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Cebysev’s type inequalities for positive linear
maps of selfadjoint operators in Hilbert spaces

SILVESTRU SEVER DRAGOMIR

ABSTRACT. Some inequalities for positive linear maps of continuous
synchronous (asynchronous) functions of selfadjoint linear operators in
Hilbert spaces, under suitable assumptions for the involved operators,
are given. Applications for power function and logarithm are provided
as well.

1. INTRODUCTION

We say that the functions f, g : [a,b] — R are synchronous (asynchro-
nous) on the interval [a, b] if they satisfy the following condition:

(f () = f(s)) (g (t) =g (s)) = ()0 for each t, s € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity
on the interval [a, b], then they are synchronous on [a, b] while if they have
opposite monotonicity, they are asynchronous.

In 1882-1883, Cebysev [3] and [4] proved that if the n-tuples a = (a1, ..., an)
and b = (by, ..., b,) are monotonic in the same (opposite) sense, then

1 & 1 & 1 &
(1) B Zpiaibi -5 sz'az‘? Zpibi > ()0,
=1 " oi=1 " =1

where p = (p1, ..., pn) are positive weights.
In the special case p = a > 0, it appears that the inequality (1) has been
obtained by Laplace long before Cebysev (see for example [19, p. 240]).
The inequality (1) was mentioned by Hardy, Littlewood and Pdlya in their
book [17] in 1934 in the more general setting of synchronous sequences, i.e.,
if a, b are synchronous (asynchronous), this means that

(2) (ai —aj) (bi —b;) > (L)0 for any i, j € {1,...,n},
then (1) holds true as well.
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2 CEBYSEV’S TYPE INEQUALITIES

For other recent results on the Cebyéev inequality in either discrete or
integral form see [2,6-10,19,21,22,26-28|, and the references therein.

The following result provides an inequality of Cebygev type for functions
of selfadjoint operators [14] (see also [13, p. 73| or [15, p. 73]):

Theorem 1.1. Let A be a selfadjoint operator with Sp (A) C [m, M] for
some real numbers m < M. If f, g : [m,M] — R are continuous and
synchronous (asynchronous) on [m, M|, then

(3) (F(A)g(A)z,2) > (<) ([ (A) z,z) (g (A) z,z)
for any x € H with ||z| = 1.

Assume that A is a positive operator on the Hilbert space H and p, ¢ > 0.
Then for each x € H with ||z|| = 1 we have by (3) the inequality

(4) (AP ) > (AP, z) (A%, z) .
If A is positive definite then the inequality (4) also holds for p, ¢ < 0. If A
is positive definite and either p > 0, ¢ < 0 or p < 0, ¢ > 0, then the reverse
inequality holds in (4).

Assume that A is positive definite and p > 0. Then by (3) we have
(5) (APlog Ax,x) > (APx, ) (log Ax, x)
for each x € H with ||z|| = 1. If p < 0 then the reverse inequality holds in
(5).

The following result that is related to the CebySev inequality also holds
[14] (see also [13, p. 73| or [15, p. 73]):

Theorem 1.2. Let A be a selfadjoint operator with Sp (A) C [m, M] for
some real numbers m < M.
If f, g: [m, M] — R are continuous and synchronous on [m, M], then

(6) (f(A)g(A)z,z) = (f (A) z, ) (g (A) z, z)
> [(f (A)z,x) — f ((Az, )] [g ((Az, ) — (g (A) z, z)]

for any x € H with ||z| = 1.
If f, g are asynchronous, then

(7) (f(A)z,2)(g(A)z,x) = (f(A)
> [(f (A)z,z) = f ((Az, z))] [(9
for any x € H with ||z| = 1.

g(A)z, )
(A)z,2) — g ((Az, z))]

Let A be a selfadjoint operator with Sp (A) C [m, M] for some real num-
bers m < M. If f, g : [m, M] — R are continuous, synchronous and one
is convex while the other is concave on [m,M], then by Jensen’s inequality
for convex (concave) functions and by (6) we have

