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OSTROWSKI AND JENSEN TYPE INEQUALITIES FOR
HIGHER DERIVATIVES WITH APPLICATIONS

PIETRO CERONE, SEVER S. DRAGOMIR AND EDER KIKIANTY

ABSTRACT. We consider inequalities which incorporate both Jensen and Os-
trowski type inequalities for functions with absolutely continuous n-th deriva-
tives. We provide applications of these inequalities for divergence measures.
In particular, we obtain inequalities involving higher order y-divergence.

1. INTRODUCTION

Jensen’s inequality has been widely applied in many areas of research, e.g. proba-
bility theory, statistical physics, and information theory. The inequality was proved
by Jensen in 1906 [I3]: For a convex function f : I — R, the following inequality

holds
f<a+b)§f(a)+f<b) abel (1.1)

2 2 ’
Jensen’s integral inequality takes the following form: for a p-integrable function
g:Q — [m, M] CR, and a convex function f : [m, M] — R, we have

f(/ﬂgdu> S/Qfogdu- (1.2)

Here, (2, A, 1) is a measurable space with fQ dp = 1, consisting of a set Q, a o-
algebra A of subsets of €, and a countably additive and positive measure pu on A
with values in the set of extended real numbers.

In 1938, Ostrowski proved the following inequality [12]:

Proposition 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b) such that f": (a,b) — R is bounded on (a,b), i.e., || f'| = sup |f (t)] <
te(a,b)

o0o. Then

_atb 2
< i+<xb_2> 1Nl (b—a), (1.3)

b
f@) -5 [ fo

for all z € [a,b] and the constant § is the best possible.
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Dragomir [6] introduced some inequalities which combine the two aforementioned
inequalities, referred to as the Jensen-Ostrowski type inequalities. We recall one of
the results in the next proposition.

Proposition 1.2. Let ® : I — C be an absolutely continuous functions on [a,b] € f,
the interior of I. If g : Q — [a,b] is Lebesgue p-measurable on Q and ® o g,g €
L(Q, ), then

’/Q@ogdu—w)—A(/ﬂgdu—x)‘

< [ lg==ll#' (1 = )2 + t9 = Mo de

lg = @lle,00|[I12((1 = O)z + g = Alljo,11,1[| .1
< llg = lap|I1®' (1= Oz + g = Mo yallg, P> 1,
lg = zlla[[12"((L = Oz + L9 = Mol o0

1,1
p+q

for any A € C and x € [a,b].

Here, ¢ denotes the identity function on [0, 1], namely £(¢) = ¢, for ¢ € [0,1]. We
also use the notation

1/p
PP B § AL C) IR N
" esssup |k(t)], p=00, k€ Loo(Q, p);
teQ
and
/p
— (/ 7 |pds) Cp> 1 fe (1)
0.1],p =
o1 esssup |f(s) p =00, f€ Lx([0,1]).
s€[0,1]

Inequalities of Jensen and Ostrowski type are obtained by setting x = fQ gdu
and A = 0, respectively, in Proposition Further results on inequalities for
functions with bounded derivatives and applications for f-divergence measures in
information theory are also given in [6]. Similar inequalities are given for: (i)
functions with derivatives that are of bounded variation and Lipschitz continuous
in [7]; and (ii) functions which absolute values of the derivatives are convex in [§].

New inequalities of Jensen-Ostrowski type are given in the papers [2] and [3].
We recall one of the results in the following proposition:

Proposition 1.3 (Cerone Dragomir, Kikianty B). Let f : I — C be a differ-
entiable function on 1, f' : [a,b] € I — C is absolutely continuous on [a,b], and
¢ €la,b]. Ifg: Q — [a, b] is Lebesgue p-measurable on § such that fog, g,(g—¢)?
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L(Q, ), with [, dp =1, then for any X € C,
’ _1 M2
'/Qfogdu—f(C)—(/ﬂgdu—C)f (€) 2/\/9(9 ¢) du‘
1
<5 [ =015 (= 0+ ) = Nl

1
3119 = Cll oo L7 (1 = OC + £9) = Allpo, 11,0015

IA

1 1 1
5”(9 - C)2||Q7PHHfH((1 - E)C + e.g) - )\”[OJ]’OOHQ,q’ p> 17 5 + ; = 11
1

g = O?laa [l ((1 = OC + £g) = Mlljo.11.00| g o

In this paper, we generalise the results in [3] (including Proposition for func-
tions with absolutely continuous n-th derivative. We start with some identities in
Section [2] to assist us in proving our main theorems. We obtain our main results
in Section inequalities with bounds involving the p-norms (1 < p < o0), in-
equalities for functions with further assumptions of bounded (n + 1)-th derivatives,
and inequalities for functions where the absolute value of the (n + 1)-th derivative
satisfies some convexity conditions. The case of n = 1 recovers the results in [3].
Applications for f-divergence measure are provided in Section

2. IDENTITIES

Throughout the paper, we denote I to be the interior of the set I.

