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Abstract: Let f(z) = > 7, anz" be a function defined by power series with complex coeffi-
cients and convergent on the open disk D(0, R) C C, R > 0. We show, amongst other that, if
T,V € Bi(H), the Banach space of all trace operators on H, are such that |T||,, |[V], < R,
then f(V), f(T), f'(1 = )T +tV) € B1(H) for any t € [0, 1] and

b [f(V)] — tr [(T)] = /01 & [(V = T)f (L= T + V)] dt.

Several trace inequalities are established. Applications for some elementary functions of
interest are also given.
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1. INTRODUCTION

Let B(H) be the Banach algebra of bounded linear operators on a separable
complex Hilbert space H. The absolute value of an operator A is the positive
operator |A| defined as |A| := (A*A)'/2,

It is known that [4] in the infinite-dimensional case the map f(A) := |A]
is not Lipschitz continuous on B(H) with the usual operator norm, i.e., there
is no constant L > 0 such that

1A= Bl[|<L]|A-B|

for any A, B € B(H).
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26 S.S. DRAGOMIR

However, as shown by Farforovskaya in [17], [18] and Kato in [22], the
following inequality holds

< 214 Bl (20 10 (JALE B
f1ai=151] < 2 ja- i (2000 (TEEE))

for any A, B € B(H) with A # B.
If the operator norm is replaced with Hilbert-Schmidt norm |C| ;¢ =
(tr C*C)'/2 of an operator C, then the following inequality is true [2]

1A= 1Bl 75 < V21 A= Bllys (1.2)

for any A, B € B(H).

The coefficient v/2 is best possible for a general A and B. If A and B are
restricted to be selfadjoint, then the best coefficient is 1.

It has been shown in [4] that, if A is an invertible operator, then for all
operators B in a neighborhood of A we have

[1A| = [B||| < a1 |A = B +az || A= BII* + O([|A - B|I) (1.3)
where
ar= AT 1Al and = AT [T
In [3] the author also obtained the following Lipschitz type inequality

1£(A) = f(B)]| < f'(a) | A B (1.4)

where f is an operator monotone function on (0,00) and A, B > alyg > 0.
One of the central problems in perturbation theory is to find bounds for

1F(A) = F(B)]

in terms of ||A — BY| for different classes of measurable functions f for which
the function of operator can be defined. For some results on this topic, see
[5], [19] and the references therein.

By the help of power series f(z) = > ", a,2™ we can naturally construct
another power series which will have as coefficients the absolute values of the
coefficient of the original series, namely, f,(2) := > 7 |an| 2" It is obvious
that this new power series will have the same radius of convergence as the
original series. We also notice that if all coefficients a,, > 0, then f, = f.
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We notice that if

, 2€D(0,1); (1.5)

oo _1 n
h(z) = Zgz%“ =sinz, z€C;

o (2n+1)!
G n. n ]'

Uz) =D (-1)"" = 1 z€ D(0,1);
n=0

where D(0,1) is the open disk centered in 0 and of radius 1, then the cor-
responding functions constructed by the use of the absolute values of the
coefficients are

o
1 1
fa(2) :Zmz”:ml_z, ze D(0,1); (1.6)
n=1
— 1
ga(z)—z 'zgn—coshz, z € C;
— (2n)!

Other important examples of functions as power series representations with
nonnegative coefficients are:
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o0
1
exp(z) = Z ﬁz”, z € C,; (1.7)
n=0 """
1, (142 e
=1 = " D(0,1);
2n<1—z> ;Qn—lz ’ 2 € D0, 1);
X T(n+1d)
. Y 2 2n+1 .
S (Z) = Z mz " 5 S D(O, 1),
o0
1
tanh™1(z) = Z 22t z€ D(0,1);
—2n—1
o0

I'(n+a)l(n+B)T) ,

ZFl(a’B’,ij):nZ:;] TL'F(O[)F(,B F(n—l—’y) 0 047/37V>07 ZED(Oa]-);

where I' is Gamma function.
We recall the following result that provides a quasi-Lipschitzian condition
for functions defined by power series and operator norm ||-|| [14]:

THEOREM 1. Let f(z) := > 7 janz" be a power series with complex co-
efficients and convergent on the open disk D(0,R), R > 0. If T,V € B(H)
are such that ||T||,||V|| < R, then

IF(T) = fONI < fo(max {IT], [VII}) 1T = VI (1.8)
If |7, [|V|| £ M < R, then from (1.8) we have the simpler inequality
1£(T) = VI < fa(M) ||IT = V| (1.9)
In the recent paper [13] we improved the inequality (1.8) as follows:
THEOREM 2. Let f(z) := > 7 anz" be a power series with complex co-

efficients and convergent on the open disk D(0,R), R > 0. If T,V € B(H)
are such that ||T||,||V|| < R, then