(8) (f(A) g (A)z,z) = (f (A) 2, z) (g (A) z, z)
> [(f (A)z,z) — [ ((Az, )] [g ((Az, ) = (g (A) 2, 2)] = 0
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for any = € H with ||z| = 1.
If f, g are asynchronous and either both of them are convex or both of
them concave on [m, M], then

(9) (f(A)z,z) (g (A)z,z) — (f (A)
> [(f(A)z,z) — f ((Az,2))] [(g

for any x € H with ||z| = 1.
Assume that A is a positive operator on the Hilbert space H. If p € (0,1)
and ¢ € (1,00), then for each z € H with ||z|| = 1 we have the inequality

(10) (APHg 2y — (APx, z) (A%, z)

> [(Alz,x) — (Ax, x)?] [(Az, x)P — (APz,x)] > 0.
If A is positive definite and p > 1, ¢ < 0, then
(11) (AP, z) (A2, ) — (AP 9z, )

> [(Alz,z) — (Az,z)?) [(APx, x) — (Az,z)P] > 0

for each z € H with ||z| = 1.
Assume that A is positive definite and p > 1. Then also

(12) (APlog Az, z) — (APz, z) (log Az, x)
> [(APz,z) — (Az, z)P] [log (Az, z) — (log Az, x)] >0

for each z € H with ||z| = 1.

Let H be a complex Hilbert space and B(H), the Banach algebra of
bounded linear operators acting on H. We denote by Bt (H) the convex
cone of all positive operators on H and by BT (H) the convex cone of all
positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [5] (see also [30, p. 18])
we can introduce the following definition:

g(A)z, z)
(A)z,z) — g ((Az,z))] = 0

Definition 1.1. A map ® : B(H) — B(K) is linear if it is additive and
homogeneous, namely
O (AA + puB) = A\ (A) + pd (B)

for any A\, p € C and A, B € B(H). The linear map ® : B(H) — B(K) is
positive if it preserves the operator order, i.e. if A € BT (H) then <I>( ) €

Bt (K).We write ® € B[B(H),B(K)]. The linear map ® : B(H) — B (K)
is normalised if it preserves the identity operator, i.e. ® (1) = 1x. We write

e Py [B(H),B(K)].

We observe that a positive linear map ® preserves the order relation,
namely
A < B implies ¢ (A) < @ (B)
and preserves the adjoint operation ® (A*) = ® (A)* . If® € Py [B(H) , B (K)]
and aly < A < fBly, then alg < @ (A) < Blk.
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If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1y) € Bt (K)
then by putting ® = U~1/2 (1) WW~1/2 (1) we get that ® € Py [B(H),
B (K)], namely it is also normalised.

In the recent paper [25] the following results of Cebyéev type have been
obtained:

Theorem 1.3. Let f, g : [m,M] — R be continuous and synchronous
(asynchronous) on [m, M]. If A and B are selfadjoint operators with spectra
contained in [m, M| and ® € Py [B(H),B (K)], then for any z, y € K with
[z = llyll = 1 we have
(13)

(@(f(A)g(A)z,z)+ (2 (f(B)g(B))y,y)

> () (@ (f(A) 2, 2) (2 (9(B)) y.y) + (2 (9 (4) z,2) (2 (f (B))y,y)

In particular, we have the C’eby§ev type inequality

(14) (2 (f(A)g(A)z,z) = (<) (D (f(A)z,z) (P (9(A))z,z),
for any x € K with ||z|| = 1.

Motivated by the above results, we obtain in this paper some new in-
equalities for positive linear maps of continuous synchronous (asynchronous)
functions of selfadjoint linear operators in Hilbert spaces, under suitable as-

sumptions for the involved operators. Applications for power function and
logarithm are provided as well.