Lemma 2.1. Let f : I € R— C (I is an interval of R) be such that f™) is
absolutely continuous on I, and C € 1. If g : Q — I is Lebesgue u-measurable on €}

and fog, (g—OF, fO) (1 =s)C+sg) € L(Q,p) for allk € {1,...,n+1} and
s € [0,1], then we have

IREEG 1)
_kzi:lf(k) (C)/Q(Q;!C)kdu_)\(nil)!/g(g_onﬂ dp

- % ; RO (/01 (1—s)" [f(ﬂJrl) (1—s)C+sg)— )\} ds) du

= % 01 (1—2s)" (/Q (9 — Qnﬂ |:f(”+1) (1 —=3s)C+sg)— )\} dﬂ) ds,

for any A € C.
Proof. For all z,¢ € I we have the Taylor’s formula with integral remainder

n k T
r0 =10+ X O © g [0 e oa e2)

k=1
If we make the change of variable t = (1 — s) ( + sz, then dt = (z — () ds, and
z—t=z—(1-8)¢(—sx=(1—-3s)(z—(),
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and from (2.2)) we get

)+ f(’“> (2.3)
k=1

1 n+1 ! n r(n+1)
b0 /0<1—s> FUHD (1= )¢+ s) ds.

On the other hand,

/1 (1—s)" [f<n+1>((1—s)c+sx) )\] ds

1 1
:/ ) (( 1—3)C+sz)ds—)\/ (1—5)"ds
0 0
1
:/0 )" S (1 =s)¢+sa) ds = A,
therefore
1
| = (= ¢ s ds
0
1
:/O (1—s)" [f<"+1> (1 —s)C+ sz) — A ds+/\%+1,
and by we get
(@ -o)" (®)
f@) =1+ 7" (24)

k=1

—&-%(m—C)nH [/0 (1—s)" {f(n+1)((1—s)C+s:c)—>\} ds+)\n+1}
n k
:f(C)JFZ%f(k)(QJFA

k=1

1 n+1
(n+1)! G

b0 [ [ (8¢ -] .

If g : Q — I is Lebesgue p-measurable on €2 then by (2.4) we have

n

f(g(u +Z k, f(’“)(C)

k=1

1
(=0 [ s (<1fs><+sg<u>>ﬂ} s,

n'

for all u € Q.
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Since fog, (g —¢)F, and fO+D (1 — )¢ + sg) € L(Q, p) for k € {1,....,n+ 1},
s € [0,1], we get the following by taking the integral in 1) and since fQ dp = 1:

N -0 | 1 o
,;f <<)/Q k! i )\(n+ 1)! /Q (9-2¢) dp
: e ([0 n [ p(nt1)
A (/O (L= s)" [1 (1= )¢+ 59) - A] ds) du
1
- % i (1—s)" (/Q (g—"! {f(nJrl) (1 —=5)C+sg) — A} du> ds,
for any A € C. We use Fubini’s theorem for the last equality. 0

Remark. When n =1 we have

[ regan=r0=r@ [ =0 -3 [ =07
- [ oo (/01(1—8)[f"((1—8)C+89)—/\] is) d
=/01<1—s> ([ o= 021 =516+ s9) = A a) as.

for any A € C, which recover the identities obtained in [3, Lemma 1]. Consequently,
the results in this paper recover the associated ones in [3] by setting n = 1.

Corollary 2.2. Under the assumptions of Lemma we have

| regin-1) Zf‘“ /gko (2.7

:% oo < /01 (1= )" [£O4D (1= 5) ¢+ 59) d5> du
_1 01 (1—s)" </Q (g—¢)"* [f(nﬂ) (1—s)C+ sg)} du) ds

n!
by setting A = 0.

