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1 Introduction

We recall here some concepts of convexity that are well known in the liter-
ature.

Let I be an interval in R.

Definition 1 ([26]) We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I
and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) . (1)

Some further properties of this class of functions can be found in [20],
[21], [23], [32], [35] and [36]. Among others, its has been noted that non-
negative monotone and non-negative convex functions belong to this class
of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and the
inequality (1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1) . If the
function f : C ⊆ X → R is non-negative and convex, then is of Godunova-
Levin type.
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Definition 2 ([23]) We say that a function f : I → R belongs to the class
P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) . (2)

Obviously Q (I) contains P (I) and for applications it is important to
note that also P (I) contains all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

f (tx+ (1− t) y) ≤ max {f (x) , f (y)} (3)

for all x, y ∈ I and t ∈ [0, 1] .
For some results on P -functions see [23] and [33] while for quasi convex

functions, the reader can consult [22].
If f : C ⊆ X → [0,∞), where C is a convex subset of the real or

complex linear space X, then we say that it is of P -type (or quasi-convex)
if the inequality (2) (or (3)) holds true for x, y ∈ C and t ∈ [0, 1] .

Definition 3 ([7]) Let s ∈ (0, 1]. A function f : [0,∞)→ [0,∞) is said to
be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [7], [8], [18], [19],
[27], [29] and [38].

The concept of Breckner s-convexity can be similarly extended for func-
tions defined on convex subsets of linear spaces.

It is well known that if (X, ‖·‖) is a normed linear space, then the function
f (x) = ‖x‖p , p ≥ 1 is convex on X.

Utilising the elementary inequality (a+ b)s ≤ as + bs that holds for any
a, b ≥ 0 and s ∈ (0, 1], we have for the function g (x) = ‖x‖s that

g (tx+ (1− t) y) = ‖tx+ (1− t) y‖s ≤ (t ‖x‖+ (1− t) ‖y‖)s

≤ (t ‖x‖)s + [(1− t) ‖y‖]s

= tsg (x) + (1− t)s g (y)

for any x, y ∈ X and t ∈ [0, 1] , which shows that g is Breckner s-convex on
X.

In order to unify the above concepts for functions of real variable, S. Va-
rošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and
f are real non-negative functions defined in J and I, respectively.
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Definition 4 ([41]) Let h : J → [0,∞) with h not identical to 0. We say
that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (4)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [41], [6], [30], [39],
[37] and [40].

This concept can be extended for functions defined on convex subsets
of linear spaces in the same way as above replacing the interval I be the
corresponding convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 5 We say that the function f : C ⊆ X → [0,∞) is of s-Godu-
nova-Levin type, with s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) , (5)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C) the
class of s-Godunova-Levin functions defined on C, then we obviously have

P (C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
The following inequality holds for any convex function f defined on R

(b− a)f

(
a+ b

2

)
<

∫ b

a

f(x)dx < (b− a)
f(a) + f(b)

2
, a, b ∈ R. (6)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see
[31]). But this result was nowhere mentioned in the mathematical literature
and was not widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of
convex functions, wrote that this inequality was proven by J. Hadamard
in 1893 [5]. In 1974, D. S. Mitrinović found Hermite’s note in Mathesis
[31]. Since (6) was known as Hadamard’s inequality, the inequality is now
commonly referred as the Hermite-Hadamard inequality.

For related results, see [10]-[13], [24] and [34].
We can state the following generalization of the Hermite-Hadamard in-

equality for h-convex functions defined on convex subsets of linear spaces
[17].
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Theorem 1 Assume that the function f : C ⊆ X → [0,∞) is a h-convex
function with h ∈ L [0, 1] . Let y, x ∈ C with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then

1

2h
(
1
2

)f (x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ [f (x) + f (y)]

∫ 1

0

h (t) dt.

(7)

Remark 1 If f : I → [0,∞) is a h-convex function on an interval I of real
numbers with h ∈ L [0, 1] and f ∈ L [a, b] with a, b ∈ I, a < b, then from (7)
we get the Hermite-Hadamard type inequality obtained by Sarikaya et al. in
[37]

1

2h
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f (u) du ≤ [f (a) + f (b)]

∫ 1

0

h (t) dt.

