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Abstract 

Resolving intra-stride accelerations from training and game data routinely collected by 

athlete tracking devices is rarely attempted, even though these data can provide 

important insights into the physical condition of athletes. This thesis proposes a new 

method of extracting stride accelerations from athlete tracking data via a novel analysis 

tool, describes methods of analysing the results generated by the analysis tool and 

reports and the influence of instances of missed or modified training and game activity 

on those results. Accelerometer and GPS Data from twenty-two professional Australian 

Rules Footballers were examined from competitive games during an Australian 

Football League season. These data were processed with a novel analysis tool 

developed specifically for the purpose of identifying instances of high speed running in 

a straight line during games, extracting step waveforms in three axes from those 

sections and determining the variability of those waveforms via a within-section and 

between-section co-efficient of multiple determination (CMD) over the course of the 

game. The steps taken in the development of the analysis tool are described in the 

thesis. Numerous approaches to identifying matched sections of high speed running in 

a straight line were investigated, with the method resulting in the highest number of 

waveforms while still being mindful of theoretical considerations adopted. Similarly, 

numerous statistical approaches to identifying step waveform variability were 

investigated and the methods demonstrating the highest repeatability within the context 

of the number of waveforms available for analysis were adopted, and methods with a 

high possibility of providing limited value in an applied setting eliminated. Results 

exported from the analysis tool were analysed in a number of contexts. Season 

averages from raw CMD scores were calculated on steps taken on the left and right 

foot, and the magnitude of the difference between those scores within each subject 

was estimated through determining the 99% confidence interval for the mean raw CMD 

on each side and identifying where those confidence intervals for the left and right foot 

did not overlap. There was one subject whose 99% confidence intervals did not overlap 

in any analysis condition (within-section and between-section CMD across x, y and z 

axes), one subject where the 99% confidence intervals did not overlap in four of the six 

analysis conditions, ten subjects where there was an overlap in between one and three 

of the analysis conditions, and ten subjects where there were no analysis conditions in 

which there was an overlap. Raw co-efficient of multiple correlation scores were 

converted to z-scores within side and axis for each subject, and confidence intervals for 

z-scores collated by axis (combining steps from all subjects on right and left side) were 

determined via an empirical bootstrapping procedure. When combined with data on 
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instances of missed or modified training in the week preceding or following a game, 

some significant results were identified. Instances of missed or modified training were 

divided into five categories; “load”, “groin”, “leg soft tissue”, “leg structural” and “other”. 

A lower within-section z-score (indicating more step waveform variability) was found 

when a training was modified due to “load” (p=0.02) and higher between-section z-

scores (which indicates less step waveform variability) were found in the week 

preceding a training modification due to “leg structural” injuries encompassing injuries 

to a leg not encompassed by soft tissue injuries, such as an ankle ligament sprain 

(p=0.02). Subjects with no difference between sides in average within-section z-axis 

raw CMD scores or average between-section x-axis raw CMD scores were unlikely to 

require training modifications due to “load” (correctly predicted in 82% of cases) and 

“groin” (correctly predicted in 92% of cases) respectively. These procedures and 

results can immediately be integrated into athlete monitoring systems, though 

investigations into combining these procedures with more established parameters may 

enhance their ability to predict adverse events. In addition, results supported previous 

research into the association between movement variability and pathology, and further 

research into the mechanism behind the changes in step waveform variability utilising 

the procedures outlined in this study will aid in the development and testing of our 

theoretical hypothesis.  
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 Introduction 

Athlete monitoring tools incorporating GPS and inertial sensors have dramatically 

expanded the range of metrics available to scientists, trainers and coaches that are 

available be used to describe training load and training effect in applied environments. 

Early studies into these devices focussed on validating basic variables such as velocity 

during different types of game style movements (Duffield, Reid, Baker, & Spratford, 

2010; D. Jennings, S. Cormack, A. J. Coutts, L. Boyd, & R. J. Aughey, 2010a; D. 

Jennings, S. Cormack, A. J. Coutts, L. J. Boyd, & R. J. Aughey, 2010b) and how those 

variables can be used to describe training and gameplay, especially with athletes of 

different ability (Brewer, Dawson, Heasman, Stewart, & Cormack, 2010; Burgess, 

Naughton, & Norton, 2012; Gabbett, 2012; Hiscock, Dawson, Heasman, & Peeling, 

2012). As practitioners have become more experienced and familiar with these 

devices, some more innovative practitioners have played a role in devising and 

examining new methods of analysis, some relying on inertial sensors to describe the 

physiological stress placed on the body, commonly referred to as load (Boyd, Ball, & 

Aughey, 2013), others finding alternative methods of analysing basic variables (Coutts 

et al., 2015; Osgnach, Poser, Bernardini, Rinaldo, & Di Prampero, 2010; Polglaze, 

Dawson, & Peeling, 2015). 

The inertial sensors integrated into athlete monitoring devices offer great possibilities 

for developing new metrics and analysis techniques. They have been used to identify 

game specific movements (Chambers, Gabbett, Cole, & Beard, 2015) which can be 

integrated with other metrics to increase the complexity and resolution of descriptions 

of external and internal physical load. Recently, the possibilities of analysing intra-stride 

accelerometer data to assess neuromuscular fatigue (a decrease in the body’s ability to 

maintain power output or achieve an optimal task performance) have been assessed 

by Buchheit, Gray, and Morin (2015) This study demonstrated the ability of athlete 

monitoring devices that incorporate inertial sensors to not only identify strides within a 

continuous time series of accelerometer data collected via a single tri-axial 

accelerometer mounted on the upper torso but also use these data to evaluate 

neuromuscular fatigue via stride characteristics such as stance time. 

The full accelerometer waveform (or curve representing the accelerometer output) of a 

cyclic movement such as gait offers many possibilities for analysis. In addition to the 

temporal stride characteristic variables such as step time identified by Buchheit et al. 

(2015), the shape of the entire waveform can be assessed for measures such as the 

repeatability of the waveform (Dadashi, Millet, & Aminian, 2015). The ability to analyse 
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the consistency of a gait waveform is an exciting prospect, given the recent focus on 

the relationship between variability (in particular the variability of waveforms generated 

during gait) and pathology (Bartlett, Wheat, & Robins, 2007; Stergiou & Decker, 2011; 

Stergiou, Harbourne, & Cavanaugh, 2006). 

The possibilities of combining gait detection algorithms such as were used in Buchheit 

et al. (2015) with techniques for assessing waveform repeatability (Kavanagh, 

Morrison, James, & Barrett, 2006) and the implications of changes in the variability of 

movement over time (Stergiou & Decker, 2011; Stergiou et al., 2006) are very 

appealing. Currently, applied scientists within professional sporting clubs rely 

predominantly on measures describing the quantity of an activity to assess the 

potential physiological strain placed on an athlete. By combining gait detection 

algorithms with measures of stride waveform variability, there is the potential to 

establish metrics which describe the quality of movement, thereby adding to an applied 

practitioners’ understanding of the current physical state of an athlete in their care. 

Furthermore, identifying methods where this process (in particular the detection of gait 

waveforms and subsequent assessment of variability) can be automated, the potential 

usefulness within the applied environment will be maximised. 

The aim of this research was to investigate these possibilities by developing algorithms 

and an analysis tool for identifying stride waveforms within training and gameplay data, 

describe possible methods for applying that analysis tool to real data collected during 

competitive games, and to determine the usefulness of the analysis tool in the applied 

environment by examining results from longitudinal analyses of data in conjunction with 

instances where normal training activity was modified due to injury. 

The development of the analysis tool will be outlined in Chapter 3, where methods 

used to identify and extract stride waveforms from similar periods of running (in this 

case, straight line running at high speed) as well as the statistical methods used to 

analyse these waveforms are described. Chapter 4 details the application of the 

analysis tool to data collected from professional Australian Rules footballers competing 

in Australian Football League games. Finally, the potential importance of this tool in 

applied situations such as a professional football club will be presented in Chapter 5 

through cross-referencing results from the analysis tool to instances of missed or 

modified training during an Australian Football League season. 
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 Review of literature 

 Athlete monitoring in sport 

There is a long history of quantifying movement within team sport activities, in 

particular in soccer, through observation of gameplay, obtaining physiological 

measures during matches and simulated matches, and through determining the 

physiological capacity of elite players (Bangsbo, 1994). Quantifying movement during 

training and competition in sports such as soccer (Mohr, Krustrup, & Bangsbo, 2003) 

and Australian Football (Dawson, Hopkinson, Appleby, Stewart, & Roberts, 2004) has 

regularly been achieved through techniques such as time-motion analysis. However, 

the accurate assessment of movement during competition or training was often a 

laborious and time-consuming process. 

In recent years, miniaturisation of player tracking devices has simplified collection of 

training and in-game data across a wide variety of sports. One such sport is Australian 

Football, whose governing body, through allowing player tracking devices to be worn 

during competition, has facilitated a rapid escalation in the amount of data that can be 

used by clubs. The primary aim of collecting and interpreting this information is to 

minimise a player’s risk of injury while maximising their game day performance. 

Analysis of player tracking data has been mainly focussed on the validity of the 

measures provided by the units (Boyd, Ball, & Aughey, 2011; Coutts & Duffield, 2010), 

description of physical load encountered by athletes (Boyd et al., 2013; Brewer et al., 

2010; Coutts et al., 2015), investigating the link between performance and game day 

physical output (Bauer, Young, Fahrner, & Harvey, 2015; Hiscock et al., 2012), and 

describing the development of the physical profile of elite Australian Rules Footballers 

(Burgess et al., 2012). These investigations have taken on a broad view of the data, 

looking at cumulative metrics over time periods ranging from minutes to hours, 

providing many important indicators and useful information that has informed the 

scientific and sporting population. However none have examined the extremely 

valuable technique information that can be extracted via a more detailed analysis of 

inertial sensor data. An important future development is to ‘tap into’ the more specific 

movement-based data and to explore in more detail what these data can tell us. 

Inertial sensor data have been used to generate some cumulative metrics, and these 

variables have been examined and validated. For instance, the reliability of the 

accelerometers within a MinimaxX 2.0 unit (Catapult Sports, Australia) have been 

assessed for static reliability and dynamic reliability by Boyd, Ball & Aughey (2011). It 
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was found that player load values that are based on accelerometer results (and 

calculated via the manufacturer’s software) were suitable for use in Australian Rules 

Football as the noise (expressed as a coefficient of variation) was less than the signal 

(expressed as a smallest worthwhile difference). The player load value is an example 

of the typical method used to evaluate athlete activity via accelerometers. It is 

calculated by accumulating the data from three acceleration axes and integrating them 

to provide a vector magnitude, resulting in a value that is used to determine cumulative 

load over time. The pattern of acceleration and movement within a step will affect the 

player load if there is a difference in magnitude of the combined acceleration vector 

during the step, however there is no direct assessment of the pattern of acceleration 

during the movement. As a consequence, there is considerable scope for research into 

the development of analysis methods that utilise accelerometer data obtained from 

these personal GPS and inertial sensor devices to provide information on the quality of 

movement during sporting activities. 

 Using accelerometers to analyse movement 

Accelerometers have proven to be a valuable tool in analysing movement and specific 

technique for many purposes (such as gait analysis and assessment of sport specific 

technique) and across a wide range of environments (such as in laboratory conditions, 

during competitive matches, under water etc.). Gait assessment, whether it be healthy 

gait (Moe-Nilssen & Helbostad, 2004) or impaired gait (Aminian et al., 1999), has been 

regularly assessed via accelerometry. Multiple inertial sensors have been used to 

measure joint kinematics (Picerno, Cereatti, & Cappozzo, 2008) or to identify key 

temporal characteristics of a stride (Auvinet, Gloria, Renault, & Barrey, 2002). Many 

types of inertial sensor systems have been used on the leg, shank and foot to identify 

key characteristics a stride. A review by Rueterbories, Spaich, Larsen, and Andersen 

(2010) provides an assessment of studies that have used accelerometers and other 

sensors for gait analysis. There have also been a number of studies that have 

focussed on a more practical approach using single tri-axial accelerometers mounted 

on the torso. A single tri-axial accelerometer mounted on the sacrum has been shown 

to provide accurate measurements of temporal stride characteristics such as stride, 

step and stance duration in national level runners (Lee, Mellifont, & Burkett, 2010), with 

good agreement between inertial sensor and infrared camera methods (less than 0.02s 

difference for most temporal measures). Accelerometers have also been shown to 

discriminate between different modes of gait and locomotion (Little, Lee, James, & 

Davison, 2013). Further investigation into the use of accelerometers mounted on the 

lower back has shown the ability of these techniques to measure vertical stride 
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acceleration, demonstrating near perfect correlation (r=0.96), a small typical error of 

estimate of 1.84ms-2 (with 95% confidence limits of 1.3ms-2 to 3.27ms-2) and low mean 

bias of 0.02 (±0.03) with infrared camera measurements (Lee, Sutter, Askew, & 

Burkett, 2010). In addition, this study demonstrated that asymmetries in steps taken on 

the left and right foot could be detected, providing a variable that can be readily used in 

the applied setting. 

The need to incorporate other sensors (such as GPS) into a wearable athlete tracking 

tool usually requires such athlete tracking devices approved for use during training and 

competition to be worn on the upper torso to maximise the quality of the GPS signal. 

As a consequence, given this location has not regularly been freely chosen to assess 

gait in previous research, it could lead to the assumption that these units are unsuitable 

for gait assessment. This is particularly noteworthy given the findings of Trost, McIver, 

and Pate (2005) who suggested that for accurate assessment the placement of the 

device on the body and the actions subjects are required to perform should be quite 

strictly controlled. However, there is research to show that placing accelerometers on 

the upper torso does not preclude a critical analysis of gait. The magnitude of peak 

accelerations have been validated when a unit is placed on the upper torso 

(Wundersitz, Gastin, Richter, Robertson, & Netto, 2015) which demonstrates that when 

placed on the body according to the manufacturers recommendations, filtered data 

collected by a MinimaxX S4 unit (Catapult Sports, Australia) provides an acceptable 

means of assessing peak accelerations with a CV of 8.9% when filtered at 10 Hz. 

Similar units incorporating both GPS and inertial sensors (SPI HPU, GPSports, 

Canberra, Australia) mounted on the upper torso have been shown to accurately 

identify temporal stride characteristics when compared to an instrumented treadmill 

(Buchheit et al., 2015). Contact time was found to be almost perfectly correlated 

between accelerometer and treadmill measures (r=0.96) and large correlations were 

found for flight time (r=0.68). Both Wundersitz et al. (2015) and Buchheit et al. (2015) 

demonstrated that stride variables can be accurately measured using the 100Hz tri-

axial accelerometers embedded in units placed on the upper torso.  

An important additional finding by Bucheit, Gray and Morin was the ability of a tri-axial 

accelerometer mounted on the upper torso to identify side to side differences in stride 

characteristics. Ankle movement was constrained through taping and two of the three 

variables examined in the study correctly identified side to side differences in stride 

characteristics, with a 3.7% difference in contact time across taped and tape-free foot 

measured by the accelerometer being similar to the 4.5% difference measured via the 

instrumented treadmill. These findings confirm the ability of this and similar units that 
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incorporate GPS and accelerometers to identify small differences in stride 

characteristics due to physical constraints placed on a subject within a laboratory 

setting. Extrapolating these results to a field based assessment and providing 

information on stride characteristics over the course of a training session or competitive 

game would provide valuable insight for scientists, trainers and coaches into the 

physical condition of athletes. 

Field-based assessments using accelerometers has been a particular focus in 

swimming, due in part to the difficulties encountered attempting to use video based 

methods commonly used in other sports. In their review article, Magalhaes, Vannozzi, 

Gatta, and Fantozzi (2015) identified twenty seven articles that specifically investigated 

the use of inertial sensors to assess swimming biomechanics that were published in 

indexed journals and conference proceedings. Their key findings were that inertial 

sensors including accelerometers and gyroscopes are reliable and can be used for 

biomechanical performance assessment, they can be used continuously during a 

whole swimming trial so can increase the amount of data available for technique 

assessment (allowing modifications due to factors such as fatigue to be assessed) and 

metrics can be developed to progressively meet the desires of coaches and trainers. 

These findings can be extrapolated to other sports such as Australian Rules Football 

that face similar challenges of how technique can be unobtrusively assessed over the 

course of an entire training session or game to provide metrics desired by coaches and 

trainers. 

The front crawl swimming stroke has regularly been used to assess the suitability of 

inertial sensors for specific technique assessment. Segment acceleration during a front 

crawl swimming stroke was assessed against conclusions drawn from video analysis 

by Callaway, Cobb, and Jones (2009) who concluded that although a swimmer’s 

performance cannot be determined via the pure acceleration of a body segment, 

acceleration can be used to show important information within the context of different 

sections within the stroke. Furthermore, issues to do with the accuracy of the 

measurement that were at the time limiting the use of accelerometers to inform 

adjustments to technique were progressively being mitigated by advances in 

technology and improvements in analysis techniques. Further research into the use of 

inertial sensors to assess swimming technique by Dadashi et al. (2015) demonstrated 

that kinematic variability can be assessed through inertial sensor values over a number 

of cycles, and that variability can be used to discriminate between subject groups of 

differing skill. Variability in this study referred to the amount of variation in each stroke 

from a constant speed irrespective of where that variation occurred during the stroke 
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cycle, demonstrating the potential of inertial sensors to capture long periods of data 

and assess technical aspects of a movement in relation to how those variables change 

from stroke to stroke. 

A key difference in the approaches taken by Dadashi et al. (2015) and Buchheit et al. 

(2015) is the method used in analysing the cyclical waveform. Key points within the 

waveform were identified in Buchheit et al. (2015) to output the contact time and flight 

time of a step. These variables were then collated over the course of the testing 

session. In Dadashi et al. (2015), the entire waveform representing intra-stroke velocity 

was evaluated for variance from the overall mean of that particular stroke, and the 

single variable for variance within the stroke was collated across the testing session. 

Combining the two methods by analysing gait through accelerometers positioned on 

the upper torso as per Buchheit et al. (2015) and evaluating the entire waveform as per 

Dadashi et al. (2015) would provide a method of gait analysis that can be used during 

training sessions and competitive games that could identify subtle variations within step 

waveforms. 

 Identification of matched sections of data 

The assessment of human gait via accelerometers allows assessments that were once 

confined to laboratory environments to be extended into more practical settings. Stride 

characteristics in sprinting (Bergamini et al., 2012), and distance running (Auvinet et 

al., 2002; Wixted, Billing, & James, 2010) have been assessed in field conditions. 

However, although these studies were conducted in settings that were similar to the 

normal training or competition environment, data were not extracted from actual 

training or game situations. 

Competition and training data has been assessed in sports such as rowing (Soper & 

Hume, 2004) and swimming (Dadashi et al., 2015). An advantage that these sports 

have is that the act of competing and training involves a cyclical and repeatable action 

that lends itself to longitudinal analysis. In other applications, the data needs to be 

interrogated to identify periods of matched activity. Accelerometry has previously been 

used in activity monitoring studies to identify periods of differing activities during a large 

collection duration (Trost et al., 2005). In a similar way, if field assessments in team 

sports which do not have consistent cyclical actions are to be conducted, periods of 

consistent high speed running in one direction without contact from an opponent must 

be identified, such as was done by Faude, Koch, and Meyer (2012) who identified 

periods of straight line sprinting in soccer via video-based time motion analysis. 
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Identifying matched periods of movement during training and competition will ensure 

that any analysis of gait is performed on strides with matched function and speed. 

Validity testing on GPS systems have established that straight line running sections 

show the lowest variation to a known distance in a simulated team sport game 

environment (Jennings et al., 2010a), and that activity can be identified in gameplay 

situations (in Rugby League) before a period of high speed running (Gabbett, 2012). 

Also, inertial sensors within GPS units can be utilised to identify sport-specific 

movement patterns during training and gameplay across a wide range of sports 

(Chambers et al., 2015). Consequently, GPS devices that incorporate inertial sensors 

are able to accurately identify periods of high speed running, though they are less 

suitable for identifying short, sharp accelerations (Duffield et al., 2010; Jennings et al., 

2010a). It has be concluded that GPS devices that incorporate inertial sensors are able 

to accurately identify periods of straight line running at high speed during normal 

training and gameplay. 

 Stride variability and pathology 

Variability in movement has received much research interest in recent years. The 

concept of healthy variability in movement, particularly sporting movement was 

reviewed by Bartlett et al. (2007) and Bartlett (2008) who concluded that there was 

much still to learn about the effect of movement variability on many aspects of sports 

biomechanics, in particular whether a certain amount of variability is an indicator of a 

healthy movement. Indeed, Bartlett et al. (2007) identifies how proponents of different 

motor control paradigms can interpret movement variability with opposing functions. 

For instance, Cognitive motor control theorists view movement variability as 

undesirable, demonstrating a movement error, while Ecological motor control theorists 

view movement variability as providing flexibility allowing the individual to effectively 

adapt to changes in the environment. 

These seemingly opposing views on the role of movement variability in the control of 

human movement are the result of two “camps” of scientists (Schmidt, 2003) who have 

“agreed to disagree” (Newell, 2003). However, Newell also observed that the “deep 

philosophical and theoretical issues” that are at the heart of these disagreements have 

not restricted experimentation within motor control and learning, with experiments able 

to be run as empirical questions “without reference to this important theoretical issue” 

(Newell, 2003, p. 385). 



9 
 

Studies where the authors have extrapolated results of a discrete experiment to 

encompass a broader theoretical question on the control of human movement can still 

aid in the understanding of the phenomenon of movement variability, particularly when 

results are viewed in the narrow context of the experimental question itself. For 

instance, Hamill, van Emmerik, Heiderscheit, and Li (1999) demonstrated that 

individuals with patellofemoral knee pain had reduced movement variability compared 

to a healthy group, and concluded that lower variability indicates a non-healthy state. 

The authors then postulated on the wider implications of these results with regard to 

the overall control of human movement. However, they also observe that lower 

variability may indicate the presence of an injury (though not the underlying cause of 

the injury) and that the narrow application of the experimental results may prove 

extremely useful in the detection of lower extremity running injuries within individuals. 

Applying the methods of Hamill et al. (1999) as an effective clinical tool has received 

some support in subsequent studies such as Heiderscheit (2000b), however there have 

also been contradictory findings (Cunningham, Mullineaux, Noehren, Shapiro, & Uhl, 

2014; Heiderscheit, Hamill, & van Emmerik, 2002) where no difference in movement 

variability was found between healthy and pathological groups. Although factors that 

may have influenced the suitability of movement variability as a discriminating factor 

between experimental groups were identified by the authors in both of these studies, 

Cunningham et al. (2014) concluded the clinical utility and applicability of coupling 

angle variability (the measure of movement variability used in their study) are not yet 

understood or necessarily supported. A key element of these studies is that subjects 

were separated into healthy and pathological groups. This was done on the assumption 

(based on theoretical considerations) that low variability in and of itself is an indicator of 

the underlying pathology.  

Importantly, when a within-subject design is used, it has been shown that movement 

variability can change rapidly as a result of an experimental intervention, and that 

movement variability may indeed be a useful clinical tool to identify when an individual 

has a less than optimal movement pattern. Heiderscheit (2000a) demonstrated that 

movement variability increases in individuals with patellofemoral pain when their pain is 

reduced through a therapeutic intervention. This supports the suggestions of Hamill et 

al. (1999) that reduced movement variability may be the result of individuals finding a 

narrow range of joint angles that allow them to move with the minimum amount of pain, 

and once that pain is reduced they return to a level of movement variability that is more 

indicative of their healthy state. There is also evidence to suggest that fatigue can 

influence movement variability. Cortes, Onate, and Morrison (2014) demonstrated that 
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as fatigue increases, variability in knee kinematics (among other variables) during a 

cutting manoeuvre increases, leading to a reduced ability to produce a controlled 

movement.  

A theoretical perspective on why in one case movement variability may increase as a 

result of one intervention yet decrease as a result of a different intervention was 

presented by Stergiou et al. (2006). The authors proposed that an optimal and 

individual level of variability exists within the chaotic and highly complex structure of 

movement, and that increased rigidity (reflected in reduced variability) or instability 

(which translates to increased variability) is indicative of a system with reduced 

adaptability are associated with an unhealthy state. 

Evidence supporting these theories has come from research into subjects who were 

ACL deficient (Moraiti, Stergiou, Ristanis, & Georgoulis, 2007) and subjects who had 

ACL reconstructions (Moraiti, Stergiou, Vasiliadis, Motsis, & Georgoulis, 2010) which 

showed that stride to stride variability differs from the injured leg to the uninjured leg. 

Less variability in the injured leg was found to be a characteristic of ACL deficient 

subjects, while more variability in the injured leg is a characteristic of subjects who has 

had an ACL reconstruction. Although it was acknowledged that the uninjured leg may 

not be representative of variability prior to the ACL injury as it has been demonstrated 

that an injured ACL can affect the step characteristics of the contra-lateral leg, the 

difference between variability in step waveforms between the injured and uninjured can 

be used to indicate the relative state of health of the knee joint.  

Although motor variability, in particular motor variability in gait, may be an indicator of 

an unhealthy state, a subject’s current physical condition may not be the only reason 

for a change in an individual’s gait variability. One confounding factor for whether 

observed variability in gait is indicative of healthy or injured individuals is that variability 

in stride interval in running and walking has been shown to alter with running speed 

(Jordan, Challis, Cusumano, & Newell, 2009). Minimum values for stride interval 

variability are found at self-selected speeds (when both running and walking) 

demonstrating that variability (particularly as it relates to temporal stride characteristics) 

is not constant but alters with speed. Consequently, to accurately assess whether a 

movement is more or less variable than would be expected for a subject based on their 

long term average, the characteristics of the action being investigated must be tightly 

controlled. 

In summary, motor variability exists, even in elite athlete populations who have 

undergone intensive training in a particular task (Bartlett et al., 2007) and, although it is 



11 
 

unclear whether motor variability is a precursor to or an effect of an unhealthy state 

(Hamill et al., 1999),  identifying instances when variability of a motor skill varies from 

the long term average offers valuable information on the overall health of the individual 

(Stergiou et al., 2006). 

 Measuring movement variability 

The measurement technique used to calculate variability in movement is dependent on 

the underlying metrics. In the analysis of gait, the use of stride characteristics (such as 

stance duration) require a different analysis of variability compared with joint co-

ordination patterns and metrics that interrogate the full waveform rather than specific 

characteristics of the waveform. Variability in stride characteristics (such as stride time 

and step width) have commonly been assessed via the coefficient of variation 

(Heiderscheit et al., 2002; Kadaba et al., 1989), percentage coefficient of variation 

(Hollman et al., 2010) and standard deviations (Balasubramanian, Neptune, & Kautz, 

2009). However, when variability across the waveform of the cyclic movement is 

assessed, further data reduction must take place to describe the waveform itself before 

an assessment of the variability of that waveform can take place. Investigations into 

joint co-ordination have used continuous relative phase (Hamill et al., 1999) and 

relative motion plots (Heiderscheit et al., 2002) which are then analysed for variability 

via a coefficient of variation. While these methods do interrogate the entire waveform, 

they are effectively calculating a stride characteristic (in these cases joint co-ordination) 

that is then assessed across the trial in the same way as a characteristic such as stride 

time would be. 

Movement variability around a mean has also been used to describe waveform 

variability. For example, the intra-stroke variability of velocity around a mean for the 

stroke has been assessed in swimming (Dadashi et al., 2015). This method treats each 

waveform in isolation and the average of the variability of each isolated waveform is 

used to describe the overall variability of the trial. Though an effective method to 

determine the variability around an overall mean, it does not effectively discriminate 

between differing techniques used to achieve the same outcome. For instance, the 

position of the peak velocity from stroke to stroke will not cause a change in overall 

waveform variability as long as the magnitude of the peak is consistent. Methods of 

examining both temporal aspects and magnitude of a waveform offer greater insight 

into the overall consistency of a movement. 

Autocorrelation procedures have previously been used to describe variability within gait 

as measured by accelerometers (Moe-Nilssen & Helbostad, 2004). The unbiased 
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autocorrelation method is able to estimate curve similarity through calculating the sum 

of variables in a time series multiplied by variables at a phase shift equivalent to one 

stride. It has been shown to be able to discriminate between fit and frail adult 

populations purely on measurements from trunk mounted accelerometers (Moe-Nilssen 

& Helbostad, 2005). Methods to correct for different walking speeds using curve fitting 

to estimate variability at a common speed were demonstrated in the same study. The 

autocorrelation procedure is an effective method of estimating the repeatability of both 

stride waveform and stride characteristics of sequential steps. 

Non-linear approaches used by Stergiou et al. (2006), based on methods used in 

previous research into postural control (Harbourne & Stergiou, 2003) assess gait 

waveforms via the Lyapunov Exponent, which is the slope of the average logarithmic 

divergence of the trajectories from sequential trials in a three dimensional state space. 

In gait data, by taking the logarithmic difference at each time point from the previous 

waveform this method estimates how kinematics vary from one stride to the next given 

the three dimensional position of the previous stride, a particularly effective method of 

assessing sequential cyclic waveforms and movements when the position of the 

previous waveform influences the position of the subsequent waveform at the same 

point within the movement cycle. 

Another method of assessing the repeatability of a waveform within and between 

testing days is the adjusted co-efficient of multiple determination (Kadaba et al., 1989) 

which calculates the variance around the mean at each time point in a waveform 

divided by the variance of all points around the grand mean. An advantage of this 

method over the Lyapunov Exponent and autocorrelation procedures is that it does not 

require sequential waveforms to be used to determine the overall variability of the 

waveforms, and the similarity of a group of waveforms at different times within or even 

between testing sessions can be evaluated. 

The potential for combining waveforms taken from disparate sections of a test session 

is an important point when examining waveform variability in field based studies, in 

particular where data and waveforms are extracted from training and competitive game 

situations. In these circumstances, selecting a statistical tool that requires waveforms 

to be taken from a continuous time series would considerably reduce the potential 

number of waveforms available for analysis, particularly as there is the potential for 

gameplay requirements (such as moving the body to scan for the ball or other players) 

to contaminate an otherwise useable period of play. Consequently, the adjusted co-

efficient of multiple determination (and related adjusted co-efficient of multiple 
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correlation, which is the square root of the co-efficient of multiple determination) 

appears to be the most appropriate method of analysing waveform variability (in 

regards to both magnitude and temporal aspects of a waveform) in studies where data 

from training and games are used. Using this statistical tool will permit the exclusion of 

strides where gameplay influences have contaminated the movement without having to 

exclude the entire time series. In addition, it will allow combining the disparate time 

series from a particular game or training session into one homologous collection of 

waveforms. 