2. CEBYSEV TYPE INEQUALITIES FOR POSITIVE MAPS
The following generalization of Theorem 1.3 may be stated:

Theorem 2.1. Let f, g : [m,M] — R be continuous and synchronous
(asynchronous) on [m, M]. If A and B are selfadjoint operators with spectra
contained in [m, M| and ®, ¥ € Py [B(H),B(K)], then for any x, y € K
with ||z|| = ||y|| = 1 we have
(15)

(@(f(A)g(A))z,z)+ (¥ (f(B)g(B))y,y)

> () (@ (f(A) 2, 2) (Y (9(B))y,y) + (P (9(A)z,2) (¥ (f(B)y,y).
In particular, we have (13) and
(16)

(@(f(A)g(A)z,z)+ (Y (f(A)g(A))y,y)

> () (@ (f(A)z,2) (Y (9(A) y,y) + (P (9 (A) z,2) (¥ (f (A) y,y) .
Proof. We consider only the case of synchronous functions. In this case we
have that

(17) F@gt)+f(s)g(s) = f(t)g(s)+ f(s)g(t)
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for each t, s € [a,b].
Using the continuous functional calculus for the operator A we have
f(A) g(A)+ f(s)g(s)1a > g(s) f(A)+ [ (s)g(A)
for any s € [a, b] .
If we apply to this inequality the positive map ® then we get
(18) 2 (f(A)g(A) + f(s)g(s)1k = g(s) @ (f(A))+ f(s)®(g(A))
for any s € [a, b] .
Let x € K with ||z|| = 1. If we take the inner product in (18), then we
get
(19) (P

(f(A)g(A)z,z)+ f(s)g(s)
>g/(

s) (@ (f (A))z,z) + [ () (P (g9 (A)) z,z)

for any s € [a, b].
Using the functional calculus for the operator B we get from (19) that

(20) (@(f(A)g(A)z,2)1u+ f(B)g(B)
> (®(f(A))z,x) g (B)+(®(9(A)z,z) f(B)
zr € K with ||z]| = 1.

If we apply to this inequality the positive map ¥ then we get

(21) (@(f(A)g(A))z,z) 1k + ¥ (f(B)g(B))
> (@ (f (A)z,z) ¥ (g(B)) +(® (g (A))z,2) ¥ (f(B))
for any z € K with ||z] = 1.

Let y € K with |ly|]| = 1. By taking the inner product in (21) we deduce
the desired result (15). O
Remark 2.1. If we take in (13) B = A, then we get
(22)

(@(f(A)g(A))z,2)+(®(f(A)g(A))y,y)

> () (@ (f(A)) 2, 2) (@ (g (A) v, y) + (P (9 (A)) 2, 2) (@ (f (A) y,9) ,
for any z, y € K with ||z|| = ||y|| = 1 and in particular, for y = z, in (22)
we get the Cebysev type inequality (14)

(23)  (2(f(A)g(A)z,z) = () (R (f(A) z,2)(P(9(A))z,2).
If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € Bt (K)
then ® = U~Y/2 (1) WU ~1/2 (1) is normalised and by (23) we get

(24) (072 (1) W (f (A4) g (A) 972 (1) )
> (<) (€72 (1) W (f (4) €772 (1n) 7, 7)

X <\rl/2 (L) W (g (A) U2 (1p) xx>
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for any z € K with ||z| = 1.

Moreover, if in (24) we take
1
. W'?2(1y)v, ve K withv £0
x o7 (L) o] (1g)v, v with v #

then we get
(25)

(W (L) v, 0) (W (f(A) g (A))v,v) > () (P (f(A) v, 0) (¥ (g (A)) v, v)
for any v € K.

