (21)

if and only if
2
pla_Yl < -r— P )
tr( ‘A 2 B' > I — vl tr( |B| ) (22)

To simplify the writing, we the say that (A, B) satisfies the P-(y,T")-trace prop-
erty.

Proof. We have the equalities

1 2 2 y—H‘ 2
“r—yPpPBR-pPlA-YT'B
S IT—vPPB ‘ ;
2
=P ll r— vl B - 'A el (23)

. 1 2 2 y—H‘ * y+F
_P[4|r vI% [B| <A 5 B) <A 5B
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—P

— AP +

1 2 1p2
—Ir—vy*B
7T —vI"[B|

— AP +

— AP+ =B A+ ——

2 2

YIT r r
Y A+V;A*B+<|r— |—’V+ >|B|2]

Y+T YJFFA* 'y+l“ |B|2]

v+T

v
YT pA 4+ YO A'B—Re(ry) IBIZ]

2

for any bounded operators A, B, P and the complex numbers vy, I' € C.
Taking the trace in (23) we get

1 2 2 v—i—F
2 M=l tr<P|B| )-u( ‘A—ZB

= —tr(P|A]
= —tr(P|AF

= —tr(P|A]

)
)

)

—Re (I'y) tr(PIB*)
—Re (y) tr(P[B]*)

—Re (My) tr(P[B]*) +

)

Y+T
—tr
+ 2

Y+T
e
A

Y+T
——1tr
+ 2

y+T
——tr
+ 2

(PB*A) (PA*B)

(PB*A)

(PB*A)

Y (PBrA) + Yo YT pBea)

v+l‘
2 tr

+ Re [ytr (PB*A)] + Re _[rtr (PB*A)]
Tir (PB*A)}

v)tr(P|B]?) + 2 (PB*A)

v)tr(P|BI?) + Re [ytr (PB*A)] + Re

(PBF)
tr(P|B|2)
(PBF)
(PBF)

v)tr(P[BI*) + Re [ytr (PB*A)] + Re

Re (tr [P (A* —=¥B*) (TB — A)])

then we get

1 2 2
Zl|r—«y| tr (P B )—tr( 'A—ZB

=Re(tr [P (A" —¥B

e [tr (TPA*B + YPB*A — yTPB*B — PA*A)]
e [Ptx(PA*B) +¥tr (PB*A)] —7Ttx(PB[*) —tr (PIAF) |

[
e [Ftr (PB*A) + yitr (PB*A)} — tr(P B )Re (1) — tr(P|A),

vy+T

)
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82 S. S. Dragomir

which proves the desired equivalence. ]

Corollary 2 Let, either P € By (H), A, B € B;(H) or P € BT (H), A,
B € B(H) and vy, I € C. If the transform Cyr (A, B) is accretive, then (A,B
satisfies the P-(y,T)-trace property.

We have the following result:

Theorem 4 Let, either P € B, (H), A, B € B, (H) or P € BT (H), A, B e
B(H) and vy, T' € C with Re (I'y) = Re (') Re (y) +Im (") Im (y) > 0.
(i) If (A, B) satisfies the P-(y,T')-trace property, then we have
tr (PIA]*) tr(P[BI*)

1 [Re(y+T)Retr (PB*A) + Im (y 4+ ') Im tr (PB*A)]?
4 Re (M) Re (y) 4+ Im (T') Im () (26)
1

<o [tr (PB*A)1.
=

(ii) If the transform Cyr (A,B) is accretive, then the inequality (26) also
holds.

Proof. (i) If (A, B) satisfies the P-(y,I')-trace property, then, on utilizing the
calculations above, we have

I — y| tr(P|B| —tr P‘A—B

(
—tr(PIAP) = Re (I¥) tr(P[B]*) + Re [ytr (PB*A)] + Re |tr (PB*A) |
= —tr(PIAP") = Re (P¥) tx(P[BI*) + Re [ytr (PB*A)] + Re |Ttr (PB*A|
( )—Re )tr(P[B*) + Re [ytr (PB*A)] + Re [Ttr (PB*A)]
= —tr(PIA]®) — Re (Ty) tr(P[B]*) + Re [(¥ +T) tr (PB*A)],
which implies that
tr(P|A®) + Re (Ty) tr(P[B*) < Re [(¥ +T) tr (PB*A)]