ILA(T) = FV)I < (1T = VH/ (1@ =H)T +2v]) dt (1.10)

In order to obtain similar results for the trace of bounded linear operators
on complex infinite dimensional Hilbert spaces we need some preparations as
follows.
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2. SOME PRELIMINARY FACTS ON TRACE FOR OPERATORS

Let (H, (-,-) ) be a complex Hilbert space and {e; };c; an orthonormal basis
of H. We say that A € B(H) is a Hilbert-Schmidt operator if

> [l Aei]® < 0o (2.1)
iel
It is well know that, if {e;}ic; and {f;};cs are orthonormal bases for H and
A € B(H) then

S lAeil? =D IALIR =D 1A (2.2)

iel jel jel

showing that the definition (2.1) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let Ba2(H) the set of Hilbert-Schmidt operators in B(H). For A € By(H)

we define
1/2
|Ally = (Z !Aez'!!Q) (2.3)

i€l
for {e; }ier an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in [2(I), one checks that Bs(H) is a vec-
tor space and that [-||, is a norm on Ba(H), which is usually called in the
literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/2.

Because |||A|z|| = ||Az| for all x € H, A is Hilbert-Schmidt iff |A| is
Hilbert-Schmidt and ||Al|, = |||A]|l5. From (2.2) we have that if A € By(H),
then A* € By(H) and || A|ly = ||A*]],.

The following theorem collects some of the most important properties of
Hilbert-Schmidt operators:

THEOREM 3. We have:

(i) (B2(H),||-|ly) is a Hilbert space with inner product
(A,B), =) (Ae;,Be;) =Y (B*Aej,e;) (2.4)
iel el

and the definition does not depend on the choice of the orthonormal
basis {e;}icr;
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(ii) we have the inequalities
AL < [[All; (2.5)

for any A € Ba(H) and
ATy, ITAlly < 1T 1Al (2.6)

for any A € Bo(H) and T € B(H);
(iii) B2(H) is an operator ideal in B(H), i.e.,

B(H)B2(H)B(H) C Ba(H);

(iv) Byin(H), the space of operators of finite rank, is a dense subspace of
By(H);

(v) Bo(H) C K(H), where K(H) denotes the algebra of compact operators
on H.

If {e;}icr an orthonormal basis of H, we say that A € B(H) is trace class

if
Al == (Al ei ei) < 0. (2.7)
iel
The definition of || A]|; does not depend on the choice of the orthonormal basis
{ei}ier. We denote by B;i(H) the set of trace class operators in B(H).

The following proposition holds:
PROPOSITION 1. If A € B(H), then the following are equivalent:
(i) Ae Bi(H);

(ii) |AI'? € By(H);
(iii) A (or |A|) is the product of two elements of By(H).

The following properties are also well known:
THEOREM 4. With the above notations:

(i) We have
1Al = (1A%, and (Al < [[A]]; (2.8)

for any A € Bi(H).
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(ii) Bi(H) is an operator ideal in B(H), i.e.,
B(H)Bi(H)B(H) C Bi(H).
(iii) We have Ba(H)B2(H) = B1(H).
(iv) We have
IAll; = sup { {4, B),| : B € By(H), ||B|| <1}.
(v) (Bi(H),|||;) is a Banach space.
(vi) We have the following isometric isomorphisms
Bi(H)= K(H)" and Bi(H)"=B(H),

where K(H)* is the dual space of K(H) and By(H)* is the dual space
of 81 (H)

We define the trace of a trace class operator A € By(H) to be

tr(A) = (Aeie;), (2.9)

iel

where {e;}ier an orthonormal basis of H. Note that this coincides with the

usual definition of the trace if H is finite-dimensional. We observe that the

series (2.9) converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

THEOREM 5. We have:
(i) if A€ By(H) then A* € By(H) and
tr(A*) = tr(A); (2.10)
(i) if A€ Bi(H) and T € B(H), then AT, TA € B1(H) and
tr(AT) = tr(TA) and  |tr(AT)| < [|Al|, | T ; (2.11)
(iii) tr(-) is a bounded linear functional on By(H) with ||tr|| = 1;

(iv) if A, B € Bo(H) then AB, BA € Bi(H) and tr(AB) = tr(BA) ;
(v) Byin(H) is a dense subspace of Bi(H).
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Utilising the trace notation we obviously have that
(A, B), =tr(B*A) = tr(AB"),
1A]I3 = tr(A*A) =t (]A)

for any A, B € By(H).
The following Hoélder’s type inequality has been obtained by Ruskai in [28]