Remark. Another estimate one may obtain is to consider the mean value form of

the remainder in (2.2))
- ((E — C)k (k) (C) + (.’E — C)nJrl
— (n+1)!

where £ is between x and (. By setting x = g(t) (t € Q) and integrate (2.8) on Q,
we obtain
9- C
/Qfogdu—f Zf’“) ) [ (29)

(n+1) g C)nJrl
/f o NCES e

£ (€ (2.8)

where & = £(t) is between g(t) and (.
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3. MAIN RESULTS

We denote by ¢, the identity function on [0, 1], namely, £(t) = ¢ (¢ € [0,1]). For
te, ¢ €la,b], and A € C, we have

esssup IFR((1 = 5)¢+sg() — Al = [IF® (1 = ¢+ Lg) — Aljo,1],004

foralk=1,...,n+ 1.

Theorem 3.1. Let f: I € R — C (I interval of R) be such that f™ is absolutely
continuous on I and ( € I. If g : Q@ — I is Lebesgue p-measurable on €2 and
fog (g=0OF, f0 D (1=s)C+sg) € LQ,pu) for all k € {1,...,n+1} and
s € [0,1], then we have

‘/Qfogduf(C) (3.1
e (90" _ 1 _ yntl
IR R e ey ARl
o[ (1 —
<o (/| e -ocrm - )
bl — " o 1159 (1 0 4 20) - . |
Q.1
<] il lg = I llap || £ ((1_€)<+£g)_/\’|[0,1],00HQ 7
- p>1 14121
e = < e | 104D (A= 0 ¢+ Lg) = Mgy o ﬂ :
Q,00
for any A € C.

Proof. Taking the modulus in , we have
‘/ fogdu—f(Q)
C)k 1 n+1
—Zf /Q - du—A(nH)!/Q(g—o dy

1 1

SH ; (1—S)n (/Q|g_<|n+1‘f(n+1)((1—8)(:+sg)—)\‘ dﬂ) ds

1 1
< f oo ([laart e w-acw o, )
< n+1 (/I —CI”+1Hf(n+1 (1= 0) ¢+ Lg) — )\H )

for any A € C. We obtain the desired result by applying Holder’s inequality. [
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Corollary 3.2. Under the assumptions of Theorem [3.1] we have the following
Ostrowski type inequality:

| regin-1 Zf’“) /gko

1
< (n+1) oo/ et g

We also have the following Jensen type inequality:

\/wm(/gww (), ==
= +1 /’ gd” B

dp. (3.3)
Proof. We have from with A =0

n k
/fogdu—f@)—zf“)(c)/%d

k=1 Q

L1 n+1 </| S Pt f><+€9>H[0,1],wd”>'

For any ¢t € © and almost every s € [0, 1], we have
SOV (L= 5) ¢+ s9(1)) | < ess sup |FO D )] =]
ue

Therefore, we have

(3.2)

P (-0 ¢+ tg)| < esssup [ (1 - )¢+ sg(1)) |
[0,1],00 86[0,1], teQ
<
Thus,
9—¢
‘/fogdu—f Zf(’“) [
Q
1
<1 e oo/ — " d,
< e [ 1=
The proof is completed. U

Alternative proof for Corollary[3.4 From (2.9), we have the following for £ = £(t)
is between ¢(t) and ¢, where t € :

’/ﬂfogdﬂf Zf(k) /gko

(n+1) 9 C)nﬂ
(n+1)!

S ] n+1) H / — ¢ dp.
< +1 Hf ree )i lg = ¢ 1
This completes the proof. (I

dp
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Remark (Ostrowski type inequality). Let Q = [a,b], g : [a,b] — [a,b] defined by
g(t) =t, and p(t) =t/(b—a). We have

|/Qf09duf Zf(k / gkC)
o [0 Lm0 [ =",

Ryt
— — () k+1 k1
b—a /f t)dt b k+1'sz {b <) (a=¢) }
; (71 ) n+1
< (n_|_1)|||f 1 H[a,b]7 / |t C| dt
L [(C—a )2 4 (b — ¢)"+?]

_ (n+1)
For the next result, we need the following notation and proposition: for v,I" € C
and [a,b] an interval of real numbers, define the sets of complex-valued functions
[6]

b—a

oy (1, T) = {h : [a,b] = C|Re [(r — h(®)(R(T) — 7)} >0 for ace. t € [a,b]}

and

+T 1
A[a,b}(y,I‘) = {h : [a,b] — (C| ’h(t) - L >

5 <§\F—7\ fora.e.te[a,b]}.