If we write (7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions

f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ f (x) + f (y)

2
. (8)

If we write (7) for the case of P -type functions f : C → [0,∞), i.e.,
h (t) = 1, t ∈ [0, 1] , then we get the inequality

1

2
f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ f (x) + f (y) , (9)

that has been obtained for functions of real variable in [23].
If f is Breckner s-convex on C, for s ∈ (0, 1) , then by taking h (t) = ts

in (7) we get

2s−1f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ f (x) + f (y)

s+ 1
, (10)

that was obtained for functions of a real variable in [18].
Since the function g (x) = ‖x‖s is Breckner s-convex on on the normed

linear space X, s ∈ (0, 1) , then for any x, y ∈ X we have

1

2
‖x+ y‖s ≤

∫ 1

0

‖(1− t)x+ ty‖s dt ≤ ‖x‖
s + ‖x‖s

s+ 1
. (11)

If f : C → [0,∞) is of s-Godunova-Levin type, with s ∈ [0, 1), then

1

2s+1
f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ f (x) + f (y)

1− s
. (12)
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We notice that for s = 1 the first inequality in (12) still holds, i.e.

1

4
f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt. (13)

The case of functions of real variables was obtained for the first time in [23].
Motivated by the above results, in this paper some n-points inequalities

of Hermite-Hadamard type for h-convex functions defined on convex subsets
in real or complex linear spaces are given. Applications for norm inequalities
are provided as well.

2 Some New Results

In [17] we also obtained the following result:

Theorem 2 Assume that the function f : C ⊆ X → [0,∞) is an h-convex
function with h ∈ L [0, 1] . Let y, x ∈ C with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1]. Then
for any λ ∈ [0, 1] we have the inequalities

1

2h
(
1
2

) {(1− λ) f

[
(1− λ)x+ (λ+ 1) y

2

]
+ λf

[
(2− λ)x+ λy

2

]}
(14)

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤ [f ((1− λ)x+ λy) + (1− λ) f (y) + λf (x)]

∫ 1

0

h (t) dt

≤ {[h (1− λ) + λ] f (x) + [h (λ) + 1− λ] f (y)}
∫ 1

0

h (t) dt.

We can state the following new corollary as well:

Corollary 1 With the assumptions of Theorem 2 we have

1

2h
(
1
2

) (15)

×
∫ 1

0

(1− λ)

{
f

[
(1− λ)x+ (λ+ 1) y

2

]
+ f

[
(1− λ) y + (λ+ 1)x

2

]}
dλ

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤
[∫ 1

0

f ((1− λ)x+ λy) dλ+
f (y) + f (x)

2

] ∫ 1

0

h (t) dt

≤ [f (x) + f (y)]

[∫ 1

0

h (λ) dλ+
1

2

] ∫ 1

0

h (t) dt.
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Proof. The proof follows by integrating the inequality (14) over λ and by
using the equality∫ 1

0

λf

[
(2− λ)x+ λy

2

]
dλ =

∫ 1

0

(1− µ) f

[
(1 + µ)x+ (1− µ) y

2

]
dµ.

�

The following result for double integral also holds:

Corollary 2 With the assumptions of Theorem 2 we have

1

2h
(
1
2

)
(b− a)2

(16)

×
∫ b

a

∫ b

a

α

α + β

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤
[

1

(b− a)2

∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ +

f (y) + f (x)

2

] ∫ 1

0

h (t) dt

≤
[

1

(b− a)2

∫ b

a

∫ b

a

h

(
β

α + β

)
dαdβ +

1

2

]
[f (x) + f (y)]

∫ 1

0

h (t) dt,

for any b > a ≥ 0.

Proof. If we take λ = α
α+β

we have

1

2h
(
1
2

) (17)

×
{

β

α + β
f

[
βx+ (2α + β) y

2 (α + β)

]
+

α

α + β
f

[
(2β + α)x+ αy

2 (α + β)

]}
≤
∫ 1

0

f [(1− t)x+ ty] dt

≤
[
f

(
βx+ αy

α + β

)
+

β

α + β
f (y) +

α

α + β
f (x)

] ∫ 1

0

h (t) dt

≤
{[

h

(
β

α + β

)
+

α

α + β

]
f (x) +

[
h

(
α

α + β

)
+

β

α + β

]
f (y)

}
×
∫ 1

0

h (t) dt,

for any α, β ≥ 0 with α + β > 0.
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Since the mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on

[0, 1] , then the double integral
∫ b
a

∫ b
a
f
(
βx+αy
α+β

)
dαdβ exists for any b > a ≥ 0.