 Advantages and disadvantages of the Coefficient of Multiple 

Determination and Coefficient of Multiple Correlation 

The coefficient of multiple correlation (CMD) and related coefficient of multiple 

correlation (CMC) has previously been used to analyse many forms of cyclic kinematic 

and kinetic data that in recent times have ranged from an analysis of kinematic 

variability in gymnastics (Farana, Jandacka, & Irwin, 2013) to electromyographic, 

kinematic and kinetic measures of ice hockey skating (Buckeridge, LeVangie, Stetter, 

Nigg, & Nigg, 2015). The versatility of the CMC as a statistical measure of repeatability 

is demonstrated when comparing the methods used in these two studies. In the first, 

waveforms representing different trials in a gymnastic skill were assessed for 

repeatability. In the second, the variability of individual strokes representing a stroke 

during the acceleration and steady state phases within a continuous time series of 

skating on ice were analysed. Both studies used waveforms that were not adjacent, in 

Farana et al. (2013) due to the fact that only one waveform was generated per trial and 

in Buckeridge et al. (2015) because the desired comparison was between normalised 

waveforms generated during different phases of the continuous time series. 

Accelerometer data have been evaluated against motion capture data using the CMC 

(Mayagoitia, Nene, & Veltink, 2002). The authors compared shank angular acceleration 

and knee linear acceleration (both measured via accelerometers) to motion capture 

data measuring the same parameters. The CMC and the root of the mean of the 

squared differences (RMS) between waveforms were used as the statistical tools to 

compare waveform shapes. Results demonstrated that CMC and RMS both showed a 

high degree of agreement between waveforms and that both methods were 

comparable when assessing the similarity of waveform shape. Shank angular 

acceleration waveform comparisons returned CMC values of above 0.986 and RMS 

percentage errors of below 7%, while knee linear acceleration waveform comparisons 

returned CMC values between 0.935 and 0.962 and RMS percentage errors between 
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11.4% and 14.9%. This demonstrates the value of using CMC as a statistical tool to 

evaluate the repeatability of waveforms generated via accelerometers.  

In a meta-analysis of published gait studies with a focus on between-session 

repeatability and reliability, McGinley, Baker, Wolfe, and Morris (2009) found that CMC 

or CMD was used in 8 of the 23 identified studies. However, the authors raised 

concerns about the suitability of CMC in assessing repeatability in gait kinematics, 

largely due to the influence of joint range of motion on the magnitude of the CMC, and 

the adoption of arbitrary values for determining the acceptability of reliability indices. It 

was recommended that the development of minimum levels of detectable change 

(MDC) or minimal clinically important differences (MCID) be considered, as well as 

reporting absolute measures of measurement error in combination with the CMC. 

A similarly cautious view of the suitability of CMC in evaluating variability in gait was 

taken by Røislien, Skare, Opheim, and Rennie (2012) who artificially simulated 

variability around real gait data and investigated the effects on CMC measurements. 

They demonstrated several shortcomings in using CMC as a measure of curve 

similarity for kinematic gait data, with comparisons between joints affected by different 

ranges of motion, and common data reduction protocols (such as removing marker 

offsets) having excessive influence over CMC and resulting in overestimation of curve 

similarity. They conclude that CMC is not an objective statistical measure of curve 

similarity for kinematic gait data and advise against using it in its current form. 

Notwithstanding the concerns raised in the studies outlined previously, there are a 

number of reasons why the CMC can be an appropriate statistical tool. By limiting the 

waveform comparisons to longitudinal within-subject analyses, the error introduced 

when combining two normalised waveforms that represent different ranges of motion is 

reduced. There are still comparisons between x, y and z direction forces which have 

quite different ranges of motion, but if these axes are considered in isolation rather than 

in combination with each other, the risk of misinterpretation of results due to errors 

resulting from range of motion differences is minimised. In addition, if an individual’s 

longitudinal CMC is combined with an individual minimum detectable change (Haley & 

Fragala-Pinkham, 2006) as advocated by McGinley et al (2009), individual differences 

between athletes can be taken into account during analysis, as opposed to making 

assumptions (based on the group response) on what is a significant level of variability 

for that individual. 

Sampling rate has been shown to affect CMC results in gait, as higher sample rates 

have the possible effect of overestimating curve similarity due to the adjacent points 
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within a gait cycle being highly correlated (Røislien et al., 2012). The sample rate of 

accelerometers commonly contained within athlete monitoring devices is 100 Hz, which 

is low compared to the sampling rates used to investigate gait via trunk mounted 

accelerometers which range from 100 Hz (Buchheit et al., 2015; Lee, Mellifont, et al., 

2010) to 500 Hz (Wixted et al., 2010). The relatively low sample rate regularly used in 

athlete monitoring devices reduces the risk of overestimating curve similarity. 

 Summary 

In summary, the analysis of accelerometer data collected by personal GPS devices to 

investigate the quality of movement has largely been neglected. The analysis of these 

accelerometer data is an area that offers great possibilities for further investigation, 

particularly given the widespread use of devices that combine GPS and inertial sensors 

in elite sport. 

Much of the research into using accelerometry to investigate the quality of an athlete’s 

technique has been conducted in sports with a repeatable and cyclical action, such as 

rowing. For similar data to be extracted from team sport training and gameplay, 

matched sections of straight line high speed running need to be identified. Research 

has shown that this is very possible to do with the sensors contained within units 

combining GPS and inertial sensors. 

An effective method of analysing the quality of an athletic technique as it relates to the 

physical condition of the athlete is through investigating the variability of the action. 

Research has demonstrated the link between a change in the variability of an action 

(including variability in gait) and pathology (Hamill, Palmer, & van Emmerik, 2012; 

Hamill et al., 1999; Heiderscheit et al., 2002; Stergiou & Decker, 2011; Stergiou et al., 

2006). 

Consequently, an analysis tool that uses accelerometer and GPS data routinely 

collected in elite sport environments to provide information on the quality of athletic gait 

is not only possible but could provide vital information within applied settings on the 

physical condition of an athlete. The development of such an analysis tool, along with 

investigations as to its efficacy within applied settings will be the subject of subsequent 

chapters of this thesis. 
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 Development of Analysis tool 

 Introduction 

The development of an analysis tool to extract stride features from accelerometer and 

GPS data is a complex process made worthwhile by the detailed information on the 

physical condition of a subject that can be extracted from these data. Advances in 

wearable sensors have led to these data being routinely collected during training and 

competition in many team and individual sports. However, the complexities surrounding 

extraction of information on stride characteristics has generally precluded any thorough 

examination of these step by step accelerometer data. An analysis tool that quickly and 

efficiently extracts key features describing stride characteristics that can be used 

alongside other measures in the longitudinal monitoring of athlete condition could be a 

particularly valuable tool across many sports.  

A single game of Australian Rules Football has a duration of approximately two hours 

of actual playing time. As GPS is collected at 10 Hz and inertial sensor data is collected 

at 100 Hz, there is a considerable amount of data to be examined within each game. 

Consequently, the first stage in the development of the analysis tool is to reduce the 

amount of data to be examined by establishing parameters for identifying matched 

sections of running from the data. This is necessary not only for reducing the volume of 

data and steps to be analysed but also because using sections of data that are closely 

matched will minimise the stride variability due to activity and gameplay demands. The 

methods used to identify matched sections of activity utilised GPS data, examine 

direction (whether or not the athlete is running in a straight line) and velocity. Adjusting 

the upper and lower limit for valid velocities will substantially affect the amount of data 

extracted from the file as a whole, and examinations around the establishment of upper 

and lower limits for velocity will be presented in part 1 and part 4 of this chapter. 

Once matched sections have been identified, individual steps need to be extracted 

from the accelerometer data taken from the matched sections. This procedure includes 

identification of individual steps, identification of which foot those steps were taken on, 

removal of outliers, filtering steps for temporal characteristics and using an equal 

number of steps from each section within a game. Descriptions of these protocols and 

examinations around some procedures can be found in part 2 of this chapter. 

After extracting the step by step waveforms from the accelerometer data those step 

waveforms can be quantified and described statistically. This can be done in a number 

of ways, but the method chosen for this analysis tool is to assess the variability of the 
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step waveforms via the coefficient of multiple determination (CMD). This calculation 

has been previously used in gait data, though not in the specific context of measuring 

stride characteristics via a single tri-axial accelerometer mounted on the upper torso, 

as is the case here. It was chosen because it examines the waveform in its entirety 

rather than at specific points such as at footstrike or toe-off, and therefore accurate 

identification of specific points within the gait cycle will be less influential on the result 

of the analysis. Descriptions of how the CMD is calculated as well as the sensitivity of 

the calculations to pre-selection of the step waveforms, the amount of data available 

and how the CMD calculation can be applied to waveforms extracted from the same or 

different games can be found in parts 2, 3, 4 and 5 of this chapter. 

 General Aims 

1. Establish protocols for selection of matched sections of running for comparison 

a. Establish protocols for matching running velocity (sections 3.4 and 3.7) 

b. Establish protocols for matching activity - straight line running (section 

3.4) 

2. Establish protocols for extraction of  accelerometer waveforms of steps from 

matched sections 

a. Establish protocols for the classification of steps (section 3.5) 

b. Establish protocols for filtering steps and removal of outliers (section 

3.5) 

3. Establish methods to quantify and compare waveforms 

a. Describe methods for examining waveform variability within individual 

football games (section 3.5) 

b. Examine the CMD results when waveforms are excluded from the 

analysis to simulate games with less data available for analysis (section 

3.5) 

c. Perform simulations to examine the CMD results when the amount of 

data extracted from a single game is reduced (sections 3.6 and 3.7) 

d. Describe methods for examining waveform variability between games 

(section 3.8) 

 General Methods 

 Subjects 

Twenty two professional footballers competing in the Australian Football League (AFL) 

with an age range of 19 to 28 years old (mean age = 24, mean height = 1.87m, mean 
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mass = 86kg) were used in these studies. This subject cohort represents all athletes 

who participated in games for the Port Adelaide Football Club during the 2014 

Australian Football League season who provided informed consent for their data to be 

used in this study (details of which can be found in Appendix A). The Human Research 

Ethics Committee of Victoria University approved the use of human subjects.  There 

was no pre-selection for the position subjects played during a game, or for physical 

capacity to run at high speeds. Consequently, this cohort provides a comprehensive 

representation of a typical group of professional AFL footballers that can be found at 

any AFL club, and is consistent with previous studies encompassing a squad of AFL 

players (Bauer et al., 2015; Rogalski, Dawson, Heasman, & Gabbett, 2013). 

 Software 

The LabVIEW 2014 full development system was used to create the analysis tool. 

Further analysis of results output from the analysis tool was performed in Microsoft 

Excel™. 

 Data 

Data were collected from 17 competitive games during the 2014 AFL season. Each 

subject wore a S4 Minimaxx unit (Catapult Sports, Melbourne) fitted into a tight pocket 

immediately under the collar at the rear of their playing jersey. Subjects were assigned 

the same unit each game. The data collected and used in these studies were GPS 

(measured at 10 Hz) and tri-axial accelerometer (measured at 100 Hz). Additional data 

on the start and end time for quarters within the game, as well as periods spent on the 

interchange bench was available for some games. Not all games from the season were 

available for analysis as some games took place in a stadium with a roof, so GPS data 

were not available for those games. In addition, some data were lost and therefore 

unavailable when data were collated at the end of the season. Data were de-identified 

prior to being supplied by the Port Adelaide Football Club. 

Data from all available games (n=17) was collated and exported via the raw data 

export function within the Sprint software package (version 5.1, Catapult Sports, 

Melbourne), which is the native operating software for the S4 units. The sport selection 

setting in the software was set to “Team Sports: AFL”. GPS data (smooth speed, 

latitude and longitude) were exported at 10 Hz, while accelerometer data (forward, 

sideways and up) were exported separately at 100 Hz. The data was exported 

separately to aid control of memory allocation in the automated processor software. 
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 Axis Definitions 

For the purposes of this study the accelerations are defined as follows; 

 x axis accelerations will be anterior/posterior, with positive accelerations in the 

anterior direction (which in the data exported from the Sprint software package 

corresponds to the “forwards” accelerations). 

 y axis accelerations will be medial/lateral, with positive accelerations being 

towards the athletes right (which in the data exported from the Sprint software 

package corresponds to the “sideways” accelerations). 

 z axis accelerations will be accelerations perpendicular to the transverse plane 

of the athlete with positive accelerations signifying accelerations towards the 

top of the athlete’s head (which in the data exported from the Sprint software 

package corresponds to the “up” accelerations). 

 Selection of Variables for Analysis 

The overall goal of the analysis tool was to quickly and efficiently extract descriptions of 

an athlete’s stride characteristics from normal training and gameplay within an elite 

team sport environment. An important element of this was to be able to perform this 

analysis without any additional sensors to the ones normally used in elite sport 

environments, and without the need for additional tasks during training or games (such 

as pre-defined pattern runs), thereby maximising the possibilities that this analysis 

would be adopted in environment that is commonly resistant to any extra requirements 

for athlete testing. Consequently, the 100 Hz tri-axial accelerometer data collected by 

personal GPS devices that are commonly worn by elite athletes (particularly team sport 

athletes) were used. As the location of the GPS device was on the upper back (to 

optimise the GPS signal strength whilst minimising the risk of impact to the unit), the tri-

axial accelerometer was not in a position that is commonly used for gait analysis. 

Although the position of the accelerometer may not be in the optimal position for gait 

analysis, have been some studies which demonstrated that it is possible to determine 

temporal stride characteristics such as flight time and contact time when the 

accelerometer is placed on the upper back. Two notable studies that demonstrated the 

efficacy of using devices similar to a Minimaxx unit to calculate temporal stride 

characteristics (such as flight time and contact time) are Gaudino, Gaudino, Alberti, 

and Minetti (2013) and Buchheit et al. (2015). 

However, these temporal stride characteristics do not provide a comprehensive 

description of the stride. It is possible for two strides to have identical temporal 
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characteristics yet have a very different accelerometer waveform. There has also been 

research which suggests that temporal characteristics alone may not be enough to 

identify significant differences in an elite athlete’s stride characteristics when they are 

functionally overreached (Fuller et al., 2017). This and other research into the variability 

of ‘end point’ measures (metrics that describe the product of the movement) such as 

stride rate suggests that a more complete analysis of the full accelerometer waveform 

may provide a more detailed description of an individual’s physical state (Hamill et al., 

2012; Hausdorff, 2007; Preatoni et al., 2013). 

Measures of impulse taken from the step accelerometer waveform could also be 

considered as an effective means to describing the waveform. However, there are two 

important reasons why impulse was not used in this study. Firstly it was felt that the 

important aspect of this analysis was the comparison of the shape of the curve, and a 

single measure of impulse would not effectively discriminate between two waveforms. 

For instance, one waveform could have high acceleration in mid-stance and low 

acceleration at toe off but could record the same impulse as a curve with low 

acceleration during mid-stance and high acceleration at toe-off. Secondly, the large 

spike in acceleration at foot contact would cause any small difference between curves 

during this period to disproportionately affect the overall difference in impulse of the 

curves. 

One approach that has previously been used to indicate the existence (or otherwise) of 

a pathological state within individual subjects is through examining the coordinative 

variability of kinematic waveforms. This approach has been used in subjects with 

patellofemoral pain (Hamill et al., 2012; Hamill et al., 1999; Heiderscheit et al., 2002) 

and knee ligament injuries (Moraiti et al., 2007; Moraiti et al., 2010). In addition, the 

concept of an optimal level of coordinative variability in a subject’s gait that is indicative 

of a healthy state within an individual has been proposed (Hamill et al., 2012; Stergiou 

& Decker, 2011; Stergiou et al., 2006). 

There is also research which suggests that the movement variability, measured without 

conforming to accepted methods for examining coordinative variability such as angle-

angle or position-velocity plots as outlined by Preatoni et al. (2013), also has an optimal 

individual level specific to the movement in question (Bartlett, 2008; Bartlett et al., 

2007; Stergiou & Decker, 2011). 

An aim of this research is to design an analysis tool that does not require any additional 

instrumentation to that already has widespread use within applied settings, in particular 

within elite sport. Consequently, coordinative variability is not a metric that can be 
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readily examined in this environment as it cannot be measured via the instrumentation 

available. Instead an analysis of movement variability, examining the repeatability of 

stride trunk acceleration waveforms measured via the tri-axial accelerometer contained 

within the personal GPS device commonly worn by elite athletes will be used. 

By using optimal stride trunk acceleration variability of an individual as the primary 

variable to be analysed for the current study, there is the potential to identify individuals 

who have either a higher or lower amount of variability than is normal for them. The 

underlying cause for the disparity from their normal level of variability is likely to be very 

different depending on whether there shift is to the higher or lower side, and there is no 

indication whether the shift is an indicator or cause of a potentially pathological state. 

However, through indicating when an athlete is outside of their normal healthy state, 

accelerometer waveform variability can provide an insight into an athlete’s current 

physical condition. 

It is important to note here the distinction between the underlying metric describing the 

variability of the movement itself, and the metric used to determine whether or not an 

athlete has strayed from their ‘normal’ amount of variability for the movement in 

question, thus potentially indicating a pathological state. The former value, describing 

movement variability, can be any measure that examines how variable an individual’s 

kinematics are on a particular day. The latter value examines variance from a mean, 

providing context to the movement variability metric which can be used to investigate 

the underlying physical state of the athlete. Providing context to movement variability 

metrics is vital, particularly given that the magnitudes of such metrics are commonly 

specific to not only the individual but the action being examined, rendering a such 

metrics without context meaningless. 

A further advantage in using a metric to describe an individual’s variance as the 

primary variable to be analysed within the current study is that it is not dissimilar from 

methods regularly used within elite sporting environments to monitor and track athlete 

wellbeing over the course of a season, as per Rogalski et al. (2013). Consequently, the 

potential to transfer results and conclusions from this research into the applied setting 

is quite high. 

 Part 1 - Identification of matched sections of running 

Stride characteristics naturally vary with different gameplay demands. To identify 

gameplay and training situations where an individual’s stride characteristics have 

varied from what could be considered their normal, the selection of sections within the 
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match or training to be analysed must represent similar activities. This will minimise the 

influence of natural variation in stride characteristics during a game. In other words, the 

strides should be taken from similar situations to minimise the natural variability and 

maximise the variability due to factors we are interested in such as fatigue and injury, 

particularly given the random movement patterns characterising the gameplay data 

being used within this study. Athlete tracking devices incorporating GPS sensors 

provide an avenue to identify periods of similar movement. By identifying sections 

where the athlete has run in a straight line over a certain speed, the influence of the 

natural variation in stride characteristics due to gameplay demand can be minimised. 

The magnitude of ground reaction forces has been shown to increase as speed 

increases (Brughelli, Cronin, & Chaouachi, 2011), so it is expected that running at 

higher speeds will exacerbate any between-stride variability effects. Additionally, 

variability in several gait variables increases as speed increases past an individual’s 

preferred running speed (Jordan, Challis, Cusumano, & Newell, 2009). Though an 

increase in variability with running speed would imply a need to compare strides within 

a narrow a range of speeds, this will compromise the practical application of this 

analysis tool by reducing both the total number of sections that satisfy the rules for 

inclusion in the analysis and the length of those sections. 

 Aims 

 Examine the effects of modifying the maximum change in GPS heading used to 

define running in a straight line on the average amount of straight line running 

identified per game 

 Examine the effect of reducing the upper velocity limit on the average amount of 

straight line high speed running that is identified per game 

 Examine the average amount of straight line running at high speed that is 

identified per subject 

 Methods 

 Subjects 

A subset of 18 participants from the original cohort of 22 was used in this study. 

Participants who did not have at least one game where information on playing time 

(including time spent on the interchange bench), GPS data and inertial sensor data 

available were excluded from this study. 
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 Data analysis 

Data from games during the 2014 AFL season were analysed to examine the effects of 

altering various parameters used to identify periods of straight line high speed (SLHS) 

running. Player tracking data (both GPS and inertial sensor) captured with a Catapult 

S4 device (Catapult Sports, Melbourne) and information on playing time (taking into 

account both the length of the periods within the game and, as players are regularly 

interchanged during a game of AFL football, the time spent on the interchange bench) 

were collated. Games were excluded if either playing time, GPS data or inertial sensor 

data were not present. 

 Straight line running 

Latitude and Longitude positional data were examined point by point to identify periods 
of straight line running using the following procedure. 

1. The instantaneous bearing was calculated for each point using the latitude and 

longitude between the current point (the ‘start point’)and the point 1.5 s later 

(the ‘end point’) 

a. Instantaneous bearing was calculated using Equation 3-1 

Equation 3-1 Equation used to calculate instantaneous bearing from latitude and longitude 

𝜃 = 𝑎𝑡𝑎𝑛2( 𝑠𝑖𝑛∆𝜆 ∗  𝑐𝑜𝑠𝜑2 , 𝑐𝑜𝑠𝜑1  ∗  𝑠𝑖𝑛𝜑2   −  𝑠𝑖𝑛𝜑1  ∗  𝑐𝑜𝑠𝜑2  ∗  𝑐𝑜𝑠∆𝜆) 

𝑤ℎ𝑒𝑟𝑒 𝜑1, 𝜆1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡, 𝜑2, 𝜆2 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 ∆𝜆 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 

2. The bearing change was calculated by determining the difference in the 

instantaneous bearing at the current point and the point 1.5 s later 

3. If the average bearing change during the subsequent 5 s was between ±0.05 

rad then that point was considered to be a valid straight line running point 

Varying the time period used to examine average bearing change (initially set at 5 s) 

and the window of valid angles (initially set at ±0.05 rad) will affect the amount of 

straight line running points identified. To examine the effects of altering these two 

variables on the total SLHS time a number of iterations were run, progressively 

reducing both the time period and window of angles (but leaving the velocity range 

constant at 4.17 m/s to 6.94 m/s). Tables 3.1 and 3.2 list the options examined for time 

periods and angle windows. The mean result for each replication was determined, as 

well as the minimum individual subject mean for each replication when the full data set 

was divided into individual subjects. These replications were further examined to 

investigate whether reducing the time period elicited a similar reduction in SLHS time 

across the angle options. This was done for each angle option by dividing the average 
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SLHS time at each time option by the SLHS time at the 10 s option. A similar analysis 

was performed to investigate whether reducing the angle window elicited a similar 

reduction in SLHS time across the time options. 

Table 3.1 Time period options examined 

Option 
Time Period 

(s) 

1 10 

2 7.5 

3 5 

4 2.5 
 

Table 3.2 Angle window options examined 

 Angles 

Option radians Degrees 

1 ±0.1 ±5.73 

2 ±0.075 ±4.30 

3 ±0.05 ±2.86 

4 ±0.025 ±1.43 
 

 High Speed Running 

Periods of high speed running were identified by examining the subject’s velocity point 

by point. Velocity was required to be over 4.17 m/s (15 km/h) to be considered high 

speed. This speed was chosen as it has been used in previous research to represent 

the lower velocity limit for high speed running in Australian Rules Football (Brewer et 

al., 2010). The upper threshold velocity was progressively reduced to examine the 

effect of narrowing the window of valid velocities on total high speed running instances 

and time. Although an upper limit of 11.11 m/s is highly unlikely to be achieved, this 

value was included as it would include all activities over the lower limit without including 

potential erroneous ‘spikes’ in the velocity data. Table 3.3 lists the upper velocities 

examined. 
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Table 3.3 List of upper velocities examined in section 3.4 

 Upper Limit 

Condition m/s km/h 

1 5.56 20 

2 6.25 22.5 

3 6.94 25 

4 7.64 27.5 

5 8.33 30 

6 11.11 40 
 

To be considered a valid SLHS section, both straight line and high speed rules need to 

be satisfied for at least 5 s. The number of valid SLHS sections and total SLHS time 

were calculated across all upper velocity conditions listed in Table 3.3 with straight line 

running parameters fixed at 5 s and ±0.05 rad. These straight line variables were 

selected because they allow some flexibility in the running direction. This flexibility 

permits small deviations from a perfectly straight line due to measurement error from 

the GPS and actual deviations in running direction during a straight line running 

section. The total number of SLHS sections and total SLHS time across all upper 

velocity limit conditions was calculated for each game and subject. The results from 

each game and subject were further analysed by calculating the time spent in SLHS at 

each speed condition as a percentage of the no upper velocity limit condition. Finally, 

each game and subject were further analysed by calculating the time spent in SLHS at 

each speed condition as a percentage of the total time spent on the field. 

 Results 

Mean SLHS time per game across the four time options and four angle window options 

is shown in Table 3.4. Minimum individual subject mean across the four time options 

and four angle window options is shown in Table 3.5. Further analysis of the overall 

mean (according to the procedures outlined in 3.4.2.2.1) can be found in Tables 3.6 

and 3.7. It is pertinent to note that when SLHS time by minimum straight line time is 

expressed as a percentage of the ±0.1 angle condition, there is a consistent reduction 

as the angle window is narrowed (Table 3.6). Similarly, when SLHS time by angle 

window condition is expressed as a percentage of the 2.5 s minimum straight line time 

option, there is a consistent reduction as the minimum straight line time is reduced. 

(Table 3.7). 
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Table 3.4 Mean SLHS time per game across options for minimum time and maximum angle deviation 

 Angle Window (rad) 

Minimum Time ±0.025 ±0.05 ±0.075 ±0.1 

2.5 207.0 263.3 304.8 340.2 

5 150.7 193.4 222.0 241.6 

7.5 95.1 119.9 135.8 146.9 

10 52.5 64.8 73.5 79.3 
 

Table 3.5 Minimum subject season mean SLHS time per game across options for minimum time and 
maximum angle deviation 

 Angle Window (rad) 

Minimum Time ±0.025 ±0.05 ±0.075 ±0.1 

2.5 64.0 91.6 103.9 125.1 

5 11.2 51.7 61.1 67.0 

7.5 7.6 7.8 8.0 8.2 

10 0.0 0.0 0.0 0.0 
 

Table 3.6 Mean SLHS time for minimum straight line time and maximum angle deviation expressed as a 
percentage of the ±0.1 rad angle condition 

 Angle Window (rad) 

Minimum Time ±0.025 ±0.05 ±0.075 ±0.1 

2.5 60.8% 77.4% 89.6% 100.0% 

5 62.4% 80.0% 91.9% 100.0% 

7.5 64.7% 81.6% 92.4% 100.0% 

10 66.1% 81.7% 92.7% 100.0% 
 

Table 3.7 Mean SLHS time for minimum straight line time and maximum angle deviation expressed as a 
percentage of the 2.5 s time condition 

 Angle Window (rad) 

Minimum Time ±0.025 ±0.05 ±0.075 ±0.1 

2.5 100.0% 100.0% 100.0% 100.0% 

5 72.8% 73.4% 72.8% 71.0% 

7.5 45.9% 45.5% 44.5% 43.2% 

10 25.3% 24.6% 24.1% 23.3% 
 

Results from the analysis of how changing the upper velocity limit affects the number of 

SLHS sections identified per game as well as the mean SLHS time per game are found 

in Table 3.8. Further analysis to examine the reduction in mean SLHS time (by 

expressing the mean SLHS time as a percentage of the no upper limit condition) and 

the mean SLHS time by upper limit condition as a percentage of time on field can be 

found in Tables 3.9 and 3.10 respectively. It is worth noting the wide range of results 
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within upper velocity limit conditions (as seen by the differential between maximum and 

minimum values). The range of individual subject results can also be seen in Figure 3.1 

which shows the mean SLHS time broken down into upper velocity limit conditions. 

Table 3.8 Mean number of SLHS sections and average SLHS time with varying upper velocity limits (angle 
window set at ±0.05) 

Upper 
Velocity Limit 
(m/s) 

Number of SLHS Sections Average SLHS Time (s) 

Mean Maximum Minimum Mean Maximum Minimum 

11.11 40.7 65 23 252 402 145 

8.33 39.9 63 23 247 389 145 

7.64 36.8 56 22 229 350 135 

6.94 30.9 45 17 194 286 107 

6.25 22.0 30 13 140 193 79 

5.56 11.4 17 4 73 109 28 
 

Table 3.9 Mean SLHS time expressed as a percentage of the no upper limit condition 

Upper Velocity 
Limit (m/s) Mean Maximum Minimum 

11.11 100.0% 100.0% 100.0% 

8.33 98.2% 100.0% 94.8% 

7.64 91.1% 100.0% 83.3% 

6.94 76.8% 95.0% 64.5% 

6.25 55.3% 85.8% 42.2% 

5.56 28.4% 55.4% 15.4% 
 

Table 3.10 Mean of SLHS time expressed as a percentage of time on the field 

Upper Velocity 
Limit (m/s) Mean Maximum Minimum 

11.11 4.23% 7.04% 2.14% 

8.33 4.14% 6.81% 2.12% 

7.64 3.83% 6.12% 1.96% 

6.94 3.21% 5.00% 1.55% 

6.25 2.30% 3.50% 1.14% 

5.56 1.17% 1.77% 0.40% 
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Figure 3-1 Graph displaying subject by subject mean time in SLHS at different upper velocity limits 

 

 Discussion 

As angle window is reduced, the mean SLHS time also reduces. Table 3.5 shows that 

when this reduction is expressed as a percentage of the maximum angle window 

condition (±0.1 rad) for the particular minimum straight line time, the reduction in mean 

SLHS time is consistent across minimum time conditions. Table 3.6 shows that a 

similar pattern is found in when the mean SLHS time is expressed as a percentage of 

the minimum straight line time condition (2.5 s). Unsurprisingly, this demonstrates that 

the most amount of SLHS time results from a wide angle window and short minimum 

time of straight line running. 

Ideally, straight line running sections would comprise small deviations in bearing (which 

would equate to a narrow angle window), and have a long minimum duration. There 

needs therefore to be some compromise to allow sufficient SLHS time to be identified 

within games. A minimum straight line time of 2.5 s will potentially include sections of 

only 10.4 m in length. Increasing the minimum time to 5 s will increase the minimum 

possible section length to 20.8 m while reducing the SLHS time by approximately 27%. 

Reducing the angle window to the narrowest setting (±0.025 rad) will reduce the SLHS 

time by approximately 37.5%. The next widest angle window (±0.05 rad) will only 

reduce the SLHS time by approximately 20%. The ideal settings of the narrowest angle 
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window (±0.025) and longest minimum time (10 s) provide an average of 79.3 s of 

SLHS time which corresponds to approximately 130 stride waveforms per game 

available for further analysis (based on a mean step time of 0.3 s). Though it could be 

expected that this number of waveforms would provide adequate opportunity for further 

analysis, it is the average of all subjects so there will be some subjects with 

considerably less strides available on average per game. An analysis of the individual 

subject results was conducted (Table 3.10) and this analysis revealed that the 

minimum subject mean for SLHS time with an angle window of ±0.025 rad and 

minimum straight line time of 10 s was 0 s, meaning that these settings are not 

appropriate for all subjects. Increasing the minimum time to 5 s and widening the angle 

window to ±0.05 rad provided an average of 193.4 s of SLHS running with a minimum 

subject mean of 51.7 s (approximately 85 strides). Therefore, a minimum straight line 

time of 5 s and angle window of ±0.05 seems to provide an acceptable compromise 

between the ideal parameters and the need to provide enough waveforms for further 

analysis. 