The following representation results may be stated [0].

Proposition 3.3. For any v,I" € C and v # I, we have
(4) U[a’b] (7,T) and A[mb] (7,T) are nonempty, conver and closed sets;

(”) U[_a,b] (’Ya F) = A[a7b] (7a F); and
(ZZZ) U[a,b] ('Ya F) = {h’ : [0’7 b] —-C |(R€(F) - Re(h(t))) (R’e(h(t)) - Re(’}/))
+ (Im(T") — Im(h(t))) (Im(h(t)) — Im(v)) > 0 for a.e. t € [a,b]}.

We have the following Jensen-Ostrowski inequality for functions with bounded
higher (n + 1)-th derivatives:

Theorem 3.4. Let f: [ € R — C (I interval of R) be such that f) is absolutely
continuous on I and ( € I. For some v, T € C, v # T, assume that f*t1 ¢
U[a,b (v,T) = A[a,b] (v,T). If g : Q — I is Lebesgue - measumble on Q and f o

g, (g=OF, OV (1 —s)C+sg) € L(Q,p) for all k € {1,...,n+1} and s €
[0,1], then we have

‘/Qfogdu—f(é)

1 n+1
< —I'— - dys. 4
< sl [ e (34)
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Proof. Let A = (v +T)/2 in (2.6, we have
/fogdwf(@
_ ( 9g— C) _7+F 1 _ n+1
ka / o (n+1)!/g(g O du

o (- ([ a-ar [ - c g - ] )

n!

Since f(»+1) e Al (7,T), we have

r
’f(n+1) ((1—5)C+sg)— % %ll“ -1, (3.5)

for almost every s € [0, 1] and ¢ € 2. Multiply (3.5) with (1—s)™ > 0 and integrate
over [0, 1], we obtain

| a=sr
1
_2|F ’Y|/ (1—s)" =m|r—’7|>

for any t € Q2. Now, we have

(- ><+sg>—\

ogdu— f (<)

- —¢)" y+T 1 it
kZ::f O [ U= e [ -0

1
FT =l [ o= d

1
<
- 2( +1
This completes the proof. ([l

Corollary 3.5. When ¢ = (a+b)/2 in Theorem we have the following Os-
trowski inequality:

+b - a+b (g—"—*b)lC
s s (4520 () 2

n+1
o+ 1 / gia—i—b du
2 (n+1)!Jq 2
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When ¢ = ngdu n Theorem we have the following Jensen type inequality:

‘/Qfogdu—f(/ﬂgdu>
S (o) [t o o)

+1
2(n+1 Wl/‘ ng

du.
We recall the following definition:

Definition. Let h: I C R — R be a real-valued function. Then,
(1) h is convez, if for any xz,y € I and s € [0, 1], we have

h((1 = s)z + sy) < (1= s)h(z) + sh(y).
(2) h is quasi-convez, if for any xz,y € I and s € [0, 1], we have
h((1 = s)z + sy) < max{h(z), h(y)}.
(3) h is log-convez, if for any x,y € I and s € [0,1], we have
h((1 = s)z + sy) < h(z)'"*h(y)*.

(4) for a fixred q € (0,1], h is q-convex, if for any x,y € I and s € [0,1], we
have

h((1—s)z+ sy) < (1 —s)?h(z) + sTh(y).

We refer the reader to the paper by Dragomir [9], for further background on these
notions of convexity.

We also need the following lemma to assist us in our calculations.

Lemma 3.6. For a, 5 € R andn > 1, we have

o (B e LN T a1
/0(175) <a) ds = — ﬁ)*z( (ﬂ))mm . (3.6)

g(()é
10 / <C )

«

Proof. For n = 1, integrating by parts gives us

fa-o@) e - a2
1

Il
|
—
o
o
—~
Q™
S—
+
—
—
o
o
A~ =
Q@
—
=
()
7N
ol
|
—
~_

For n = 2, integrating by parts gives us
1 s 2 s 1 1 s
1-— 2
/ (1—s)2 (ﬂ> ds = (1=s) (5) + / (1—y9) <B> ds
0 a log(3) \a/ |y log(%) Jo o

1 2 2 B
log(Z)  (log(Z2))? +(10g(§))3 <a 1>'