We also have the following Cauchy-Schwarz’ type inequalities:

Corollary 2.1. Let f : [m,M] — R be continuous on [m,M]. If A and
B are selfadjoint operators with spectra contained in [m, M| and ®, ¥ €
By [B(H),B(K)|, then for any z, y € K with ||z|| = ||y|| =1 we have
(26) (@ (f*(A) z,2) + (¥ (f*(B))y,y)
> (@ (f (A) z,z) (Y (f(B))y,y) + (2 (f (A) z, ) (¥ (f (B))y,y) -

In particular, we have for ¥ = ®, that
(27)

(@ (f2(A) z,2) + (@ (f*(B)) y,y) > 2(® (f (A)) z,2) (@ (f (B)) y,v)
and, for y = x, we get the following Cauchy-Schwarz inequality
(28) (@ (f7(A) z,2) > (B (f (A) z,2)".

Assume that A is a positive operator on the Hilbert space H and p, ¢ > 0.
Then for each x € H with ||z|| = 1 we have by (23) the inequality
(29) (O (AP z,2) > (P (AP) z,z) (P (AT) z,2) .
If A is positive definite then the inequality (29) also holds for p, ¢ < 0. If A
is positive definite and either p > 0, ¢ < 0 or p < 0, ¢ > 0, then the reverse
inequality holds in (29).

Assume that A is positive definite and p > 0. Then by (22) we have
(30) (@ (APlog 4) z,7) > (B (A7) z,2) (@ (log 4) 7, 2)
for each © € H with ||z|| = 1. If p < 0 then the reverse inequality holds in
(30).

These results generalize the corresponding inequalities from (3)-(5).

Let P € B(H), j=1,...,k be contractions with

k
(31) > Prp =1y
j=1
The map ¢ : B(H) — B (H) defined by [30]

k
®(A):=)_ PrAP,
j=1
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is a normalized positive linear map on B (H).
If f, g: [m, M] — R are continuous and synchronous (asynchronous) on
[m, M| and A is selfadjoint with Sp (A) C [m, M], then by (23) we have

(32) <Z Prf A) Pjx x>

k
> (<) <Z P 1 (A) ij,z> <Z Prg(4) Pm>
j=1 j=1

for each x € H with ||z|| = 1.
Assume that A is a positive operator on the Hilbert space H and p, ¢ > 0.
Then for each x € H with ||z|| = 1 we have by (32) that

k k k
(33) <Z P;Apﬁ_qul’,$> > <Z P;Appjx,:c> <Z Pquij,:c>

7=1 J=1 7j=1

for each x € H with ||z|| = 1. If A is positive definite and either p > 0, ¢ < 0
or p < 0, ¢ > 0, then the reverse inequality holds in (33). In this case, by

taking the supremum over z € H with ||z|| = 1, we get the norm inequality
k k k
(34) D PjATTRy <> PRAPR| > PATE;)
j=1 j=1 j

where A is positive definite and either p > 0, g < 0 or p <0, ¢ > 0.
Moreover, by the elementary arithmetic mean-geometric mean inequality,
we have

i 1/2 i 12, 1/2
<Z ij"Ap+qux,:v> < <Z P;Aijx,x> <Z P;‘Aqux,x>

j=1 j=1 Jj=1
1 k k
<3 <Z P;Appjx,x> + <Z P;qujx,x>
j=1 g=1
1 *
:<2ZPJ (AP + A7) P:Cx>
7=1
and by taking the supremum over x € H with ||z| = 1, we get
k 1/2 k
* 1 *
(35) D_BFATTIR] <oy Pr(AP 4 AT) Py
j=1 j=1

where A is positive definite and either p > 0, ¢ <0 or p <0, ¢ > 0.
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Assume that A is positive definite and p > 0. Then by (32) we have
(36)

k E K
<Z Py (APlog A) Pjx, :c> > <Z P APz, x> <Z P; (log A) Pjz, x>
Jj=1 j=1 j=1
for each x € H with [|z]| = 1. If p < 0 then the reverse inequality holds in

(36).
If we assume that A > 1y and p < 0, then by (36) we have

k k k
0< <Z P} (APlog A) ij,m> < <Z ij"Aij:C,x> <Z P; (log A) Pjz, :z:>

j=1 j=1 j=1
and by taking the supremum over x € H with ||z|| = 1 we get
k k
(37) Z (APlog A) P, Z P;APP; Z P} (log A) P