There is a progressive reduction in the number of SLHS sections as the upper velocity 

limit is reduced. This is to be expected as progressively more efforts that quickly 

transition from entering the lower limit to exiting the upper limit (which are periods of 

high acceleration) will be discarded as the upper velocity limit is reduced. Additionally, 

time spent over the upper velocity limit will be removed from the analysis which will 

lead to a further reduction in total SLHS time. The smallest reduction occurs between 

11.11 m/s and 8.33 m/s, presumably due to the small amount of time spent over 9.03 

m/s during a game and the difficulty most subjects will have in reaching speeds over 

8.33 m/s. Subsequent steps down in upper velocity limit show progressive increases in 

the difference in both mean SLHS time and sections. Mean SLHS time reduces by 5 s 

between the top two upper speed limit conditions, then 18 s between 8.33 m/s and 7.64 

m/s conditions, 35 s between 7.64 m/s and 6.94 m/s conditions, 54 s between 6.94 m/s 

and 6.25 m/s conditions, and 67 s between 6.25 m/s and 5.56 m/s conditions. Table 

3.8 shows that at an upper velocity limit of 6.94 m/s, over 75% of the mean SLHS time 

(as a percentage of the no upper limit condition) is retained (totalling 194 s). 

In the context of analysing stride variability, narrowing the velocity window for 

identifying valid steps is desirable. Previous research has shown an increase in stride 

variability as velocity increases past a self-selected running speed (Jordan et al., 

2009). The implications of this research is that as the upper velocity limit is decreased 

there is more likelihood of capturing strides with similar underlying characteristics for 

inclusion in the analysis. Furthermore, as it would be expected that the stride 
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characteristics of an acceleration stride as opposed to a steady state running stride will 

be different, it would also be desirable to limit the possibility of sections of high 

acceleration being grouped together with sections of steady state running. This can 

also be achieved by narrowing the velocity window as sections where the subject 

crosses the lower speed threshold and then quickly transitions past the upper speed 

threshold will be excluded due not spending the required time within the high speed 

window. If high speed or high acceleration strides were grouped together with lower 

speed steady state strides in the final analysis of stride variability then the amount of 

variability would be increased not due to any change in the biomechanics of the action 

but rather the fact that different actions were analysed as if they were the same action. 

Though identifying variability due to high speed running or periods of high acceleration 

is a valid method of assessing an athlete’s physical condition, there are other perhaps 

more effective methods (such as simply identifying the amount of high speed or high 

acceleration events) rather than assessing the variability of stride waveforms. 

Consequently, for the sole purpose of assessing the variability of stride waveforms, it 

would be desirable to limit the high speed and high acceleration sections within the 

final analysis. 

Although mean SLHS time is a good indicator of the general effect of reducing the 

upper velocity limit, the worst case scenario is also very important. This is because the 

effectiveness of the analysis tool as a practical method of assessing athlete condition 

will be limited if it can only be applied to a portion of the athlete cohort. Subject by 

subject results show variations in both total SLHS time and the proportion of time at 

each upper velocity limit condition (Figure 3.1). The worst case scenario can also be 

seen in Tables 3.8, 3.9 and 3.10, where the minimum case is shown against all upper 

velocity conditions. The differential between subjects is likely to be due to gameplay 

demands of positions, the physical capacities of the subjects being examined and 

perhaps their game sense or ability to read the play. It is possible that these factors are 

linked in that players who have less physical capacity to reach high velocity will 

probably be playing in positions that require less high velocity running unless an 

enhanced game sense can compensate for their lack of physical ability. 

These results have important implications in the development of the overall analysis 

tool. It is likely that subjects with a reduced capacity to reach high speed running 

velocities (either through reduced physical capacity or through gameplay demands) will 

have much less valid SLHS time where valid strides can be extracted for analysis. 

Conversely, subjects with sufficient capacity to reach high velocities who play in 

positions that allow them to reach those speeds frequently during games will have 
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more SLHS sections and time to extract a high number of strides for analysis. For 

those subjects it would be desirable to narrow the gap between upper and lower 

velocity limits. Identification of the ideal upper velocity limit will therefore depend on the 

sensitivity of the final stride variability calculation to the different scenarios and how the 

calculated waveform variability is affected by different amounts of valid data available 

to be analysed. As this determination requires the development of the remainder of the 

analysis tool to generate the results, it will be done as the final stage in the 

development process (section 3.7 within this chapter). Prior to this analysis and for the 

purposes of further development of the analysis tool, a fixed lower limit of 4.17m/s 

(15km/h) and upper limit of 6.94m/s (25km/h) will be used. 

 Conclusion 

Narrowing the angle window and reducing the minimum straight line time will decrease 

the number of waveforms available for further analysis. Settings of ±0.05 rad for 

maximum deviation and 5 s for minimum straight line time provide an acceptable 

compromise between ideal settings and the need to provide sufficient waveforms for 

further analysis. 

Reducing the upper velocity limit also reduces the mean SLHS time and number of 

SLHS sections identified per game, with small reductions from the no upper limit case 

at 8.33 m/s and 7.64 m/s and larger reductions at other conditions. There were large 

variations between subjects, most likely due to limits to the physical capacity of 

subjects to reach high speeds as well as gameplay requirements at different positions 

on the field. Final selection of the ideal upper velocity limit requires an examination of 

the effect of reducing the available waveforms on the measured waveform variability 

which will be discussed later in this chapter (section 3.7 – Part 4). 

Overall, the number of steps identified through this process should provide sufficient 

data for further statistical analysis, a process that will be described in the next section 

of this chapter (section 3.5 – Part 2). In addition, the sensitivity of the statistical analysis 

to greater or fewer steps being available for analysis will be investigated later in this 

chapter (section 3.6 – Part 3). 

 Part 2 - Identification of matched steps and calculation of the 

within-day Coefficient of Multiple Determination 

Identifying sections of SLHS running through examination of 10 Hz GPS data allows 

chunks of data containing strides of similar length and function to be extracted for 

further analysis. Accelerometer data corresponding to those sections can be analysed 
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with the goal of identifying matched steps that can then be used for the subsequent 

variability analysis. This is an extremely important element of the procedure as the 

analysis will be compromised (and variability artificially increased) if strides of differing 

length and function are grouped together. By extracting strides matched for general 

pattern via a standardised procedure, stride variability as a function of the process and 

method will be reduced. 

There are a number of procedures that could be used to exclude waveforms in order to 

increase the homogeneity of stride waveforms extracted from the SLHS segments. Of 

particular importance are the procedures used to include strides based on matched 

stride time and other temporal parameters. This part will describe the effect on the 

number of valid strides identified following various refinement processes. In addition, 

the effect on the calculated within-day CMD for the different methods used to filter for 

peak z-axis accelerations will also be examined. 

 Aims 

 Describe the processes used to extract step accelerometer waveforms from the 

SLHS section and determine the average number of steps available for further 

analysis 

 Examine the effects on the number of strides identified of excluding waveforms 

based on temporal characteristics 

 Describe the procedures used to calculate within-day CMD and examine the 

effect on the within-day CMD of excluding waveforms based on temporal 

characteristics 

 Identify ideal parameters for selection of stride waveforms 

 Methods 

 Subjects 

The full cohort of 22 participants was used in this study. 

 Procedure 

 Identification of strides within SLHS section 

Accelerometer waveforms are often used to identify footstrikes in normal gait. As each 

foot strikes the ground there is a discernible spike in acceleration that can be used to 

identify the beginning of a stride. The procedure used in this study to determine the 

general position of the footstrike of each step was to sum the absolute value of 

accelerations (measured in g) on all 3 axes at each time point then identifying peaks 
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above 4. The sum of all three axes were used because the spike in acceleration at 

footstrike occurs in all three axes, and by summing the three together there is greater 

chance of identifying a peak event over a threshold. A sum function was used in 

preference to resolving the norm of all three accelerations to reduce the computational 

load of this process. These peaks were used to define the general point where 

footstrikes occurred. To avoid multiple identification of peaks from the same step 

(which may occur if there is an acceleration in one axis that is sufficient to produce a 

second peak), if multiple peaks occurred within 150 ms it is assumed that the first strike 

is the actual footstrike and any subsequent peaks within the next 150 ms are 

discarded. There is also a maximum stride length rule used, in that if the gap between 

three consecutive peaks is greater than 750 ms then the section bounded by the upper 

and lower peak will be discarded. This is to avoid a footstrike being missed (which will 

happen if it does not cross the 4g threshold) and an unusually long stride being 

extracted by effectively including a step from the next stride in the previous stride’s 

data. 

The general position of the footstrike is then used to extract step accelerations for 

further refinement. To standardise the specific position of the footstrike thus allowing 

for consistent comparison across steps, the position of maximum z axis acceleration is 

determined for each step. This point is then used as the specific position of footstrike 

for each step. The z-axis was used in isolation for this procedure because this axis has 

the most consistent waveform pattern from step to step as well as the most distinct 

peak in acceleration at footstrike. 

Step by step accelerations are finally extracted by clipping the acceleration data from 

11ms before the footstrike that marks the beginning of the step to 110 ms before the 

footstrike that marks the beginning of the next step (at 110 ms it would be expected 

that the subject would be in the flight phase of a stride). This was done to allow for 

analysis of movement prior to footstrike that can be used to identify which foot was 

used for the step and whether the z-axis waveform immediately prior to footstrike is 

similar to the average waveform from that SLHS section. 

 Preparation of step by step data 

The next stage of the data preparation procedure is to perform a temporal 

normalisation (to 50 points) for each step. The data were normalised to 50 points 

(rather than 100 points) because for the estimated mean step time of 300 ms (see 

section 3.5.2.2.1 page 29), 40% of the data would be estimated when normalising to 50 

points as opposed to 70% when normalising to 100 points. Consequently it was felt that 
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50 was a better number to normalise to. In addition, this is effectively no different to 

normalising the data to 100% of the stride time (ie. a step on the left and right foot), a 

technique used in many gait studies such as Bergamini et al. (2012) whose data was 

collected via trunk mounted inertial sensors, a very similar collection method to the 

present study. 

After the normalisation process, a determination of which foot each step represents is 

made, and to steps are removed that are clearly different from an individual’s standard 

waveform pattern and were likely to have been affected by some external influence 

(such as gameplay demands or physical contact with another player). Finally, steps are 

matched for the point of maximum z axis acceleration to provide multiple data sets for 

analysis, an unfiltered set and a set that has been filtered for matched maximum z axis 

accelerations. 

 Normalisation 

Step data was normalised to 50 data points using a quintic spline function in the 

Labview software development system. A quintic spline was selected due to its 

superior ability to produce accurate acceleration results towards the endpoints of the 

data (Knudson & Bahamonde, 2001). In general, strides above 4.17 m/s will be 300 ms 

long (30 data points at 100 Hz), which means the time base of most strides will be 

stretched by a factor of around 1.67. 

 Determination of Steps on Left and Right Foot 

Accelerations in the y-axis were used to discriminate between left and right foot strikes 

due to the position of footstrike being more lateral than the position of the 

accelerometer (which is near the sagittal axis of the body). To determine which foot 

struck the ground in any individual step, the first ten data points in the y axis were 

examined and if at least six out of the ten were positive then the step is assigned to the 

left side, and if at least six of the ten were negative then the step is assigned to the 

right side. A graphical representation of these patterns can be found in Figure 3-2. 

 

Figure 3-2 Step by step accelerometer waveforms in the y-axis 
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 Filtering waveforms for torso orientation and function of stride 

For each SLHS section, the mean and standard deviation of the z-axis accelerations 

from point 5 to 15 of the normalised step data was determined. Any steps whose mean 

z acceleration from point 5 to 15 falls over 2 standard deviations outside the overall 

average z acceleration were discarded. This was done as it is likely there were steps 

where the athlete has altered their torso orientation for gameplay requirements (such 

as to look what is happening in the play behind them), and those strides should not be 

included in the analysis as they do not represent the normal running style of the athlete 

but rather have had external factors influence the accelerometer waveform. 

 Step Variability analysis via the Coefficient of Multiple Determination 

Coefficient of multiple determination (CMD) was calculated as per Kabada et al 

(Kadaba et al., 1989). There are three calculations of variability that can be performed, 

one to examine the waveform variability within a specific day, one to examine the 

waveform variability within like sections of SLHS in a game, another to examine the 

variability between sections of SLHS in a game. In all calculations, higher results 

indicate less waveform variability. 

The equation for the within-section CMD (described by Kadaba et al as within-day 

CMD as their analysis was on gait data collected across multiple days) is shown in 

Equations 3-2, 3-3 and 3-4. 

Equation 3-2 

𝑅𝑎
2 =  1 − 

∑ ∑ ∑ (𝑌𝑖𝑗𝑡 − �̅�𝑖𝑡)2 𝑀𝑇(𝑁 − 1)⁄𝑇
𝑡=1

𝑁
𝑗=1

𝑀
𝑖=1

∑ ∑ ∑ (𝑌𝑖𝑗𝑡 − �̅�𝑖)
2 𝑀(𝑁𝑇 − 1)⁄𝑇

𝑡=1
𝑁
𝑗=1

𝑀
𝑖=1

  

Where 𝑀 refers to the total number of sections, 𝑁 refers to the total number of 

waveforms in each section and 𝑇 refers to the total time of each waveform (as each 

waveform is normalised to 50 points, this value is fixed at 50). 𝑌𝑖𝑗𝑡 is the tth time point of 

the jth waveform in the ith section. 

�̅�𝑖𝑡 is the average at time point t in the ith section, where 

Equation 3-3 

�̅�𝑖𝑡 =
1

𝑁
∑ 𝑌𝑖𝑗𝑡

𝑁

𝑗=1
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�̅�𝑖 is the grand mean in the ith section and is given by  

Equation 3-4 

�̅�𝑖 =
1

𝑁𝑇
∑  ∑ 𝑌𝑖𝑗𝑡

𝑇

𝑡=1

𝑁

𝑗=1

 

This equation can be used in two ways, with the only real difference being what is 

considered a ‘section’. If a section refers to a valid SLHS incident, then T will be equal 

to the number of sections identified in the game (which will be referred to as a within-

section CMD). If a section refers to the game as a whole, then T will be one (as in only 

one section for the whole game). This will be referred to as a within-day CMD. In 

practical terms, the within-section CMD will analyse the variability of waveforms within 

each SLHS section (comparing the shape of those waveforms to the other waveforms 

found in the immediate area, within the same SLHS section). Those results are then 

averaged to provide a single number describing waveform variability. The within-day 

CMD will compare waveforms to all valid waveforms recorded from that day to provide 

a single number describing waveform variability. 

The equation for between-section CMD (described by Kadaba et al. as between-day 

CMD) is shown in Equation 3-5, 3-6 and 3-7. 

Equation 3-5 

𝑅𝑎
2 =  1 − 

∑ ∑ ∑ (𝑌𝑖𝑗𝑡 − �̅�𝑡)2 𝑇(𝑀𝑁 − 1)⁄𝑇
𝑡=1

𝑁
𝑗=1

𝑀
𝑖=1

∑ ∑ ∑ (𝑌𝑖𝑗𝑡 − �̅�)2 (𝑀𝑁𝑇 − 1)⁄𝑇
𝑡=1

𝑁
𝑗=1

𝑀
𝑖=1

  

�̅�𝑡 is the average at time point t over NM waveforms, 

Equation 3-6 

�̅�𝑡 =
1

𝑀𝑁
∑ ∑ 𝑌𝑖𝑗𝑡

𝑁

𝑗=1

𝑀

𝑖=1

 

�̅�𝑖 is the grand mean in the ith section and is given by  

Equation 3-7 

�̅� =
1

𝑀𝑁𝑇
∑ ∑  ∑ 𝑌𝑖𝑗𝑡

𝑇

𝑡=1

𝑁

𝑗=1

𝑀

𝑖=1

 

The between-section CMD is essentially determining the difference in the mean shape 

of the waveforms between sections within a day. This offers some valuable information 

relating to how stride characteristics are changing over the course of the game. 

Although previous research has cautioned against isolated interpretation of raw CMD 

results as high or low (McGinley et al., 2009), as a general guide Garofalo et al. (2009) 
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described moderate associations between waveforms as having a CMD of between 

0.42 and 0.56, good association as between 0.56 and 0.72, very good associations 

between 0.72 and 0.9, and excellent associations between 0.9 and 1.  

 Calculation of season averages 

Results for number of strides, number of steps, number of SLHS sections and within-

day CMD were generated for each game that contained valid data for each subject. 

These individual games are then averaged to provide a season mean for each subject. 

The season averages for all subjects are then averaged once again to form a group 

mean. Both the group mean and the individual season mean are used in the 

comparison of various inclusion/exclusion strategies. 

 Inclusion and exclusion of steps based on temporal parameters 

Steps with differing temporal characteristics were identified by the position of the peak 

z-axis acceleration. Figure 3-3 displays a graphical representation of the z-axis 

acceleration. There is a clear peak in acceleration that is in a relatively consistent place 

in the waveform. The position of this peak is used to select steps with similar temporal 

characteristics. 

 

Figure 3-3 z-axis acceleration waveform 

The subset of step waveforms that was formed after pre-selecting for temporal 

characteristics comprised steps whose peak z-axis acceleration was equal to the 

median peak z-axis acceleration of the entire set of steps. The results from this sub-set 

of steps were compared to the results generated when all steps were included in the 

analysis. 

 Calculation of mean step time 

For each game where a subject had valid data, steps were collated on both side 1 and 

side 2. The mean and standard deviation of the steps were then calculated for that 

game. Season averages for mean and standard deviation of step time for each subject 

were then calculated by averaging the results from the games. 
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 Results 

The group mean for the number of strides identified and the percent excluded for 

exceeding the stride length limit of 750 ms (as outlined in 3.5.2.2.1), along with the 

minimum and maximum individual season average is shown in Table 3-11. Of 

particular note is the minimum individual season average for total strides (107 strides). 

The group average for valid steps in each game after inclusion and exclusion of 

waveforms according to the processes outlined in 3.5.2.2.2.2 and 3.5.2.2.2.3, along 

with the number remaining after exclusion and inclusion due to temporal parameters 

described in 3.5.2.2.5 are displayed in Table 3-12. The individual subject season mean 

for total steps, valid steps and steps matched for temporal parameters are found in 

Table 3.13 and Figure 3-4. Also found in Table 3-13 are the maximum and minimum 

steps found in games for individuals. Of particular note in these results is the small 

number of steps found in some games for some individual subjects. For example, 

subjects 15 and 16 average only 15 valid steps per game on side 1, which are reduced 

further when the steps are matched for temporal parameters. 

Table 3.11 Group Mean, Maximum and Minimum Strides identified and percent excluded 

 

Total 
Strides 

Percentage of 
Strides Excluded 

Total 
Sections 

Mean 252 9.0% 30.3 

Maximum 380 18.3% 43.6 

Minimum 126 6.4% 16.1 
 

Table 3.12 Group mean total steps, valid steps and steps matched for temporal parameters 

 Side 1 Side 2 

Total Steps 204 213 

Valid Steps 86 89 
Steps Matched for 
Temporal Parameters 

62 62 
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Table 3.13 Individual season mean for total steps, valid steps and steps matched for temporal parameters 
(by side) 

 Side 1 Side 2 

Subject  
Total 
Steps 

Valid 
Steps 

Steps Matched for 
Temporal 

Parameters 

Total 
Steps 

Valid 
Steps 

Steps Matched for 
Temporal 

Parameters 

1 221 104 73 229 107 70 

2 165 75 56 175 93 66 

3 226 102 75 226 70 46 

4 157 91 70 158 88 63 

5 204 84 60 206 65 48 

6 335 135 97 345 121 82 

7 247 111 79 253 104 77 

8 129 55 41 117 42 32 

9 306 109 83 317 137 94 

10 149 65 50 147 60 42 

11 262 108 74 278 118 80 

12 198 102 71 208 95 64 

13 192 81 55 203 98 65 

14 187 84 59 191 99 70 

15 90 34 27 99 33 24 

16 111 33 25 119 44 33 

17 288 129 87 309 115 71 

18 221 97 67 236 71 50 

19 264 108 75 269 135 93 

20 237 100 69 257 104 73 

21 119 46 32 123 48 32 

22 200 58 43 240 87 60 
 

 

Figure 3-4 Individual season mean for total steps, valid steps and steps matched for temporal parameters 
(by side) 
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The group mean within-day CMD results with and without inclusion/exclusion for 

temporal parameters is shown in Table 3-14. These results are also displayed 

graphically in Figure 3-5. Of particular note is the increase across all axes on both 

sides when the exclusion criteria are applied. 

Table 3.14 Group mean within-day CMD results for all axes and conditions 

  Side 1 Side 2 

    z-axis y-axis x-axis z-axis y-axis x-axis 

All Steps 
Mean 0.692 0.372 0.548 0.701 0.399 0.551 

St Dev 0.040 0.088 0.073 0.037 0.087 0.070 

Matched 
Temporal 

Mean 0.817 0.476 0.685 0.825 0.514 0.700 

St Dev 0.039 0.110 0.085 0.037 0.117 0.083 
 

 

Figure 3-5 Group mean within-CMD results for all axes and conditions. Error bars represent standard 
deviations. 

 

  Discussion 

The process of automating the extraction of individual step waveforms from the SLHS 

sections is complicated. The clear peak in acceleration in each step allows some 

standardisation of the identification of a single point in each step within the overall 

acceleration trace that can be used to establish its general position, however there is 

no guarantee that steps identified in this way will be matched for function or temporal 

characteristics. In addition, when the process is automated to allow for the analysis to 

occur in a timeframe that makes the tool useable in an applied situation, there also 

needs to be some control for steps that are inadvertently misidentified. 
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To control for steps that are misidentified, strides that lasted for longer than 750 ms 

were eliminated. This was done because a stride time of over 750 ms indicates that it 

was extremely likely that an acceleration peak was missed which would lead to two 

strides being combined into one within the analysis. The number of strides discarded 

after filtering for strides that exceed the 750 ms cut-off was found to be acceptably low, 

with a maximum individual subject season average of 9.00%. This demonstrates that 

the method used to automatically identify strides within the overall acceleration trace is 

effective. Further results from this analysis (displayed in Table 3.11) show that the 

subject with the minimum strides available per game has considerably fewer strides 

available for further analysis than the mean of the group (the minimum individual 

season average was 126 strides as compared to the group mean of 252 strides). This 

is not unexpected as the results from Part 1 (section 3.4) demonstrated a wide range of 

SLHS time identified per subject which would be reflected in the number of strides 

identified. The implications of this is that any further exclusion of strides in an attempt 

to create a group of waveforms that are matched for parameters other than overall 

maximum length will necessarily reduce the number of waveforms available for 

analysis to a point that may influence some subjects more heavily than others. 

Excluding steps that are likely to have a different torso orientation or general stride 

function (as described in section 3.5.2.2.2.3) as well as steps where it is unclear which 

side of the body the step should be allocated to (as described in section 3.5.2.2.2.2) 

further reduce the number of steps available for analysis by around 120 steps (Table 3-

12) or approximately 57% of the total steps available. Though this is a considerable 

number of steps, it is felt that this is a necessary process to ensure that only steps of 

similar function on the same side are grouped together for analysis. The random nature 

of gameplay including physical contact and tactical considerations will impose further 

variability onto steps that will be overlaid onto the variability due to an athlete’s physical 

condition. As the goal of the analysis tool is to use step acceleration waveforms to 

assess an athlete’s physical condition, variability due to physical contact or other 

gameplay considerations would be considered unwanted noise within the signal. 

Consequently, the reduction of steps, even by as much as 57%, is an acceptable 

compromise (for the purposes of these analyses) to separate the noise from the signal. 

The process of excluding steps based on temporal characteristics will ensure that steps 

with slight variations to the specific position of peak acceleration will not be analysed 

together, decreasing the step to step variability of the acceleration. This procedure 

further reduced the number of steps available for further analysis by, on average, 

approximately 25 steps per game, resulting in approximately 80% of the steps initially 
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identified being excluded through the two processes of removing noise from the signal 

and matching temporal characteristics. This will potentially leave a very small set of 

waveforms for some subjects who are not predisposed to producing a large amount of 

SLHS time in a game. 

Exclusion of steps due to temporal characteristics (which are likely due to strides with 

different time bases being grouped together for analysis) will ensure that steps with 

similar time bases will be included in the analysis, thereby reducing another source of 

noise within the signal (namely variability due to steps of differing time bases being 

analysed together rather than describing the actual stride to stride variability). However, 

it could also be argued that removing strides that are slightly different could be 

considered to be removing a very natural part of the step to step variability that 

contains valuable information on the physical state of the athlete (and therefore not 

noise but a very real part of the signal).  

The validity of exclusion due to temporal characteristics will revolve around how much 

variability there is in step length (in time) and how that relates to the calculated within-

day CMD. Mean step time is very consistent across the group, as can be seen in Table 

3-14, though there are some subjects who tend to have higher mean within game 

standard deviations for step time. It would be expected that if temporal characteristics 

influence the within-day CMD then higher variability in step time will lead to a lower 

CMD (which would represent more variability in the waveform). This is because filtering 

for matched time of initial peak will remove strides with time bases that are different 

enough to cause a temporal shift in the waveform after the normalisation process, 

potentially leading to a proportionally greater increase in within-day CMD in subjects 

with inconsistent step time. 

A post-hoc analysis of the relationship between within-day CMD (and therefore 

waveform variability) and within-day step variability (measured via the within-day 

standard deviation of step time) was conducted. Figure 3-6 shows the z-axis within-day 

CMD differential (temporal exclusion minus unaltered) plotted against within-day step 

variability for all games available. It would be expected that the CMD differential would 

show a positive trend given that a set of waveforms with temporal exclusion applied will 

be more homogenous and consequently would produce less within-day variability, and 

this is demonstrated by the equation of the linear trendline fit to the data (where y= 

0.004x + 0.0179). However, this positive trend is weak (R2=0.0079) suggesting that 

although step time variability may have some effect on the overall CMD, it is by no 

means the only influence. 
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Figure 3-6 Within-day step time variability vs within-day CMD differential 

Given the weak relationship between within game stride time standard deviation and z 

axis CMD differential, it could be assumed that the natural variation within the pattern 

of the waveform has a greater influence than temporal variability on the overall 

variability of the step waveforms. Therefore, the natural variation in the temporal 

aspects of the valid steps should be left in the analysis, and filtering for matched 

position of initial peak should not occur. 

It is worth noting that these conclusions have been reached on data that has already 

had some inclusion/exclusion for temporal aspects of step waveforms applied (i.e., an 

upper limit for SLHS was used). The practical effect of this is that steps taken when 

running over 6.94 m/s, which would tend to be shorter in duration, would already have 

been eliminated from the analysis. If steps at speeds over 6.94 m/s were retained then 

the effect of exclusion/inclusion for temporal parameters would likely be greater. For 

the current data with an upper limit of 6.94m/s on SLHS sections, it is felt that 

inclusion/exclusion for matched position of initial peak is unwarranted. 

Though the use of the inclusion/exclusion criteria is unwarranted, it is still useful to 

examine the effects of applying those criteria on the resulting within-day CMD. This is 

valuable as it demonstrates whether the CMD is behaving as expected (in that a more 

homogenous set of waveforms should produce a higher CMD) and it also shows the 

sensitivity of the measure across different axes to small adjustments in the set of 
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waveforms. All axes on both sides showed a decrease in waveform variability (Table 3-

14) when the criteria were applied, in line with the expected response to the adjusted 

set of waveforms. 

 Conclusion 

The procedures for identifying matched steps within periods of SLHS running identified 

a considerable number of strides in the games analysed. Steps tended to be of similar 

length (in time) and although one third of the steps were excluded because they appear 

to be influenced by external factors the average number of steps identified for analysis 

per game was still 62 steps on both sides. 

Excluding steps on the basis of temporal characteristics further reduced the average 

number of steps available to approximately 20% of the original set. This, along with the 

very weak relationship between waveform variability and step time variability, makes 

exclusion of strides due to temporal characteristics undesirable. 

The within-day CMD was used to analyse whether exclusion due to temporal 

characteristics is worthwhile. The average results across all axes and conditions 

demonstrate that a more homogenous set of waveforms (after excluding strides with 

different temporal characteristics) produces a higher within-day CMD which indicates 

less variability in the set of waveforms. 

These conclusions show that the within-day CMD results match the expected 

outcomes and that its use in the current situation shows promise. As a consequence, 

this statistical analysis will be used through the remainder of the thesis. 

 Part 3 – Sensitivity of the between-section, within-section and 

within-day Coefficient of Multiple Determination to the quantity 

of available data 

Results presented in sections 3.4 and 3.5 demonstrate that subjects can vary quite 

markedly in the amount of valid data available for processing. The range of strides 

available in a game ranges from a season average of 126 in one subject to 380 in 

another. This is likely to be due to a combination of gameplay demands that vary by 

position, game sense and physical capacity. In addition, the average number of valid 

sections identified per game across the entire subject group was 30.3 sections (Table 

3-11). However, the minimum subject season average was 16.1 (Table 3-11) and as 

this number represents the season average, there will clearly be games where fewer 

sections are identified. 
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The effect of a reduction in valid strides (on a within-section and within-day CMD 

analysis) and sections (on a between-section CMD analysis) is unclear. To further 

understand the implications of the amount of data available on a particular day, a 

number of iterations were run to examine the effects of reducing the available data on 

waveform variability as measured by the between-section and within-section CMD. 

 Aims 

 Investigate the effects of reducing the number of waveforms available for a 

within-day CMD analysis and determine the suitability of this measure with the 

current data 

 Investigate the effects of reducing the number of waveforms available for a 

within-section CMD analysis and determine the suitability of this measure with 

the current data 

 Investigate the effects of reducing the number of sections available for a 

between-section CMD analysis and determine the suitability of this measure 

with the current data 

 Methods 

 Subjects 

The full cohort of 22 subjects described in section 3.1.1 above was used in this study. 

 Removal of Strides and Sections 

A procedure for removal of strides and sections was performed to progressively reduce 

the number of sections analysed from a file. By removing sections, chunks of strides 

are also removed, so each iteration will also result in progressively fewer strides to be 

analysed. 

For each file there were a number of SLHS sections (S) identified. A maximum of 25 

random sub-sets of k sections were selected from the overall collection of SLHS 

sections (S) in a file where k ranged from 30% to 90% of S (in increments of 10%). A 

random selection was used because it was often the case that there were too many 

possible combinations of sub-sets to be practically analysed. For instance, the 50% 

case for the average number of sections with upper velocity set at 6.94 m/s (identified 

in Table 3-8 as 30.9) would create 155,117,520 possible combinations. If there were 

less than 25 possible combinations (which often occurred in the 90% case) then all 

possible sub-sets were analysed. This process is further described by the 

diagrammatic representation seen in Figure 3-7. Each sub-set was then analysed via 

the process described earlier in 3.5. 
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Figure 3-7 Diagrammatic representation of selection of section sub-sets. The process is repeated past 
80% of S valid sections, finishing at 30% of S valid sections. 