=Re(y+T)Retr (PB*A) + Im (y + I') Im tr (PB*A). 27)

Making use of the elementary inequality

2ypqa<p+q, p,q=0,
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Trace inequalities of Cassels and Griiss type 83

we also have

2y/Re (Py) tr(PIAP )tx(PBI) < tr(PIAP big) + Re (1) tr(P[BP).  (28)
Utilising (27) and (28) we get
\/tr(P IAI*)tr(P[BI)

_ Re(y+T)Re tr (PB*A) + Im (y + ) Im tr (PB*A) (29)
N 2+/Re (T'y)

that is equivalent with the first inequality in (26).
The second inequality in (26) is obvious by Schwarz inequality

(ab+cd)? < (a2 n c2> <b2 n d2> ,a,b,c,d €R.
The (ii) is obvious from (i). O

Remark 2 We observe that the inequality between the first and last term in
(26) is equivalent to

L r?
4 Re(Tly)

0 < tr(PIAP*)tr(PBI*) — [tr (PB*A)* < [tr (PB*A)*. (30)

Corollary 3 Let, either P € By (H), A € B, (H) or P € By (H), A € B(H)
andy, ' € C with Re (IT'y) = Re (I Re (y) + Im (I') Im (y) > 0.
(i) If A satisfies the P-(y,T)-trace property, namely

Re (tr [P (A* —y1y) (My — A)]) > 0 (31)

or, equivalently

:
tr<P‘A—szr "

2
) LTV IR (32)

4;

then we have

tr (P |A|2) 1 [Re (vy+T) Retr + Im (y +T) Imtr )A)}2
)]

tr (P) 4 Re(F)R ( ) + Im (T) Im (y ) (33)
1 TP (PA)
=4 Re(y)| tr(P)
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84 S. S. Dragomir

(ii) If the transform Cy (A) is accretive, then the inequality (26) also holds.
(iii) We have
tr(P|A)
- tr(P)

tr (PA)|> 1 2

tr (P)

ly — T |tr (PA)
=4 Re(ly)| tr(P)
Remark 3 The case of selfadjoint operators is as follows.
Let A, B be selfadjoint operators and either P € By (H), A, B € B, (H) or
PeBf(H), A, BeB(H) and m, M € R with mM > 0.
(i) If (A, B) satisfies the P-(m, M)-trace property, then we have

(34)

+M)?
tr(PA?)tr(PB?) < (m4mM) [tr (PBA))? (35)
or, equivalently
0 < tr(PA2)tx(PB2) — [tr (PBA)2 < (M= M) M)* [tr (PBA))? 36
< r( )r( )— T < M T . (36)

(ii) If the transform Cymm (A,B) is accretive, then the inequality (35) also
holds.

(iii) If (A —mB) (MB — A) > 0, then (35) is valid.
We observe that the inequality (35) is the operator trace inequality version
of Cassels’ inequality from Introduction.

4 'Trace inequalities of Griiss type

Let P be a selfadjoint operator with P > 0. The functional (-, ->2)P defined by
(A,B)yp :==tr (PB*A) = tr (APB*) = tr (B*AP)

is a nonnegative Hermitian form on B, (H), i.e. (-, ->27P satisfies the properties:
(h) (A,A),, >0 for any A € B, (H);
(hh) (-, '>2,1; is linear in the first variable;
(hhh) (ByA), p = (A,B),p for any A, B € B, (H).
Using the pr(;perties of the trace we also have the following representations

A3 p = tr(PIAP) = tr(APA*) = tr(|AF P)

and
(A,B),p = tr (APB*) = tr (B*AP)
for any A, B € B, (H).
The same definitions can be considered if P € By (H) and A, B € B(H).
We have the following Griiss type inequality:
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Trace inequalities of Cassels and Griiss type 85

Theorem 5 Let, either P € By (H), A, B, C € By(H) or P € Bf (H), A,
B, C € B(H) with PIA%, P[BI*, PICP* #£0 and A, T, 8, A € C with Re (I'Yy),
Re (AS) > 0. If (A, C) has the trace P-(A,T)-property and (B, C) has the trace
P-(8,A)-property, then

tr (PB*A) tr(P|C*)
tr (PC*A) tr (PB*C)

1 =TI —A

< - .
4 \/Re(rv) Re (A35)

IN

(37)

Proof. We prove in the case that P € B, (H) and A, B, C € B, (H).