The same holds for the other integrals in (16).
Integrating the inequality (17) on the square [a, b]2 over (α, β) we have

1

2h
(
1
2

)
(b− a)2

×
∫ b

a

∫ b

a

{
β

α + β
f

[
βx+ (2α + β) y

2 (α + β)

]
+

α

α + β
f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤
∫ b

a

∫ b

a

[
f

(
βx+ αy

α + β

)
+

β

α + β
f (y) +

α

α + β
f (x)

]
dαdβ

∫ 1

0

h (t) dt

≤ 1

(b− a)2

∫ 1

0

h (t) dt×
∫ b

a

∫ b

a

{[
h

(
β

α + β

)
+

α

α + β

]
f (x) +

+

[
h

(
α

α + β

)
+

β

α + β

]
f (y)

}
dαdβ. (18)

Observe that ∫ b

a

∫ b

a

β

α + β
f

[
βx+ (2α + β) y

2 (α + β)

]
dαdβ

=

∫ b

a

∫ b

a

α

α + β
f

[
αx+ (2β + α) y

2 (α + β)

]
dαdβ

and then∫ b

a

∫ b

a

{
β

α + β
f

[
βx+ (2α + β) y

2 (α + β)

]
+

α

α + β
f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

=

∫ b

a

∫ b

a

α

α + β

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ.

Also ∫ b

a

∫ b

a

α

α + β
dαdβ =

∫ b

a

∫ b

a

β

α + β
dαdβ

and since∫ b

a

∫ b

a

α

α + β
dαdβ +

∫ b

a

∫ b

a

β

α + β
dαdβ =

∫ b

a

∫ b

a

α + β

α + β
dαdβ = (b− a)2 ,

then we have ∫ b

a

∫ b

a

α

α + β
dαdβ =

1

2
(b− a)2 .
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Moreover, we have∫ b

a

∫ b

a

h

(
α

α + β

)
dαdβ =

∫ b

a

∫ b

a

h

(
β

α + β

)
dαdβ.

Utilising (18), we get the desired result (16). �

Remark 2 Let f : C ⊆ X → C be a convex function on the convex subset
C of a real or complex linear space X. Then for any x, y ∈ C and b > a ≥ 0
we have

f

(
x+ y

2

)
(19)

≤ 1

(b− a)2

×
∫ b

a

∫ b

a

α

α + β

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤ 1

2

[
1

(b− a)2

∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ +

f (y) + f (x)

2

]
≤ f (y) + f (x)

2
.

The second and third inequalities are obvious from (16) for h (t) = t.
By the convexity of f we have

1

2

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
≥ f

[
1

2

{[
αx+ (2β + α) y

2 (α + β)

]
+

[
(2β + α)x+ αy

2 (α + β)

]}]
= f

(
x+ y

2

)
for any α, β ≥ 0 with α + β > 0.

If we multiply this inequality by 2α
α+β

≥ 0 and integrate on the square

[a, b]2 we get∫ b

a

∫ b

a

α

α + β

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

≥ 2f

(
x+ y

2

)∫ b

a

∫ b

a

α

α + β
dαdβ = (b− a)2 f

(
x+ y

2

)
,
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since we know that ∫ b

a

∫ b

a

α

α + β
dαdβ =

1

2
(b− a)2 .

This proves the first inequality in (19).

By the convexity of f we also have

f

(
βx+ αy

α + β

)
≤ β

α + β
f (x) +

α

α + β
f (y)

for any α, β ≥ 0 with α + β > 0. Integrating on the square [a, b]2 we get∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ

≤ f (x)

∫ b

a

∫ b

a

β

α + β
dαdβ + f (y)

∫ b

a

∫ b

a

α

α + β
dαdβ

=
1

2
(b− a)2 [f (y) + f (x)] ,

which proves the last inequality in (19).

Let (X, ‖·‖) be a normed linear space over the real or complex number
fields. Then for any x, y ∈ X, p ≥ 1 and b > a ≥ 0 we have:∥∥∥∥x+ y

2

∥∥∥∥p (20)

≤ 1

(b− a)2

×
∫ b

a

∫ b

a

α

α + β

{∥∥∥∥αx+ (2β + α) y

2 (α + β)

∥∥∥∥p +

∥∥∥∥(2β + α)x+ αy

2 (α + β)

∥∥∥∥p} dαdβ
≤
∫ 1

0

‖(1− t)x+ ty‖p dt

≤ 1

2

[
1

(b− a)2

∫ b

a

∫ b

a

∥∥∥∥βx+ αy

α + β

∥∥∥∥p dαdβ +
‖y‖p + ‖x‖p

2

]
≤ ‖y‖

p + ‖x‖p

2
.