Ite(AB)| < tr(|AB|) < [tr ( |A|1/a)}°‘ [tr (|B|1/<1—a> )}1 (2.12)

where a € (0,1) and A, B € B(H) with |A|Y* | |B|Y1~%) ¢ B,(H).
In particular, for a = % we get the Schwarz inequality
1/2 1/2
Itr(AB)| < tr(|AB|) < [tr(\A|2)} [tr(|B|2)} (2.13)

with A, B € Bo(H).
If A>0and P € By(H) with P > 0, then

0 < tr(PA) < || A tz(P). (2.14)

Indeed, since A > 0, then (Az,x) > 0 for any x € H. If {e;}ics is an
orthonormal basis of H, then

2
0 < (APV2e, PV2e) < |l A] | PV2e||” = 14] (Pesse)

for any ¢ € I. Summing over 7 € I we get
0<> <Ap1/26i,p1/2ei> < A (Pei,es) = || tx(P),

iel iel
and since

Z <AP1/262‘, P1/2ei> = Z <P1/2AP1/261', ei>

icl iel

= tr (PY2APY?) = tr(PA),

we obtain the desired result (2.14).

This obviously imply the fact that, if A and B are selfadjoint operators
with A < B and P € By(H) with P > 0, then

tr(PA) < tr(PB). (2.15)
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Now, if A is a selfadjoint operator, then we know that
|(Az, z)| < (|A| z, x) for any z € H.

This inequality follows from Jensen’s inequality for the convex function f(t) =
|t| defined on a closed interval containing the spectrum of A.
If {e;},c; is an orthonormal basis of H, then

tr(PA)| = | > (AP2e;, P1V2e;)| < S0 ‘<AP1/Qei,P1/2ei>)
el el
<y <|Ay Pl/zei,Pl/zei> = tr(P|A]), (2.16)
el

for any A a selfadjoint operator and P € By (H) with P > 0.

For the theory of trace functionals and their applications the reader is
referred to [31].

For some classical trace inequalities see [9], [11], [26] and [35], which are
continuations of the work of Bellman [7]. For related works the reader can
refer to [1], [8], [9], [20], [23], [24], [25], [29] and [32].

3. TRACE INEQUALITIES

We have the following representation result:

THEOREM 6. Let f(z) := > 7 janz" be a power series with complex co-
efficients and convergent on the open disk D(0,R), R > 0. If T,V € Bi(H)
are such that tr(|T)), tr(|V|) < R, then f(V), f(T), f'(1—=t)T+tV) € Bi(H)
for any t € [0, 1] and

1
e [f(V)] - tr [f(T)] = /0 w[(V =T (- 0T +1V)]dt.  (3.1)
Proof. We use the identity (see for instance [6, p. 254])
n—1
A"—B"=> A" (A-B)B (3.2)
j=0

that holds for any A, B € B(H) and n > 1.
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For T,V € B(H) we consider the function ¢ : [0,1] — B(H) defined by
o(t) =[(1=t) T+ tV]". For t € (0,1) and € # 0 with t + & € (0,1) we have
from (3.2) that

ot+e)—pt)=[1—-t—e)T+ (t+e)V]" = [1-)T +tV]"

I
—

n

=) [(1—t—e)T+{t+e)V" " (V-T)[(1-t)T+tV]).

i
o

Dividing with £ # 0 and taking the limit over ¢ — 0 we have in the norm
topology of B that

P(t) = lim = [p(t +<) — o(t)] (33)

I
—

n

=3 [1-T+tV]" "IV -T)[QA =) T +tV).

i
o

Integrating on [0, 1] we get from (3.3) that

n—1
/1 Pydt=>" /1 (1 —8)T +tV]" 7 (V =T)[1 - )T 4+ tV)’ dt,
0 =070
and since

1
/0 (1) dt = p(1) — (0) = V" — T",

then we get the following equality of interest in itself

n—1
Vh—Tr =Y /1 (=T +tV]" " (Vv -T)[(A=t)T +tV}J dt  (3.4)
j=0"0

for any T,V € B(H) and n > 1.
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If T,V € Bi(H) and we take the trace in (3.4) we get

tr(V™) — tr(T™)

3

-y /ltr ([(A=OT + V" T (V =T)[(1 - )T +tV) ) dt
j=0 0

n—1 .1

tr ([(1— )T +tV]" (V= T))dt (3.5)

I
c\

7=0

n/l tr ([(1— )T +¢V]" " (V -T))dt
0

= n/ltr((V ~T)[(1 =T +tV]" ') det
0

for any n > 1.
Let m > 1. Then by (3.5) we have have

tr (nzm:o anV”> —tr (5:0 anT"> = Zm:an [tr (V7) — tr (T7)]

n=0

=3 e i (V) —ux (1) (3.6)
_ Z”“n/ ( (V-T)[(1-t)T + tV]"‘l) dt
= /1 tr ((V -T) i nay [(1 —¢)T + tV]"_1> dt