 

 Data analysis 

Within-day, within-section and between-section CMD were calculated for each 

repetition. Each repetition of each file was then further processed to determine the 

difference in the within-day, within-section and between-section CMD between the 

current repetition and the foundation set of valid SLHS sections from the current file. 

This can be best explained by referring back to Figure 3-7, the full file contains the set 

of sections (A:B:C:D:E…S). The within-day, between-section and within-section CMD 

for the sub-set of sections was calculated and these results were compared to the 

results generated for the foundation set of sections. This process was repeated for all 

sub-sets. 

The 30% sub-set (as the worst case scenario) was then investigated further to 

determine whether there was a critical number of sections required for accuracy in the 

analysis. Within-day, within-section and between-section CMD results for the 30% sub-

set were calculated as a percentage of the CMD results for the full set of sections (the 

100% case). These results were then split by number of sections available at the 30% 

case. 

80% of S Valid Sections

(25 Random Combinations)

90% of S Valid Sections

(25 Random Combinations)
Full File (S Valid Sections)

A:B:C:D:E:G:H:I:J:K:L:M:N:O:P:Q:R:S A:B:C:D:E:G:H:I:J:K:L:M:N:O:P:Q:R D:E:F:G:H:I:J:K:L:M:N:O:P:R:S

A:B:C:D:F:G:H:I:K:M:N:O:P:Q:R

B:C:D:E:F:G:H:J:K:L:M:N:O:Q:R

B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R

A:B:C:E:G:H:I:J:K:L:M:N:O:P:Q:R:S

Etc. (25 Max) Etc. (25 Max) 
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  Results 

The average within-day, within-section and between-section CMD results of section 

subsets that comprise different percentages of the 100% case can be found in Table 3-

15. Graphical representations of these results can also be found in Figure 3-8 (within-

day CMD), Figure 3-9 (within-section CMD) and Figure 3-10 (between-section CMD). It 

is worth noting the decreasing trend of results in the within-day and between-section 

results as the percentage (and therefore number) of sections increases. The slope of 

the linear trendlines found in Figures 3-8, 3-9 and 3-10 can be found in Table 3-16. 

Table 3.15 Mean within-day, within-section and between-section CMD results with section sub-sets 
comprising different percentages of the foundation set of sections 

 Side 1 Side 2 
Percent of 
sections 

Within-
Day 

Within-
Section 

Between-
section 

Within-
day 

Within-
Section 

Between-
Section 

30% 0.8027 0.7008 0.8110 0.8077 0.7106 0.8218 

40% 0.8025 0.6980 0.8086 0.8078 0.7073 0.8206 

50% 0.8024 0.6965 0.8082 0.8077 0.7057 0.8199 

60% 0.8024 0.6952 0.8079 0.8076 0.7040 0.8198 

70% 0.8019 0.6939 0.8066 0.8077 0.7026 0.8180 

80% 0.8022 0.6935 0.8059 0.8075 0.7022 0.8181 

90% 0.8044 0.6947 0.8084 0.8099 0.7040 0.8196 

100% 0.8020 0.6921 0.8082 0.8060 0.7006 0.8151 
 

 

 

Figure 3-8 Mean within-day CMD of waveform sub-sets comprising different percentages of the foundation 
set of waveforms 
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Figure 3-9 Mean within-section CMD of waveform sub-sets comprising different percentages of the 
foundation set of waveforms 

 

 

 

Figure 3-10 Mean between-section CMD of waveform sub-sets comprising different percentages of the 
foundation set of waveforms 

 

Table 3.16 Slope of linear trendlines found in Figures 3-8, 3-9 and 3-10 

 Side 1 Side 2 

Within-Section 0.0004 -0.0002 

Within-Day -0.0104 -0.0117 

Between-section -0.0035 -0.0070 
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Further investigation of the 30% sub-set case can be found in Table 3-17, which shows 

the average CMD results at the 30% case expressed as a percentage of the CMD 

results from the full set of sections split by number of sections available at the 30% 

case. These results are also shown graphically in Figure 3-11 (showing the within-day 

CMD results), Figure 3-12 (showing the within-section CMD results) and Figure 3-13 

(showing the between-section CMD results). It is interesting to note the fall in the 

between-section graph until the number of sections reaches 6, and the steady fall of 

the within-day graph. 

Table 3.17 Between-section, within-section and within-day CMD at the 30% case split into number of 
sections and expressed as a percentage of the 100% case 

 Within-Day CMD Within-Section CMD 
Between-Section 

CMD 
Number of 
sections Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

2 103.63% 105.08% 98.97% 100.02% 101.87% 107.18% 

3 103.27% 103.87% 99.57% 98.65% 104.54% 109.70% 

4 100.22% 101.46% 99.11% 99.73% 102.76% 102.85% 

5 102.77% 102.28% 101.19% 100.49% 101.34% 101.89% 

6 102.80% 102.11% 99.56% 100.31% 100.75% 100.31% 

7 102.05% 101.45% 100.31% 100.43% 100.13% 100.27% 

8 101.51% 101.48% 100.39% 100.58% 100.84% 100.75% 

9 101.09% 101.14% 100.06% 100.24% 100.07% 100.63% 

10 99.94% 101.16% 99.86% 99.98% 99.60% 101.30% 

11 101.39% 101.73% 100.30% 100.28% 100.61% 100.68% 

12 100.68% 101.36% 100.19% 100.09% 100.91% 100.02% 

13 101.42% 101.94% 100.23% 100.49% 99.63% 99.98% 

14 101.01% 100.23% 99.80% 99.41% 99.62% 99.89% 

15 103.19% 100.04% 99.77% 99.06% 104.98% 99.06% 

16 100.69% 100.39% 99.71% 99.87% 99.68% 99.99% 

17 102.38% 102.26% 101.08% 102.06% 100.12% 101.84% 

19 100.08% 100.25% 99.74% 100.03% 98.91% 99.33% 
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Figure 3-11 Mean within-day CMD at the 30% case expressed as a percentage of the within-day CMD of 
the full set of sections, broken into number of sections available at the 30% case 

 

 

Figure 3-12  Mean within-section CMD at the 30% case expressed as a percentage of the within-section 
CMD of the full set of sections, broken into number of sections available at the 30% case 
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Figure 3-13  Mean between-section CMD at the 30% case expressed as a percentage of the between-
section CMD of the full set of sections, broken into number of sections available at the 30% case 

 Discussion 

Reducing the sections analysed from each file does not appear to have any impact on 

the within-section CMD results. Even when the number of sections is reduced to 30% 

of the foundation set of sections there is no difference between the within-section CMD 

adjusted for the reduced sections and the within-day CMD of the original file. This can 

be demonstrated by the linear trendline of results for both sides, which has a slope of 

0.0004 on side 1 and -0.0002 on side 2, suggesting that at 50% of the foundation set of 

sections the within-section CMD would have increased by 0.0002 on side 1 and 

decreased by 0.0001 on side 2. This provides a great deal of confidence that the 

within-section CMD is a very robust measure that can be used with equal effectiveness 

on games where small and large numbers of valid strides have been identified. 

However, there is some evidence that the between-section and within-day CMD is 

influenced by the number of sections available. As the number of valid sections is 

reduced there is a slight increase in CMD. This essentially means that as the number 

of sections is reduced, the measured variability in the waveform between all sections 

becomes smaller (i.e., the waveform variability is reduced). At 50% of the foundation 

set of sections, the within-day CMD would be expected to have increased by 0.005 and 

0.0055 on side 1 and 2 respectively, and the between-section CMD would be expected 

to have increased by 0.0017 and 0.0035 respectively (when compared to the original 

set of sections). 
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The reduction in CMD for the between-section and within-day conditions is still quite 

small compared to the overall standard deviation of the measures. The standard 

deviation for z-axis within-day results has previously been established to be 0.04 on 

side 1 and 0.037 on side 2 (Table 3-14 in section 3.5). Therefore the 50% case 

described above would change the calculated CMD by 4% of 1 standard deviation on 

side 1 and 9% of 1 standard deviation on side 2. As a consequence of these results, 

the between-section and within-day conditions are still appropriate and robust 

measures, though not as robust as the within-section condition. 

The 30% case was investigated further to determine whether there is a break-point 

where the raw number of sections becomes an important factor in the accuracy of the 

analysis. The within-section CMD analysis remained consistent as the number of 

sections available for analysis at the 30% case was reduced, confirming the robustness 

of this measure as the amount of data available for analysis is reduced. The within-day 

CMD showed a steady fall as the number of sections available was increased, 

reflecting the results shown in Figure 3-8. However, the between-section results did not 

show a consistent fall as the number of sections available increased. Instead there was 

a sharp decrease until the number of sections reached six (falling from a maximum of 

104.54% at three sections to 100.75% at six sections on side 1, and 109.7% to 

100.31% on side 2), after which the results remain at 100% ±1% (save for the 10 

section case on side 2, the 15 section case on side 1 and the 17 section case on side 

2). These results suggest that the between-section CMD should only be used when 

there are at least six valid sections available for analysis. 

 Conclusion 

The results of this study demonstrate that the within-section CMD is a robust measure 

that can be applied to small numbers of sections and strides within each game. 

However, the between-section and within-section CMD does appear to be slightly 

influenced by the number of valid sections within each game, producing higher results 

(and therefore less measured waveform variability) as the amount of valid data is 

reduced. Further investigation of the between-section CMD showed that it will be prone 

to overestimating waveform variability when the number of sections is reduced to fewer 

than six. Consequently it can be concluded that the within-section CMD is an 

appropriate measure for the current data set and the between-section CMD may be 

appropriate if the number of sections available for analysis is sufficient. The within-day 

CMD may be prone to slightly over-estimating the waveform variability when a small 
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number of steps are identified, so is the least preferred of the three measures to 

describe waveform variability on a particular day. 

As a result of these conclusions, within-section CMD and between-section CMD will be 

maintained as a statistical tool for the remainder of the thesis, whereas use of the 

within-day CMD, given it is essentially providing a similar analysis to the within-section 

CMD (the only difference being the organisation of the available data into one section 

rather than multiple distinct sections drawn from a training session or game) will not be 

maintained. 

 Part 4 – Sensitivity of Analysis tool to changes in upper velocity 

limit for Straight Line High Speed Running sections 

The final stage in the development of the analysis tool for analysing a single game is to 

re-examine the sensitivity of both within-section and between-section CMD results to 

changes in the upper velocity limit for high speed running. In sections 3.5 and 3.6 the 

upper limit for velocity was set at 6.94 m/s (25km/h). Now that the effects of fewer 

numbers of strides and sections within games have been identified and ideal 

procedures discussed, the effects of adjusting the upper velocity limit to reduce the 

effective velocity window for valid strides can be examined. 

The previous section described the effects of reducing valid SLHS sections (and 

therefore the number of step waveforms analysed) on within-day, within-section and 

between-section CMD analyses. The number of valid SLHS sections identified in each 

file will affect the between-section CMD, so the potential effects of changing the upper 

velocity limit on the number of valid SLHS sections will therefore be investigated in 

relation to the between-section analysis. 

 Aims 

 Investigate the effect of altering the upper limit for velocity on the number of 

SLHS sections and total SLHS time identified per game 

 Investigate the suitability of the between-section CMD based on the number of 

SLHS sections available at different upper velocity limits 

 Methods 

 Subjects 

A subset of 18 subjects taken from the original cohort of 22 subjects was used in this 

study. Subjects who did not have at least one game where information on playing time 
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(including time spent on the interchange bench), GPS data and inertial sensor data 

available were excluded from this study. 

 Data Processing 

The methods for processing of individual files were the same as was described in 

section 3.5. However, each individual file was processed a six times, with upper 

velocity limit for the SLHS sections adjusted each time. The upper velocities analysed 

are displayed in Table 3-18, and are the same that were originally used in section 3.4. 

Mean time in SLHS and the mean number of sections of SLHS per game were 

determined. 

Table 3.18 Upper limit velocities examined 

 Upper Limit 

Condition m/s km/h 

1 5.56 20 

2 6.25 22.5 

3 6.94 25 

4 7.64 27.5 

5 8.33 30 

6 11.11 40 
 

Processor outputs (with regard to the mean amount of SLHS sections per game) were 

analysed to determine the suitability of a within-section and between-section CMD at 

the various upper velocity limits. This was done by determining the number of games 

where at least 10 steps, 20 steps and 30 steps were available on both sides. The 

number of valid SLHS sections available on both sides was calculated in a similar way, 

with the number of games (expressed as a percentage of total games) where there 

were at least 2, 3, 4 6, 8, 10 and 15 SLHS sections available for analysis on both sides 

identified. 

  Results 

The time in SLHS per game was identified and the results displayed in Table 3-19. 

How this relates to the number of steps available for analysis on both sides was 

investigated and the results are shown in Table 3-20. It is worth noting the diminishing 

differential between adjacent velocity conditions, with the greatest differences in 

percentage of games available occurring between the lower velocity conditions. 
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Table 3.19 Mean time in SLHS per file by upper velocity limit 

Speed 
(m/s) 

Average time in SLHS 
per file (s) 

5.56 73 

6.25 140 

6.94 194 

7.64 229 

8.33 247 

9.03 252 
 

Table 3.20 Percentage of games where at least 10 steps, 20 steps and 30 steps are available for analysis 
on both sides by upper velocity limit 

Upper Velocity 
Limit (m/s) 

Games with both 
sides at least 10 

steps 

Games with both 
sides at least 20 

steps 

Games with both 
sides at least 30 

steps 

5.56 90% 76% 57% 

6.25 97% 93% 85% 

6.94 99% 97% 91% 

7.64 100% 98% 91% 

8.33 100% 98% 93% 

9.03 100% 99% 93% 
 

The effect of changing the upper velocity limit on number of SLHS sections available 

for further analysis on side 1 and side 2 is displayed in Table 3-21. Table 3-22 shows 

the number of games available as the threshold for number of sections that need to be 

available on both sides is progressively increased. Again, it is worth noting the 

diminishing differential between adjacent velocity conditions as upper velocity limit is 

raised. 

Table 3.21 Mean SLHS sections on side 1 and side 2 by upper velocity limit 

Upper Velocity 
Limit (m/s) 

Mean SLHS 
sections on side 1 

Mean SLHS 
sections on side 2 

5.56 6.4 6.4 

6.25 10.5 10.6 

6.94 12.7 12.6 

7.64 13.5 13.3 

8.33 13.9 13.6 

11.11 14.0 13.7 
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Table 3.22 Percentage of files with at least 2, 3, 4, 6, 8, 10, 12 and 15 sections on both sides by upper 
velocity limit 

 Threshold for the number of sections on both sides 
Upper Velocity 
Limit (m/s) 2 3 4 6 8 10 12 15 

5.56 92% 84% 70% 47% 28% 13% 4% 1% 

6.25 98% 96% 92% 78% 64% 44% 30% 16% 

6.94 99% 98% 95% 88% 76% 58% 46% 32% 

7.64 100% 99% 97% 90% 79% 66% 50% 38% 

8.33 100% 99% 97% 91% 82% 70% 52% 39% 

11.11 100% 99% 97% 91% 82% 70% 52% 39% 
 

 Discussion 

Previous sections in this chapter (3.5 and 3.6) have identified that more valid sections 

of SLHS will tend to decrease the within-section and between-section CMD for a file. In 

section 3.4 the effect of reducing the range of velocities was discussed with reference 

to previous research showing that it is beneficial to reduce the range of velocities 

included in SLHS sections. However, results from the current study (as well as section 

3.4) demonstrate that as the upper limit velocity is reduced, the number of valid SLHS 

sections identified in each file is also reduced. We must therefore find a compromise 

between maximising the validity of the analysis (in terms of identifying stride variability 

due to factors such as fatigue and injury) and the practical application of this analysis 

tool. 

As upper velocity limit is increased, the number of sections available for analysis also 

increases. Focusing on six SLHS sections required on both sides (identified in section 

3.6 as being a critical number for the validity of the between-section analysis), there is 

an increase of 31% from an upper velocity limit of 5.56 m/s to 6.25 m/s, 10% from 6.25 

m/s to 6.94 m/s, then 2% or less for the subsequent steps in upper velocity limits. The 

small increases in number of files with at least six sections available on each side after 

the upper velocity limit passes 6.94 m/s would suggest that there is limited benefit in 

increasing the upper velocity limit over 6.94 m/s. A similar result is found in Table 3-20, 

where there are increases of below 2% in the number of files with at least 30 steps 

available on each side after the upper velocity limit passes 6.94 m/s. Both of these 

results would indicate that 6.94 m/s is the best compromise between achieving a high 

number of valid SLHS sections and steps from each file while minimising the velocity 

window. 

These results are very encouraging for the validity of the between-section analysis. 

Section 3.6 showed that six sections was a critical number of SLHS sections to 
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achieve, and that if there were fewer than six SLHS sections identified there is the 

potential for the between-section CMD to be elevated not due to a reduction in 

waveform variability but instead due to the small number of SLHS sections available for 

analysis. Results shown in Table 3-22 would suggest that only 12% of files would not 

contain 6 SLHS sections on both sides, which means that there will be limited impact 

on a longitudinal analysis utilising between-section CMD. 

 Conclusion 

Altering the upper velocity limit does affect the number of SLHS sections and total 

steps available for further analysis, however once the upper velocity limit goes above 

6.94 m/s the gains in both number of sections and total steps are small. As a result, the 

ideal upper velocity limit as a compromise between extracting enough valid data and 

minimising the range of velocities used to define high speed running is 6.94 m/s. In 

addition, the number of sections identified with an upper velocity limit of 6.94 m/s 

provide confidence that the between-section analysis can be used for a longitudinal 

analysis of individual subjects. Consequently, an upper velocity limit for high speed 

running of 6.94 m/s will be used for the remainder of this thesis. 

 Part 5 – Between-game analyses 

An additional calculation that can be done on the stride waveforms generated in each 

game is to analyse the similarity of those waveforms across different games. This can 

be achieved through a variation to the between-section CMD calculation, where whole 

games are treated as different sections. This is perhaps more in keeping with the CMD 

analysis as described by Kadaba et al. (1989) with regard to gait data, where the 

‘between’ CMD was used to analyse gait variability between testing days. 

A between-game CMD analysis has the potential to describe whether the waveforms 

collated from one game are different to the waveforms collated from another game 

(over and above the variability normally found in that individual). It could, in essence, 

detect a change in stride characteristics due to an event that has happened in between 

the two sessions being analysed. 

The large number of waveforms collated from each game provide a difficulty in 

preparing data for a between-game CMD analysis. As is the case with the between-

section CMD, the equation for a between-day CMD analysis requires an equal number 

of waveforms from the different sections to be analysed (in this case, the different 

days). This is problematic as it is highly unlikely that the number of waveforms 

identified in each game will be equal. Consequently, a procedure to equalise the 
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number of waveforms needs to be established. Though this could be seen as imposing 

an external constraint on the data being analysed, it is necessary given the numerator 

in the equation to calculate a CMD represents the variance around the mean at the 

same time point across all sections, and if there were an uneven number of waveforms 

across sections then one section would be over-represented in the mean (i.e., variance 

in one section would be weighted more heavily than another in the final calculation). 

This section will examine the options around data preparation and analysis for the 

between-day analysis on one subject’s data. 

 Aims 

 Identify and describe methods to perform a between-day CMD calculation on 

the current data 

 Determine the optimal procedures for preparing data for a between-day CMD 

analysis via a case study of one subject.  

 Assess the practicality of the identified methods and procedures 

 Methods 

 Subject 

One subject whose average number of SLHS sections identified was close to the group 

mean was selected for analysis in this study.  

 Data Preparation 

The methods used to select SLHS sections within each file were the same as 

described in 3.7. An upper velocity limit of 6.94 m/s was applied, and there was no 

filtering for matched position of footstrike within each file (so all valid steps were 

exported for further comparison against waveforms collated from a separate day). 

There are a number of possible ways to equalise the number of waveforms available 

for analysis. Ideally, either the subset of waveforms that best represent the waveforms 

from the day as a whole or the subset of waveforms that provide the highest between-

game CMD could be used. Both of these options would require a prohibitively large 

number of subsets to be tested before the most representative set of waveforms is 

identified unless only a small number of waveforms are used in the subset (which 

would also call into question whether the waveform variability has been underestimated 

due to the small number of waveforms used). An alternative method would be to 

calculate the between-day CMD on a large number of random samples of subsets. This 

would assume that accuracy can be achieved through increasing the iterations.  
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The total number of subsets of waveforms available and the total number of iterations 

required to test every combination were calculated for all combinations of games. One 

combination of games was selected to test the iterative approach to calculating 

between-day CMD. The combination was selected on the basis of having the smallest 

differential in the number of waveforms on one side (which would produce a small 

number of waveform combinations when equalising the number of waveforms). This 

was done because it allowed the effects of the iterative approach to be evaluated on a 

small number of possible waveform combinations on one side. Between-day CMD 

calculations on 500 random combinations of waveform subsets were performed, and 

the maximum between-day CMD was recorded. This process was repeated 40 times. A 

rolling maximum across 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 points was calculated on 

these results to simulate 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 

10000 random combinations. The average of the maximum between-day CMD 

produced by each iteration was then calculated. 

 Results 

The number of waveforms available in all games were identified and the results 

displayed in Table 3-23. Game numbers refer to the game within the season, so in this 

case the subject participated in games 2 to 17 but data is not available for games 1 and 

9 so these games were skipped in the table. The summary statistics (maximum, 

minimum and average) for the number of possible waveform sub-sets in each 

combination of two games on both sides is displayed in Table 3-24. 

Table 3.23 Steps available by game 

Game Steps Available Side 1 Steps Available Side 2 

2 118 79 

3 170 145 

4 75 58 

5 59 149 

6 201 241 

7 91 107 

8 62 95 

10 66 124 

11 138 143 

12 158 205 

13 79 91 

14 103 200 

15 109 120 

16 97 151 

17 114 146 
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Table 3.24 Maximum, minimum and mean possible combinations of waveforms by side 

 Maximum Minimum Mean 

  Value 
Game 

Combination Value 
Game 

Combination Value 

Side 1 1.70E+59 Game 6/Game 14 37820 Game 5/Game 8 5.07E+57 

Side 2 1.81E+71 Game 6/Game 15 146 Game 3/Game 17 3.40E+69 
 

The waveform set for side one, Game 3/Game 17 was used for further analysis. The 

average of the maximum between-day CMD by number of iterations is displayed in 

Table 3-25. The z-axis results are displayed graphically in Figure 3-14 (side 1) and 

Figure 3-15 (side 2). It is worth noting the shape of the graph, and that at fewer 

iterations there seems to be a rapid increase in the between-day CMD value. 

Table 3.25 Maximum between-day CMD by number of random iterations 

Number of iterations 
z-axis y-axis x-axis 

Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

500 0.673 0.705 0.359 0.456 0.599 0.642 

1000 0.674 0.706 0.363 0.463 0.603 0.646 

2000 0.676 0.708 0.367 0.468 0.607 0.649 

3000 0.676 0.709 0.370 0.469 0.608 0.652 

4000 0.676 0.709 0.371 0.470 0.609 0.654 

5000 0.677 0.710 0.371 0.470 0.609 0.655 

6000 0.677 0.710 0.372 0.470 0.609 0.656 

7000 0.677 0.710 0.372 0.470 0.610 0.656 

8000 0.677 0.711 0.373 0.471 0.610 0.656 

9000 0.677 0.711 0.374 0.471 0.610 0.656 

10000 0.677 0.711 0.375 0.472 0.610 0.657 
 

 

Figure 3-14 Z-axis (side 1) between-day CMD plotted against number of random iterations 
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Figure 3-15  Z-axis (side 2) between-day CMD plotted against number of random iterations 

 

 Discussion 

The number of combinations of waveform subsets generated makes testing every case 

prohibitive. Though there are some games that have fewer combinations, most have 

too many to analyse practically. We must therefore look for methods of generating a 

result that justifiably approximates the result that would happen if all waveform sets are 

processed. 

Running a considerable number of iterations using random waveform subsets 

demonstrated that a small number of iterations will more likely produce a lower 

between-game CMD that is perhaps not representative of the actual between-game 

CMD if the most representative subsets of waveforms are used. It appears that after 

approximately six thousand iterations there is much less change in between-day CMD 

in comparison to the results from fewer iterations. This is true for both scenarios tested, 

one with a small number of waveform combinations available (seen in side 1 where the 

random iterations should encompass most of the possible combinations) and one with 

a large number of waveform combinations (seen in side 2 where six thousand iterations 

is nowhere near the total number of possible combinations). 

Using 6000 random iterations and selecting the maximum calculated between-day 

CMD to represent the results between games is still a time consuming process. 

Currently, 6000 iterations will take approximately 15 minutes to complete on both sides 

for a single combination of games for one subject. This will likely undermine the 
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practical application of this element of the process, as performing this analysis for just 

one combination of games on every member of an AFL squad would take 

approximately 11 hours. Furthermore, there are procedural errors that are likely to be 

introduced through placement of the units in the uniform on different days. Although 

there is potential for the unit to move within a game, there is more uncertainty around 

the repeatability of the placement in the uniform from day to day. The practical 

usefulness of the between-day CMD is therefore quite limited at the settings required to 

produce consistent results. 

 Conclusion 

Preparation of data for a between-game CMD calculation provides many challenges. 

There is currently no consistent method to practically test all possible combinations of 

waveform subsets that can be used. A compromise of only testing a number of 

iterations where random waveform subsets are selected from each game can instead 

be used to generate a between-game CMD that is a close approximation of the best 

possible result. 

At least 6000 random iterations of waveform sub-sets is required to provide confidence 

that the maximum between-day CMD identified is a fair approximation of the best case 

scenario. However, this will limit the practical application of the measure as it will take 

too long to perform this analysis on an entire squad. The optimal settings for this 

analysis tool will therefore make it impractical in the applied environment. 

Given the impracticality of this measure, it was felt that the between-game analysis 

should be abandoned for the remainder of this thesis. However, this is an area that 

would be worthy of follow up investigations, particularly when increases in computing 

power has made the generation of multiple iterations of waveform sub-sets more 

practical. 

 Summary 

The development of the analysis tool required a number of different investigations. 

Factors such as what constitutes a SLHS section, how modifications to the velocity 

limits change the amount of data available for further analysis, the application and 

validity of the within-section and between-section CMD calculations to the waveform 

data, and the preparation of data for a between-game CMD calculation were all 

discussed. It was identified that an angle window of ±0.05 rad for change in bearing 

and a velocity window of 4.17 m/s to 6.94 m/s provides the best compromise between 

theoretical best practice and the extraction of enough valid data to perform analysis on. 
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Results also suggest that the within-section CMD calculation is a robust measure that 

can be applied to the waveforms identified in the SLHS sections. However, the within-

day CMD calculation appears to be affected by the number of waveforms available for 

analysis, with less valid waveforms leading to a higher within-day CMD. As the number 

of waveforms varies between games, there is an inherent error within this calculation 

that does not appear to affect the within-section CMD. The within-section CMD is 

therefore the preferred method to quantify waveform variability within a particular day. 

The between-section analysis provides insight into variations in waveform shape 

between sections identified in a game. This is also affected by the number of sections 

available for analysis, with fewer sections leading to lower variability (especially when 

the number of valid sections falls to below 6). In most cases the settings for angle 

window and velocity range that define a SLHS event provide enough valid sections to 

perform a between-section analysis, so this measure will be included in the overall 

analysis in subsequent chapters where the value of this measure will be discussed 

further within the context of its use in the longitudinal analysis of individual subjects. 

Data preparation for the between-game CMD analysis provides some challenges but 

the methods identified can produce justifiable results. However, whether the between-

game CMD offers a method of assessing stride variability between games is unclear, 

as there are many confounding elements to the final analysis of data (such as differing 

placement of the unit from game to game). For these reasons the between-game CMD 

analysis will not be included in the overall analysis in subsequent chapters. 

The optimal settings for the analysis tool as identified in this chapter will be used in 

subsequent chapters to analyse the stride variability of a squad of Australian Rules 

Football Players for the length of a normal Australian Football League season. 

 

  



64 
 

 Application of analysis tool 

 Introduction 

The development of the analysis tool in Chapter 3 was undertaken to provide the 

means to evaluate stride variability over the course of a season. It was considered that 

analysing results generated by this tool would provide an effective method to examine 

the physical condition of athletes over the course of a season. The processes 

performed to extract the most amount of data to be analysed while still maintaining 

validity with reference to previous research and general principles will have implications 

for the practical application of the analysis tool. 

The application of analysis tools based on monitoring an athlete’s physical condition is 

predominantly done to gain insight into how individual athletes are coping with a 

particular stress that they are being subjected to (Colby, Dawson, Heasman, Rogalski, 

& Gabbett, 2014; Rogalski et al., 2013) or their game performance (Bauer et al., 2015). 

The frequent examination of these data at an individual level is standard practice within 

the applied environment (Cummins, Orr, O’Connor, & West, 2013; Ehrmann, Duncan, 

Sindhusake, Franzsen, & Greene, 2016). 

This chapter evaluates the practical use of the analysis tool by re-analysing data 

presented in the previous chapter in the context of individual subjects. The general 

methodology is outlined, then investigations into how the overall season averages vary 

between subjects (section 4.4), how results vary week to week in the average subject 

(section 4.5) and the worst case scenario subject in terms of amount of SLHS sections 

identified (section 4.6) are described. 

 General Aims 

 Describe the season average results obtained by using the analysis tool on 

game data obtained from professional AFL players over the course of a season 

(section 4.4) 

 Investigate the applicability of the analysis tool to longitudinal analyses of 

professional AFL footballers over the course of a season (section 4.4, 4.5, and 

4.6) 
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 General Methods 

 Subjects 

The participant cohort was the same as that used in Chapter 3 (section 3.3.1, page 15), 

that being 22 professional AFL footballers with age range of 19 to 28 years old. No 

preselection for position played or physical capacity took place. 

 Data 

Data collection and preparation procedures were the same as was used in Chapter 3 

(section 3.3.3, page 16). Briefly repeating for the sake of clarity, GPS and 

accelerometer data (acquired via a S4 minimaxx unit) were collected from 17 

competitive games during the 2014 AFL season. 

 Axis Definitions 

Axis definitions were as outlined in Chapter 3 (section 3.3.4, page 16). 

 Analysis tool 

The analysis tool developed and evaluated in Chapter 3 was applied in this chapter. 

Straight line high speed (SLHS) running was identified through the processes outlined 

in Chapter 3 (section 3.4 page 17), with the angle window for the straight line 

component set to ±0.05 rad and velocity window set from 4.17 m/s to 6.94 m/s. 

Extraction of step waveforms and analysis via the Co-efficient of Multiple Determination 

(CMD) was conducted in accordance with the procedures outlined in Chapter 3 

(section 3.5, page 26). 