The case of Breckner s-convexity is as follows:

Remark 3 Assume that the function f : C ⊆ X → [0,∞) is a Breckner
s-convex function with s ∈ (0, 1) . Let y, x ∈ C with y 6= x and assume that
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the mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1].
Then for any b > a ≥ 0 we have

2s−1

(b− a)2
(21)

×
∫ b

a

∫ b

a

α

α + β

{
f

[
αx+ (2β + α) y

2 (α + β)

]
+ f

[
(2β + α)x+ αy

2 (α + β)

]}
dαdβ

≤
∫ 1

0

f [(1− t)x+ ty] dt

≤ 1

s+ 1

[
1

(b− a)2

∫ b

a

∫ b

a

f

(
βx+ αy

α + β

)
dαdβ +

f (y) + f (x)

2

]
.

We also have the norm inequalities:

2s−1

(b− a)2
(22)

×
∫ b

a

∫ b

a

α

α + β

{∥∥∥∥αx+ (2β + α) y

2 (α + β)

∥∥∥∥s +

∥∥∥∥(2β + α)x+ αy

2 (α + β)

∥∥∥∥s} dαdβ
≤
∫ 1

0

‖(1− t)x+ ty‖s dt

≤ 1

2

[
1

(b− a)2

∫ b

a

∫ b

a

∥∥∥∥βx+ αy

α + β

∥∥∥∥s dαdβ +
‖y‖s + ‖x‖s

2

]
,

for any x, y ∈ X, a normed linear space.

3 Inequalities for n-Points

In order to extend the above results for n-points, we need the following
representation of the integral that is of interest in itself.

Theorem 3 Let f : C ⊆ X → C be defined on the convex subset C of a real
or complex linear space X. Assume that for x, y ∈ C with x 6= y the mapping
[0, 1] 7→ f ((1− t)x+ ty) ∈ C is Lebesgue integrable on [0, 1] . Then for any
partition

0 = λ0 < λ1 < ... < λn−1 < λn = 1 with n ≥ 1,

we have the representation∫ 1

0

f ((1− t)x+ ty) dt =
n−1∑
j=0

(λj+1 − λj) ·

·
∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du. (23)
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Proof. We have∫ 1

0

f ((1− t)x+ ty) dt =
n−1∑
j=0

∫ λj+1

λj

f ((1− t)x+ ty) dt. (24)

In the integral∫ λj+1

λj

f ((1− t)x+ ty) dt, j ∈ {0, ..., n− 1} ,

consider the change of variable

u :=
1

λj+1 − λj
(t− λj) , t ∈ [λj, λj+1] .

Then

du =
1

λj+1 − λj
dt,

u = 0 for t = λj, u = 1 for t = λj+1, t = (1− u)λj + uλj+1 and∫ λj+1

λj

f ((1− t)x+ ty) dt (25)

= (λj+1 − λj)

×
∫ 1

0

f [(1− (1− u)λj − uλj+1)x+ ((1− u)λj + uλj+1) y] du

= (λj+1 − λj)

×
∫ 1

0

f [(1− u+ u− (1− u)λj − uλj+1)x+ ((1− u)λj + uλj+1) y] du

= (λj+1 − λj)

×
∫ 1

0

f [((1− u) (1− λj) + u (1− λj+1))x+ ((1− u)λj + uλj+1) y] du

=

∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du

for any j ∈ {0, ..., n− 1} .
Making use of (24) and (25) we deduce the desired result (23). �

The following particular case is of interest and has been obtained in [17].