0

n=1
for any T,V € Bi(H).
Since tr(|T), tr(]V]) < R with T,V € Bi(H) then the series > 2 a, V",
S ya, T and 3°°°  nay, [(1 — )T +tV]" ! are convergent in By(H) and

da V' =f(V), > a,T"=f(T)
n=0 n=0

and

inan Q=0T +tV]" ' = f (1 - )T +tV)

n=1
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where ¢ € [0, 1]. Moreover, we have
f(V) ) f(T) ) f,((l - t)T+tV) € BI(H)

for any ¢ € [0, 1].
By taking the limit over m — oo in (3.6) we get the desired result (3.1). I

In addition to the power identity (3.5), for any T,V € Bi(H) we have
other equalities as follows

1
tr fexp(V)] — tr [exp(T)] = /O (V= Tyexp(1 - T + V) dt,  (3.7)
1
tr [sin(V)] — tr [sin(T)] = /0 tr (V. —=T)cos((1—t)T +tV))dt, (3.8)
tr [sinh (V)] — tr [sinh(T")] = /1 tr (V = T)cosh((1—t)T +tV))dt. (3.9)
0
If T,V € Bi(H) with tr(|T), tr(|V]|) < 1 then
tr [(lg — V)] — tr[(le —T) 7] (3.10)
- /ltr (V-=T)1g — (1 —t)T —tV)?)dt,
0

and

tr [In(ly — V)]s — tr[In(ly — 7)) (3.11)

_ /1tr (V-T)(1g — (1 — )T — tV) Y dt.
0

We have the following result:

COROLLARY 1. With the assumptions in Theorem 6 we have the inequal-
ities
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1
\tr[f(V)]_tr[f(T)H<min{uv_T\|/O /(=0T + V)|, dt,  (3.12)
1
||V—TH1/ Hf’((l—t)TthV)Hdt}
<m1n{HV TH/ (A =T +tV|,)dt

1
w -l [ f;<u<1—t>T+tvu)dt},

where ||-|| is the operator norm and ||-||, is the 1-norm introduced for trace
class operators.

Proof. From (3.1), we have by taking the modulus
1
e [F(V)] - tr [F(T)]| g/o lor (V= T)f(1— OT +V))|dt.  (3.13)

Utilising the inequality (2.11) twice, for any t € [0, 1] we get

[t (V=) (L =t)T +tV))| <V =T f(QA=t)T +tV)||,
tr (V=T)f'(A=6)T +tV))| <[V =T, ||[f/(QA =T +tV)].

By integrating these inequalities, we get the first part of (3.12).
We have, by the use of ||-||; properties that

|f(1=t)T +tV)||, = Znan (1—t)T +tV]™~

n=1
<Z |an] ||[

<> nfan |1 = t)T + eV |}

n=1

= (1@ =T +tV]y)

1

[(1— )T +tV]™™ 1H1

for any T,V € Bi(H) with |T||,, |V, < R.



38 S.S. DRAGOMIR

This proves the first part of the second inequality.

Since || X|| < ||X||, for any X € Bi(H) then ||(1 —t)T' +tV|| < R for any
T,V € Bi(H) with ||T||;,]|V]]; < R which shows that fC’L( II(1— t)T+tV||)
is well defined.

The second part of the second inequality follows in a similar way and the
details are omitted. 1

Remark 1. We observe that f! is monotonic nondecreasing and convex on
the interval [0, R) and since the function v (t) := ||(1 —¢)T 4+ tV|| is convex
n [0,1] we have that f. o4 is also convex on [0,1]. Utilising the Hermite-
Hadamard inequality for convex functions (see for instance [16, p. 2]) we have
the sequence of inequalities

/01 PG — 0T + V) d < % [ C/L<HTJ2FVH> L LallTID + £a(VID
_1

2

[£AT) + fa(VID]
< max {fo(IT1), fz(IIVI)} - (3.14)

DO \

We also have

[ i -or s viyacs [ -ouri+ v a

LT (T VI L AU + 2V
<g [ () + R

< 2 [AATI) + (VD]

<max{f 17, £AVID} (3.15)

We observe that if ||V|| # ||T']|, then by the change of variable s = (1—1) ||T'||+
t|V|| we have

vl

! /
[ sy e i [ s ds

_ Ja(VID = £a(IT])
Vi =izl
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IE V[ = [T}, then

1
/O fo( =) ITN + £ IV]) dt = £ (IT1) -

Utilising these observations we then get the following divided difference in-
equality for T # V

(VI =fa(IT i
EUVILATD i vy 2 7,

1
/ =T +tV])dt <
’ Akl if |V = |7].

