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ON SOME INEQUALITIES FOR NUMERICAL RADIUS

OF OPERATORS IN HILBERT SPACES

Silvestru Sever Dragomir

Abstract. By the use of inequalities for nonnegative Hermitian
forms some new inequalities for numerical radius of bounded linear
operators in complex Hilbert spaces are established.

1. Introduction

Let K be the field of real or complex numbers, i.e., K = R or C and
X be a linear space over K.

Definition 1. A functional (·, ·) : X × X → K is said to be a
Hermitian form on X if

(H1) (ax+ by, z) = a (x, z) + b (y, z) for a, b ∈ K and x, y, z ∈ X;

(H2) (x, y) = (y, x) for all x, y ∈ X.

The functional (·, ·) is said to be positive semi-definite on a subspace
Y of X if

(H3) (y, y) ≥ 0 for every y ∈ Y,
and positive definite on Y if it is positive semi-definite on Y and

(H4) (y, y) = 0, y ∈ Y implies y = 0.

The functional (·, ·) is said to be definite on Y provided that either
(·, ·) or − (·, ·) is positive semi-definite on Y.
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When a Hermitian functional (·, ·) is positive-definite on the whole
space X, then, as usual, we will call it an inner product on X and will
denote it by 〈·, ·〉 .

We use the following notations related to a given Hermitian form (·, ·)
on X :

X0 := {x ∈ X| (x, x) = 0} , K := {x ∈ X| (x, x) < 0}
and, for a given z ∈ X,

X(z) := {x ∈ X| (x, z) = 0} and L (z) := {az|a ∈ K} .

The following fundamental facts concerning Hermitian forms hold:

Theorem 1 (Kurepa, 1968 [28]). Let X and (·, ·) be as above.

1. If e ∈ X is such that (e, e) 6= 0, then we have the decomposition

(1.1) X = L (e)
⊕

X(e),

where
⊕

denotes the direct sum of the linear subspaces X(e) and
L (e) ;

2. If the functional (·, ·) is positive semi-definite on X(e) for at least
one e ∈ K, then (·, ·) is positive semi-definite on X(f) for each
f ∈ K;

3. The functional (·, ·) is positive semi-definite on X(e) with e ∈ K if
and only if the inequality

(1.2) |(x, y)|2 ≥ (x, x) (y, y)

holds for all x ∈ K and all y ∈ X;
4. The functional (·, ·) is semi-definite onX if and only if the Schwarz’s

inequality

(1.3) |(x, y)|2 ≤ (x, x) (y, y)

holds for all x, y ∈ X;
5. The case of equality holds in (1.3) for x, y ∈ X and in (1.2), for
x ∈ K, y ∈ X, respectively; if and only if there exists a scalar
a ∈ K such that

y − ax ∈ X(x)
0 := X0 ∩X(x).

Let X be a linear space over the real or complex number field K and
let us denote by H (X) the class of all positive semi-definite Hermitian
forms on X, or, for simplicity, nonnegative forms on X.
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If (·, ·) ∈ H (X) , then the functional ‖·‖ = (·, ·)
1
2 is a semi-norm on

X and the following equivalent versions of Schwarz’s inequality hold:

(1.4) ‖x‖2 ‖y‖2 ≥ |(x, y)|2 or ‖x‖ ‖y‖ ≥ |(x, y)|

for any x, y ∈ X.
Now, let us observe that H (X) is a convex cone in the linear space

of all mappings defined on X2 with values in K, i.e.,

(e) (·, ·)1 , (·, ·)2 ∈ H (X) implies that (·, ·)1 + (·, ·)2 ∈ H (X) ;
(ee) α ≥ 0 and (·, ·) ∈ H (X) implies that α (·, ·) ∈ H (X) .

The following simple result is of interest in itself as well:

Lemma 1. Let X be a linear space over the real or complex number
field K and (·, ·) a nonnegative Hermitian form on X. If y ∈ X is such
that (y, y) 6= 0, then

(1.5) py : H ×H → K, py (x, z) = (x, z) ‖y‖2 − (x, y) (y, z)

is also a nonnegative Hermitian form on X.
We have the inequalities(

‖x‖2 ‖y‖2 − |(x, y)|2
) (
‖y‖2 ‖z‖2 − |(y, z)|2

)
(1.6)

≥
∣∣(x, z) ‖y‖2 − (x, y) (y, z)

∣∣2
and (

‖x+ z‖2 ‖y‖2 − |(x+ z, y)|2
) 1

2(1.7)

≤
(
‖x‖2 ‖y‖2 − |(x, y)|2

) 1
2 +

(
‖y‖2 ‖z‖2 − |(y, z)|2

) 1
2

for any x, y, z ∈ X.