Corollary 3 In the the assumptions of Theorem 3 we have∫ 1

0

f ((1− t)x+ ty) dt = λ

∫ 1

0

f {(1− u)x+ u [(1− λ)x+ λy]} du (26)

+ (1− λ)

∫ 1

0

f {(1− u) [(1− λ)x+ λy] + uy} du

for any λ ∈ [0, 1] .
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Proof. Follows from (23) by choosing 0 = λ0 ≤ λ1 = λ ≤ λ2 = 1. �

The following result holds for h-convex functions:

Theorem 4 Let f : C ⊆ X → C be defined on the convex subset C of a real
or complex linear space X and f is h-convex on C with h ∈ L [0, 1] . Assume
that for x, y ∈ C with x 6= y the mapping [0, 1] 7→ f ((1− t)x+ ty) ∈ R is
Lebesgue integrable on [0, 1] . Then for any partition

0 = λ0 < λ1 < ... < λn−1 < λn = 1 with n ≥ 1,

we have the inequalities

1

2h
(
1
2

) n−1∑
j=0

(λj+1 − λj) f
{(

1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
(27)

≤
∫ 1

0

f ((1− t)x+ ty) dt

≤
n−1∑
j=0

(λj+1 − λj) [f ((1− λj)x+ λjy) + f ((1− λj+1)x+ λj+1y)]

×
∫ 1

0

h (u) du.

Proof. Since f is h-convex, then

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]}
≤ h (1− u) f ((1− λj)x+ λjy) + h (u) f ((1− λj+1)x+ λj+1y)

for any u ∈ [0, 1] and for any j ∈ {0, ..., n− 1} .
Integrating this inequality over u ∈ [0, 1] we get∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du

≤
∫ 1

0

{h (1− u) f ((1− λj)x+ λjy) + h (u) f ((1− λj+1)x+ λj+1y)} du

= f ((1− λj)x+ λjy)

∫ 1

0

h (1− u) du+ f ((1− λj+1)x+ λj+1y)

∫ 1

0

h (u) du

= [f ((1− λj)x+ λjy) + f ((1− λj+1)x+ λj+1y)]

∫ 1

0

h (u) du,

for any j ∈ {0, ..., n− 1} .
Multiplying this inequality by λj+1− λj ≥ 0 and summing over j from 0

to n− 1 we get, via the equality (23), the second inequality in (27).
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Since f is h-convex, then for any v, w ∈ C we also have

f (v) + f (w) ≥ 1

h
(
1
2

)f (v + w

2

)
.

If we write this inequality for

v = (1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]

and

w = u [(1− λj)x+ λjy] + (1− u) [(1− λj+1)x+ λj+1y]

and take into account that

v + w

2
=

1

2
{[(1− λj)x+ λjy] + [(1− λj+1)x+ λj+1y]}

=

(
1− λj + λj+1

2

)
x+

λj + λj+1

2
y,

then we get

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} (28)

+ f {u [(1− λj)x+ λjy] + (1− u) [(1− λj+1)x+ λj+1y]}

≥ 1

h
(
1
2

)f {(1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
for any u ∈ [0, 1] and j ∈ {0, ..., n− 1} .

Integrating the inequality (28) over u ∈ [0, 1] we get∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du (29)

+

∫ 1

0

f {u [(1− λj)x+ λjy] + (1− u) [(1− λj+1)x+ λj+1y]} du

≥ 1

h
(
1
2

)f {(1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
for any j ∈ {0, ..., n− 1} .

Since∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du

=

∫ 1

0

f {u [(1− λj)x+ λjy] + (1− u) [(1− λj+1)x+ λj+1y]} du,
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then by (29) we get∫ 1

0

f {(1− u) [(1− λj)x+ λjy] + u [(1− λj+1)x+ λj+1y]} du

≥ 1

2h
(
1
2

)f {(1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
for any j ∈ {0, ..., n− 1} .

Multiplying this inequality by λj+1− λj ≥ 0 and summing over j from 0
to n− 1 we get, via the equality (23), the first inequality in (27). �

Remark 4 If we take in (27) 0 = λ0 ≤ λ1 = λ ≤ λ2 = 1, then we get the
first two inequalities in (14).

The case of convex functions is as follows:

Corollary 4 Let f : C ⊆ X → R be a convex function on the convex subset
C of a real or complex linear space X. Then for any partition

0 = λ0 < λ1 < ... < λn−1 < λn = 1 with n ≥ 1,

and for any x, y ∈ C we have the inequalities

f

(
x+ y

2

)
(30)

≤
n−1∑
j=0

(λj+1 − λj) f
{(

1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
≤
∫ 1

0

f ((1− t)x+ ty) dt

≤ 1

2

n−1∑
j=0

(λj+1 − λj) [f ((1− λj)x+ λjy) + f ((1− λj+1)x+ λj+1y)]

≤ f (x) + f (y)

2
.