Similar comments apply for the 1-norm ||-||; when T,V € By (H).

If we use the first part in the inequalities (3.12) and the above remarks,
then we get the following string of inequalities

1
[ [fV)] = e [FD][ <V -7 / I (@ =0T+ V)], at

< ||V - Ty/ (lQ=0T +tV|,)dt (3.17)

% U(;( HTJQFVHJ + fé(IITlll);fé(llVlll)] 7

— a \4 —Ja T 3
<V =Tl ) [ L=t i vy, i),

fa(ITy) it VIl =171,

*IIV RFAUES AULA]
< IV =Tl max { fo(IIT1l,), fa(IVII}) }

provided T,V € By(H) with ||T||,,||V]; < R.
If |7y, [|V]l; £ M < R, then we have from (3.17) the simple inequality

[t [f(V)] = te [f(D)] | < IV = T fa(M).

A similar sequence of inequalities can also be stated by swapping the norm
||-| with ||-]|; in (3.17). We omit the details.
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If we use the inequality (3.17) for the exponential function, then for any
T,V € Bi(H) we have the inequalities

1
! tr [exp(V)] — tr[exp(T)] ‘ < ||V =T /0 Hexp ((1 —t)T + tV) Hl dt

1
guv—TH/ exp ((1— T + V], dt (3.18)
0
exp(ITl[)+exp([VIl;)
3 oo (757, ) + 2Rl
_ xp(||V]|1)—exp(||T .
SV =Tl g feUll)=eslTD e vy, 2 7,
exp(|7],) if VI =Tl

< % IV =Tl [exp(IT1ly) + exp([[V[l,)]
<[V = T|| max { exp(|Tl,), exp([V]|,) }-
If | T, V]| <1, then we have the inequalities
|tr [In(1y — V)7 —tr [In(1y — 7)) | (3.19)

1
<V =70 [ - =07 -0y,

1
<v-7| /O (1= (1 — )T + V] )~ Lde

_ _ -1 _ -1
%[(1_H$H1) L, A=) ;(1 Vi)

)

— In(1—|[V]l) = =In(1—|IT||,) ! .
< ||V =T x (-] ||||1‘)/”17ngHl 171,) it [V, # 171,
=17y~ if (VI =171

1 _ —
< IV =TI = Tl)™" + = [VIL) ]
<V = T max {(1 = |T,)"" @ = [VII) ™'}
The following result for the Hilbert-Schmidt norm ||-||, also holds:

THEOREM 7. Let f(z) := Y o7 anz" be a power series with complex coef-
ficients and convergent on the open disk D(0,R), R > 0. If T,V € By(H) are
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such that tr(|T|?), tr(|V|?) < R2, then f(V), f(T), f'(1 —t)T +tV) € By(H)
for any t € [0, 1] and

1
e [f(V)] - tr [f(T)] = /0 (V- T)f (1 - OT +4V))dt.  (3.20)
Moreover, we have the inequalities

1
0] = e [FD)] < IV =Tl [ 0T +0) .

1
< V-1, /0 £ = OT + tV]],) dt (3.21)

% {fé( HTJQFVHQ) + f(lz(”THQ)—;f(/z(Hvlb)] ,

— fa(IVIlg)—Ffa(IT .
<[V =T, PRS2 i VI # 171,

fa(ITl3) it [Vl =171,

IN

% IV =T, [£31T1) + £V ])]

IV = Tlly max { fo(IT1l5), fa(IV1l2) } -

Proof. The proof of the first part of the theorem follows in a similar manner
to the one from Theorem 6.

Taking the modulus in (3.20) and using the Schwarz inequality for trace
(2.13) we have

IA

1
[tr [f(V)] —tr[f(T)]] < /0 }tr((V —D)f' (1 =t)T +tV)) ] dt (3.22)

1
s/ IV =Tl |7 (1 = 0T + V), d.
0

The rest follows in a similar manner as in the case of 1-norm and the details
are omitted. N

We notice that similar examples to (3.18) and (3.19) may be stated where
both norms ||-|| and |[|-||; are replaced by ||-||,.

We also observe that, if T,V € By(H) with ||T||,, ]|V, < K < R, then
we have from (3.17) the simple inequality

[t [f(V)] =t [F(T)] | < IV = Tlly f4(K).
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4. NORM INEQUALITIES

We have the following norm inequalities:

THEOREM 8. Let f(z) := > 7 anz" be a power series with complex co-
efficients and convergent on the open disk D(0, R), R > 0.