Making use of the Schwarz inequality for the nonnegative hermitian form
(*y*)2p We have

(A, B>2,P|2 < (A A)p (ByB)yp

for any A, B € By (H).

Let C € B, (H), C # 0. Define the mapping [-, ']Z,P,C By (H) x B (H) = C
by

2
[A,Blypc = (A, B)yp [ICll2p — (A, C)yp (C,B)yp

Observe that ['>']2,P,C is a nonnegative Hermitian form on B, (H) and by
Schwarz inequality we also have

2
‘(A» B)yp HCHiP — (A, C)yp (C, B>2,P’

< [IAI3p ICI5p = (A, Cy o] [IBII3p ICI3p —1(B, C)ypl?]

for any A, B € B, (H), namely

2
tr (PB"A) tr(P[CF) — tx (PC*A) tx (PB*C)|

< [tr(PIAP )tx(PICI) — fer (PC* A)P] (38)

x |tr(PIBP )tr(PICP) —ltr (PB*C)P|,

where for the last term we used the equality [(B, C>2’P|2 =[{C, B)Z,plz.

Since (A, C) has the trace P-(A,T')-property and (B, C) has the trace P-(5, A)
-property, then by (30) we have
1 T

2 2\ *AVE < L.
0 < tr(PIAR)tr(PICE) —ltr (PCTAN < 2+ gy

tr (PC*A)* (39)
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86 S. S. Dragomir

and

AR
0 < tr(PIBP)ir(PICP) — ltr (PBEC)P < © . 2 =4

* 2
7 Re (AS) [tr (PB*C)|”. (40)

If we multiply the inequalities (39) and (40) we get
[tr(PIAP )ex (PICP ) — ftr (PC*A)]
x [tr(PIBP )tx(PICP ) — ftr (PB*C)P| (41)

1 =TF-aP
16 Re (TY) Re (AJ)

< [tr (PC*A)* [tr (PB*C)J.
If we use (38) and (41) we get

2
tr (PB*A) tr(P|C[*) — tr (PC*A) tr (PB*C)

1 y—TR s AP 42)

16" Re (TY) Re (A3)
Since P, A; B, C # 0 then by (39) and (40) we get tr (PC*A) # 0 and

tr (PB*C) # 0. Now, if we take the square root in (42) and divide by |tr (PC*A)
tr (PB*C) | we obtain the desired result (37). O

ltr (PC*A)[? |tr (PB*C)J>.

IN

Corollary 4 Let, either P € By (H), A, B € B, orP € B (H), A, B € B(H)
with P|AI, PIBI* # 0 and A, T, 8, A € C with Re (TY), Re (A8) > 0. If A has
the trace P-(A,T)-property and B has the trace P-(8, A)-property, then

(43)

IN

tr (PB*A) tr (P) ‘ 1T =Tis—4
tr (PA) tr (PB*) 4 \/Re (") Re (AE) )

The case of selfadjoint operators is useful for applications.

Remark 4 Assume that A, B, C are selfadjoint operators. If, either P &
Bi(H), A, B, C € B,(H) or P € B (H), A, B, C € B(H) with PA?, PB%,
PC? # 0 and m, M, n, N € R with mM, nN > 0. If (A, C) has the trace
P-(m, M)-property and (B, C) has the trace P-(n, N)-property, then

tr (PBA)
tr (PCA)

r (PCZ)

r(PBC) ]

: . (44)

t
<
t

Brought to you by | Victoria University Australia
Authenticated
Download Date | 6/18/18 5:40 AM