Remark 1. The case when (·, ·) is an inner product in Lemma 1 was
obtained in 1985 by S. S. Dragomir, [2].

Remark 2. Putting z = λy in (1.7), we get:

(1.8) 0 ≤ ‖x+ λy‖2 ‖y‖2 − |(x+ λy, y)|2 ≤ ‖x‖2 ‖y‖2 − |(x, y)|2

and, in particular,

(1.9) 0 ≤ ‖x± y‖2 ‖y‖2 − |(x± y, y)|2 ≤ ‖x‖2 ‖y‖2 − |(x, y)|2

for every x, y ∈ H.
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We note here that the inequality (1.8) is in fact equivalent to the
following statement

(1.10) sup
λ∈K

[
‖x+ λy‖2 ‖y‖2 − |(x+ λy, y)|2

]
= ‖x‖2 ‖y‖2 − |(x, y)|2

for each x, y ∈ H.

The following result holds (see [11, p. 38] for the case of inner prod-
uct):

Theorem 2. Let X be a linear space over the real or complex number
field K and (·, ·) a nonnegative Hermitian form on X. For any x, y, z ∈ X,
the following refinement of the Schwarz inequality holds:

‖x‖ ‖z‖ ‖y‖2 ≥
∣∣(x, z) ‖y‖2 − (x, y) (y, z)

∣∣+ |(x, y) (y, z)|(1.11)

≥ |(x, z)| ‖y‖2 .

Corollary 1. For any x, y, z ∈ X we have

(1.12)
1

2
[‖x‖ ‖z‖+ |(x, z)|] ‖y‖2 ≥ |(x, y) (y, z)| .

The inequality (1.12) follows from the first inequality in (1.11) and
the triangle inequality for modulus∣∣(x, z) ‖y‖2 − (x, y) (y, z)

∣∣ ≥ |(x, y) (y, z)| − ‖y‖2 |(x, z)|
for any x, y, z ∈ X.

Remark 3. We observe that if (·, ·) is an inner product, then (1.12)
reduces to Buzano’s inequality obtained in 1974 [1] in a different way.

For some inequalities in inner product spaces and operators on Hilbert
spaces see [3]- [26] and the references therein.

The numerical radius w (T ) of an operator T on H is given by [27, p.
8]:

(1.13) w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} .
It is well known that w (·) is a norm on the Banach algebra B (H) of all
bounded linear operators T : H → H. This norm is equivalent with the
operator norm. In fact, the following more precise result holds [27, p.
9]:

Theorem 3 (Equivalent norm). For any T ∈ B (H) one has

(1.14) w (T ) ≤ ‖T‖ ≤ 2w (T ) .
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Utilising Buzano’s inequality we obtained the following inequality for
the numerical radius [12] or [13]:

Theorem 4. Let (H; 〈·, ·〉) be a Hilbert space and T : H → H a
bounded linear operator on H. Then

(1.15) w2 (T ) ≤ 1

2

[
w
(
T 2
)

+ ‖T‖2
]
.

The constant 1
2

is best possible in (1.15).

The following general result for the product of two operators holds [27,
p. 37]:

Theorem 5. If U, V are two bounded linear operators on the Hilbert
space (H, 〈·, ·〉) , then w (UV ) ≤ 4w (U)w (V ) . In the case that UV =
V U, then w (UV ) ≤ 2w (U)w (V ) . The constant 2 is best possible here.

The following results are also well known [27, p. 38].

Theorem 6. If U is a unitary operator that commutes with another
operator V, then

(1.16) w (UV ) ≤ w (V ) .

If U is an isometry and UV = V U, then (1.16) also holds true.

We say that U and V double commute if UV = V U and UV ∗ = V ∗U.
The following result holds [27, p. 38].