 Part 1 – Group results from the 2014 season 

A number of different approaches can be taken to assess the performance of the 

analysis tool over the course of a season of competitive matches. This section will 

focus on a broad view approach, looking at the season average results to describe the 

performance of the analysis tool across the group as a whole. This is an important step 

as not only will these results have some potentially important implications that can be 

examined further when they are linked to results from missed and modified training and 

game activity (such as whether there are any implications for subjects who have 

different levels of waveform variability between sides in the same axis, or whether raw 

CMD scores have any significance for injury risk), but it will also provide a valuable 

overview as to the performance of the analysis tool with respect to the group as a 

whole. 
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 Aims 

 Describe the raw season average within-section CMD and between-section 

CMD results 

 Identify instances where significant differences occur between sides within axes 

and analysis condition for individual subjects 

 Describe the processes used to convert within-section CMD and between-

section CMD results to individual z-scores 

 Identify and describe the distribution of z-scores 

 Identify the instances where subjects’ individual game z-scores were significant 

at different confidence levels 

 Methods 

 Subjects 

The full cohort of 22 participants was used in this section. 

 Data preparation and processing 

Data were prepared and processed in accordance with the procedures outlined in the 

general methods, section 4.3. 

 Data analysis 

Parameters generated by the analysis tool for each game were: 

 Valid strides per game – the total number of strides identified within straight line 

high speed sections of running through analysis of accelerometer data to locate 

footstrike events 

 Valid steps on both sides – the total number of steps remaining after removing 

instances where the z-axis accelerations suggest a non-standard body 

orientation or step function (such as looking over a shoulder to locate the ball) 

 Valid SLHS sections on both sides – the number of sections of straight line high 

speed running identified per game that contain at least three valid steps 

 Within-section CMD on all three axes for both sides – calculated on all valid 

steps 

 Between-section CMD on all three axes for both sides – calculated on the three 

most representative steps from each section of straight line high speed running. 

The results were collated by subject, and a season average (mean) and standard 

deviation for all key parameters was calculated for every subject. Season averages for 
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valid strides, valid steps and valid SLHS sections facilitated comparisons of the 

capacity for each subject to generate those parameters over a season. Season 

average within-section and between-section CMD results were evaluated for side to 

side differences. 

 Identification of subject specific significant side to side differences in 

season average within-section and between-section co-efficient of 

multiple determination 

For each subject, the confidence intervals for within-section and between-section CMD 

results were determined by performing an empirical bootstrapping procedure as per 

Ball (2006). A bootstrapping procedure was appropriate with these data because the 

CMD results available for each individual were not necessarily normally distributed and 

the number of games available for each individual varied considerably across the 

cohort. Consequently, using a bootstrapping procedure maximised the validity of the 

confidence intervals that were generated (Ball, Best, & Wrigley, 2003; Thompson, 

1993). 

The bootstrapping method employed entailed resampling the data from each individual 

to form 100000 ‘new’ datasets (with replacement) from the set of data from a single 

condition, calculating the mean of each sample and the difference of that to the mean 

of the original sample, sorting the results, then determining the 0.5% and 99.5% value 

for the 99% confidence interval as well as determining the 2.5% and 97.5% value for 

the 95% confidence interval. This was repeated for each condition (CMD analysis, axis 

and side) for each individual subject to create confidence intervals specific to the 

samples in each condition and subject. For each subject and condition, season 

average results that were significantly different from the season average of the 

opposite side (at the 99% and 95% confidence level) were identified. In addition, 

incidents where the 99% confidence intervals of both sides did not overlap were 

identified by subject, CMD analysis and axis. 

 Calculation of z-scores 

The within-section CMD and between-section CMD results were re-analysed within the 

context of each individual subject’s season average and standard deviation to convert 

the raw score into a z-score, where the z-score is the distance from the subject’s 

season average expressed in standard deviations (Haley & Fragala-Pinkham, 2006). 

The calculation of z-scores allows raw CMD results to be analysed within a specific 

context, namely how the raw CMD (both within-section and between-section) compares 

to the average for the individual subject on that particular side within that particular 



68 
 

axis. Previous research has identified that when investigating gait data, CMD values 

should not be compared across joints and planes as each have different interpretations 

(Røislien et al., 2012). Researchers have also advocated establishing the development 

of minimum levels of detectable change or minimal clinically important differences 

when analysing three-dimensional kinematic gait data, especially in the context of 

using CMD in the statistical analysis (McGinley et al., 2009). Converting the raw scores 

to z-scores satisfies those conditions. 

 Analysis of z-scores 

The distribution of z-scores across the subject group were investigated through 

calculating the degree of skewness and kurtosis in Excel (Microsoft, USA). All within-

section and between-section z-scores were collated by axis (so side 1 and side 2 were 

combined on each axis), then the skewness and kurtosis was calculated, and 

significance was measured against the standard error of skewness and standard error 

of kurtosis respectively. A histogram was also generated for each condition to aid in the 

visual analysis of the distribution of z-scores. 

Confidence intervals for z-scores were established to identify the number of games 

where a significant z-score occurred per subject. Confidence intervals were also used 

to identify the total number of games across all subjects where a significant negative z-

score occurred in any analysis condition and axis, a significant positive z-score 

occurred in any condition, and both a significant positive and significant negative z-

score occurred. Confidence intervals were established at 99%, 95%, 90% and 80% by 

implementing a bootstrapping procedure. The z-scores for side 1 and side 2 were 

collated for each axis and analysis condition, producing six sets of 526 points. Each 

underlying set was resampled (with replacement) 1000 times, with each of those 

resampled sets sorted and confidence intervals determined by identifying the 5th and 

995th point (for the 99% confidence level), the 25th and 975th point (for the 95% 

confidence level), the 50th and 100th point (for the 90% confidence interval), and the 

100th and 900th point (for the 80% confidence level). The confidence intervals were then 

averaged across the 1000 iterations to determine the final confidence intervals for that 

underlying set of data. 

Correlations of z-scores across side, axis and analysis condition were calculated via a 

bootstrapping procedure. Data were resampled (with replacement) 1000 times and the 

average correlation across all replications was calculated. 
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 Results 

Summary statistics for all subjects (including total games, valid steps per game, valid 

steps and valid sections) for all subjects can be found in Table 4-1. The average, 

maximum and minimum results are highlighted in Table 4-2. It is worth noting the 

minimum number of average SLHS sections available (5.1 on side 1, 5.4 on side 2), as 

well as the number of subjects who have at least one side with fewer than six sections 

available (subjects 15 and 16). Subject by subject results for z-axis, y-axis and x-axis 

within-section CMD are shown in Tables 4-3, 4-4 and 4-5 respectively. These results 

are also displayed graphically in Figures 4-1 (z-axis), 4-2 (y-axis) and 4-3 (x-axis). 

Results where the difference in average CMD is significant to a confidence level of 0.95 

and 0.99 are denoted. The same results for the between-section analysis can be found 

in Tables 4-6, 4-7 and 4-8 and are also displayed graphically in Figures 4-1, 4-2 and 4-

3. The y-axis range displayed on all figures is 0.5 for z-axis and x-axis results and 0.8 

for y-axis results. Tighter ranges were used for the z-axis and x-axis figures to assist in 

the identification of instances where 99% confidence bands (displayed as error bars in 

the figures) do not overlap. 
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Table 4.1 Summary statistics (by subject) for total games, valid strides, valid steps and valid sections per 
game 

   Side 1 Side 2 

Subject (ID) 
Total 

Games 
Valid strides 

per game 
Valid 

Steps1 
Valid 

Sections 
Valid 
Steps 

Valid 
Sections 

1 12 240 104 13.8 107 12.8 

2 14 185 75 9.6 93 11.1 

3 14 258 102 15.7 70 11.7 

4 9 165 91 11.7 88 11.0 

5 6 222 84 12.3 65 10.0 

6 11 351 135 17.7 121 15.1 

7 15 270 111 16.1 104 15.5 

8 13 148 55 8.7 42 7.4 

9 15 329 109 15.1 137 18.5 

10 11 171 65 10.4 60 9.8 

11 15 282 108 15.3 118 16.1 

12 15 217 102 13.4 95 12.5 

13 7 214 81 11.7 98 13.3 

14 15 199 84 12.1 99 14.4 

15 14 107 34 5.1 33 5.4 

16 11 141 33 5.8 44 6.5 

17 8 341 129 17.6 115 17.8 

18 6 256 97 14.8 71 11.0 

19 13 276 108 14.8 135 17.9 

20 11 295 100 15.0 104 13.7 

21 14 138 46 7.4 48 7.6 

22 14 259 58 10.4 87 11.9 
 

Table 4.2 Mean, maximum and minimum summary statistics for total games, valid strides, valid steps and 
valid sections of straight line high speed running per game 

   Side 1 Side 2 

 

Total 
Games 

Valid strides 
per game1 

Valid 
Steps1 

Valid 
Sections 

Valid 
Steps1 

Valid 
Sections 

Mean 12 230 87 12.5 88 12.3 

Maximum 15 351 135 17.7 137 18.5 

Minimum 6 107 33 5.1 33 5.4 
 

                                                 
1 The number of valid steps on side 1 and side 2 will not add up to the number of valid strides 
per game as strides have no pre-selection changes in body orientation or step function, 
whereas steps do have this procedure imposed. Without eliminating steps with different 
functions and body orientations the number of steps would be equal to the number of strides. 
Refer to section 3.5.2.2.2.3 for a detailed description of the process. 
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Table 4.3 Mean and standard deviation of z-axis within-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject Mean St Dev Mean St Dev 

1 0.843 0.028 0.844 0.017 

2 0.761** 0.034 0.802** 0.026 

3 0.813** 0.033 0.79** 0.029 

4 0.831 0.035 0.815 0.029 

5 0.819 0.037 0.815 0.018 

6 0.814 0.022 0.818 0.038 

7 0.799 0.019 0.804 0.034 

8 0.786 0.046 0.772 0.031 

9 0.813 0.028 0.818 0.031 

10 0.817** 0.017 0.787** 0.020 

11 0.878** 0.024 0.896** 0.012 

12 0.836 0.018 0.835 0.028 

13 0.850 0.027 0.844 0.021 

14 0.797** 0.044 0.819 0.032 

15 0.714 0.059 0.723 0.051 

16 0.677 0.046 0.688 0.042 

17 0.779 0.043 0.768 0.045 

18 0.828 0.031 0.811 0.030 

19 0.805** 0.019 0.843** 0.012 

20 0.806 0.016 0.798 0.022 

21 0.779 0.040 0.781 0.028 

22 0.825** 0.021 0.844** 0.020 
 

 

Figure 4-1 Graphical representation of average z-axis within-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Table 4.4 Mean and standard deviation of y-axis within-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject Mean St Dev Mean St Dev 

1 0.472** 0.028 0.587** 0.017 

2 0.457** 0.034 0.664** 0.026 

3 0.477 0.033 0.438 0.029 

4 0.499** 0.035 0.62** 0.029 

5 0.521 0.037 0.499 0.018 

6 0.48** 0.022 0.582** 0.038 

7 0.609** 0.019 0.553** 0.034 

8 0.494** 0.046 0.325** 0.031 

9 0.524** 0.028 0.602* 0.031 

10 0.53** 0.017 0.41** 0.020 

11 0.605 0.024 0.619 0.012 

12 0.629 0.018 0.634 0.028 

13 0.609** 0.027 0.505** 0.021 

14 0.583 0.044 0.580 0.032 

15 0.417 0.059 0.399 0.051 

16 0.338** 0.046 0.414** 0.042 

17 0.496** 0.043 0.336** 0.045 

18 0.567** 0.031 0.352** 0.030 

19 0.612* 0.019 0.573** 0.012 

20 0.487 0.016 0.498 0.022 

21 0.484** 0.040 0.39** 0.028 

22 0.459** 0.021 0.652** 0.020 
 

 

Figure 4-2 Graphical representation of average y-axis within-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Table 4.5 Mean and standard deviation of x-axis within-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject  Mean St Dev Mean St Dev 

1 0.718** 0.028 0.678** 0.017 

2 0.575** 0.034 0.751** 0.026 

3 0.706** 0.033 0.633** 0.029 

4 0.769* 0.035 0.724** 0.029 

5 0.635 0.037 0.602 0.018 

6 0.691 0.022 0.671 0.038 

7 0.736 0.019 0.717** 0.034 

8 0.648** 0.046 0.61* 0.031 

9 0.759* 0.028 0.746 0.031 

10 0.736** 0.017 0.692** 0.020 

11 0.700 0.024 0.686 0.012 

12 0.677 0.018 0.687 0.028 

13 0.685* 0.027 0.710 0.021 

14 0.711* 0.044 0.745* 0.032 

15 0.643 0.059 0.651 0.051 

16 0.655 0.046 0.629* 0.042 

17 0.713** 0.043 0.625** 0.045 

18 0.650 0.031 0.596** 0.030 

19 0.641** 0.019 0.715** 0.012 

20 0.734 0.016 0.732 0.022 

21 0.714 0.040 0.704 0.028 

22 0.686 0.021 0.696 0.020 
 

 

Figure 4-3 Graphical representation of average x-axis within-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Table 4.6 Mean and standard deviation of z-axis between-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject  Mean St Dev Mean St Dev 

1 0.864 0.028 0.862 0.017 

2 0.746** 0.034 0.821** 0.026 

3 0.813* 0.033 0.786** 0.029 

4 0.839 0.035 0.829 0.029 

5 0.838 0.037 0.846 0.018 

6 0.826 0.022 0.830 0.038 

7 0.805 0.019 0.814 0.034 

8 0.801** 0.046 0.757** 0.031 

9 0.83* 0.028 0.844 0.031 

10 0.825** 0.017 0.78** 0.020 

11 0.889** 0.024 0.904** 0.012 

12 0.850 0.018 0.859 0.028 

13 0.819** 0.027 0.847* 0.021 

14 0.789* 0.044 0.810 0.032 

15 0.708** 0.059 0.763* 0.051 

16 0.722 0.046 0.739 0.042 

17 0.788* 0.043 0.76** 0.045 

18 0.846 0.031 0.822** 0.030 

19 0.818** 0.019 0.837* 0.012 

20 0.806 0.016 0.808 0.022 

21 0.760 0.040 0.760 0.028 

22 0.833 0.021 0.844 0.020 
 

 

Figure 4-4 Graphical representation of average z-axis between-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Table 4.7 Average and standard deviation of y-axis between-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject  Average St Dev Average St Dev 

1 0.447* 0.028 0.576** 0.017 

2 0.374** 0.034 0.684** 0.026 

3 0.404 0.033 0.404 0.029 

4 0.441** 0.035 0.61** 0.029 

5 0.575 0.037 0.555 0.018 

6 0.464** 0.022 0.607** 0.038 

7 0.618** 0.019 0.55** 0.034 

8 0.533** 0.046 0.203** 0.031 

9 0.492** 0.028 0.602** 0.031 

10 0.458** 0.017 0.32** 0.020 

11 0.573 0.024 0.599 0.012 

12 0.615* 0.018 0.672* 0.028 

13 0.543* 0.027 0.43** 0.021 

14 0.546* 0.044 0.483** 0.032 

15 0.37* 0.059 0.425 0.051 

16 0.147** 0.046 0.344** 0.042 

17 0.442** 0.043 0.237** 0.045 

18 0.574** 0.031 0.421** 0.030 

19 0.607** 0.019 0.523** 0.012 

20 0.347* 0.016 0.43* 0.022 

21 0.388 0.040 0.347 0.028 

22 0.246** 0.021 0.545** 0.020 
 

 

Figure 4-5 Graphical representation of average y-axis between-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Table 4.8 Mean and standard deviation of x-axis between-section CMD by subject. Results where the 
difference in the averages is significant at a confidence level of 0.95 are marked *, if results are significant 
at a confidence level of 0.99 they are marked ** 

 Side 1 Side 2 

Subject  Mean St Dev Average St Dev 

1 0.710 0.028 0.672** 0.017 

2 0.511** 0.034 0.747** 0.026 

3 0.689** 0.033 0.591** 0.029 

4 0.787** 0.035 0.739** 0.029 

5 0.632 0.037 0.661 0.018 

6 0.681 0.022 0.666 0.038 

7 0.729 0.019 0.741 0.034 

8 0.604 0.046 0.607 0.031 

9 0.741 0.028 0.753 0.031 

10 0.755** 0.017 0.688** 0.020 

11 0.674 0.024 0.661 0.012 

12 0.627* 0.018 0.692 0.028 

13 0.616** 0.027 0.670 0.021 

14 0.683 0.044 0.708 0.032 

15 0.628 0.059 0.647 0.051 

16 0.621 0.046 0.648 0.042 

17 0.71** 0.043 0.606** 0.045 

18 0.67** 0.031 0.608** 0.030 

19 0.626** 0.019 0.702** 0.012 

20 0.726 0.016 0.744 0.022 

21 0.617 0.040 0.637 0.028 

22 0.661 0.021 0.668 0.020 
 

 

Figure 4-6 Graphical representation of average x-axis between-section CMD results. Confidence intervals 
(99%) are displayed as error bars. 
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Instances where the difference between season averages are different between sides 

within an axis for each subject are seen in Table 4-9. If the averages are different to a 

confidence level of 0.95 then the cell is marked with an ‘x’. If the averages are different 

to a confidence level of 0.99 then the cell has a black background. These results are 

collated by axis in Table 4-10. It is interesting to note the relatively high number of 

significant results (at both confidence intervals) within the y-axis, as well as subject 2 

who has significant differences to a confidence interval of 0.99 in all but three 

conditions. The number of incidents where 99% confidence intervals do not overlap are 

shown in Table 4-11. 

Table 4.9 Instances of absolute difference in average result within the same axis being significantly 
different at a confidence level of 0.95 side (marked with x), and instances where the absolute difference in 
average result is different at a confidence level of 0.99 are shaded black. 

 Within-Section Between-Section 

 Side 1 Side 2 Side 1 Side 2 

Subject z y x z y x z y x z y x 

1  x x  x x  x   x x 

2 x x x x x x x x x x x x 

3 x  x x  x x  x x  x 

4  x x  x x  x x  x x 

5             

6  x   x   x   x  

7  x   x x  x   x  

8  x x  x x x x  x x  

9  x x  x   x   x  

10 x x x x x x x x x x x x 

11 x   x   x   x   

12        x x  x  

13  x x  x  x x x x x  

14 x  x   x x x   x  

15       x x  x   

16  x   x x  x   x  

17  x x  x x x x x x x x 

18  X   x x  x x x x x 

19 x x x x x x x x x x x x 

20        x   x  

21  x   x        

22 x x  x x   x   x  
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Table 4.10 Percent of results within each axis where the difference between sides is significant to a 
confidence level of 95% and 99% (cells with no instances are left blank) 

 95% Confidence Level 99% Confidence Level 

Subject z-axis y-axis x-axis z-axis y-axis x-axis 

1  100% 75%  75% 75% 

2 100% 100% 100% 100% 100% 100% 

3 100%  100% 100%  75% 

4  100% 100%  100% 75% 

5       

6  100%   100%  
7  100% 25%  100% 25% 

8 50% 100% 50% 50% 100% 25% 

9  100% 25%  100%  
10 100% 100% 100% 100% 100% 100% 

11 100%   100%   

12  50% 25%    

13 50% 100% 50% 25% 75% 25% 

14 50% 50% 50% 25% 25%  
15 50% 25%  25%   

16  100% 25%  100%  
17 50% 100% 100% 25% 100% 100% 

18 25% 100% 75% 25% 100% 75% 

19 100% 100% 100% 75% 100% 100% 

20  50%     

21  50%   50%  
22 50% 100%  50% 100%  
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Table 4.11 Incidents where 99% confidence intervals for season averages do not overlap by subject. 

 Within-Section Between-Section 

 Subject z-axis y-axis x-axis z-axis y-axis x-axis 

1       

2 x x x x x x 

3   x   x 

4     x  
5       

6     x  
7       

8  x   x  
9       

10 x   x   

11       

12       

13  x     

14       

15       

16     x  
17  x x  x x 

18  x     

19 x  x   x 

20       

21       

22  x   x  
 

Skewness and kurtosis measures for z-scores collated by axis (both sides combined) 

are shown in Table 4-12. These data sets are displayed graphically as histograms in 

Figures 4-7 and 4-8. It is worth noting the degree of skewness of the data, with all but 

the y-axis between-section results with a negative skew. The results from the 

bootstrapping procedure to generate confidence intervals on z-scores can be found in 

Table 4-13. Correlations between collated z-scores for within-section, between-section 

and across both within and between-section results are shown in Table 4-14, 4-15 and 

4-16 respectively. The generally high correlation between z-axis and x-axis results 

across all conditions is of interest in these results. 

Table 4.12 Skewness and kurtosis measurements for within-section and between-section individual z-
scores by axis. Skewness measures marked * are outside the standard error of skewness (SES), and 
kurtosis measures marked * are outside of the standard error of kurtosis (SEK). 

 Within-Section Between-Section 

 z-axis y-axis x-axis z-axis y-axis x-axis 

Skewness -0.37* -0.16 -0.67* -0.29* 0.05 -0.25* 

Kurtosis -0.22 -0.54* 0.50* -0.47* -0.36 -0.31 
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Figure 4-7 Histograms displaying z-score distributions for within-section CMD measurements in the z-axis 
(top), y-axis (middle) and x-axis (bottom) 
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Figure 4-8 Histograms displaying z-score distributions for between-section CMD measurements in the z-
axis (top), y-axis (middle) and x-axis (bottom) 

 

 

 



82 
 

Table 4.13 Correlation (r) of within-section z-scores between sides and axes 

  Side 1 Side 2 

    z-axis y-axis x-axis z-axis y-axis x-axis 

Side 1 

z-axis  0.517 0.651 0.519 0.269 0.291 

y-axis   0.362 0.346 -0.056 0.214 

x-axis    0.362 0.253 0.278 

Side 2 

z-axis     0.485 0.622 

y-axis      0.371 

x-axis       
 

Table 4.14 Correlation (r) of between-section z-scores between sides and axes 

  Side 1 Side 2 

    z-axis y-axis x-axis z-axis y-axis x-axis 

Side 1 

z-axis  0.383 0.606 0.267 0.194 0.191 

y-axis   0.179 0.124 -0.111 0.096 

x-axis    0.166 0.237 0.249 

Side 2 

z-axis     0.445 0.650 

y-axis      0.365 

x-axis       
 

Table 4.15 Correlation (r) across within-section and between-section z-scores 

   Within Section 

   Side 1 Side 2 

      z-axis y-axis x-axis z-axis y-axis x-axis 

Between 
Section 

Side 1 

z-axis 0.570 0.304 0.442 0.399 0.203 0.259 

y-axis 0.232 0.485 0.088 0.143 -0.216 0.077 

x-axis 0.415 0.118 0.625 0.222 0.207 0.207 

Side 2 

z-axis 0.343 0.228 0.245 0.470 0.303 0.359 

y-axis 0.192 -0.132 0.203 0.278 0.624 0.198 

x-axis 0.192 0.120 0.181 0.285 0.201 0.549 
 

Table 4.16 Z-score confidence intervals by axis and CMD analysis as generated by bootstrapping 
procedure 

Confidence 
Level 

 Within-Section Between-Section 

Limit z-axis y-axis x-axis z-axis y-axis x-axis 

99% 
Low -2.25 -2.11 -2.39 -2.45 -2.26 -2.73 

High 1.87 2.20 2.07 1.88 2.02 2.03 

95% 
Low -1.75 -1.55 -1.70 -1.71 -1.63 -1.85 

High 1.46 1.57 1.44 1.48 1.47 1.30 

90% 
Low -1.35 -1.29 -1.37 -1.30 -1.23 -1.34 

High 1.23 1.29 1.19 1.17 1.20 1.05 

80% 
Low -0.87 -0.80 -0.86 -0.83 -0.92 -0.80 

High 0.84 0.85 0.81 0.83 0.87 0.79 



83 
 

 

The z-scores are broken down by individual subject in Table 4-17, with the number of 

instances identified where a z-score in any condition exceeds a confidence interval of 

99%, 95%, 90% and 80%. These results are broken down further in Table 4-18 into the 

percentage of games to show where at least one condition is significantly higher than 

the long term average, at least one condition is significantly lower than the long term 

average, and where there is at least one condition higher and one condition lower in 

the same game. 

Table 4.17 Number of games where the z-score for any condition of within-section CMD or between-
section CMD on any side and axis exceeds the corresponding confidence level 

  Confidence Level 

Subject 
Total 
Games 99% 95% 90% 80% 

1 12 1 3 6 10 

2 14 3 7 10 12 

3 14 2 5 8 11 

4 9 2 2 2 5 

5 6 0 2 4 5 

6 11 1 3 6 8 

7 15 1 5 10 12 

8 13 1 4 8 12 

9 15 3 6 8 13 

10 11 0 3 8 10 

11 15 2 7 8 12 

12 15 1 3 9 13 

13 7 0 2 3 4 

14 15 2 5 11 12 

15 14 1 4 7 12 

16 11 2 6 6 9 

17 8 1 3 4 7 

18 6 0 1 3 4 

19 13 0 4 7 11 

20 11 2 3 6 8 

21 14 4 6 10 12 

22 14 2 7 9 12 

Total 263 31 91 153 214 

Percentage  11.8% 34.6% 58.2% 81.4% 
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Table 4.18 Percentage of total files with at least one condition significantly higher, at least one condition 
significantly lower and both one condition higher and one condition lower 

Confidence Level 

At least one 
condition 

significantly higher 

At least one 
condition 

significantly lower 

At least one 
condition higher 

and one condition 
lower 

99% 6.5% 5.3% 0.0% 

95% 19.4% 17.9% 2.7% 

90% 35.0% 29.7% 6.5% 

80% 52.1% 48.3% 19.0% 
 

 Discussion 

Nineteen of the 22 subjects showed a difference in season average between side 1 

and side 2 on an axis in either the within-section or between-section CMD that is 

significantly different at a confidence level of 99% (Table 4-10). Two of those subjects 

(subjects 2 and 10) have all conditions where the difference is significant and one 

subject (subject 19) has all but two conditions significant to 99% (the remaining 

conditions were significantly different to 0.95). Relating these results back to Figures 4-

1 to 4-6, subject 2 has significantly lower results (and consequently more variability) on 

side 1 than side 2, subject 10 has significantly lower results on side 2 than side 1, and 

subject 19 has significantly lower results on side 1 than side 2 except for the y axis 

where side 2 is lower than side 1. When the significant differences are collated by axis, 

there were more subjects with significant differences in the y-axis (16 subjects) than 

the z-axis (11 subjects) or the x-axis (12 subjects). Of the subjects who had a 

significant results in the y-axis, 12 subjects had significant differences in all CMD 

measures on the y-axis. The causes and implications of these differences are currently 

unknown, and will be investigated further in section 4-7, however it is encouraging for 

the performance of the analysis tool that there are specific instances where a 

significant difference occurs that can be linked to information on the athlete’s overall 

history of training and game participation so that inferences can be made as to the 

cause of such differences. 

When the confidence level for inferring significance is reduced to 95% there are more 

significant differences identified (52.3% of conditions were significant at 95% while 

43.9% of conditions were significant at 99%). It is interesting to note that although there 

are a lot of significant results, some subjects (such as subject 2) have very large 

discrepancies between sides in a number of different conditions. This can be seen in 

Table 4-11 where the number of incidents where the 99% confidence intervals 

overlapped, as well as Figures 4-1 to 4-6 where the distance between averages and 
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the 99% confidence intervals have been plotted. This is perhaps a better indication of 

subjects whose difference in waveform variability between sides may be of clinical 

significance. 

There are many possible reasons for a difference in stride variability across left and 

right sides, and the clinical significance (or lack of significance) of a difference for an 

individual would need to take into account their personal activity and injury history. 

Despite the large number of possible causes, this area is still worthy of further 

investigation, particularly to see if there are any common features in the group of 

individuals that display a side to side difference. 

The distribution of z-scores is significantly negatively skewed in all but the y-axis 

between-section CMD (significance was measured against the standard error of 

skewness and standard error of kurtosis). This is not surprising given the number of 

influences that will tend to decrease the CMD value (such as natural variation, contact 

with an opponent, gameplay considerations etc.). In contrast, to achieve high values for 

CMD the subject must produce waveforms that are almost perfectly matched. It is, in 

effect, much easier to produce highly variable waveforms than it is to produce perfectly 

matched waveforms. Consequently the distribution of the z-scores will tend to be 

negatively skewed with a longer tail of negative values. The practical implications of 

these results are that confidence intervals associated with normally distributed z-scores 

are invalid. However, this was mitigated by the use of the bootstrapping procedure 

which calculated confidence intervals with respect to the data currently being analysed. 

The subject by subject analysis of the number of games where z-scores were 

significant within axis, side and CMD condition at various confidence levels (Table 4-

13) shows that there are 11.8% of games where there was at least one significant 

result at the 99% confidence level. At the 95% confidence level, there are 34.6% of 

games where there was at least one significant result. The practical application of 

these results may be that games where a significant results occurs at the 99% 

confidence level should be treated as a ‘red flag’ and followed up with specific 

diagnostic tests, whereas games significant at the 95% confidence level would indicate 

that there is possibly a problem that should be investigated with diagnostic tests if other 

athlete wellness measures also indicate a potential issue. At confidence levels above 

95%, there are less than 2.7% of games where both a significant positive and negative 

event occur. This is a good indication that at high confidence levels there is more clarity 

in identifying a general increase or decrease in waveform variability that pervades 

across all conditions of side, axis and CMD calculation. That is not to say that positive 
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and negative z-scores should not occur in the same game, as an increase in stride 

variability in one axis does not preclude uniformity in another axis. Instances of both 

high and low significant results will be investigated further in sections 4.5, 4.6 and 4.7. 

The average number of SLHS sections available is 12.5 on side 1 and 12.3 on side 2 

(Table 4-2) which exceeded the threshold of six established in Chapter 3 (section 3.6, 

page 39) for the minimum number required. When individual subjects were examined it 

was found that 20 of the 22 subjects recorded a season average for number of SLHS 

per game greater than six. However, the subject with the fewest number of valid SLHS 

sections available (subject 15) had an average of only 5.1 SLHS sections on side 1 and 

5.4 SLHS sections on side 2. There was also one other subject with a similar average 

number of sections available (subject 16, 5.8 SLHS sections on side 1 and 6.5 SLHS 

sections on side 2), and two other subjects (subject 8 and subject 21) who had less 

than 10 SLHS sections available on average on both sides. Given that these are the 

average results, there is a very real potential that there will be many games where the 

number of SLHS sections is much lower than six. 