(i) If T,V € Bi(H) are such that tr(|T|),tr(|V|) < R, then we have the

norm inequalities

V=T, fy f2(II(L =T + V) dt,
50— sy < 4 1T i@ ORI
IV =T fy £2(II(L =T + V], ) dt.

(i) If T,V € By(H) are such that tr(|T|*), tr(|V|?) < R2, then we also have
the norm inequalities

IV =Tl fi £2(1(1 =T + V]| dt,

(4.2)
V=TI fy £2(I(1 =T +tV],) dt.

IF (V) = F(D)ll; <
Proof. We use the equality
yr = Z/ (L= T + V" (V= T) [(1— )T + £V dt,  (4.3)
j=0"0

for any T,V € B(H) and n > 1.
(i) If T,V € Bi(H) are such that tr(|T]),tr(|]V]) < R, then by taking the
|-/, norm and using its properties, for any n > 1 we have successively

-1, < ni /01 lia=tr 4w (v =1y (- T + V]| at
j=0
n—1 .1
< Z/ [0 = o7 4ot v - )|| 10 - or + vy ar
=079

n—1 1 X .
<Y [z fla-or+ ot |- o+ vy e
j=0"90
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n—1
<V =T, Y I =T +tV|[*~ (1= )T + V| dt
j=0
1
=n||V - T||1/ (1 —8)T + V| tat. (4.4)
0

Let m > 1. By (4.4) we have

i”: a, V" — i a,T" i an(V*=1Tm)
n=0 n=0 n=1

1 1

m
<D anl V=T
n=1

m 1
<V =11, S Jauln /0 11— OT + V] at

n=1

1 m
=V - T”l/o (ann\ (1 — t)T—l—tVHn1> dt.

n=1
Also, we observe that

Q=T + V] < [ =T + V],

IN

A= ITl +tV], < R

for any t € [0, 1], which implies that the series 7% | n|a,|||(1 — )T + tV|"
is convergent and

Y nlaal (L =T +tV " = fr (1L =T + V)

n=1

for any ¢ € [0, 1].

Since the series > 7 a,V" and > 7 a,T" are convergent in
(Bi(H),[I|l;), then by letting m — oo in the inequality (4.5) we get
the first inequality in (4.1).
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For any n > 1 we also have

vr -1, < ni/l H[(1 DT+ V] (V- T) (1 - t)T+tV]jH1dt
j=0""
n—1 1 ) )
gZ/ H[(1—t)T+tV]“*1*J (V—T)H H[(l—t)T+tV]’Hldt
—0 70

n—1 .1
gz/o v =i o7+ o 10 - o7+ v ar
=0

n—1
<V =TI II(1 =T+ tV " |1 = )T + V| dt
7=0
n—1 ) )
<V =TI (=T + eV |77 [(1 = )T + V| dt
7=0

1
=V =T [ 0= 0T+ vy,
0
which by a similar argument produces the second inequality in (4.1).
(ii) Follows in a similar way by utilizing the inequality || T'Al|, < || T|| || All,
that holds for T' € B(H) and A € Bya(H). The details are omitted. N

Remark 2. From the first inequality in (4.1) we have the sequence of
inequalities

1
(V) = D) < [V - T, / (10 =T + v ) dt (4.6)

% |:f(,1 (HTJQVH) + fé(HTII);fé(IIVII) ,

IN

_ <UIVID)—fa (|| T .
|V =T, x {f (IIHVII‘)HJI”T(|||| 1D it |V 7],

fa(IT1) it V=171,

IN

S IV =TI [0 + £2VI)]

IV = Tl max { fo(IT1D), £a(1VI) }

IN
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for T,V € Bi(H) such that tr(|7]), tr(|]V]) < R and a similar result by swap-
ping in the right hand side of (4.6) the norm ||-|| with ||-||,. In particular, if
tr(|7]), tr(|V]) < M < R, then we have the simpler inequality

IF(V) = F(D)lly < £V =Ty - (4.7)

If T,V € By(H) are such that tr(|7[*),tr(|V|*) < R, then we have the
norm inequalities

1
!MGO—fGWbSHV—ﬂbA.ﬁMO—wT+ﬂW)& (48)
% |:fC/L (HTJQFVH) + fa(HT”);fa(”V”) 7
< ||V =T, x fa(ll“‘/vll‘)‘:‘llc%(“'lTlD it |V |7,
FACEAD it [V = |7,

IN

;WATMUMWW+ﬁWWM

IV =Ty max { fo (IT1]). fa (VI }

and a similar result by swapping in the right hand side of (4.6) the norm ||-||
with ||-|l,. In particular, if tr(|T|?), tr(|]V|*) < K? < R?, then we have the
simpler inequality