In general, we can state the followmg norm inequality:

Corollary 2.2. Let f, g : [m, M] — R be continuous, asynchronous and
nonnegative on [m, M]. If A and B are selfadjoint operators with spectra
contained in [m, M) and ®, ¥ € Py [B(H),B(K)], then

(38) 1@ (f (A) g (A + ¥ (f (B)g (B))ll

<@ (f (AN (g (B + 112 (g (A ¥ (f (B -
In particular, we have
(39) 1@ (f (A) g (AN + 112 (f (B) g (B))]l

<@ (f (A)IHI2 (g (B + 12 (g (AN (f (B,

(40) 12 (f (A) g (AN + 1% (f (A) g (A)]l

<@ (f (AN (g (AN + (12 (g (AN (f (A)]]
and
(41) 1@ (£ (4) g (AN < [® (F (AN 1 (9 (4))]].

Proof. From the inequality (15) we have
(42) 0<(@(f(A)g(A)z,x) +(¥(f(B)g(B))y,y)
< (@(f(A)z,2) (¥ (9(B))y,y) +(®(g(A)z,2) (¥ (f(B))y,y),

for any x, y € K with ||z|| = ||y|| = 1.
Taking the supremum in (42) over z, y € K with ||z|| = [|y|| = 1, we get
(43) Wi N@F A g(A)z,)+ (T (f(B)g(B)y:y)l
z||=|lyl|=

< ” ||Sl|1\pu 1 (@ (f (A)z,2) (¥ (9(B))y,y)
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+(® (g (A) z,z) (¥ (f(B))yy)].

Since
||x||il|1|5||:1 (@ (f(A)g(A)z,2) +(V (f(B)g(B))y,y)]
= ”i}lgl (@(f(A)g(A)z,z)+ thlgl (U (f(B)g(B))y,y)
=12 (f(A) g (Al + ¥ (f (B)g(B))ll

and

sup - [(® (f(A))z,2) (¥ (g (B))y,y) + (@ (g (A))z,z) (¥ (f(B))y,v)]

l[zl|=llyll=1

< sup  [(®(f(A)z,z)(¥(9(B))y,v)]
lzl=llyll=1

+ A (@ (g (A))z,z) (¥ (f (B))y,v)]
z||=llyll=

= sup (®(f(A))z,z) sup (¥ (g(B))y,y)
l|lz||=1 lyll=1

+ Hs1”1£1 (® (g (A))z, ) IISIHIEI (U (f(B)y:y) -

g

We observe that, if P; € B(H), j = 1,...,k are contractions satisfying
condition (31), f, g : [m, M] — R are continuous, asynchronous and non-
negative on [m, M], then for any A and B selfadjoint operators with spectra
contained in [m, M| and ® € Py [B(H), B (K)] we have the norm inequality
(44)

k
Y Pre(f(A)g(A)
j=1

k
Pyl <D P (f(A)P
j=1

3. RELATED RESULTS

We have:

Theorem 3.1. Let f, g : [m, M| — R be continuous and synchronous
(asynchronous) on [m, M. If A and B are selfadjoint operators with spectra
contained in [m, M| and ®, ¥ € Py [B(H),B(K)], then for any x, y € K
with ||z|| = ||y|| = 1 we have
(45)

(W (f(B)g(B)y,y)+ f(2(A)z,2)) g (P (A) z,))

> (<) f (@ (A)z,2)) (¥ (g (B))y,y) + 9 (2 (A) 2, 2)) (¥ (f (B)y,y) -

In particular,
(46)
(@ (f(B)g(B)y,y) + [ (2 (A)z,z)) g ((®(A)z,z))



10 CEBYSEV’S TYPE INEQUALITIES

> () f (@ (A)z,2)) (@ (9(B))y,y) + 9 (2 (A)z,2)) (2 (f (B))y,)
and
(47)

(W (f(A)g(A)y.y)+ f(2(A)z,2)g((®(A)z,z))

= () f@(A) 2, ) (¥ (g (A))y,y) + 9 (P (A)z,2)) (¥ (f (A) y, ) -
Proof. Since mly < A < M1y, then by taking the map ® we get mlyg <
®(A) < Mlg. If x € K with ||z|| = 1, then m < (® (A)z,z) < M.