OSTROWSKI AND JENSEN TYPE INEQUALITIES FOR HIGHER DERIVATIVES 71

We assume that for n, we have

We have
1 . ﬂ S
/0 (1—-13s) +1 (a) ds

- log()gn;l <a) |

n—1 n! Jé]
1 n n+1 1 n—1)! | =1
- _ — n!
log(%) log(%) | log(5) & (log(£))i+! (log(5))+!
n—1 (n+1)! B
1 n+1 (n—)! a1
=- — +(n+1)!—=
log(%)  log(%)? ; (log(5))7+2 el (log(5))n+2
n (n+1)! 8
1 (n+1-1)! a1
=- - ————+ (n+ )—2—
log(£) ; (log(5))*+! (log(5))"+?
and this completes the proof. ([

In the next theorem, we assume that | f (”+1)| satisfies some convexity properties.

Theorem 3.7. Let f: I € R — C (T interval of R) be such that f™ is absolutely
continuous on I and ¢ € I. Suppose that g : Q@ — I is Lebesgue p-measurable on )
and fog, (g—OF, D (1 =) ¢ +sg) € L(Q, p) for allk € {1,....n+1}.

(i) If | f* D] is conver, then we have

k
‘/ngdu () - Zf(k)(C)/Q(g;!C)d

1
< (1) (¢ / ntl g
< iy 1 [l o das

oy o= R gl

(i) If | f*V] is quasi-conver, then we have

‘/Qfogdu—f Zf‘“ /gko

<( il) max{|f(n+1) |/ lg — C|n+1 du, / lg — C|n+1|f(n+1)( ())|du}
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(iii) If | £+ V)| is log-convex, then we have

‘/Qfogdu—f Zf’“ /gko

/| _ept |- PARI(S]
log(LLT)oaly

[F DO
n—1 n!
=0 Y o gl — | FHD ()]
_|f(n+1)(C)‘ Z ‘f((n+1))og| i+l +n |f(n+Dog| n41 B
i=1 (log({5mvogy) (log( 7))

(i) If | fHD] is g-convex (for a fized q € (0,1]), then we have

‘/Qfogdu—f ka) /gko

1
< (n+1) / n+1 d
< s [ [l -

n+1l | p(nt1)
+— - ogld ] .
(q+1)/9‘9 I If gldp

Proof. (i) If | f("*1)] is convex, then

FEEI((L = )¢+ 59(0)| < (1= 9P+ 5D (9(0))]

for all ¢ € , which implies that

/01<1 — g

</ 1y as| 17000+ | 1 sy as] L1+ g(0)

1

= m|f(n+1)(5)|+

fntn) (1=s)¢+ sg(t))‘ ds

m+)n+2) | (g (1))

Thus,
o (k) (Q—C)k
|/f gdn— (¢ Zf’wc)/ﬂ—k! a

/\ e ([a-er

Lf"“’ )| / lg —¢[" L ) / lg— "D o gldul -

FOD (1 5) ¢+ s) ds> an

< =
- n'n+2

(ii) If | (D] is quasi-convex, then

O (1= )¢+ sg(0)| < max{| 7D QL 17D (g1},
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for all ¢ € , which implies that

/0 (15"
1
< [ [a-or ds} max{| F O £ (g(0)])

1 n n
= LI OL L (g0}

O ((1 = 8)¢ + sg(1))] ds

Thus,
n k
’/fogdu—f(é)—Zf(’“)(C)/Q(g;!o i

<t fla-ar([a-or

S<n+1>/ 9= 1" max{ [ £ 7 (9(0) ]} d
_ 1 n+1 n+1 nt 1| p(nt1)
— oy e {1 [ o= o™ [ o= o 1 g o).

Fr((1=s) ¢+ sg)\ ds) dy

(iii) If | f(**Y)| is log-convex, then

FOD (L= )+ s9(0)] < QP g0

for all ¢ € , which implies that

Al(l —s)"

</ - SOOI o))

U1 = )¢+ sg(0)| ds

Let o := |[f(TD(¢)] and B = B(t) := |f™+V(g(t))|. Since a does not depend
on t, we have

/01(1 _ el B ds = a/olu sy (i) ds.