IN

1FV) = F (D)l < fa(F) IV =Tl (4.9)

5. APPLICATIONS FOR JENSEN’S DIFFERENCE
We have the following representation:

LEMMA 1. Let f(z) := Y .- anz" be a power series with complex coeffi-
cients and convergent on the open disk D(0, R), R > 0. Ifeither T,V € Bi(H)
with [|[T]|,,[|[V|l; < R, or T,V € Ba(H) with ||T||,,||V|ly < R then f(V),
f(0), f(VJQFT) € Bi(H) or f(V), f(T), f(#) € By(H), respectively and

tr[f(V)] -QFtr IO . {f (V‘QFTH (5.1)

_ i/oltr ((VT) {f’ ((1t)VJ2rT+tV) _f <(1t)V;T+tT)]>dt.
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Proof. The first part of the theorem follows from Theorem 6.
From the identity (3.1), for T,V € By (H) with ||T||;, ||V|l; < R we have

tr[f(V)] — tr [f (V;FT)} (5.2)

:/OltrKv_ V;T> f! <(1—t)V;T+tV)]dt

5 [elv-nr (-5 o) a

i) - w | (F5 )] (5.9

_/OltrKT— V;T> f! ((1—t)V;T+tT>}dt

:;/Oltr [(T—V)f’ <(1—t)V;LT+tT>]dt

_—;/Oltr [(V—T)f’ ((1—t)v—2FT+tT>}dt.

If we add the above inequalities (5.2) and (5.3) and divide by 2 we get the
desired result (5.1). 1

and

THEOREM 9. Let f(z) = Y ° janz" be a power series with complex
coefficients and convergent on the open disk D(0,R), R > 0. If T,V € By1(H)
with [T, [V, < R, then

W +alAD] {f (V : T)] ' (5.4)

1 1

SIv - |

0

1 2| e V4T

<—|\V-T —_—
<gv-re | (|

1
< S IV =TIP [V + A7)

IN

1
t— 5| 0= 0T + 2V, ) dt

) L LUV + AT
. 2

IN

IV = T max {2V L), £2(ITI) )
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Proof. Taking the modulus in (5.1), for T,V € Bi(H) with [|T'||,,||V]; <
R we have

WD), [ ; (MH ’ (5.5)

2
1 1
<= t
<[l

((VT) [f’ ((1t)V;T+tV> —f ((1t)V;FT+tT>D‘dt.

Using the properties of trace, for T,V € By (H) with ||T||,,||V]]; < R and
t € [0,1] we have

tr ((V—T) {f’ <(1—t)V;LT +tv) —f <(1—t)V_2FT+tT>D‘ (5.6)

[f’ ((1—t)V;T+tV> —f ((1—t)V;T+tT>}

From (4.1), for A, B € B1(H) with [|A],,|B]|; < R we have

<|[v -1

1

1
1F(A) = F(B)ll, < !A—BH/O fa(l(L = )B + Al ) dt (5.7)

HA—MW%QV231>+ﬂWNJ+ﬂWEM}

2
<5 1A= Bl [f0All) + f2(1Bl)]

< [[A = Bl max { fo(I[All,), fo (I Bll1) }

. N e _ V4T
Applying the second and third inequalities in (5.7) for f/, A = (1 —t)% +tV
and B = (1 —t) 4L + 1T we get

1
2
1

[f’((l—t)V;TthV)—f’((l—t)V;TthT)] 1 (5.8)
- fe(£57])
LA =95" +evly) + fa ([ =0 5F + ],
2
<tV -

X [f;’ <H(1—t)V;T +tV

>+f;’(H(1—t)V;rT+tT
1

)
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for T,V € Bi(H) with ||T||,,||V]l; < R and t € [0, 1].

Since f; is convex and monotonic nondecreasing and ||-||; is convex, then

fa (I =5+ + v + fa ([0 = 05+ +¢71),)

5 (5.9)
o ([T ) 200 2 0TI
1
for T,V € Bi(H) with ||T||,,||V|l; < R and t € [0, 1].
From (5.8) and (5.9) we get
H[ <1—t +T+tv)—f’((1—t)V+T+tT>} (5.10)
2 2 )
1
<tV -1
X [ " <H(1—t)v—2|_T+tV > + fd (H(l—t)v;’TﬂT )]
1 1

VT
gtHV—TH[(l—t (H +

>_|_tfn/1/(||VH1)+f¢;/(HTH1)]
; 2

for T,V € Bi(H) with [|T||,,[|[V]l; < R and ¢ € [0, 1].
Integrating (5.10) over ¢ on [0, 1] we get

/01 [f’ ((1—t)V;T+tV> —f ((l—t)V;T—i—tTﬂ
siv =i [z (|

ltf[; (H(l—t)v_;—T +tT

o (2] f o

+ﬂwwn+ﬂwma/bm4
0

2
— 1 HV _TH |:f” <HV+T ) + fc,L/(HVHl)
6 @ 2 |,

dt

1

)
0l

IN

IN

I

+ fé’(llTlll)]
2
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which together with (5.5) and (5.6) produce the inequality
tr [f(V)] + tr [f(T)] o [f (V—I—T)” (5.11)

2 2
)t
1

1
<L ome /tf;' R M
8 0 2
dtﬂ
1

v V+T
+/0 tfa<H(1—t) 5 +tT

< L= [z (|2 £071)).