We consider only the case of synchronous functions. In this case we have
that

(48) f @) = f{@(A)z,2)][g(t) —g(P(A)z,2))] >0
for any ¢t € [m, M] and x € K with ||z|| = 1.
This can be written as

(49) F®)g)+F(2(A)z,2)g (P (A)z,z))
> f({®(A)z,x)) g (t) +g (@ (A)z,2)) f(t)
for any ¢t € [m, M| and z € K with ||z|| = 1.

Fix x € K with ||z|| = 1. By utilizing the continuous functional calculus
for the operator B we have by (49) that

(50) f(B)g(B)+ f(®(A)z,2) g ((®(A)2,2)) Ln
> f((®(A)z,x)) g (B) +9 (@ (A)z,x)) f(B).
If we take the map ¥ in the inequality (50), we get
(51) U(f(B)g(B)+f(®(A)z,2)g(®(A)x,z)) 1k
> f((@(A)z,2)) ¥ (g(B))+g(®(A)z,z)) ¥ (f (B)).
If y € K with [|y|| = 1, then by taking the inner product in (51) we deduce
the desired result (45). O

Corollary 3.1. Let f, g : [m,M] — R be continuous, A a selfadjoint
operators with spectrum contained in [m, M) and ® € Py [B(H),B(K)].
If f, g are synchronous on [m, M], then

(52)

(@(f(A)g(A))z,z) — (2 (f (A))z,z) (P (g9 (A))z,z)

> (f (@ (A)z,z)) = (@ (f (A)) z,2)) (® (9 (A) z,2) — g (P (A) z, 7))
for any x € K with ||z|| = 1.

If f, g are asynchronous on [m, M|, then

(53)

(@ (f (A) z,2) (P (g9 (A) z,2) — (@ (f (A) g (A)) z,2)

> (@ (f(A)z,z) = F((D(A) 7, 7)) (2 (9 (A)) 7, 7) — g ((®(A) 2, 7))
for any x € K with ||z|| = 1.
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Proof. From the inequality (46) we have for B = A and y = z that
(@(f(A)g(A)z,z)+ f (@ (A)z,2)) g ((®(A)z,z))
> () f (2 (A)z,2)) (@ (9 (A) z,2) + g ((® (A) z,2)) (B (f (A)) 2, z)
that is equivalent to
(@(f(A)g(A)z,z) —(®(f(A)) =,
> () F (@2 (A)z,2)) (@ (9 (A)) z,2) +

9 (@ (A)z,2)) ((f (A) z,2)
—F (@ (A)z,2)) g (@ (A) z,2)) = (@ (f (A)) 2, ) (® (g (A)) 2, )
= (f (@ (A) z,2)) = (@ (f (A)) 2, 2)) (( (9 (A) z,2) — g (P (A) 2, 2)))

for any x € K with ||z| = 1.
The case of asynchronous functions goes likewise and the details are omit-
ted. O

Remark 3.1. If themap F : B(H) — B (K) is linear, positive and F (1) €
Bt (K) then ® = f ~/2 (1) F F ~'/? (1) is normalised and by (52) we
have
(54) (r(f (A))U v) (F(g(A)v,v)  (F(f(A)g(A)v,v)
o) (F (1w v, (F (1g)v,v)
(

{r (g
><<;< i) aen)

F>(
(F 1g)v,v
1H )v,v) (W))

for any v € K with v # 0, when f, g are synchronous on [m, M], and

s AFU @) ) (A).0) (F (9(4)v.0)
(F (L) 0,0) (F (o) (F (L) v,0)

> (s <<<ff<§f)>vé,vg>> - <€F(J<cl§>)l?é§>>
(o ((Ftos) ~ T amn)

for any v € K with v # 0, when f, g are asynchronous on [m, M].