Theorem 7. If the operators U and V double commute, then

(1.17) w (UV ) ≤ w (V ) ‖U‖ .

As a consequence of the above, we have [27, p. 39]:

Corollary 2. Let U be a normal operator commuting with V. Then

(1.18) w (UV ) ≤ w (U)w (V ) .

For a recent survey of inequalities for numerical radius, see [21] and
the references therein.

Motivated by the above facts we establish in this paper some new
numerical radius inequalities concerning four operators A,B,C and P
on a Hilbert space with P nonnegative in the operator order. Some
particular cases of interest that generalize and improve an earlier result
are also provided.
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2. Main Results

The following result holds for (H, 〈., .〉) a Hilbert space over the real
or complex numbers field K.

Theorem 8. Let P be a nonnegative operator onH and A,B,C three
bounded operators on H. Then for any e ∈ H we have the inequalities
(2.1)

‖A∗PCe‖ ‖B∗PCe‖ ≤ 1

2

∥∥P 1/2Ce
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ ‖B∗PA‖

]
.

Moreover, we have

(2.2) w (C∗PAB∗PC) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ ‖B∗PA‖

]
.

Proof. We observe that if P ≥ 0, then the mapping (., .) : H×H → K
defined by

(x, y)P := 〈Px, y〉
is a hermitian form on H and by (1.12) we have the inequality

(2.3)
1

2
[‖x‖P ‖y‖P + |(x, y)P |] ‖e‖

2
P ≥ |(x, e)P (y, e)P |

for any x, y, e ∈ H.
This can be written as

(2.4)
1

2

[
〈Px, x〉1/2 〈Py, y〉1/2 + |〈Px, y〉|

]
〈Pe, e〉 ≥ |〈Px, e〉 〈Py, e〉|

for any x, y, e ∈ H.
Now if we replace x by Ax, y by By and e by Ce we get

1

2

[
〈PAx,Ax〉1/2 〈PBy,By〉1/2 + |〈PAx,By〉|

]
〈PCe,Ce〉(2.5)

≥ |〈PAx,Ce〉 〈PBy,Ce〉|

for any x, y, e ∈ H, which is equivalent to

1

2

[
〈A∗PAx, x〉1/2 〈B∗PBy, y〉1/2 + |〈B∗PAx, y〉|

]
〈C∗PCe, e〉(2.6)

≥ |〈x,A∗PCe〉 〈y,B∗PCe〉|

for any x, y, e ∈ H.
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Taking the supremum over x, y ∈ H with ‖x‖ = ‖y‖ = 1 we have

‖A∗PCe‖ ‖B∗PCe‖

(2.7)

= sup
‖x‖=1

|〈x,A∗PCe〉| sup
‖y‖=1

|〈y,B∗PCe〉|

= sup
‖x‖=‖y‖=1

{|〈x,A∗PCe〉 〈y,B∗PCe〉|}

≤ 1

2
〈C∗PCe, e〉

× sup
‖x‖=‖y‖=1

[
〈A∗PAx, x〉1/2 〈B∗PBy, y〉1/2 + |〈B∗PAx, y〉|

]
≤ 1

2
〈C∗PCe, e〉

×

[
sup
‖x‖=1

〈A∗PAx, x〉1/2 sup
‖y‖=1

〈B∗PBy, y〉1/2 + sup
‖x‖=‖y‖=1

|〈B∗PAx, y〉|

]
=

1

2
〈C∗PCe, e〉

[
‖A∗PA‖1/2 ‖B∗PB‖1/2 + ‖B∗PA‖

]
for any e ∈ H.

Since

A∗PA =
∣∣P 1/2A

∣∣2 , B∗PB =
∣∣P 1/2B

∣∣2
and

C∗PC =
∣∣P 1/2C

∣∣2
then by (2.7) we get the desired inequality in (2.1).

By Schwarz inequality we have

(2.8) |〈C∗PBA∗PCe, e〉| ≤ ‖A∗PCe‖ ‖B∗PCe‖
for any e ∈ H.

Using inequality (2.1) we then have
(2.9)

|〈C∗PBA∗PCe, e〉| ≤ 1

2

∥∥P 1/2Ce
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ ‖B∗PA‖

]
for any e ∈ H.