The low number of SLHS sections in some subjects could be due to factors discussed 

during the development of the analysis tool such as a limited physical capacity to 

achieve high running speeds and limited opportunities to run at high speed in straight 

lines during a game due to gameplay demands. A post-hoc analysis was conducted to 

determine the season average for maximum straight line running speeds achieved 

during games. Subjects were ranked from highest to lowest, and the two subjects who 

had the fewest number of SLHS sections were ranked 19th (subject 15) and 21st 

(subject 16) of the 22 subjects, suggesting that capacity to achieve high running 

speeds did affect the amount of SLHS sections identified in a game. Interestingly, the 

subject who ranked 22nd in the post-hoc analysis of maximum speeds achieved was 

subject 22 who was able to generate an average of 10.4 SLHS sections on side 1 and 

11.9 SLHS sections on side 2, much closer to the group average than subjects 15 and 

16. This demonstrates that although a factor, reduced capacity to achieve high speeds 

does not necessarily reduce the amount of SLHS sections per game to a level where 

the accuracy of between-section analyses may be questionable. 

Another factor that could reduce the amount of SLHS sections identified is reduced 

game time, as files analysed in this section were not pre-selected for games where it 

was known that the subject completed the entire game without substitution or injury. It 

is likely that there would be some games included in this analysis where a subject did 

not take part in the full game because in addition to the interchange that normally 
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occurs in a game in the AFL, the 2014 season had a substitute available who did not 

take part in the game until he was substituted in, which would consequently mean there 

was also a player who was substituted out of the game. In both cases, the subject 

would not have taken part in the full game so would have less opportunity to generate 

SLHS sections. These games were left in the analysis as the reason for the reduced 

game time is unknown. These games may provide valuable information on stride 

characteristics that precede an injury event (if the reason the subject did not compete 

the full game was because of injury), or the subject may have been used as a 

substitute if it was felt they would not be able to play the full game without exposing 

themselves to the risk of injury. Whatever the case, these games are still valuable 

additions to the analysis. The practical effects of only having a small average number 

of SLHS sections is not immediately clear and will be investigated further in section 4.5 

where a longitudinal analysis will be performed on subject 15. 

 Conclusion 

Season average raw CMD results were calculated and the number of significant 

differences between sides within the same analysis condition and axis were identified. 

The y-axis produced the most number of subjects who had significant differences 

between sides at a confidence level of 0.99. There were two subjects who had 

significant differences across all conditions and axes. 

Individual subject raw CMD results were converted to z-scores. The overall distribution 

of these z-scores when collated across the subject group were negatively skewed in 

the z and x axes. When analysed by subject there were roughly one third of games 

where at least one condition was significantly different from the long term average at a 

confidence level of 95%. There were also variations between subjects in the number of 

games with a significant z-score. 

Overall, the use of z-scores to provide a means for longitudinal analysis of results 

within analysis condition and axis of measurement for individuals shows great promise. 

The practical implications of all these results will be investigated further in sections 4.5, 

4.6 and 4.7. 

 

 Part 2 – Longitudinal analysis of the average subject 

Group average results presented in section 4.4 show the season-long average (mean) 

results for the group and individual subjects. These results provide information on long 

term trends within the results that may offer some insight into the overall physical 



88 
 

condition of the athlete (such as chronic imbalances between steps on left and right 

legs). Another way (and perhaps a more typical way) these results would be analysed 

within the practical setting of a professional sporting club would be to calculate CMD 

results weekly (or even after every training session) and add those results to a 

longitudinal analysis within each subject that is being analysed in order to develop a 

reference range individual to that athlete. This section does not include a 

comprehensive investigation into the relationship between incidents where athletes 

have exhibited a variability outside of their normal range and incidents of missed or 

modified training (this will be presented in Chapter 5). Instead, in order to demonstrate 

the practical application of the analysis tool, this section will describe an individual style 

of analysis with reference to a single subject to explore the application of results to 

individual subjects, an important element in the eventual application of the analysis tool 

within elite sporting environments. 

 Aims 

 Identify an average subject and describe their results across the season 

 Methods 

 Subject 

One subject was selected to represent the average subject within the group based on 

the results presented in section 4.4. Subjects were ranked (in ascending order) on the 

absolute difference from the group mean to their score within the following categories: 

 The number of games available for analysis 

 The mean number of strides identified per game 

 The mean number of valid SLHS sections identified on side 1 and side 2 

 The mean number of valid steps identified on side 1 and side 2 

 The number of instances where their season mean is significantly different 

between sides within the same axis 

 The number of games where a significant difference from the season mean 

within side and axis were identified. 

An overall ranking was then calculated by averaging the rankings in the 

aforementioned categories and then determining the overall ascending rank of those 

averages. 

The description of the personal characteristics (such as age, mass etc.) of the chosen 

subject is problematic given the subjects were de-identified, suffice to say that the 
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subject chosen fell within the overall range of characteristics described in section 4.3.1 

and that their results in the key variables described earlier in this section suggested 

they were most appropriate to use as a representative subject for the whole cohort.  

 Data preparation and processing 

Data were prepared and processed in accordance with the procedures outlined in the 

general methods, section 4.3. 

 Data analysis 

Results from each game available for the selected subject were collated. Key variables 

extracted from each game were: 

 Valid strides per game 

 Valid steps on both sides 

 Valid SLHS sections on both sides 

 Within-section CMD on all three axes for both sides 

 Between-section CMD on all three axes for both sides 

The within-section CMD and between-section CMD results were converted to z-scores 

within side, axis, and between-section or within-section condition. In each of the 12 

separate conditions (three axes by two sides by two CMD analysis conditions), the 

season average and standard deviation of results was calculated and used to convert 

raw scores to z-scores. Significance at the 99% and 95% confidence intervals was 

assessed using the confidence intervals calculated in the previous section (Table 4-

16). 

 Results 

The average of category rankings and overall subject rank used to determine the 

average subject are displayed in Table 4-19. Subject 1 was determined to be the most 

representative of the group average across all categories. A summary of games 

available for subject 1, as well as the number of valid steps and sections identified per 

game are found in Table 4-20. It is worth noting the small number of sections identified 

in game 14. 
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Table 4.19 Average ranking in absolute difference from group mean in categories used to determine the 
average subject and the overall ranking by subject 

Subject 
Average of Category 

Rank 
Overall 
Rank 

1 5.3 1 

2 10.4 11 

3 8.4 6 

4 7.6 4 

5 10.1 10 

6 12.6 15 

7 10.9 12 

8 14.0 16 

9 14.8 19 

10 12.5 14 

11 11.5 13 

12 7.6 4 

13 8.4 6 

14 7.1 3 

15 17.5 22 

16 14.4 18 

17 15.1 20 

18 9.3 8 

19 14.3 17 

20 9.9 9 

21 16.6 21 

22 6.9 2 
 

Table 4.20 Summary of valid strides, valid steps and valid SLHS sections by game for subject 1. 

Game 
Total 

Strides 
Valid Steps Valid Sections 

Side 1 Side 2 Side 1 Side 2 

1 195 66 74 10 11 

2 226 126 106 17 14 

4 178 87 90 12 9 

5 280 138 122 16 15 

8 297 123 107 17 13 

10 327 135 130 17 14 

11 262 86 125 13 16 

12 240 87 101 14 10 

13 262 111 120 14 12 

14 160 40 54 5 8 

15 304 170 168 21 19 

17 146 76 92 9 12 

Mean 240 104 107 14 13 
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Longitudinal results for the raw within-section CMD analysis can be found in Table 4-21 

and z-scores displayed in Table 4-22. Graphical representations of these results can 

also be found in Figure 4-9. Longitudinal results for the between-section CMD analysis 

can be found in table 4-23, and z-scores displayed in Table 4-24. Graphical 

representations of these results are found in Figure 4-10. It is worth noting the 

significant results at the 95% confidence level in the between-section results, and the 

lack of significance in the corresponding results in the within-section results. In 

particular, the between-section results in game 1 showed significant results to a 

confidence level of 99% for side 2 in the z-axis and to a confidence level of 95% for 

side 2 in the x-axis, with no significant results for the within-section category. Similarly, 

for game 11 there were significant results to a confidence level of 95% in the between-

section category (side 1 in the z-axis and side 1 in the x-axis) with no significant results 

in the within-section category. 

Table 4.21 Longitudinal within-section CMD analysis for subject 1 

 z-axis CMD y-axis CMD x axis-CMD 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.800 0.814 0.411 0.498 0.654 0.606 

2 0.816 0.829 0.245 0.757 0.715 0.713 

4 0.855 0.846 0.362 0.705 0.803 0.738 

5 0.883 0.851 0.669 0.421 0.786 0.618 

8 0.822 0.841 0.326 0.696 0.677 0.731 

10 0.850 0.857 0.462 0.735 0.753 0.690 

11 0.819 0.828 0.382 0.606 0.653 0.672 

12 0.854 0.828 0.573 0.351 0.646 0.608 

13 0.870 0.868 0.502 0.717 0.776 0.675 

14 0.814 0.838 0.524 0.611 0.639 0.735 

15 0.879 0.864 0.659 0.405 0.773 0.692 

17 0.854 0.862 0.550 0.549 0.739 0.659 
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Table 4.22 Within-section z-scores by game for subject 1. 

 z-axis y-axis x-axis 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 -1.54 -1.74 -0.46 -0.63 -1.04 -1.50 

2 -0.97 -0.87 -1.72 1.19 -0.04 0.72 

4 0.41 0.13 -0.84 0.83 1.39 1.24 

5 1.43 0.39 1.50 -1.18 1.11 -1.26 

8 -0.76 -0.14 -1.11 0.77 -0.67 1.10 

10 0.26 0.75 -0.08 1.04 0.58 0.25 

11 -0.88 -0.92 -0.68 0.13 -1.06 -0.12 

12 0.40 -0.94 0.76 -1.67 -1.17 -1.46 

13 0.98 1.44 0.23 0.91 0.95 -0.06 

14 -1.04 -0.35 0.39 0.16 -1.29 1.19 

15 1.29 1.20 1.42 -1.29 0.90 0.29 

17 0.41 1.05 0.59 -0.27 0.34 -0.40 

       

 

 

 

Figure 4-9 Graphs of the longitudinal within-section z-scores for subject 1 in the z-axis (top), y-axis 
(middle), and x-axis (bottom). 
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Table 4.23 Longitudinal between-section analysis for subject 1. 

 z axis CMD y axis CMD x axis CMD 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.837 0.750 0.546 0.308 0.671 0.396 

2 0.841 0.895 0.271 0.776 0.730 0.771 

4 0.869 0.912 0.330 0.832 0.787 0.778 

5 0.915 0.833 0.619 0.355 0.766 0.502 

8 0.840 0.828 0.215 0.729 0.734 0.635 

10 0.876 0.861 0.447 0.720 0.743 0.693 

11 0.804 0.837 0.225 0.571 0.585 0.647 

12 0.879 0.883 0.597 0.335 0.641 0.742 

13 0.884 0.906 0.455 0.846 0.765 0.709 

14 0.849 0.864 0.554 0.483 0.652 0.765 

15 0.880 0.889 0.586 0.356 0.727 0.721 

17 0.890 0.881 0.521 0.594 0.720 0.710 
 

Table 4.24 Between-section z-scores for subject 1. Significant results at a confidence level of 99% are 
marked **, significant results at a confidence level of 95% are marked *. 

 z-axis y-axis x-axis 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 -0.87 -2.48** 0.66 -1.31 -0.65 -2.39* 

2 -0.75 0.74 -1.18 0.98 0.33 0.85 

4 0.19 1.11 -0.78 1.26 1.28 0.91 

5 1.7* -0.63 1.15 -1.08 0.92 -1.48 

8 -0.79 -0.76 -1.55 0.75 0.40 -0.32 

10 0.41 -0.01 0.00 0.71 0.55 0.18 

11 -1.99* -0.55 -1.49 -0.02 -2.08* -0.22 

12 0.50 0.47 1.00 -1.18 -1.15 0.60 

13 0.66 0.99 0.05 1.32 0.92 0.32 

14 -0.49 0.05 0.72 -0.45 -0.97 0.80 

15 0.55 0.62 0.93 -1.07 0.28 0.42 

17 0.87 0.43 0.49 0.09 0.16 0.33 
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Figure 4-10 Graphs of the longitudinal between-section z-scores for subject 1 in the z-axis (top), y-axis 
(middle), and x-axis (bottom). Significant values at a confidence level of 99% are represented with a hollow 
triangle, significance at a confidence level of 95% is marked with a hollow circle. 

 

 Discussion 

Examination of the number of sections available per game reveals one game (game 

14) where there were only five valid SLHS sections identified on side 1 and eight valid 

SLHS sections identified on side 2. This is important as it was identified in the previous 

chapter that if fewer than six SLHS sections were available for analysis then the 

between-section analysis can be inflated. However, there does not appear to be any 

sudden increase in CMD in the between-section CMD results, and there are no 

significant results in any between-section condition for that game. Also, as it was 

identified in the previous chapter that within-section CMD is not affected by a small 

number of SLHS sections available, it is worthwhile noting that there were not any 
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significant results in the within-section condition as well. Although the absence of 

significant results in both the within-section and between-section analyses does not 

necessarily mean that a greater number of sections available for a between-section 

analysis would not have produced a significant result in the between-section condition, 

the agreement between both analysis conditions would indicate that it is more likely 

that the small number of sections did not produce an unexpected result in the between-

section analysis. This would suggest that the small number of sections available for 

analysis had a limited effect on the between-section CMD results. 

There are no instances in the within-section results that are significantly different from 

the season average at a confidence level of 95%, indicating that this subject did not 

have any extreme variations away from the season average result in individual games. 

In isolation, these results are not particularly informative as it is unknown whether this 

subject should have had events that the analysis tool identified during the season (in 

which case the analysis tool is of little benefit) or whether the subject maintained a 

relatively constant physical condition during the season (which would indicate that the 

analysis tool is providing useful information). Both of these possibilities will be 

examined further in Chapter 5 where results generated by the analysis tool will be 

examined in conjunction with instances of missed and modified trainings and games 

during the season. 

Although not significant in terms of difference from the season average, there are some 

results that are worthwhile investigating as they are quite low as far as the raw CMD 

value is concerned (indicating a high amount of variability in the waveforms). The result 

for side 1 in the y-axis in game 2 (0.245) indicates a very high amount of waveform 

variability and although it is not significantly different from the season average, it would 

be worth investigating to determine the cause of this variability. 

The between-section results have some significant events, including events that are 

significant at a confidence level of 99%. Game 1 had two significant results, side 2 was 

significant to 99% in the z-axis (z-score of -2.48) and to 95% in the x axis (z-score of -

2.39). Game 5 had a significant result to 95% (side 1 in the z-axis had a z-score of 1.7) 

and game 11 had a further two significant events to 95% (side 1 in the z-axis had a z-

score of -1.99 and side 1 in the x-axis had a z-score of -2.08). It is interesting to note 

that there are significant results that are positive and negative z-scores. Though the 

implications of these events cannot be determined without more information on the 

effect they had on modifications to the normal game and training activity (which will be 

examined in Chapter 5, where information on missed and modified training and game 
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activity is investigated in combination with the z-scores), they clearly indicate a need for 

a follow up investigation. In a practical sense, a significant result could indicate the 

need for follow up investigation by medical and scientific staff within a professional club 

(through medical examination, video analysis or other diagnostic tool) to determine 

whether this significant event could provide forewarning of an injury or other event that 

could lead to reduced athletic performance. 

The lack of significant results in the within-section analysis but some significant results 

in the between-section analysis is of particular interest in the longitudinal analysis of 

subject 1. The difference between the method used to calculate these two variables 

would suggest that there are some games where this subject varies his step waveform 

over the course of the game, but in the individual sections within the game there is a 

non-significant amount of waveform variability. In other words there was possibly an 

event, perhaps injury related, perhaps fatigue related, that has caused a change in the 

stride waveform at some stage in the game, but within the individual sections identified 

throughout the game there is no change to the normal amount of waveform variability. 

 Conclusion 

The subject whose season averages best approximated the group average across a 

range of criteria was identified as subject 1. A longitudinal analysis of his within-section 

and between-section CMD results was conducted. A number of potentially important 

events were identified through evaluating z-scores with respect to the confidence limits 

identified in section 4.4. 

Results from this section demonstrate that the practical use of the results produced by 

the analysis tool will be best achieved by combining analysis of raw scores and z-

scores to identify potentially important events. How potentially significant events 

highlighted through these analysis relate to the athlete’s physical condition will be 

investigated further in Chapter 5. 

 Part 3 – Longitudinal analysis of the subject with the fewest 

amount of SLHS sections 

Previous sections have identified that the analysis tool can identify incidents within a 

season that require follow up investigation to determine whether those incidents 

indicate a heightened risk of an adverse event (such as a modification to training or 

game activity due to injury). However, the performance of the analysis tool for the 

subject with the least amount of SLHS running will influence its usefulness in a 

practical setting. If the analysis tool is unsuitable for a proportion of subjects who do not 
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achieve a certain amount of SLHS running due to physical limitations or gameplay 

considerations then its application in a practical setting will be limited. This section will 

analyse the results of the subject with the fewest number of SLHS incidents identified 

to determine whether potentially critical incidents can be detected. 

 Aims 

 Describe the number of SLHS incidents as well as the within-section and 

between-section CMD results across the course of the season for the subject 

with the lowest season average for SLHS incidents per game 

 Determine whether potentially critical incidents can be effectively identified 

given the low number of SLHS incidents per game 

 Methods 

 Subject 

One participant, subject 15, was used for this analysis. This subject was identified as 

having the lowest season average for number of SLHS incidents identified per game 

(Table 4.1). They also had the worst average ranking in absolute difference from group 

mean in categories used to determine the overall ranking by subject (Table 4-19) so 

based on the current data they represent the worst case scenario. 

 Data preparation and analysis 

Data were prepared and processed in accordance with the procedures outlined in the 

general methods, section 4.3. The same procedures as for the previous section 

(outlined in 4.5.2.3) were used to analyse the data. In addition, correlations were 

calculated between within-section and between-section CMD results within side and 

axis via a bootstrapping procedure. Each underlying pair of data sets was resampled 

(with replacement) 1000 times and correlations were calculated on each resampled 

pair. The average of all correlations was calculated as the final correlation for each pair 

of underlying data sets. 

 Results 

A summary of the games available for analysis for subject 15 is shown in Table 4-25. 

Note there are only five of the 14 games where at least five SLHS sections are 

identified on both sides. Longitudinal within-section CMD results are shown in Table 4-

26, and between-section CMD results are shown in 4-27. These results are also 

displayed as z-scores in Table 4-28 for within-section analysis and Table 4-29 for 

between-section analysis. It is worth noting the occasional value in the between-section 
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results that is extremely low (such as game 5, x-axis, side 2). The correlation between 

results in the corresponding side and axis between within-section and between-section 

CMD results (after bootstrapping) is shown in Table 4.30. Large differences between 

individual subject results and group averages (in particular in the x-axis and y-axis on 

side 2) are particularly noteworthy. 

Table 4.25 Game by game summary of total strides, valid steps identified and valid SLHS sections 
identified for subject 15 

Game 
Total 

Strides 
Valid Steps Valid Sections 

Side 1 Side 2 Side 1 Side 2 

1 39 14 15 3 2 

2 127 52 23 7 3 

4 191 83 45 12 9 

5 62 6 19 1 3 

6 176 82 82 10 9 

7 68 37 28 6 5 

8 95 22 36 3 7 

10 82 20 34 3 5 

12 122 23 35 3 8 

13 121 26 26 6 6 

14 155 59 51 8 8 

15 86 16 31 3 5 

16 112 15 24 2 2 

17 55 16 18 4 4 

Mean 107 34 33 5 5 
 

Table 4.26 Longitudinal within-section CMD analysis for subject 15. 

 z axis CMD y axis CMD x axis CMD 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.755 0.732 0.517 0.228 0.729 0.737 

2 0.789 0.679 0.472 0.479 0.696 0.662 

4 0.740 0.742 0.453 0.362 0.652 0.691 

5 0.664 0.676 0.407 0.380 0.604 0.616 

8 0.776 0.783 0.546 0.479 0.734 0.716 

10 0.703 0.781 0.440 0.504 0.640 0.750 

11 0.597 0.634 0.296 0.361 0.518 0.553 

12 0.683 0.639 0.284 0.288 0.596 0.531 

13 0.675 0.740 0.342 0.387 0.649 0.556 

14 0.711 0.735 0.392 0.459 0.635 0.684 

15 0.721 0.758 0.387 0.452 0.571 0.684 

17 0.642 0.716 0.304 0.323 0.507 0.633 
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Table 4.27 Longitudinal between-section CMD analysis for subject 15. 

 z axis CMD y axis CMD x axis CMD 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.749 0.773 0.421 0.552 0.710 0.826 

2 0.800 0.709 0.367 0.529 0.665 0.754 

4 0.707 0.751 0.381 0.388 0.576 0.701 

5 0.580 0.590 0.322 0.226 0.493 0.080 

8 0.780 0.835 0.543 0.568 0.726 0.794 

10 0.813 0.778 0.636 0.506 0.788 0.745 

11 0.564 0.700 0.151 0.398 0.458 0.666 

12 0.571 0.793 0.309 0.214 0.449 0.734 

13 0.818 0.760 0.422 0.439 0.736 0.605 

14 0.562 0.666 0.038 0.349 0.535 0.592 

15 0.813 0.811 0.526 0.600 0.759 0.763 

17 0.628 0.812 0.262 0.328 0.485 0.759 
 

Table 4.28 Within-section z-scores by game for subject 15. Significant results at a confidence level of 95% 
are marked * 

 z-axis y-axis x-axis 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.69 0.17 1.08 -1.95* 1.09 1.06 

2 1.27 -0.86 0.59 0.90 0.67 0.14 

4 0.43 0.38 0.39 -0.42 0.11 0.50 

5 -0.85 -0.91 -0.10 -0.23 -0.51 -0.44 

8 1.05 1.19 1.40 0.90 1.16 0.81 

10 -0.18 1.14 0.25 1.18 -0.04 1.22 

11 -2.00 -1.74 -1.31 -0.43 -1.60 -1.22 

12 -0.54 -1.64 -1.44 -1.26 -0.60 -1.49 

13 -0.67 0.33 -0.81 -0.14 0.07 -1.18 

14 -0.06 0.24 -0.27 0.68 -0.11 0.40 

15 0.12 0.69 -0.33 0.60 -0.93 0.41 

17 -1.23 -0.13 -1.23 -0.87 -1.74 -0.22 
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Table 4.29 Between-section z-scores by game for subject 15. Significant results at a confidence level of 
99% are marked **, significant results at a confidence level of 95% are marked * 

 z-axis y-axis x-axis 

Game Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 

1 0.37 0.12 0.27 1.06 0.65 0.83 

2 0.82 -0.70 -0.01 0.87 0.29 0.50 

4 -0.01 -0.16 0.06 -0.31 -0.41 0.25 

5 -1.14 -2.24* -0.26 -1.66 -1.07 -2.64** 

8 0.65 0.92 0.93 1.19 0.78 0.68 

10 0.93 0.19 1.44 0.67 1.27 0.46 

11 -1.28 -0.82 -1.18 -0.23 -1.35 0.09 

12 -1.22 0.38 -0.33 -1.76 -1.42 0.41 

13 0.99 -0.05 0.28 0.12 0.86 -0.20 

14 -1.30 -1.25 -1.79 -0.63 -0.74 -0.26 

15 0.94 0.61 0.84 1.46 1.04 0.54 

17 -0.72 0.63 -0.58 -0.81 -1.14 0.52 
 

Table 4.30 Correlations between within-section and between-section results after the application of 
bootstrapping procedures 

 Side 1 Side 2 

 z-axis y-axis x-axis z-axis y-axis x-axis 

subject 15 0.63 0.57 0.59 0.41 0.40 0.00 

Group Average 0.57 0.49 0.62 0.47 0.62 0.55 
 

 Discussion 

Results presented in the previous chapter (section 4.6) demonstrated that a low 

number of SLHS sections and steps identified makes the application of the between-

section CMD problematic. Although most subjects have enough sections to alleviate 

these concerns, subject 15 was identified as having an average number of SLHS 

sections that would likely mean there were games during the season where the 

between-section CMD analysis would be inappropriate. 

In examining the number of SLHS sections identified per game (Table 4.24), this is 

definitely the case. One game has only one section identified, which makes a between-

section analysis impossible. There is still a between-section CMD reported for this 

game, although this will simply represent the waveform variability of the three most 

representative waveforms from the single section available. There are other games 

where only two sections are identified, and although this does permit a between-

section analysis this is well below the threshold identified in section 4.6 for confidence 

that the between-section result is not artificially inflated due to the number of sections 
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identified. With only two sections available for analysis and consequently fewer 

waveforms to compare (especially as there is pre-selection to identify the three most 

representative waveforms from each section) the between-section CMD will be higher 

than if more waveforms were available for analysis with the same underlying physical 

qualities (as was demonstrated in section 4.6). 

A further confounding factor with few SLHS sections identified is that with no control for 

when those sections occurred during the game, the validity of the measure is 

questionable. If only two sections were available for analysis, those sections could 

have occurred in close succession, limiting the influence of factors such as fatigue 

which would affect the between-section result in games where the sections are 

distributed throughout the game. Consequently, it would be prudent to discard these 

results from a longitudinal analysis purely on theoretical grounds. Expanding this 

argument, standardising the number of sections drawn from each section of the game 

could enhance the validity of the between-section measure, ensuring that between-

section measures are generated from similar data each game. This could provide 

confidence that a longitudinal analysis was more indicative of the underlying physical 

condition of the athlete. Although this was not possible with the current data as 

information on periods during the game was only available for a limited number of 

games, adding a control for when SLHS sections occurred during a game would be a 

worthwhile follow up investigation. A confounding factor that would need to be taken 

into account in any follow up investigation would be not only the period of play that the 

SLHS section occurred in but also how long the player had spent on the field before the 

section occurred. In Australian Rules Football, players are regularly interchanged so 

they often have periods of rest during each quarter of the game. If the position of SLHS 

sections during the game are controlled for, then time on the field after a period of rest 

should also be taken into account (perhaps limiting the SLHS sections that are included 

in between-section analyses to those that occurred within a certain time after returning 

to the field). 

The correlations presented in Table 4-29 are important because it has been shown in 

the previous chapter (section 4.6) that the within-section CMD analysis is not affected 

by the number of SLHS sections identified, and consequently if the between-section 

results for this subject are not confounded by the small number of SLHS sections 

identified then there should be a consistent difference in correlation to the group 

average across all conditions. The correlations between within-section and between-

section results shows that subject 15 is more highly correlated than the group average 

in two of the six categories (z-axis and y-axis on side 1), only slightly below the group 
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average in two categories (x-axis on side 1 and z-axis on side 2), and much lower in 

two categories (y-axis and x-axis on side 2). Of the two axes that are less correlated in 

subject 15 than the group average, it is the x-axis on side 2 that is most interesting. 

The group average for the x-axis on side 2 is 0.55, while subject 15 has a correlation of 

0.00. When looking back to the raw results, it is this axis and side that had one result 

that was extremely low (between-section CMD for the x-axis on side 2 was 0.08 in 

game 5). However, the bootstrapping procedure applied to the data should have 

corrected for a single outlier. In addition, when looking across the between-section z-

scores there are more significantly low results on the same side (the z-axis is 

significant to 0.99 and the y-axis is significant to 0.95). These results are not significant 

in the corresponding within-section results, which could be an indication that the 

between-section results have been affected across all conditions either by the low 

number of sections available for analysis (3 sections for that side and game were 

available for analysis) or by a real change in stride characteristics between the sections 

identified. The difference in correlations between subject 15 and the group average for 

all axes on side 2 would indicate that the small number of sections identified have had 

an effect on the between-section results, and consequently their use in a longitudinal 

analysis would not be recommended. 

 Conclusion 

The number of SLHS sections identified per game for subject 15 are often below the 

threshold identified previously for the number of SLHS sections required for confidence 

in the between-section CMD analysis. The combination of theoretical considerations 

and the correlation of results from within-section to between-section analyses on side 2 

suggests that the low number of SLHS sections identified would preclude the between-

section analysis for that game being used in a longitudinal analysis. These principles 

can be extrapolated to the entire subject group. 

The practical implications of these results are that the number of steps and sections 

identified from a training session or game must be taken into consideration, in 

particular when examining the between-section CMD results. 

 General Discussion 

Four methods of analysing the longitudinal data have been presented in this chapter. 

The first method identified in section 4.4 is differences in the season long averages 

between sides within an axis and analysis condition. There were two subjects where 

significant differences between sides were found in all conditions at the 99% 
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confidence level (subjects 2 and 10) as well as one additional subject (subject 19) who 

recorded significant differences in ten of the twelve categories significant at 99% and 

the remaining two categories were significant at 95%). For one of these subjects 

(subject 2) the 99% confidence intervals did not overlap in any condition. A strict 

interpretation of these results would be to say that for these subjects there is more 

waveform variability on one side than the other. A more speculative approach would be 

to suggest there could be some imbalance between sides, possibly indicating a risk of 

injury or even repercussions from a previous injury. The possibility of a link to an injury 

incurred during the season being analysed will be examined in chapter 5 through 

matching information on missed or modified training and game activity during the 

season. 

Significant differences between sides in the y-axis were found in 19 of the 22 subjects 

which, unless virtually the whole squad was troubled by injuries that could manifest in 

high y-axis waveform variability (such as leg adductor injuries), would indicate this 

measure is not an effective discriminator of an injured (or at high risk of injury) 

population. However, the magnitude of some average y-axis CMD results would 

indicate a very high level of waveform variability. This is the second method of analysis 

identified, and further examination of this method through linking high levels of 

waveform variability (both chronic and acute) and missed and modified training 

(including the reasons for any alterations to a normal training program) is required to 

assess its validity and use in a practical setting. 

In the two methods of analysis described above, there was no correction to the level of 

significance (such as a Bonferroni or Holmes correction) for the number of statistical 

tests conducted. This was done to ensure an inclusive rather than exclusive criteria 

was used to highlight the outputs from the analysis tool that showed promise as metrics 

that could be worthy of follow up research in applied settings. It was felt that the use of 

a correction, particularly a Bonferroni correction as demonstrated by Perneger (1998), 

would be too harsh a treatment on the data and lead to the erroneous dismissal of 

analysis conditions as not worthy of follow up research.   

Converting raw scores to z-scores is the third method of analysis identified. This 

method places results into the context of the individual subject, analysis condition and 

axis, allowing measures to be effectively compared between subjects and conditions 

while limiting the exposure of the analysis to errors stemming from the individual nature 

(in terms of both subject and analysis condition) of the CMD analysis that have 

previously been identified as limitations of using CMD as a statistical tool (McGinley et 
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al., 2009; Røislien et al., 2012). Using z-scores also allows results to be collated 

between subjects rather than assessed individually, and it is these collated results that 

will be examined further in Chapter five. 