We need the following Jensen’s type inequality that has been obtained
recently in [16]:

Lemma 3.1. Let f: I — R be a convex function on the interval I and & :
B(H) — B(K) a normalised positive linear map. Then for any selfadjoint
operator A whose spectrum Sp (A) is contained in I we have

(56) FUR(A)y,y) <(2(f(A)y.y)
foranyy € K, [ly[| = 1.
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Proof. For the sake of completeness, we give here a short proof.

Let m, M with m < M and such that Sp(A4) C [m,M] C I. Then
mly < A< Mlyg and since ® € Py [B(H),B(K)| we have that mlx <
¢ (A) < M1k showing that (® (A)y,y) € [m, M] for any y € K, |ly|| = 1.

By the gradient inequality for the convex function we have for a =
(® (A)y,y) € [m, M] that

F@ = (2 A)y,m)) + (= (2 (A)y,m) f1 (2 (A)y,y))

for any ¢ € I, where f/ is the right lateral derivative.
Using the continuous functional calculus for the operator A we have for a
fixed y € K with ||y|| = 1 that

(57) fA) = f{@A) )1+ L (2(A)y,p) (A= (2(A)y,y) 1n).

Since ® € Py [B(H),B(K)|, then by taking the functional ® in the
inequality (57) we get
(58)
O (f(A) = F(2(A)y ) 1k + f1 (2 (A) y,9) (2 (A) — (2 (4) y.y) 1)
for any y € K with [|y| = 1.

This inequality is of interest in itself.

Taking the inner product in (58) we have for any y € K with ||y =1
that

(@ (f(A)y,y)

> (@ (A) g ) Iyl + 1 (@ (4) y,9)) (@ (A),w) = (@ (4)y,9) Iyl
= F(@(4)y.9)
and the inequality (56) is proved. O

We can establish now some refinements of the éebyéev type inequality
(23) when some convexity properties are assumed.

Corollary 3.2. Let f, g : [m,M] — R be continuous, A a selfadjoint
operators with spectrum contained in [m, M| and ® € Py [B(H),B (K)].

If f, g are synchronous on [m,M] and one is convex while the other is
concave on [m, M|, then

(59)
(@ (f(A)g(A))z,z) = (@ (f(A)) z,z)(®(g(A)z, )
> (f({@(A)z,2)) = (@ (f (A) z,2)) (@ (g (A) 2, 2) — g ({®(A) 2, )))
>0

for any x € K with ||z|| = 1.
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If f, g are asynchronous and either both of them are convex or both of
them concave on [m, M], then

(60)
(@ (f (A)z,z) (P (g(A))

>0
for any x € K with ||z|| = 1.

Let ® € Py [B(H),B(K)] and assume that A is a positive operator on
the Hilbert space H. If p € (0,1) and g € (1,00), then for each x € K with
lz|| = 1 we have the inequality

(61) (@ (APT9) z,2) — (D (AP)z,z) (D (AY) 2, z)

> [(@(AT) z,z) — (2 (A) 2, 2) ] ([ (A) 2, 2)" — (P (A7) z, 2)] > 0.
If A is positive definite and p > 1, ¢ < 0 then
(62) (P (AP)z,z) (P (AY) z,x) — (D (APH9) z,2)

> [(®(AT) 2, z) — (@ (A) 2, 2)T] (@ (AP) 2, ) — (® (A) 2, 2)"] = 0

for all x € K with ||z|] = 1.
Assume that A is positive definite and p > 1. Then

(63)
(P (APlog A) z,x) — (P (AP) z,x) (P (log A) , x)
> (@ (A7), ) — (@ (A) 2, 2)"] [log (® (A) ,z) — (P (log A) 2, 2)] = 0

for all x € K with ||z|] = 1.
These results generalize the corresponding inequalities from (10)-(12).
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