Taking the supremum over e ∈ H, ‖e‖ = 1 in (2.9) we get

(2.10) w (C∗PBA∗PC) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ ‖B∗PA‖

]
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and since

w (C∗PBA∗PC) = w (C∗PAB∗PC)

then by (2.10) we get the desired result (2.2).

The following result also holds.

Theorem 9. Let P be a nonnegative operator on H and A,B,C
three bounded operators on H such that B∗PC = C∗PA, then

(2.11) w2 (C∗PA) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ w (B∗PA)

]
and
(2.12)

w2 (C∗PA) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥∥∥∥

∣∣P 1/2A
∣∣2 +

∣∣P 1/2B
∣∣2

2

∥∥∥∥∥+ w (B∗PA)

]
.

Proof. From the inequality (2.6) we have

1

2

[
〈A∗PAe, e〉1/2 〈B∗PBe, e〉1/2 + |〈B∗PAe, e〉|

]
〈C∗PCe, e〉(2.13)

≥ |〈e, A∗PCe〉 〈e, B∗PCe〉|

for any e ∈ H.
Since

B∗PC = C∗PA = (A∗PC)∗

then

|〈e, A∗PCe〉 〈e, B∗PCe〉| = |〈e, A∗PCe〉 〈e, (A∗PC)∗ e〉|(2.14)

= |〈A∗PCe, e〉|2 = |〈C∗PAe, e〉|2

for any e ∈ H.
By (2.13) and (2.14) we then have

|〈C∗PAe, e〉|2(2.15)

≤ 1

2

[
〈A∗PAe, e〉1/2 〈B∗PBe, e〉1/2 + |〈B∗PAe, e〉|

]
〈C∗PCe, e〉

for any e ∈ H. This inequality is of interest in itself.



On Some Inequalities for Numerical Radius 255

Taking the supremum over e ∈ H, ‖e‖ = 1 in (2.15) we have

w2 (C∗PA)

= sup
‖e‖=1

|〈C∗PAe, e〉|2

≤ 1

2
sup
‖e‖=1

{[
〈A∗PAe, e〉1/2 〈B∗PBe, e〉1/2 + |〈B∗PAe, e〉|

]
〈C∗PCe, e〉

}
≤ 1

2
sup
‖e‖=1

[
〈A∗PAe, e〉1/2 〈B∗PBe, e〉1/2 + |〈B∗PAe, e〉|

]
sup
‖e‖=1

〈C∗PCe, e〉

≤ 1

2

[
sup
‖e‖=1

〈A∗PAe, e〉1/2 sup
‖e‖=1

〈B∗PBe, e〉1/2 + sup
‖e‖=1

|〈B∗PAe, e〉|

]
× sup
‖e‖=1

〈C∗PCe, e〉

=
1

2

[
‖A∗PA‖1/2 ‖B∗PB‖1/2 + w (B∗PA)

]
‖C∗PC‖ ,

which proves the inequality (2.11).
Using the arithmetic mean - geometric mean inequality we also have

〈A∗PAe, e〉1/2 〈B∗PBe, e〉1/2 ≤ 1

2
[〈A∗PAe, e〉+ 〈B∗PBe, e〉]

=

〈
A∗PA+B∗PB

2
e, e

〉
for any e ∈ H.

By (2.15) we then have
(2.16)

|〈C∗PAe, e〉|2 ≤ 1

2

[〈
A∗PA+B∗PB

2
e, e

〉
+ |〈B∗PAe, e〉|

]
〈C∗PCe, e〉

for any e ∈ H.
Taking the supremum over e ∈ H, ‖e‖ = 1 in (2.16) we obtain the

desired result (2.12).

3. Some Particular Inequalities

In this section we explore some particular inequalities of interest that
can be obtained from the main results stated above.
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If we take in (2.1) and (2.2) B = A∗, then we get
(3.1)

‖A∗PCe‖ ‖APCe‖ ≤ 1

2

∥∥P 1/2Ce
∥∥2 [∥∥P 1/2A

∥∥∥∥AP 1/2
∥∥+ ‖APA‖

]
for any e ∈ H and

(3.2) w
(
C∗PA2PC

)
≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥P 1/2A

∥∥∥∥AP 1/2
∥∥+ ‖APA‖

]
,

where A,C are bounded operators on H and P is a nonnegative operator
on H.