The fourth method of analysis identified in section 4.5 was identifying significant z-

scores over the course of a season. The practical application of this method could be 

problematic as although taking the normal game to game variation of results into 

account to establish a level of significance for any individual value will aid in 

highlighting values that are clearly different from the long term average, there is no 

guarantee that the point of statistical significance at a particular confidence level 

coincides with the point where clinical significance is achieved (and therefore requiring 

a practical change in behaviour to avoid an injury or other adverse event). Indeed, 

there is also no guarantee that there is an actual point of clinical significance as 

opposed to a continuum of risk of an adverse event that is amplified as distance from 

the long term average increases. Perhaps a more practical application of this method 

would be to allow the applied scientist implementing the analysis tool to view results 

that take into account the game to game variation while not necessarily imposing a 

strict criteria for significance. The statistical elements of this method will be investigated 

further in later chapters by linking incidents of significant z-scores to incidents of 

missed and modified training, however it is unlikely that there is enough data in the 

current set to determine any individualised level of clinical significance. 

 

 General Conclusions 

Results generated by the analysis tool were analysed in the context of the season as a 

whole and as individual longitudinal analyses. Four methods of analysing the data were 

identified, and the link between results generated from the analysis methods identified 

and incidents of missed or modified training and game activity will be investigated in 

Chapter 5.  
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 Exploration of use of the analysis tool in predicting 

injury 

 Introduction 

The results from chapter four highlighted four methods of analysing the results 

generated by the analysis tool. This chapter will examine all four methods with respect 

to incidents during the season where subjects have modified their training or game 

activity. This will identify the potential of the analysis tool to provide practical 

information that can reduce the risk of injury and maximise training and competition 

performance. 

 General Aims 

 Identify the influence of incidents of missed or modified training on results 

generated by the analysis tool 

 General Methods 

 Subjects 

The participant cohort was the same as that used in Chapter 3 (section 3.3.1, page 15) 

with the exception of one participant who could not be contacted to provide consent for 

his data to be used in this study. Briefly repeating here for clarity, 22 professional AFL 

footballers with age range of 19 to 28 years old were used in these studies. No 

preselection of subjects for position played or physical capacity took place. 

 Data 

 GPS and Accelerometer data 

Procedures for the collection of GPS and accelerometer data were the same as was 

outlined in Chapter 3 (section 3.3.3, page 16). 

 Missed and modified training and game activity 

Data on missed and modified training or game activity were collected during the 2014 

AFL season. Instances where a subject had missed a training session or game, had 

their activity modified from what was previously planned (but still took part in the 

activity) for a training session or game, and the reason for any missed or modified 

session were recorded. Descriptions of the reason for a modification to a session were 

detailed but not extensive. For instance, a soft tissue injury to the hamstrings would be 

described as “hamstrings”, but details such as the cause, severity, specific location and 
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other similar specific descriptions of the injury were not recorded. Similarly, an injury to 

the ankle would be described as “ankle”, but no details were recorded on the type of 

strain, or even if it was a ligament strain or some other injury. 

Data were collated for further analysis into the following five categories that described 

the reason for the modification to normal activity: 

 Modifications due to “load”, meaning the subject’s training or game participation 

was altered because it was felt he was at a high risk of further injury because of 

the accumulated training and game activity. 

 Modifications due to “groin”, meaning the subject’s training or game 

participation was altered because of soreness in an area roughly defined as the 

“groin”. This could include any injury that would manifest in soreness in the 

groin area. 

 Modifications due to a leg soft tissue injury other than “groin”, meaning any 

injury described as “hamstrings”, “calf”, or any other description that would 

loosely refer to a muscle group in the leg. 

 Modified solely due to a leg structural injury, meaning any injury described as 

“ankle”, “heel”, or any other description that would loosely refer to a joint or 

bone in the leg. 

 Other modification, which includes any other reason for a modification such as 

“virus”, an injury to an area other than the leg, or a combination of reasons both 

prior and post the game being analysed that cannot be placed into a single 

category (such as a “groin” description in the week preceding the game and a 

“load” description in the week after the game). 

This classification system, although developed for the use at a single professional AFL 

club, will share many similarities with similar classification systems used in other 

environments. For example Rogalski et al. (2013) investigated the relationship between 

training load and injury risk in an elite AFL population, and a similar classification 

method was described for the AFL club who provided the subjects for the study. 

Categories that will be consistent (or could be reasonably resolved from records that 

are generally kept) will be modifications due to “load”, “soft tissue” and “structural”. 

Modifications due to “groin” may differ slightly given this can often include both 

musculoskeletal strains and other injuries such as osteitis pubis that could be recorded 

separately or in combination. In this study, these injuries are combined within the 

“groin” condition which is in accordance with the report on injuries during the AFL 

season published by the league itself (Orchard, Seward, & Orchard, 2014). In addition, 
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overall indicators of missed and modified training and game activity will be consistent 

between teams so the findings here are more widely generalised. 

A further advantage of the general injury categories used within this study is that by 

using broad categories there is less dilution of the number of instances prescribed to 

each category. With more specific categorisation there is the potential that too few 

instances will be assigned to groups, decreasing the statistical power of the data. 

These data were de-identified prior to being supplied by the Port Adelaide Football 

Club, with individual subject codes matched between GPS data and missed or modified 

training data. 

 Axis definitions 

Axis definitions remain as per previous chapters, outlined in Chapter 3 (section 3.3.4, 

page 17) 

 Analysis Tool 

The analysis tool used was the same as described in Chapter 3 and used in Chapter 4 

(section 4.3.4, page 60). Repeating the key variables in the interests of clarity, the 

angle window for the straight line running component was set to ±0.05 rad and velocity 

window set from 4.17 m/s to 6.94 m/s. 

 Part 1 – Average z-scores with and without incidents of missed 

or modified training 

The first method to be examined of analysing the results generated by the analysis tool 

with respect to instances of missed and modified training and game activity is 

comparing the average z-scores from games classified as “load”, “groin”, “structural”, 

“soft tissue” and “other” reasons for modifying normal activity to those games where no 

modification was present. This will determine whether there are responses in the z-

scores that can be linked to a certain reason for a modification to the normal training 

program. 

 Aims 

 Identify instances of missed and modified training and games from the 2014 

AFL season in the week preceding and following games where GPS and 

accelerometer data is available for a subject 

 Collate and classify instances of missed and modified training and games by 

reason for the modification to normal activity 
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 Compare if stride variability differed between classifications of modified activity 

and unmodified training 

 Identify practical applications of these methods for reducing the incidence of 

injury and maximising athletic performance within a team sport environment 

 Methods 

 Subjects 

All participants within the cohort described in section 5.3.1 (General Methods) were 

used for this study. 

 Data collection 

GPS and accelerometer data were collected in accordance with the procedures 

outlined in General Methods, section 5.3.2.1. Missed and modified training information 

was collected and collated in accordance with the procedures outlined in General 

Methods, section 5.3.2.2. 

 Data analysis via the analysis tool 

Data were analysed in accordance with the procedures outlined in General Methods, 

section 5.3.3 

 Missed and Modified Training and Game activity 

For each game available for each subject, the missed and modified game information 

was examined and if there were any instances where training or game activity was 

modified in the week preceding or following the game then this was recorded, along 

with the reason given for the modification. Games that fell into the various missed and 

modified classifications were collated across the subject group, and average z-scores 

were calculated in the following categories: 

 z-axis within - the mean of the z-axis within-section z-scores 

 y-axis within - the mean of the y-axis within-section z-scores 

 x-axis within - the mean of the x-axis within-section z-scores 

 z-axis between - the mean of the z-axis between-section z-scores 

 y-axis between - the mean of the y-axis between-section z-scores 

 x-axis between - the mean of the x-axis between-section z-scores 

 z-axis average - the mean of the z-axis between-section and within-section z-

scores 
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 y-axis average - the mean of the y-axis between-section and within-section z-

scores 

 x-axis average - the mean of the x-axis between-section and within-section z-

scores 

 average of all – the mean of all axes between-section and within-section z-

scores. 

 Determination of confidence intervals and p values 

Confidence intervals for the set of games with no modification to training in the week 

preceding or following each game were determined via an empirical bootstrapping 

procedure (Ball, 2006). This entailed (for each condition outlined in 5.4.2.4) performing 

100000 resamples with replacement, calculating the mean of each sample and the 

difference of that to the mean of the original sample, sorting the results, then 

determining the 0.5% and 99.5% value for the 99% confidence interval (as well as 

determining the 2.5% and 97.5% value for the 95% confidence interval). This was done 

to create confidence intervals specific to the samples in each condition. 

The confidence level where the average of a sub-set of data (such as games where 

any load modification was present in the week preceding or following the date of the 

game) is different from the average of the no modification set of data was determined 

via a separate empirical bootstrapping procedure. The p-values were determined via a 

bootstrap permutation procedure, using the studentized t-statistic (Efron & Tibshirani, 

1994, pp. 220-223). This method determines the probability that data set A is the same 

as data set B. In the current study, 100000 replications (with replacement) were 

generated to determine the probability that two data sets are different (for instance, 

CMD values for where there was no training modification compared to CMD values for 

where there was a training modification prior to the game where the CMD was 

determined). 

 Results 

There were 255 total player games analysed, and within those games there were 107 

instances where modification to normal training activity occurred. These instances 

where modifications took place are broken down by category in Table 5-1. 

Modifications are separated into any modifications, a modification in the preceding 

week, modifications in the following week, and modifications in both the preceding and 

following week. These data (in the “any modification” classification) are also shown by 

subject in Table 5-2. 
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Table 5.1 Instances of modifications to the normal training activity for games where GPS and 
accelerometer data is available, split into classifications for the cause of the modification. 

Categories Instances 
Modification 

Prior 
Modification 

Post 
Both Prior 
and Post 

Total Games 255 - - - 

Any Modification 107 43 42 22 

Load Modification 24 8 14 2 

Groin Modification 28 8 8 12 

Leg Soft Tissue 
Modification 

4 3 1 - 

Leg Structural Modificaiton 41 18 18 5 

Other or mixed reason 10 6 1 3^ 

 
^ There was one instance of a structural cause prior and a load cause post, one 
instance of a load cause prior and a soft tissue cause post, and one instance of a 
groin cause prior and a soft tissue post 

 

Table 5.2 Incidents of games with GPS and accelerometer data available where a modification was 
present by subject. 

Subject  Games 

Modification in 
the preceding 

week 

Modification in 
the following 

week 

Modified both 
preceding and 

following 
No 

Modifications 

1 12 6 1 1 4 

2 14 3 4 0 7 

3 14 2 4 0 8 

4 9 3 3 1 2 

5 6 1 1 0 4 

6 11 3 2 2 4 

7 15 3 3 0 9 

8 13 1 4 1 7 

9 15 4 2 0 9 

10 10 2 1 7 0 

11 15 0 1 0 14 

12 15 1 2 1 11 

13 15 1 2 2 10 

14 14 2 2 0 10 

15 11 3 0 1 7 

16 8 1 1 3 3 

17 6 1 0 0 5 

18 13 0 2 1 10 

19 11 3 1 0 7 

20 14 4 3 2 5 

21 14 0 2 0 12 

Total 255 44 41 22 148 
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Mean z-scores as well as values corresponding to 99% and 95% confidence intervals 

for the set of “unmodified” games are reported in Table 5-3. Mean z-scores for 

instances where any modifications, modifications due to “load”, modifications due to 

“groin”, modifications due to “leg structural”, modifications due to “leg soft tissue” and 

modifications due to “other” are shown in Tables 5-4, 5-5, 5-6, 5-7, 5-8 and 5-9 

respectively. Estimations for p values (determined via the bootstrap permutation 

procedure) in each condition and classification (compared to the “no modification” set) 

are also shown in these tables. Graphical representations of the “any modification”, 

“load”, “groin” and “leg structural” results can be found in Figures 5-1 to 5-4 (the “both 

prior and post” condition has been removed from Figure 5-2 because there were only 

two files included in this classification). No p values were calculated for the “leg soft 

tissue” and “other” classifications (Tables 5-8 and 5-9) due to the small number of 

instances in each category. 

 

Table 5.3 Mean and confidence intervals at the 99% and 95% confidence level for z-scores of games 
where no modification in training occurred. 

  99% 95% 

  Mean Low CI High CI Low CI  High CI 

z-axis within 0.036212 -0.134 0.203 -0.091 0.155 

y-axis within 0.010906 -0.126 0.159 -0.101 0.117 

x-axis within 0.033343 -0.122 0.192 -0.092 0.16 

z-axis between -0.0152 -0.186 0.154 -0.145 0.103 

y-axis between -0.02371 -0.173 0.111 -0.136 0.085 

x-axis between -0.02587 -0.185 0.144 -0.145 0.103 

z-axis average 0.010508 -0.162 0.174 -0.113 0.13 

y-axis average -0.0064 -0.131 0.108 -0.096 0.089 

x-axis average 0.003734 -0.138 0.156 -0.104 0.112 

average of all 0.002613 -0.109 0.129 -0.085 0.101 
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Table 5.4 Mean z-scores for instances where modifications are present. 

 

Any 
Modification 

Modification 
Prior 

Modification 
Post 

Modification 
Both Prior and 

Post 

 Mean p Mean p Mean p Mean p 

z-axis within -0.067 0.19 0.136 0.23 -0.147 0.11 -0.276 0.04 

y-axis within -0.017 0.38 0.024 0.45 0.008 0.49 -0.187 0.09 

x-axis within -0.006 0.36 -0.023 0.33 -0.025 0.35 -0.119 0.20 

z-axis between 0.034 0.32 0.082 0.23 0.054 0.31 -0.179 0.17 

y-axis between 0.003 0.38 0.014 0.37 0.049 0.27 -0.008 0.46 

x-axis between 0.096 0.13 0.009 0.40 0.185 0.05 -0.139 0.26 

z-axis average -0.016 0.40 0.109 0.21 -0.046 0.33 -0.228 0.07 

y-axis average -0.007 0.50 0.019 0.40 0.029 0.36 -0.098 0.23 

x-axis average 0.045 0.33 -0.007 0.46 0.080 0.27 -0.129 0.20 

average of all 0.007 0.48 0.040 0.35 0.021 0.43 -0.151 0.12 

 

 

Figure 5-1 Graphical representation of mean z-scores where a modification is present. Error bars on the 
no modification data represent the 99% confidence interval. 
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Table 5.5 Mean z-scores for instances where modifications classified as “load” are present. 

 

Any Load 
Modification 

Load Prior Load Post 
Load Both 

Prior and Post 

 Mean p Mean p Mean p Mean p 

z-axis within -0.331 0.02 -0.298 0.13 -0.320 0.06 -0.807 - 

y-axis within -0.167 0.11 -0.255 0.14 -0.055 0.36 -0.597 - 

x-axis within -0.090 0.23 -0.216 0.18 -0.104 0.27 -0.329 - 

z-axis between -0.095 0.31 -0.125 0.34 -0.061 0.41 -0.110 - 

y-axis between -0.108 0.27 -0.184 0.26 -0.038 0.47 -0.003 - 

x-axis between 0.021 0.38 0.006 0.47 0.018 0.42 -0.135 - 

z-axis average -0.213 0.08 -0.212 0.20 -0.190 0.16 -0.459 - 

y-axis average -0.138 0.14 -0.219 0.15 -0.046 0.40 -0.300 - 

x-axis average -0.034 0.39 -0.105 0.33 -0.043 0.40 -0.232 - 

average of all -0.128 0.15 -0.179 0.20 -0.093 0.28 -0.330 - 

 

 

Figure 5-2 Graphical representation of mean z-scores where a modification classified as “load” is present. 
Error bars on the no modification data represent the 99% confidence interval. 

 

 



114 
 

Table 5.6 Mean z-scores for instances where modifications classified as “groin” are present 

 

Any Groin 
Modification 

Groin Prior Groin Post 
Groin Both 

Prior and Post 

 Mean p Mean p Mean p Mean p 

z-axis within 0.014 0.45 0.273 0.21 0.031 0.49 -0.169 0.19 

y-axis within 0.027 0.45 0.183 0.23 0.175 0.25 -0.171 0.18 

x-axis within 0.041 0.48 0.150 0.34 0.311 0.16 -0.222 0.14 

z-axis between 0.104 0.22 0.367 0.08 0.013 0.47 0.107 0.30 

y-axis between -0.020 0.49 -0.027 0.49 0.002 0.46 0.086 0.30 

x-axis between 0.097 0.22 0.141 0.28 0.249 0.15 0.012 0.45 

z-axis average 0.059 0.36 0.320 0.11 0.022 0.49 -0.031 0.42 

y-axis average 0.004 0.46 0.078 0.34 0.089 0.32 -0.043 0.41 

x-axis average 0.069 0.32 0.145 0.29 0.280 0.13 -0.105 0.30 

average of all 0.044 0.36 0.181 0.20 0.130 0.28 -0.060 0.35 

 

 

Figure 5-3 Graphical representation of mean z-scores where a modification classified as “groin” is present. 
Error bars on the no modification data represent the 99% confidence interval. 
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Table 5.7 Mean z-scores for instances where modifications classified as “leg structural” are present.  

 

Any Structural 
Modification 

Structural Prior Structural Post 
Structural Both 
Prior and Post 

 Mean p Mean p Mean p Mean p 

z-axis within 0.054 0.45 0.127 0.32 0.119 0.34 -0.459 0.09 

y-axis within 0.063 0.32 0.057 0.39 0.116 0.27 -0.102 0.36 

x-axis within 0.031 0.50 0.069 0.42 0.054 0.46 -0.196 0.25 

z-axis between 0.027 0.38 -0.043 0.44 0.291 0.06 -0.658 0.04 

y-axis between 0.141 0.07 0.013 0.41 0.258 0.04 0.205 0.23 

x-axis between 0.085 0.21 -0.005 0.47 0.371 0.01 -0.599 0.06 

z-axis average 0.040 0.41 0.042 0.43 0.205 0.14 -0.559 0.05 

y-axis average 0.102 0.13 0.035 0.38 0.187 0.08 0.051 0.41 

x-axis average 0.058 0.33 0.032 0.43 0.213 0.11 -0.398 0.11 

average of all 0.067 0.26 0.036 0.41 0.202 0.09 -0.302 0.13 

 

 

Figure 5-4 Graphical representation of average z-scores where a modification classified as “leg structural” 
is present. Error bars on the no modification data represent the 99% confidence interval. Note, the scale 
on the y-axis is different to Figures 5-1, 5-2 and 5-3 to accommodate results in the Structural Prior and 
Post condition. 
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Table 5.8 Mean z-scores for instances where modifications classified as “leg soft tissue” are present 

 

Any Soft Tissue 
Modification 

Soft Tissue 
Prior 

Soft Tissue 
Post 

 Mean p Mean p Mean p 

z-axis within -0.253 - 0.026 - -1.091 - 

y-axis within -0.258 - 0.106 - -1.351 - 

x-axis within -0.408 - -0.196 - -1.044 - 

z-axis between -0.005 - 0.134 - -0.420 - 

y-axis between 0.003 - 0.352 - -1.043 - 

x-axis between -0.077 - 0.066 - -0.507 - 

z-axis average -0.129 - 0.080 - -0.756 - 

y-axis average -0.128 - 0.229 - -1.197 - 

x-axis average -0.243 - -0.065 - -0.776 - 

average of all -0.166 - 0.081 - -0.910 - 

 

Table 5.9 Average z-scores for instances where modifications classified as “other reason” are present. 

 

Any Other 
Modification 

Other Prior Other Post Mixed Reason 

 Mean p Mean p Mean p Mean p 

z-axis within 0.040 0.50 0.026 - -1.801 - -0.047 - 

y-axis within -0.177 0.20 0.106 - -1.632 - -0.123 - 

x-axis within -0.074 0.33 -0.196 - -1.766 - 0.563 - 

z-axis between -0.138 0.31 0.134 - -0.363 - -0.569 - 

y-axis between -0.287 0.12 0.352 - -0.370 - -0.739 - 

x-axis between -0.127 0.32 0.066 - -0.391 - 0.026 - 

z-axis average -0.049 0.39 0.080 - -1.082 - -0.308 - 

y-axis average -0.232 0.11 0.229 - -1.001 - -0.431 - 

x-axis average -0.100 0.32 -0.065 - -1.078 - 0.294 - 

average of all -0.127 0.24 0.081 - -1.054 - -0.148 - 

 

 Discussion 

Using z-scores to investigate the influence of classifications of modified training on 

stride variability as measured by the analysis tool produced a number of interesting 

results. Modifications due to “load” showed generally increased stride variability (lower 

z-scores), as did “soft tissue” modifications following a game and most injury categories 

when modifications were present both preceding and following a game. Generally 

decreased stride variability (higher z-scores) were characteristics of “leg structural” 

classifications (particularly in between-section analyses), and “groin” classifications. 

There was generally good agreement between axes within classifications, in that if one 

axis produced a high z-score then the other two were likely to also have high z-scores. 
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Approximately 40% of the games available for analysis had some form of modification 

to the planned training activity in the week preceding or following. As would be 

expected, the number of modifications varied per subject. For instance, subject 11 has 

a modification in only one of his 15 games, whereas subject 10 has a modification in all 

of his games available for analysis. This will affect the potential to establish significance 

in the way z-scores respond to different modifications in that for some subjects the 

average and standard deviation for the raw results (on which the z-score is based) will 

be reflective of the “no modification” condition, and for other subjects (such as subject 

10) the average and standard deviation will instead be reflective of the “modification” 

condition. In other words, in some subjects the deviation from the norm is accurately 

reflected by a z-score, while in others the deviation becomes the norm and the real 

(uninjured) norm cannot be established. That is not to say there is no potential for 

subject 10 to record significant results, it is simply that a significant result for subject 10 

would be the equivalent of a very significant result for subject 11. Also, when results 

are averaged across the group it is likely that the contribution of subject 10 to the group 

average will skew results (and tend to make them less significant) as their zero z-score 

is potentially equal to a significantly positive or negative score in another subject. 

Despite these concerns, the z-score still represents the best method of comparing and 

collating CMD results across the group as previous research has demonstrated that 

each axis and analysis condition (within-section or between-section) needs to be 

analysed in the context of the specific subject and condition (McGinley et al., 2009), 

and the z-score provides the best method of performing the analysis in this way while 

still allowing comparison and collation of results across subjects and analysis condition. 

When examining the average of all games with modifications (regardless of the reason 

for the incident of modified activity) there is only one instance where the p-value is 

below 0.05, in the within-section analysis for games where a modification was present 

both preceding and following the game (z-axis p=0.04. This would suggest that when 

the subject is going through a period of extended training modification, the variability of 

the stride waveform is higher than when no modification is present. The absence of any 

further highly significant results is likely due to some categories of activity modifications 

eliciting an increase in waveform variability and others a decrease and when all 

modifications are grouped together the significant results effectively cancel each other 

out. This is borne out when the data are separated into the reason for the activity 

modification.  

There is one value in the “load modification” classification that has a p-value below 

0.05, being the z-axis within-section condition in the “any load modification” 
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classification which has a p-value of 0.02. This indicates that higher waveform 

variability could be a characteristic common to subjects who are in a period of activity 

modification due to “load” reasons. When this result is broken down further, it is when 

training is modified following the game where the z-axis within value has the lowest p-

value (p=0.06), along with the both prior and post condition which had an average z-

score of -0.807 (this classification only comprised two instances so p-values were not 

calculated). Having a low p-value in the “load modified post” condition is important as 

this would allow a low z-score in a particular week to be used as a predictor of the need 

to modify activity in the following week. 

Although the mechanism underlying this increase in variability is currently unclear, it is 

roughly in agreement with theories presented by Hamill et al. (2012) and Stergiou et al. 

(2006), who suggest that a shift away from an individual’s optimal level of variability is 

indicative of a pathological state. A shift to an increased level of variability could be a 

sign of a noisy and irregular system, demonstrated by Stergiou and Decker (2011) to 

be a characteristic of individuals who had undergone knee reconstructions to repair a 

damaged anterior cruciate ligament (possibly due to not being able to restore the 

proprioceptive pathways found in a healthy knee). Fatigue may also be a factor that 

leads to an increase in variability, as per (Cortes et al., 2014). In addition, Fuller et al. 

(2017) expected to see impaired regulation and sequencing of movement in 

functionally overreached athletes though a change in their stride-interval correlation 

properties (in effect, a change in the variability of the temporal properties of their 

stride). Though there was no mean reduction in stride-interval long-range correlation 

strength following the overreaching protocol, participants who were most affected by 

the overreaching protocol (as measured by their time trial performance) experienced 

the greatest reduction in long-range correlation strength (ie. higher variability).  

There is a high practical value to these findings as predictive tools are particularly 

valuable in the elite sport environment. The ability to identify times when an athlete is at 

risk of injury or requires a training modification to maximise their performance in 

subsequent activities (whether that be a reduction or increase to their training load) is 

crucial in the preparation of athletes for competition. Current metrics do have the ability 

to predict injury risk, especially when examining cumulative load measures (Colby et 

al., 2014). The difference in the measures outlined in the current study is that 

predictions are able to be made from physical symptoms rather than inferred from 

cumulative data. It therefore has the potential to identify athletes who are displaying 

physical symptoms that would indicate the need to modify training without satisfying the 

criteria established via cumulative metrics. Conversely, it may be able to identify 
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athletes who do satisfy cumulative criteria but are showing no physical symptoms who 

therefore may not need training modifications. Combining both methods is likely to 

enhance the predictive ability of both and become a very powerful tool within elite sport 

environments, and further investigations into this are warranted. 

The “leg structural” classification has low p-values in the between-section categories of 

the modified post sub-set (the z-axis had a p-value of 0.06, the y-axis had a p-value of 

0.04 and the x-axis also had a p-value of 0.01). These findings are also in line with 

those of Hamill et al. (1999), who suggested that subjects in their study with 

patellofemoral pain demonstrated decreased variability of joint couplings in order to run 

while minimising the pain from their injury. It is interesting that the within-section results 

have a much higher p-value than the between-section results in the “structural pre” and 

“structural post” classifications. One possible explanation of this could be that the 

constraint imposed on the movement to reduce variability does not allow the stride to 

naturally vary during the course of the game as fatigue and other factors would 

normally affect the stride (causing an increase in the between-section CMD), but it may 

allow the normal stride to stride variability within the small window of time that 

comprises each section (which is evaluated with the within-section CMD). 

Another interesting observation from the “structural post” classification is that although 

the between-section measures have z-scores that are above the average of the 

unmodified set of games, the average z-scores are below the unmodified average in 

eight out of ten categories in the “structural pre and post” classification. Furthermore, 

the z-axis between-section average of -0.658 had a p-value of 0.04, and the x-axis 

between-section average was -0.599 with a p-value of 0.06.This could possibly an 

indication that if a training modification was required both before and after a game the 

subject may have been carrying an injury from one week to the next, and that in the 

“up” and “forwards” planes stride waveform variability is increased as the subject is 

searching for an effective method of creating propulsion. Although these are 

speculative conclusions, the response of the analysis tool to athletes recovering from 

or trying to play with an injury would be worthy of further research. 

Although the “leg soft tissue” classification does not have many instances (three with 

alterations preceding the game, one with an alteration following the game), there are 

some interesting results that are worthy of further investigation with a larger sample 

size. The z-scores in within-section analysis conditions for the single instance of 

modification post were all below -1 (and all other categories were below -0.4) which, 

although not low enough to be statistically significant in their own right, indicated a 
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higher than normal amount of step waveform variability. In addition, the average of the 

three instances where the training modification preceded the game was below -0.25 for 

all three axes in the within-section analysis condition and the x-axis was below -0.4, 

which indicates a generally high amount of step waveform variability compared to the 

normal situation. If these results were replicated with a larger sample size then high 

waveform variability in the within-section condition across all three axes may be an 

extremely valuable tool in predicting future soft tissue injuries as well as identifying 

when an athlete has recovered from a previous injury and is ready to return to training 

and competition. 

The “groin modification” classification has no analysis categories with a p-value below 

0.05, and only one analysis category with a p-value below 0.1 (the z-axis between-

section value for games where activity was modified in the week preceding the game 

which had a p-value of 0.08). With the lack of any highly significant results, the “groin 

modification” category does not seem to be of value, though perhaps a more specific 

categorisation (dividing the general “groin” category into soft tissue injuries to the 

adductor muscle group and more overuse type injuries such as osteitis pubis) could 

elicit some more meaningful results in follow up research. It is interesting that the 

average x-axis z-scores for this sub-set are positive, while the average x-axis z-scores 

for the “load” sub-sets tended to be negative. A positive z-score would indicate reduced 

variability, and this result is not unexpected for an acute injury. Stergiou & Decker 

(2011) observed that ACL deficient patients have less step to step variability in walking 

gait, inferring that they are being more “careful” when they were walking, trying to 

eliminate extraneous movements. A similar phenomenon could be displayed in the 

current results, in that subjects may attempting to constrain movements and reduce 

step to step variability when modifications due to “groin” are required.   

 Conclusion 

Instances of missed or modified training and game activity in the week preceding or 

following a game with valid GPS and accelerometer data available for analysis were 

identified. These instances were sorted into six classifications, including five categories 

where a modification took place and one category where there was no modification to 

normal activity. Season average z-scores were collated for ten categories of analysis 

within the six classifications. High waveform variability was indicative of modifications 

due to “load”, with the within-section z-axis showing promise as a predictor of the need 

to modify activity. Low waveform variability in the between-section results appears to 

be a good indicator of the need for activity modification due to “leg structural”. Results 
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from other classifications were promising (including the “groin” classification, where 

there was moderately significant results for z-axis between-section results), though 

further research with a larger sample size and perhaps more descriptive injury 

definitions needs to be conducted on some classifications to confirm the results 

presented here. 

Overall, the performance of the analysis tool as a whole (from identification of steps to 

extraction of waveforms to statistical analysis) shows great promise, particularly in its 

ability to critically evaluate the physical condition of athletes with regard to their 

readiness to play and train. 

 Part 1a – Average z-scores after a bye in competitive matches. 

In section 5.4, missed and modified training and game activity was divided into 

classifications according to incidents where modifications occurred due to an injury or 

other event that changed the normal training schedule. One classification that does not 

fit that description but is still of interest is games where GPS and accelerometer data is 

available and there was a bye (rest week with no match played) in the previous round 

(so the player has not participated in a competitive match for approximately two 

weeks). This section will investigate the response of the average z-scores when there 

has been a bye round in the week preceding a game with valid data. 

 Aims 

 Identify and collate instances where no modification to the training program took 

place but there was a bye in the previous round 

 Compare the average z-scores within the “no modification and bye” to identify 

significant differences to the unmodified and no bye training classification 

 Methods 

The methods used were as per the previous section (section 5.4.2), except for a 

variation to the classification of missed and modified data (section 5.4.2.4). The 

instances classified as “no modification” in the previous section were divided into “with 

bye” (for when there was no competitive game in the previous round) and “without bye” 

(for all other instances of the “no modification” classification). The “without bye” set was 

then used as the baseline set, and confidence intervals were calculated on these data 

using the same bootstrapping procedure outlined in section 5.4.2.5. 
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 Results 

There were two bye rounds during the season in which the data for this study was 

collected. The number of instances in the “without bye” and “with bye” classifications 

are shown in Table 5-10. Confidence intervals on the “without bye” set of data are 

found in Table 5-11. Averages for both “with bye” and “without bye” classifications, as 

well as p-values for the “with bye” classification are found in Table 5-12. The lowest p-

values were found in the x-axis results, particularly in the between-section (p= 0.02) 

and average between and within results (p=0.02). There are also low p-values found in 

the x-axis within-section (p=0.05). The z-score averages for all these categories are all 

negative, meaning there is higher waveform variability following a bye. 