Trace inequalities of Cassels and Griiss type 87

If A has the trace P-(k, K)-property and B has the trace P-(1,L)-property, then

tr (PBA) tr (P) 1 (K—k)(L—1)
w(PA)w(PB) | 4 VRKL ()

where kK, 1L > 0.
We observe that, if 0 < klyy < A < Kly and 0 < 11y < B < L1y, then by
(46) we have
1 (K=%)(L-=1

[tr (PBA) tr (P) — tr (PA) tr (PB)| < 7 Wtr (PA)tr (PB) (46)

or, equivalently

tr (PBA)  tr (PA) tr (PB)
tr(P)  tr(P) tr(P)

1 (K—k) (L—1)tr (PA) tr (PB)
4 VKIKL  tr(P) tr(P)°

‘ < (47)

5 Applications for convex functions

In the paper [30] we obtained amongst other the following reverse of the Jensen
trace inequality:

o< HPFA) (tr(PA))
tr (P) tr (P)
<tr(Pf’(A)A) tr (PA) tr (Pf' (A))
tr(P)  tr(P)  tr(P)
. _tr(PA) g
LI (M) — 7 (m)] - <P’Atr&38” )
<
, _tr(Pf’(A))
L (M—m) tr(P”A)tr(P)“’) ) (48)
(pA2 211/2
b )7 (m] | S5 — (Y]
N (P AT? ) ,71/2
v [T (]
< 3 [F (M) — ¥ (m)] (M~ m).

Let My, (C) be the space of all square matrices of order n with complex
elements and A € My, (C) be a Hermitian matrix such that Sp (A) C [m, M]
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for some scalars m, M with m < M. If f is a continuously differentiable convex
function on [m, M], then by taking P = I,, in (48) we get

o < t(FA) _f(tr(A))
n n
tr (f' (A)A) _tr (A) ' tr (f' (A))
- n n n
tr _u(Aa) H
i () — ¢y A
<
tr /(A)itr(f:l(A])]H
%(M—m) (f — D (49)
, 12
LI (M) — ' (m)] [“(f ) (i )1
<
(1 (A2 - 271/2
(M= m) [t (1 (A)?) (t (fn(A))) }
< 3 [F (M) — 7 (m)] (M —m).

The following reverse inequality also holds:

Proposition 1 Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) C [m,M] for some scalars m, M with 0 < m < M. If f
is a continuously differentiable convex function on [m, M] with f' (m) > 0 and
P e By (H)\ {0}, P >0, then we have

_tr(PEA) (tr(PA))

tr (P) tr (P)
ir (PP (A)A)  tr(PA) tr (P (A))
w(P) (@) tr(P) (50)

1 (M—m)[f' (M) —f (m)] tr (PA) tr (PF (A))
4 VmMf (m)f (M) tr(P)  tr(P)

The proof follows by the inequality (47) and the details are omitted.
Let A € My (C) be a Hermitian matrix such that Sp (A) C [m, M] for some
scalars m, M with m < M. If f is a continuously differentiable convex function
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on [m, M] with ' (m) > 0 then by taking P = I,, in (50) we get

0 < (A f(tr(A))
n n
< tr (f' (A)A) tr (A) ' tr (f' (A)) (51)
n n n
o1 M=—m)[f" (M) — ' (m]] tr (A) tr (' (A))
4 /mMFf (m)f (M) n no

We consider the power function f : (0,00) — (0,00), f(t) = t" with t €
R\{0}. For r € (—o0,0) U [1,00), f is convex while for r € (0, 1), f is concave.

Let r > 1 and A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) C [m,M] for some scalars m, M with 0 < m < M. If
P € B (H) \ {0}, then

_tr(PAT) (tr(PA))T

- tr(P) tr (P)
tr (PA")  tr(PA) tr (PATT) 5
tr (P) tr (P) tr (P) (52)
1 (M—m) (M —m"™) tr (PA) tr (PA™)
=37 m/ZMT2 tr(P)  tr(P)
If we take the first and last term in (52) we get the inequality:
tr(P)tr (PAT)  tr(P) [tr (PA)]"
~ tr (PA)tr (PA™T) ¢ (PAP=T) [tr (P (53)
1T (M—m)(M~T—m"T)
<-r .
— 4 mr/2mMr/2
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