By Lemma we have
1
/ (1 —s)"a'~*p%ds
0
1 s
:a/ (I—s)" (ﬁ> ds
o a
— n!

n—1
« n—2)! b —«
S ) ,
log(2) 4 (log(£))+! (log(5))+1
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and therefore

n

k
9 (0) /Q 9=

/fogdu £O) —
k=1

b ([

((1=5)¢+s9)] ds) du

1

<o [la=am | [a- sl s d
n+1
n+1

S /| d i [ 1 |f(n+1)og\

©8 \f<”+1)(<)|)

(n+1) (n+1)
f(n+1) ‘Z \f<(:+11>0g| i+1+ ‘f (ij?’!“)lfl n+(1<)‘ d
log({/mr) (log(rmrogy)

(iv) If [f(»+D)] is g-convex (for a fixed ¢ € (0,1]), then
[0 (1= 5)C + 59)| < (1= 21D O] + 177D g0,

for all ¢ € , which implies that
1
JACEDk
0
1 1
< [ [a—sme ds} Q)]+ [ [ ds} D (g (1))
0 0

T 5O (1)

(1= )¢+ s9(0))| ds

(g+1D)(n+q+1)

LF )] +

Thus,

|/fogdu £ éf“ o [ @

8 Lo (o

_H.W[W“ ) / 9™ dn
/I =gy ogIle

This completes the proof. O

U (1= )¢+ s9)| ds) d

q+1

4. APPLICATIONS FOR f-DIVERGENCE

Assume that a set Q and the o-finite measure p are given. Consider the set of
all probability densities on p to be

P {olp: 0> Rp0 20, [ pwau =1},
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We recall the definition of some divergence measures which we use in this text. The
Kullback-Leibler divergence [10] is defined as:

Dir.0):= [ po)tox| 20 au(0). pacr. (1)
Following is the definition of y2-divergence:
_ g(t)\’
Dy (p,q) = [ p@) || =) —1|du(®), p,qeP. (4.2)
Q p(t)
Following is the definition of the higher order y-divergence [1]:
q(t) — p(t k
Dy (p,q) = /wdu(t), p,qE€P; (4.3)
o PHY)
t) — p(t)[*
Do a) = TP ) pgemp. (1.4
o P

The above definition(s) can be generalised as follows [11]:

k
Dyntpa) = | (“A(pg”du(t), pacP: (4.5)
Dypeatpa) = [ =gy, e (1.6)
Csiszar f-divergence is defined as follows [4]
1= [ p07 |20 a0, pacP. (@.7)

where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at « = 1. The Kullback-Leibler divergence and the x2-divergence are particular
instances of Csiszar f-divergence. For the basic properties of Csiszar f-divergence,
we refer the readers to [4], [B], and [14].

Proposition 4.1. Let f: (0,00) — R be a convex function with the property that
f(1) = 0. Assume that p,q € P and there exists constants 0 < r <1 < R < o0
such that

q(t)

r<—=<R, forp-ae teq. 4.8
p(t) “8)
If ¢ € [r, R] and f™) is absolutely continuous on [r, R], then we have the inequalities
I#(p,q) Z k,f(’“) Dy ¢(p,q)
= || fntD)
< (’I’L-f-].)'Hf HI7OOD‘X|"+1,C(paQ)'

In particular, when ( =1, we have

(k) ( 1
Is(p.q) Zk,f (P, 9) S FE]

We remark that we recover Theorem 1 of [I] in (4.9), with the assumption that
(1) =o.

£ oo Dy (). (4.9)
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Proof. We choose g(t) = q(t)/p(t) in , and note that [, p(t)dp = 1. Therefore,

we have
£ (45 ) a0 - ; L0 [ (49 6) iy an

1 (a(t) — Cp()*

_ If(p7Q)7f(C)7 p(t)*

NIER M:

| =

= |Ir(p,q) — f(C) — FEUO) Dy ()

>
Il

1

1 (t) — ¢p(t)
< 1 ) / qi
||f(n+1)||1 ooD|X‘n+1 ¢ d/,L

n+1
p(t) du

<
~(n+ 1)
This completes the proof. ([l

Example. If we consider the convex function f: (0,00) — R, f(t) = tlog(t), then
1.0 = [ 0% tox (40 ) ano = [ atetog (%) dute) = D (a.p)

p(t) p(t)
We have f'(t) = log(t)+1 and f*)(t) = (=1)kt=* =1 for k > 2. By Proposition
we have

n

Dicr(g,p) — ¢log(¢) — (1 = ¢)(log(¢) +1) — %(—1)%*(“1)%4(1), q)

k=2
< ﬁr_"DuwH,q(Pa q),
for all ¢ € [r, R]. When ( =1, we have
Drr(q,p) — i%(—l)kl? (P g)| < p—— "Dyt (p, q)-
k=2 (n+1)!
Example. If we consider the convex function f : (0,00) = R, f(t) = —log(t),