If we put in (2.1) and (2.2) P = 1H , then we have

(3.3) ‖A∗Ce‖ ‖B∗Ce‖ ≤ 1

2
‖Ce‖2 [‖A‖ ‖B‖+ ‖B∗A‖]

for any e ∈ H and

(3.4) w (C∗AB∗C) ≤ 1

2
‖C‖2 [‖A‖ ‖B‖+ ‖B∗A‖]

where A,B,C are bounded operators on H.
Choosing B = A∗ in (3.3) and (3.4), we get

(3.5) ‖A∗Ce‖ ‖ACe‖ ≤ 1

2
‖Ce‖2

[
‖A‖2 +

∥∥A2
∥∥]

for any e ∈ H and

(3.6) w
(
C∗A2C

)
≤ 1

2
‖C‖2

[
‖A‖2 +

∥∥A2
∥∥] .

If we take in (2.1) and (2.2) C = 1H , then we get

(3.7) ‖A∗Pe‖ ‖B∗Pe‖ ≤ 1

2

∥∥P 1/2e
∥∥2 [∥∥P 1/2A

∥∥∥∥P 1/2B
∥∥+ ‖B∗PA‖

]
for any e ∈ H and

(3.8) w (PAB∗P ) ≤ 1

2
‖P‖

[∥∥P 1/2A
∥∥∥∥P 1/2B

∥∥+ ‖B∗PA‖
]
,

where A,B are bounded operators on H and P is a nonnegative operator
on H. Moreover, if in (3.7) and (3.8) we take B = A∗, then we get the
inequalities

(3.9) ‖A∗Pe‖ ‖APe‖ ≤ 1

2

∥∥P 1/2e
∥∥2 [∥∥P 1/2A

∥∥∥∥AP 1/2
∥∥+ ‖APA‖

]
for any e ∈ H and

(3.10) w
(
PA2P

)
≤ 1

2
‖P‖

[∥∥P 1/2A
∥∥∥∥AP 1/2

∥∥+ ‖APA‖
]
.
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Further, if we assume that APC = C∗PA, then by taking B = A∗ in
(2.11) and (2.12) we get

(3.11) w2 (APC) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥P 1/2A

∥∥∥∥AP 1/2
∥∥+ w (APA)

]
and
(3.12)

w2 (APC) ≤ 1

2

∥∥P 1/2C
∥∥2 [∥∥∥∥∥

∣∣P 1/2A
∣∣2 +

∣∣P 1/2A∗
∣∣2

2

∥∥∥∥∥+ w (APA)

]
.

If AC = C∗A, then by taking P = 1H in (3.11) and (3.12) we have

(3.13) w2 (AC) ≤ 1

2
‖C‖2

[
‖A‖2 + w

(
A2
)]

and

(3.14) w2 (AC) ≤ 1

2
‖C‖2

[∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥+ w
(
A2
)]
.

Since ∥∥∥∥∥ |A|2 + |A∗|2

2

∥∥∥∥∥ ≤ 1

2

[∥∥|A|2∥∥+
∥∥|A∗|2∥∥] = ‖A‖2 ,

then the inequality (3.14) is better than (3.13).
If AP = PA, then by taking C = 1H in (3.11) and (3.12) we also have

(3.15) w2 (AP ) ≤ 1

2
‖P‖

[∥∥P 1/2A
∥∥∥∥AP 1/2

∥∥+ w
(
PA2

)]
and

(3.16) w2 (AP ) ≤ 1

2
‖P‖

[∥∥∥∥∥
∣∣P 1/2A

∣∣2 +
∣∣P 1/2A∗

∣∣2
2

∥∥∥∥∥+ w
(
PA2

)]
.

Taking into account the above results, we can state the following two
inequalities for an operator T, namely

(3.17) w2 (T ) ≤ 1

2

[
‖T‖2 + w

(
T 2
)]
, see (1.15),

and

(3.18) w2 (T ) ≤ 1

2

[∥∥∥∥∥ |T |2 + |T ∗|2

2

∥∥∥∥∥+ w
(
T 2
)]
.

The inequality (3.18) is better than (3.17).
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