Proof. The second and third inequalities in (30) follows from (27) by taking
h (t) = t.

By the Jensen discrete inequality

m∑
j=1

pjf (zj) ≥ f

(
m∑
j=1

pjzj

)
,
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where pj ≥ 0, j ∈ {1, ...,m} with
∑m

j=1 pj = 1 and zj ∈ C, j ∈ {1, ...,m} we
have

n−1∑
j=0

(λj+1 − λj) f
{(

1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}

≥ f

{
n−1∑
j=0

(λj+1 − λj)
[(

1− λj + λj+1

2

)
x+

λj + λj+1

2
y

]}

= f

{(
n−1∑
j=0

(λj+1 − λj)−
∑n−1

j=0

(
λ2j+1 − λ2j

)
2

)
x+

∑n−1
j=0

(
λ2j+1 − λ2j

)
2

y

}

= f

{(
1− 1

2

)
x+

1

2
y

}
= f

(
x+ y

2

)

and the first part of (30) is proved.

By the convexity of f we also have

n−1∑
j=0

(λj+1 − λj) [f ((1− λj)x+ λjy) + f ((1− λj+1)x+ λj+1y)]

≤
n−1∑
j=0

(λj+1 − λj) [(1− λj) f (x) + λjf (y) + (1− λj+1) f (x) + λj+1f (y)]

=
n−1∑
j=0

(λj+1 − λj) [(2− (λj + λj+1)) f (x) + (λj + λj+1) f (y)]

=

(
2
n−1∑
j=0

(λj+1 − λj)−
n−1∑
j=0

(
λ2j+1 − λ2j

))
f (x) +

n−1∑
j=0

(
λ2j+1 − λ2j

)
f (y)

= f (x) + f (y) ,

which proves the last part of (30). �

Remark 5 Let (X, ‖·‖) be a normed linear space over the real or complex
number fields. Then for any partition

0 = λ0 < λ1 < ... < λn−1 < λn = 1 with n ≥ 1,
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and for any x, y ∈ X we have the inequalities∥∥∥∥x+ y

2

∥∥∥∥p (31)

≤
n−1∑
j=0

(λj+1 − λj)
∥∥∥∥(1− λj + λj+1

2

)
x+

λj + λj+1

2
y

∥∥∥∥p
≤
∫ 1

0

‖(1− t)x+ ty‖p dt

≤ 1

2

n−1∑
j=0

(λj+1 − λj) [‖(1− λj)x+ λjy‖p + ‖(1− λj+1)x+ λj+1y‖p]

≤ ‖x‖
p + ‖y‖p

2
,

where p ≥ 1.

Corollary 5 Let f : C ⊆ X → R be defined on a convex subset C of
a real or complex linear space X and f is Breckner s-convex on C with
s ∈ (0, 1) . Assume that for x, y ∈ C with x 6= y the mapping [0, 1] 7→
f ((1− t)x+ ty) ∈ R is Lebesgue integrable on [0, 1] . Then for any partition

0 = λ0 < λ1 < ... < λn−1 < λn = 1 with n ≥ 1,

we have the inequalities

2s−1

n−1∑
j=0

(λj+1 − λj) f
{(

1− λj + λj+1

2

)
x+

λj + λj+1

2
y

}
(32)

≤
∫ 1

0

f ((1− t)x+ ty) dt

≤ 1

s+ 1

n−1∑
j=0

(λj+1 − λj) [f ((1− λj)x+ λjy) + f ((1− λj+1)x+ λj+1y)] .

Since, for s ∈ (0, 1) , the function f (x) = ‖x‖s is Breckner s-convex on
the normed linear space X, then by (32) we get for any x, y ∈ X

2s−1

n−1∑
j=0

(λj+1 − λj)
∥∥∥∥(1− λj + λj+1

2

)
x+

λj + λj+1

2
y

∥∥∥∥s (33)

≤
∫ 1

0

‖(1− t)x+ ty‖s dt

≤ 1

s+ 1

n−1∑
j=0

(λj+1 − λj) [‖(1− λj)x+ λjy‖s + ‖(1− λj+1)x+ λj+1y‖s] .
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[35] J. Pečarić and S. S. Dragomir, A generalization of Hadamard’s inequal-
ity for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991),
103–107.

[36] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-
Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4,
853–862.

[37] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type
inequalities for h-convex functions. J. Math. Inequal. 2 (2008), no. 3,
335–341.
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