then

Iy(p.q) = — /Qp(t) log (%) dp(t) = /Qp(t) log (%) du(t) = Dxr(p,q)-
We have f®)(t) = (=1)¥t* for k> 1. By Propositz'on we have

n

Dici(pra) +108(0) ~ 32 (-1 Dy c(p0)

k=1

7"_("+1)D|X‘n+174(p, q),

~ (n+1)!
for all ¢ € [r,R]. When ( =1, we have
—~ 1 k 1 —(n+1)
Drr(p,a) = 2 17(=1)"Dyx(pa)| < s Dy (p, q)-
k=1




OSTROWSKI AND JENSEN TYPE INEQUALITIES FOR HIGHER DERIVATIVES 7

REFERENCES

[1] N. S. Barnett, P. Cerone and S. S. Dragomir, A. Sofo, Approzimating Csiszdr f-divergence
by the use of Taylor’s formula with integral remainder, Math. Inequal. Appl. 5 3 (2002),
417-434.

[2] P. Cerone, S. S. Dragomir and E. Kikianty, Jensen-Ostrowski type inequalities and applica-
tions for f-divergence measures, Appl. Math. Comput. 266 (2015), 304-315.

[3] P. Cerone, S. S. Dragomir and E. Kikianty, On inequalities of Jensen-Ostrowski type, J.
Inequal. Appl. 2015 (2015), Article 328.

[4] 1. 1. Csiszéar, On topological properties of f-divergences, Studia Math. Hungarica 2 (1967),
329-339.

[5] I. I. Csiszér and J. Korner, Information Theory: Coding Theorem for Discrete Memoryless
Systems, Academic Press (New York), (1981).

[6] S. S. Dragomir, Jensen and Ostrowsk: type inequalities for gemeral Lebesgue integral with
applications, RGMIA Res. Rep. Coll. 17 (2014), Article 25.

[7] S. S. Dragomir, New Jensen and Ostrowski type inequalities for general Lebesgue integral
with applications, RGMIA Res. Rep. Coll. 7 (2014), Article 27.

[8] S. S. Dragomir, General Lebesgue integral inequalities of Jensen and Ostrowski type for
differentiable functions whose derivatives in absolute value are h-convex and applications,
RGMIA Res. Rep. Coll. 17 (2014), Article 38.

[9] S. S. Dragomir, Integral inequalities of Jensen type for A-convex functions, RGMIA Res. Rep.
Coll. 17 (2014), Article 18.

[10] S. Kullback and R.A. Leibler, On information and sufficiency, Annals Math. Statist. 22
(1951), 79-86.

[11] F. Nielsen and R. Nock, On the Chi square and higher-order Chi distances for approzimating
f-divergences, IEEE Signal Processing Letters 21 1 (2014).

[12] A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren In-
tegralmittelwert, Comment. Math. Hel. 10 (1938), 226-227.

[13] J. E. Pecari¢, F. Proschan and Y.L. Tong, Conver Functions, Partial Orderings and Sta-
tistical Application, Mathematics in Science and Engineering Vol. 187, Academic Press Inc.
(Boston, MA), (1992).

[14] 1. Vajda, Theory of Statistical Inference and Information, Kluwer Academic Publishers,
(Dordrecht-Boston), (1989).

P1ETRO CERONE
DEPARTMENT OF MATHEMATICS AND STATISTICS, LA TROBE UNIVERSITY, MELBOURNE (BUN-
DOORA) 3086, AUSTRALIA

E-mail address: p.cerone@latrobe.edu.au

SEVER S. DRAGOMIR
SCHOOL OF ENGINEERING AND SCIENCE, VICTORIA UNIVERSITY, PO Box 14428, MELBOURNE
8001, VICTORIA, AUSTRALIA
SCHOOL OF COMPUTATIONAL AND APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,
PRIVATE BAc X3, WITS 2050, SOUTH AFRICA

E-mail address: sever.dragomir@vu.edu.au

EDER KIKIANTY (Corresponding Author)
DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF PRETORIA, PRIVATE
BAG X20, HATFIELD 0028, SOUTH AFRICA

E-mail address: eder.kikiantyQup.ac.za



	1. Introduction
	2. Identities
	3. Main results
	4. Applications for f-Divergence
	References