Now, observe that

FVID +
)

1
T
/ tfY (H(l—t V= +tV )dt (5.12)
0 1
<”1 T+ 1J”jv )dt,
2 1
! T
/ tfY <H(1—t VT +tT >dt (5.13)
0 1
1—-t 1+t
= tfY <HV —T )d
/0 2 2 1
Using the change of variable u = %, then we get
! 1—t 1+t
/ tfy <HT Tty >dt (5.14)
0 2 2 1

1
= 2[ u—1)f([|(1 =w)T +uV|)du.

2

1-t

Also, by changing the variable v = =5+,

fror (vt

_ 2/0 (120" (|1 - o)T +oV]|) dv

we get

1) at (5.15)

D=
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Utilising the equalities (5.12)-(5.15) we obtain
! T ! T
/ tf;’(H(l—t)V; 1V )dt+/ tf;’(H(l—t)V;r T
0 1 0

1
:2ﬁ 2t =) f7([[(L=t)T +tV])dt

2

)t
1

o=

+2/ (L=26)f7 (|1 =) T + ¢V ) dt
0

1
=2 [ -0 - 0T+ V]
0

1
0

for T,V € Bi(H) with | T||,, ||V, < R.
Making use of (5.11) we deduce the first two inequalities in (5.4).
The rest is obvious. 1

; 1
2

Q=T +evV|)dt

COROLLARY 2. Let f(z) := >.>° ja,z™ be a power series with complex
coefficients and convergent on the open disk D(0,R), R > 0. If T,V € By(H)
with ||T||,,||[V|l; £ M < R, then

OO o[ (Y55)|| < gIv -1 ran. 6o

The constant g is best possible in (5.16).

Proof. From the first inequality in (5.4) we have

HUWN;UU@H—WP<V;TH‘

sv-ri? [ |-

*HV T|* £ (M)
0

| /\

fAI =T + eV, ) dt

1 1
=gl = v - o

| /\

for T,V € Bi(H) with ||T||,,||V]l; £ M < R, and the inequality is proved.
If we consider the scalar case and take f(z) = 22, V = a, T = b with
a,b € R then we get in both sides of (5.16) the same quantity (b — a)?. I
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Remark 3. A similar result holds by swapping the norm ||-|| with |-]|; in
the right hand side of (5.4). The case of Hilbert-Schmidt norm may also be
stated, however the details are not presented here.

If we write the inequality (5.4) for the exponential function, then we get

tr [exp(V)] te [exp(D)] _ [exp (";T” ‘ (5.17)

1 1
SIv - [

0
1 ) V4T
i1V =1 [exo (5

1
< o IV =TI [exp(IV]l,) + exp(|T],)]

IN

1
t—3 exp ([[(1—=6)T + ¢V, )dt

IN

2

> N exp(||Vl;) + exp(||T,)
1

1
S T||* max { exp([|V'[|,), exp(|Tl;) }

for any for T,V € Bi(H).
If T,V e Bi(H) with ||V|{,||T]l; < M, then

tr [exp(V)] ro exp(D)] [exp (V . Tﬂ ‘ (5.18)

1
< LIV~ TIP exp(M).
If we write the inequality (5.4) for the function f(2) = (1 — 2)~!, then we get

tr [(1g — V)] +tr [(1g — 7)1 <1H v ; T)l

2

— tr

(5.19)

1 1 _
<=7l [ fe- gl 0o or )P
1 T\, a- S| 1)y)?
< Lworps (oY L A= Ivi)™ + @ = 117
12 2 ||, 2

< SV =TI [ = V)™ + @ = 7))

1 _ _
< SV =TI max {(1 = [VI[) 7, (= I T]) 7}
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for any for T,V € Bi(H) with |V, ||T||; < 1.
Moreover, if ||[V||,,||T|; £ M < 1, then

tr[(1g — V)™ +tr [(1g — 7)Y V4T
il 5 a —tr[(lH— > )

(5.20)

1 —
< IV =TI (-2

The interested reader may choose other examples of power series to get
similar results. However, the details are not presented here.
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