Table 5.10 Instances of no modification with bye and no modification without bye 

Categories Instances Without Bye With Bye 

Total Games 255   

No Modification 148 125 23 
 

Table 5.11 Confidence intervals of the without bye set of data 

  99% 95% 

 Mean Low CI High CI Low CI High CI 

z-axis within 0.028 -0.155 0.212 -0.111 0.175 

y-axis within 0.019 -0.131 0.158 -0.094 0.132 

x-axis within 0.077 -0.091 0.245 -0.045 0.205 

z-axis between 0.000 -0.178 0.172 -0.129 0.134 

y-axis between 0.004 -0.162 0.172 -0.114 0.123 

x-axis between 0.032 -0.123 0.183 -0.081 0.165 

z-axis average 0.014 -0.147 0.188 -0.110 0.138 

y-axis average 0.012 -0.110 0.136 -0.082 0.109 

x-axis average 0.055 -0.100 0.180 -0.055 0.161 

average of all 0.027 -0.102 0.165 -0.073 0.124 
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Table 5.12 Mean z-scores in the no bye and with bye classifications. 

 No Bye With Bye 

 Average Average P 

z-axis within 0.028 0.064 0.42 

y-axis within 0.019 -0.034 0.36 

x-axis within 0.077 -0.213 0.05 

z-axis between 0.000 -0.093 0.30 

y-axis between 0.004 -0.169 0.13 

x-axis between 0.032 -0.340 0.02 

z-axis average 0.014 -0.015 0.42 

y-axis average 0.012 -0.101 0.19 

x-axis average 0.055 -0.277 0.02 

average of all 0.027 -0.131 0.12 

 

 Discussion 

It is interesting that there are no low p-values in the z-axis. It could be reasonably 

assumed that a bye would help to reduce the physical load on a subject (providing 

there was not a commensurate increase in training intensity or volume), so it is quite 

reasonable given the results from the previous section where periods of rest due to 

load were characterised by high z-axis variability that after a bye week the z-axis 

waveform variability would approximate towards season average (with a z-score close 

to zero). It is also interesting to note that the x-axis between-section results in the 

“load” classification are very close to the average for the unmodified data set and have 

the highest p-values for the “any load modification” sub-set. The practical application of 

these findings would be that if a subject is reporting z-axis waveform variability that is 

increasing and x-axis waveform variability that is decreasing, they are more likely to 

require an alteration to training. If their z-axis waveform variability is decreasing and 

their x-axis waveform variability is increasing then it could be an indicator that they are 

getting “fresher” and do not require any reduction in training load. It could also indicate 

it is an appropriate time to increase training load. A flexible training plan could 

incorporate these findings to identify periods where athletes have coped well with the 

current training load and would be able to tolerate an increase with the goal of 

maximising the training effects without causing any adverse effects emanating from too 

much training load. 

The ability to identify periods requiring training modification due to “load” as well as 

periods where it is expected that an athlete will be “fresh” would have implications for 

the ongoing assessment of training programs within an elite environment. Both 

individual and group results could be examined for this analysis. Group results would 
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provide an overall picture of the condition of the squad which would be able to be 

matched to the training plan. If the group results were as predicted by the training plan 

then it would not raise any concerns. However, if the group results were to suggest a 

different physical condition to that predicted by the training plan then further 

investigation would be warranted. Similarly, if an individual result were to be different 

from the group or what was expected from that individual’s recent physical output then 

further investigation into the cause of the discrepancy would be required. 

 Conclusion 

Instances of a bye in the preceding week were identified, and data where the training 

program was otherwise unmodified were collated. Some low p-values were identified, 

suggesting that x-axis waveform variability increases when the subject has a bye in the 

previous week. This, along with results from section 5.4 that showed z-axis waveform 

variability increased when a modification due to “load” occurred, may provide a 

valuable indicator as to the physical condition of an athlete. This could be particularly 

useful in the applied setting to not only identify when athletes are under physical 

pressure but also when they are coping well with the physical load they are currently 

experiencing. 

 Part 2 – Significant z-scores in weeks adjacent to incidents of 

missed or modified training 

The longitudinal analysis of z-scores within each subject demonstrated that there are 

instances within a season where z-scores show a significant deviation from the mean 

(section 4.4.3, Tables 4-17 and 4-18, page 77). The link between these scores and 

instances of missed and modified training and games will determine whether this style 

of analysis has any practical use in the prediction of when normal activity needs to be 

modified. This would be a key benefit to the use of this analysis tool, particularly in 

applied environments to identify instances where an athlete’s physical load should be 

modified. 

 Aims 

 Identify whether incidents of missed or modified training and game activity are 

linked to incidents where a significant z-score is found within an analysis 

category 
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 Methods 

 Subjects 

All participants within the cohort described in section 5.3.1 (General Methods) were 

used for this study. 

 Data collection 

GPS and accelerometer data were collected in accordance with the procedures 

outlined in General Methods, section 5.3.2.1. Missed and modified training information 

was collected and collated in accordance with the procedures outlined in General 

Methods, section 5.3.2.2. 

 Data analysis via the analysis tool 

Data were analysed in accordance with the procedures outlined in General Methods, 

section 5.3.3 

 Missed and Modified Training and Game activity 

Incidents of missed and modified training and game activity were identified as per the 

methods outlined in section 5.4.2.4 

 Identification of significant z-scores 

All games available for analysis were examined for the presence of significant z-scores 

as per the procedures outlined in Chapter 4 (section 4.4.2.3, page 71). These data 

were then collated with the missed and modified training and game activity data to 

determine the number of games where there was both a training modification and at 

least one analysis category that contained a significant z-score at the 99%, 95%, 90% 

and 80% confidence levels. This was repeated for the sub-sets of games with modified 

activity under the classifications of “structural”, “groin”, “load” and “soft tissue”. The 

percentage of the total games for each set of data was calculated. 

 Results 

The total number of games with training modifications and the total number of games 

with a significant z-score in any category are found in Table 5-13 and 5-14 respectively. 

The results in Table 5-14 are presented as percentage of the overall set of games in 

Table 5-15. It is interesting to note the agreement between the two categories at all 

confidence levels. The missed and modified training instances at different confidence 

intervals are shown by category in Table 5-16, and as percentages of the total games 

at different confidence levels in Table 5-17. 
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Table 5.13 Baseline figures for total games and games with any modification to normal activity in the 
preceding or following week 

  Instances 

Total Games 255 

Total games with modifications 107 

Percent games with modifications 42% 
 

Table 5.14 Instances of at least one significant z-score and both a significant z-score and a training 
modification at different confidence levels 

 

 
Total games with at 
least one significant 

 z-score 

One significant z-score and a 
training modification 

Confidence Level 
Total 

Games 
Percent of one significant 

z-score sub-set 

0.99 31 14 45% 

0.95 88 38 43% 

0.9 149 60 40% 

0.8 209 87 42% 
 

Table 5.15 Instances of at least one significant z-score as a percentage of total games, and the 
percentage of games with training modifications within the sub-set of games with a significant z-score at 
different confidence levels 

Confidence Level 

Games with at least one 
significant z-score as a 

percentage of total games 

Games with at least one 
significant z-score and a training 
modification as a percentage of 

games with at least one 
significant z-score 

0.99 12% 13% 

0.95 35% 36% 

0.90 58% 56% 

0.80 82% 81% 
 

Table 5.16 Instances of modified training by reason for the modification within the sub-set of games with a 
significant z-score at different confidence levels 

  

Confidence level of significant 
z-score sub-set 

Classification 
Total 

Instances 99% 95% 90% 80% 

Structural 42 8 18 27 37 

Groin 29 1 9 18 25 

Load 26 5 10 14 20 

Soft Tissue 6 0 1 4 6 
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Table 5.17 Percentage of games by reason for modification of all games that were modified within different 
sub-sets of significant z-scores at different confidence levels 

  

Confidence level of significant z-
score sub-set 

Classification 
Total 

Instances 99% 95% 90% 80% 

Structural 41% 57% 47% 43% 42% 

Groin 28% 7% 24% 29% 28% 

Load 25% 36% 26% 22% 23% 

Soft Tissue 6% 0% 3% 6% 7% 
 

 Discussion 

As the confidence level reduces from 99% to 80%, the number of games with at least 

one significant z-score and the number of games within that subset where a training 

modification occurred naturally increases. Interestingly, the percentage of games with 

both a training modification and at least one significant z-score remains consistent 

across confidence levels (Table 5-14). What this indicates is that the presence of a 

significant z-score does not indicate any extra chance of a training modification being 

present, and consequently demonstrates that the presence of a significant z-score 

cannot be used to predict the need for training modification either preceding or 

following a game. Although this is not an encouraging result for the practical application 

of the analysis tool, it re-enforces the argument made in section 4.7 that the presence 

of statistical significance in an individual is not guaranteed to indicate clinical 

significance. In this case, statistical significance is clearly not an indicator of clinical 

significance (rendering this method of analysis for the current data ineffective), but that 

is not to say that if a z-score that indicates clinical significance were determined for 

each individual subject this method of analysis would not be of use. In addition, as 

identified in section 5.4.4, the differing number of incidents of missed or modified 

training and game activity per subject (Table 5-2) mean that there are likely to be some 

subjects whose long term average and standard deviation of raw scores do not 

represent an uninjured condition. The consequence of this is that the raw scores that 

equate to a z-score of zero may actually be significant if an uninjured average raw 

score were established. 

Although not possible with the data available for this study, a method to ensure an 

uninjured average and standard deviation for raw scores would enhance the validity of 

these results. One method would be to use training sessions with a known training load 

in the preceding week and no training modifications in the preceding month. For 

instance, if there is a period of reduced load during a pre-season as part of a 
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periodised training program then the two weeks that follow the week of reduced training 

could be used to establish the baseline values. 

When looking at the different classifications of modified training, “structural” is over-

represented in the set of games where there was a significant z-score at the 99% 

confidence level (57% of all instances were “structural” the 99% confidence level while 

only 41% of instances were “structural” when the full data set was examined). The 

over-representation of the “structural” classification was offset by the under-

representation of the “groin” classification (7% in the 99% confidence level set 

compared to 28% in the full set). In practical terms, alterations to stride variability due 

to “structural” injuries are of greater magnitude than due to “groin” injuries, especially 

given both classifications approximate towards the percentages present in the full set 

of games when the set is expanded to the 90% confidence level. This could indicate 

this method of using the analysis tool will be better suited to identifying “structural” 

injuries as opposed to “groin” injuries. Even so, this does not alter the conclusion that in 

the current data set using an individual incident of a significant z-score does not 

provide any value for predicting an incident of missed or modified training or game 

activity. 

 Conclusion 

The results indicate that there does not appear to be a link between incidents of missed 

or modified training and game activity and individual incidents of significant z-scores 

within an analysis category. Consequently, this method of analysing the data extracted 

by the analysis tool has no practical benefit at this time, though it is an area that would 

be appropriate for further investigation with other data or data with better defined 

‘healthy’ values, particularly given the practical benefits this analysis could provide in 

applied environments. 

 

 Part 3 – Significant side to side differences adjacent to 

incidents of missed and modified training 

In section 4.4, a number of subjects were identified as having significant differences 

between season averages on side 1 and side 2 in multiple axes (Table 4-9 and 4-10). 

The link between these results and the propensity for these subjects to record incidents 

of missed or modified training will be examined in this section.  
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 Aims 

 Investigate the link between a significant difference between side 1 and side 2 

within an axis and CMD condition and subjects whose training was modified for 

“load” or “groin” reasons 

 Methods 

 Subjects 

All participants within the cohort described in section 5.3.1 (General Methods) were 

used for this study. 

 Data collection 

GPS and accelerometer data were collected in accordance with the procedures 

outlined in General Methods, section 5.3.2.1. Missed and modified training information 

was collected and collated in accordance with the procedures outlined in General 

Methods, section 5.3.2.2. 

 Data analysis via the analysis tool 

Data were analysed in accordance with the procedures outlined in General Methods, 

section 5.3.3 

 Missed and Modified Training and Game activity 

Incidents of missed and modified training and game activity were identified as per the 

methods outlined in section 5.4.2.4 

 Season average within-section and between-section co-efficient of 

multiple determination results 

Season average within-section and between-section CMD results were calculated and 

subjects whose season averages were significantly different from side 1 to side 2 were 

identified as per the methods outlined in section 4.4.2.3. 

 Data Analysis 

Subjects who recorded an instance of modified training or game activity due to a “load” 

or “groin” reason at any stage during the season were identified. Only the “load” and 

“groin” classifications will be examined as modifications due to these reasons are in 

general long term issues as opposed to the “structural” classification which included 

many acute ligament sprains (especially ankle sprains). The “soft tissue” category was 

excluded due to the small number of instances (four) that were identified throughout 



130 
 

the year. These results were then compared to the subjects who were identified as 

having a significant difference in their average CMD values between side 1 and side 2 

within an axis and CMD analysis condition. The link between a significant difference 

between sides within an axis and CMD analysis condition and the presence of an 

incident of “load” or “groin” modification was examined by classifying each subject as a 

true positive, false positive, true negative and false negative where the presence of a 

significant difference in season average CMD represented the condition and the 

existence of an incident of training modification due to “load” or “groin” represented the 

test. These combinations of condition and test result are further outlined in Table 5-18. 

For the test element to be positive within an axis either within-section or between-

section analysis conditions must have a significant difference on both sides (i.e. the 

average of side 1 needed to be outside the 99% confidence interval for the average of 

side 2 and the average of side 2 needed to be outside the 99% confidence interval of 

side 1). The test condition was determined for all three axes. 

 

Table 5.18 Combinations of condition and test result 

 

Side to side difference in 
season average CMD 

Instance of Training 
Modification 

False positive Yes No 

True Negative No No 

False negative No Yes 

True Positive Yes Yes 
 

 Results 

The total number subjects with modified training or game activity at any time during the 

year by reason for the modification are shown in Table 5-19. These are broken down 

further by instances where the test (a significant difference in season average CMD) 

has predicted the condition (the presence of a training or game modification) in Table 

5-20 for training or game modifications due to “load”, and Table 5-21 for training or 

game modifications due to “groin”. The overall number of subjects where the test 

correctly predicted the condition (i.e. true positive or true negative results) is shown in 

Table 5-22. 

Table 5.19 Number of subjects with modified and unmodified training by reason for modification 

 Modified Unmodified 

Load 10 11 

Groin 9 12 
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Table 5.20 Condition and test result for "load" modifications 

 z-axis y-axis x-axis 

True Positive 50% 60% 30% 

True Negative 82% 27% 55% 

False positive 18% 73% 45% 

False negative 50% 40% 70% 
 

Table 5.21 Condition and test result for "groin" modifications 

 z-axis y-axis x-axis 

True Positive 56% 78% 67% 

True Negative 75% 42% 92% 

False positive 25% 58% 8% 

False negative 44% 22% 33% 
 

Table 5.22 Overall instances (out of 21) where the test has correctly predicted the condition 

 z-axis y-axis x-axis 

Correct Load 14 9 9 

Correct Groin 14 12 15 
 

 Discussion 

Overall, the presence of a significant difference in season average CMD between sides 

within an axis and analysis condition does not appear to be an effective test for 

whether there will be a training modification at any time during the year for reasons of 

“load” or “groin”. Though a side to side difference in the z-axis correctly predicted the 

presence of a training modification in 66% of all subjects, this would not be an effective 

practical tool if used in isolation to definitively indicate the risk of the need for a training 

modification over the course of a season, especially given the high number of false 

negative results. The fewest number of false negative results were found in the y-axis 

“groin” (two false negative results) and the x-axis “groin” (three false negative results), 

indicating this method used in isolation is poor at correctly identifying subjects who 

were at an increased risk of requiring a training modification due to either “groin” or 

“load” reasons during the year. It is possible that when used in combination with other 

testing and monitoring tools that the predictive power of this method will enhanced, and 

that it could be integrated into a barrage of tests that when used together reliably 

predict “groin” and “load” training modifications during the season. 
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There were, however, some very encouraging results when the false positive results 

are examined. There was only one subject who required an activity modification for 

“groin” reasons who did not have a significant difference between sides on in the x-

axis. This would indicate that this method of analysing the season long results has 

some merit for identifying subjects who are at a reduced risk of requiring an activity 

modification due to “groin”. In addition, there were only two of eleven subjects who 

recorded a false positive result for “load” modifications in the z-axis, and three of twelve 

subjects who recorded a false positive result for “groin” in the z-axis, indicating that the 

lack of significant differences in the z-axis may potentially have some practical use in 

identifying subjects at a reduced risk of requiring “groin” or “load” modifications during 

the season. There are a number of practical implications for these results. Predicting a 

reduced likelihood of the need to modify training would be extremely useful information 

to have when designing training programs. It would also be beneficial when combined 

with other testing and screening tools in the diagnosis of injury when pain is reported. 

There are also implications for recruitment of athletes, in that if this information were 

available prior to recruitment it could aid in the selection of athletes who are most likely 

to be available for selection more often, a significant issue when considering the return 

on investment in both the athlete and support staff for professional sporting clubs. 

It must be noted that all subjects with available data were used for this study, and there 

was no exclusion for subjects who may have had significant differences between sides 

within an axis for reasons such as a previous anterior cruciate ligament (ACL) 

reconstruction (as discussed in section 4.4). There may be some merit in excluding 

subjects with previous ACL reconstructions to aid in identifying subjects at a reduced 

risk of an activity modification due to “groin” or “load” as excluding subjects who 

already have a side to side difference will reduce the proportion of subjects who have a 

positive test, which has the potential to reduce the number of false positive and true 

positive results. For instance, by excluding subjects who had a side to side difference 

in at least 90% of all analysis conditions (subjects 2, 10 and 19) two false positive 

results would be excluded in each axis of the “load” condition and one false positive 

result would be excluded in each axis of the “groin” condition. The net result of this is 

that in the “load” condition, the z-axis predicts 100% of true negative results, and in the 

“groin” condition the x-axis predicts 100% of the true negative results. There would 

consequently be merit in conducting further research to establish whether exclusion 

due to criteria such as a previous ACL reconstruction would enhance the ability of this 

analysis method to identify subjects who were at a reduced risk of requiring a training 

modification due to “load” or “groin”. 
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 Conclusion 

The link between a significant difference between side 1 and side 2 within an axis and 

CMD condition and subjects whose training was modified for “load” or “groin” reasons 

was investigated, and it was found that this analysis method has some merit in 

identifying subjects who were at reduced risk of requiring a training modification, 

particularly in the x-axis for “groin” modifications. These findings are amplified  if 

subjects with difference in stride variability from side to side across at least 90% of 

analysis conditions are excluded. 

When used in isolation this method does not appear to be able to identify subjects who 

were at an increased risk of requiring a training modification, however further 

investigation may identify enhanced predictive value when this tool is combined with 

other athlete screening and monitoring tools. 

 

 Part 4 – Low raw Coefficient of Multiple Correlation values and 

incidents of missed and modified training and game activity 

A number of subjects have previously been identified as having very low season 

average CMD values, particularly in the y-axis (section 4.4, Tables 4-4 and 4-7). A low 

CMD value indicates high waveform variability, which has previously been linked to 

possible injury concerns (Stergiou & Decker, 2011). The link between these results and 

incidents of missed or modified training will be examined in this section.  

 

 Aims 

 Investigate the link between low y-axis CMD values and incidents of training 

modification 

 

 Methods 

 Subjects 

All participants within the cohort described in section 5.3.1 (General Methods) were 

used for this study. 
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 Data collection 

GPS and accelerometer data were collected in accordance with the procedures 

outlined in General Methods, section 5.3.2.1. Missed and modified training information 

was collected and collated in accordance with the procedures outlined in General 

Methods, section 5.3.2.2. 

 Data analysis via the analysis tool 

Data were analysed in accordance with the procedures outlined in General Methods, 

section 5.3.3 

 Missed and Modified Training and Game activity 

Incidents of missed and modified training and game activity were identified as per the 

methods outlined in section 5.4.2.4. Only incidents of modification due to “groin” or 

“load” were analysed, as the y-axis CMD scores returned by far the greatest number of 

low CMD scores, and anecdotal reports from staff at the Port Adelaide Football Club 

indicated a high degree of interest in whether low CMD scores in the side to side 

accelerations (in this case the y-axis accelerations) were more prevalent in individual 

athletes who presented with groin or load related issues. 

 Data Analysis 

Season average y-axis CMD results were collated, and the number of subjects whose 

minimum value across all conditions in the y-axis was below a threshold of 0.3, 0.35, 

0.4 and 0.45 were identified. Raw CMD values under 0.4225 have previously been 

described as demonstrating less than moderate repeatability (Garofalo et al., 2009) so 

CMD values below that could be considered low, and 0.45 could be considered at the 

lower end of a ‘moderate’ level. Those subjects who were identified at each threshold 

were then divided into those who had an incident of modified activity classified as 

“groin” or “load” and those that didn’t. Only the “groin” and “load” classifications were 

analysed in this way for the reasons outlined in section 5.7.2.6, namely that these 

classifications are generally chronic rather than acute. This process was repeated, 

substituting an average of all y-axis conditions, an average of within-section y-axis 

conditions and an average of between-section y-axis conditions for the minimum y-axis 

value used in the initial analysis. 

The number of games where a single y-axis CMD value was below a threshold of 0.2, 

0.25, 0.3, 0.35, 0.4 and 0.45 were identified. These sub-sets were then examined to 

identify the number of instances where a training modification was present. This 
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procedure was repeated using the average of all y-axis CMD values, the average of 

within-section CMD values and the average of between-section CMD values. 

 Results 

The number of subjects whose minimum y-axis season average across all conditions is 

below a threshold value, as well as the number of subjects within that sub-set who 

recorded an incident of modified activity classified as “groin” or “load” at any time 

during the season are shown in Table 5-23. The number of subjects whose average of 

all y-axis conditions is below a threshold value are shown in Table 5-24. The number of 

subjects whose average of y-axis within-section and between-section season average 

CMD is below a threshold value (along with the number who recorded a “groin” 

modification during the season) are shown in Tables 5-25 and 5-26 respectively. 

Table 5.23 Subjects whose minimum y-axis value is below a threshold, and the instances of modification 
due to "groin" or “load” within that sub-set 

Threshold Instances 
Load 

Modification 
Groin 

Modification 

0.3 4 2 2 

0.35 7 2 3 

0.4 10 3 4 

0.45 13 5 7 
 

Table 5.24 Subjects whose average y-axis value is below a threshold, and the instances of modification 
due to "groin" or “load” within that sub-set 

Threshold Instances 
Load 

Modification 
Groin 

Modification 

0.3    

0.35 1   

0.4 3 1 2 

0.45 8 2 4 
 

Table 5.25 Subjects whose average y-axis within-section value is below a threshold, and the instances of 
modification due to "groin" or “load” within that sub-set 

Threshold Instances 
Load 

Modification 
Groin 

Modification 

0.3    

0.35    

0.4 1   

0.45 5 2 2 
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Table 5.26 Subjects whose average y-axis between-section value is below a threshold, and the instances 
of modification due to "groin" or “load” within that sub-set 

Threshold Instances 
Load 

Modification 
Groin 

Modification 

0.3 1   

0.35 2 1 1 

0.4 8 3 3 

0.45 9 4 4 
 

The number of games across all subjects where one y-axis CMD value was below a 

threshold, as well as the percentage of instances where a modification to activity is 

present is shown in Table 5-27. Similar analyses are shown in Table 5-28, 5-29 and 5-

30 where instances below threshold for the average across all y-axis categories, the 

within-section y-axis average and between-section y-axis average are presented. 

Table 5.27 Number of games where one y-axis CMD value is below a threshold, and the percentage of 
those games where a training modification is present. 

Threshold Games 
Load 

Percentage 
Groin 

Percentage 
Soft Tissue 
Percentage 

Structural 
Percentage 

0.2 40 10.0% 15.0% 2.5% 10.0% 

0.25 40 10.0% 15.0% 2.5% 10.0% 

0.3 82 6.1% 13.4% 3.7% 17.1% 

0.35 110 7.3% 12.7% 3.6% 17.3% 

0.4 138 8.0% 15.2% 2.9% 18.1% 

0.45 173 10.4% 12.7% 2.9% 19.7% 
 

Table 5.28 Number of games where the average y-axis CMD is below a threshold, and the percentage of 
those games where a training modification is present. 

Threshold Games 
Load 

Percentage 
Groin 

Percentage 
Soft Tissue 
Percentage 

Structural 
Percentage 

0.2 0 0.0% 0.0% 0.0% 0.0% 

0.25 2 0.0% 0.0% 0.0% 0.0% 

0.3 7 0.0% 0.0% 14.3% 14.3% 

0.35 28 17.9% 17.9% 7.1% 14.3% 

0.4 54 9.3% 14.8% 5.6% 18.5% 

0.45 81 7.4% 18.5% 3.7% 14.8% 
 

 

 



137 
 

Table 5.29 Number of games where the average within-section y-axis CMD is below a threshold, and the 
number of those games where a training modification is present. 

Threshold Games 
Load 

Percentage 
Groin 

Percentage 
Soft Tissue 
Percentage 

Structural 
Percentage 

0.2 0 0.0% 0.0% 0.0% 0.0% 

0.25 1 0.0% 0.0% 0.0% 0.0% 

0.3 3 33.3% 0.0% 33.3% 0.0% 

0.35 12 25.0% 0.0% 8.3% 16.7% 

0.4 32 9.4% 12.5% 6.3% 18.8% 

0.45 65 7.7% 13.8% 3.1% 16.9% 
 

Table 5.30 Number of games where the average between-section y-axis CMD is below a threshold, and 
the number of those games where a training modification classified as "groin" or “load” are present. 

Threshold Games 
Load 

Percentage 
Groin 

Percentage 
Soft Tissue 
Percentage 

Structural 
Percentage 

0.2 7 14.3% 28.6% 14.3% 0.0% 

0.25 15 13.3% 13.3% 6.7% 6.7% 

0.3 28 10.7% 14.3% 7.1% 14.3% 

0.35 49 8.2% 16.3% 4.1% 16.3% 

0.4 68 7.4% 17.6% 2.9% 14.7% 

0.45 94 7.4% 14.9% 3.2% 14.9% 
 

 Discussion 

The results demonstrate that a low season average CMD does not necessarily mean a 

training modification classified as “groin” or “load” would have occurred during the 

season. At the lowest threshold for minimum y-axis CMD, there are two of the four 

subjects who did not have a “groin” training modification during the year. This ratio is 

roughly consistent as the threshold is increased, and is also consistent when the 

average of all y-axis conditions (rather than the minimum) is used. Similar results were 

found for “load” modifications. These results are re-enforced when individual games 

are analysed. The percent of games where training modifications are present is slightly 

higher in the sub-sets of instances where a low CMD value is present than for the 

entire set of games, however the maximum percentage of games that accurately 

predicted a “groin” modification is only 28.6% (two out of seven instances at a 

threshold of 0.2 for the average between-section y-axis CMD) and the maximum 

percentage for “load” classifications was 33% (one out of three instances at a threshold 

of 0.3 for the average within-section y-axis CMD). This demonstrates that a low 

average CMD value does not necessarily mean an increase in risk of requiring a 

training modification due to “load”, “groin”, “structural” or “soft tissue”. 
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This is not a surprising result, given the nature of CMD as a statistical tool. Although 

there is some evidence to show that low CMD results are possibly linked to injury 

(Stergiou & Decker, 2011), further research (McGinley et al., 2009; Røislien et al., 

2012) demonstrated that it is not the raw CMD result that is potentially important but 

the CMD result within the context of what is expected for the particular subject, 

movement, joint (or in this case the position of the accelerometer on the body) and 

axis. Consequently, though there are some instances of very low CMD results within 

the data, for those results to be meaningful they should be analysed within the context 

of what is the expected result for that particular datum, as has been done in other 

sections within this chapter. 

 Conclusion 

Based on the low percentage of instances where a low raw CMD value occurs adjacent 

to a training modification, there does not appear to be a link between low y-axis CMD 

results and training modifications. This demonstrates that this method of analysis when 

used in isolation is ineffective and has no practical benefit. Furthermore, given the 

caution around analysing raw CMD scores for these sort of data advocated in previous 

research, this area is not particularly worthy of further investigation. 

 General Discussion 

Results from this study have demonstrated a number of outputs from the analysis tool 

that appear to be influenced by instances of missed or modified training or game 

activity. Key findings include; 

 High z-axis within-section waveform variability when training is modified for 

“load” (p=0.02) 

 Low x-axis (p=0.01) and y-axis (p=0.04) between-section waveform variability 

when training is modified for “structural” in the week following the game being 

analysed 

 High x-axis between-section waveform variability in the week following a bye 

(p=0.02) 

 Generally high waveform variability if a soft tissue injury occurred in the week 

following the game being analysed 

 Absence of training modifications due to “load” in individual subjects predicted 

by an absence of side to side differences in season average raw CMD results in 

z-axis conditions (82% correct prediction). 
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 Absence of training modifications due to “groin” in individual subjects predicted 

by an absence of side to side differences in season average raw CMD results in 

x-axis conditions (92% correct prediction) 

No corrections were used on these data to account for the large number of statistical 

tests and the potential effect that has on the appropriate level of significance that 

should be employed. However, as per the previous chapter, this was done to ensure an 

inclusive rather than exclusive criteria was used in regards to highlighting outputs from 

the analysis tool that showed promise. In a practical sense, this approach will assist in 

identifying elements of the analysis tool that are worthy of follow up research. It also 

identified areas that showed little promise that were not recommended (the un-adjusted 

p-value would not affect any of these that were p>0.05). Further testing using the more 

promising tools is needed to determine to what extent these might be significant. 

The results presented in sections 5.4 and 5.5 have important implications for the 

practical application of results extracted by the analysis tool. Section 5.4 showed that 

within-section z-scores are reduced (and waveform variability increased) when a 

modification to normal training activity for “load” reasons was present. In contrast, x-

axis between-section z-scores approximated towards zero in the same sub-set of 

games. In section 5.5, x-axis between-section z-scores were shown to be reduced 

when there was a bye in the week preceding the game being analysed, whereas z-axis 

within-section z-score approximated towards zero. The implications of these results is 

that if a reduction in z-axis within section z-scores is observed in the longitudinal 

analysis of both individual or group average z-scores without a concurrent reduction in 

between-section x-axis z-scores then it could be concluded that the individual or group 

may require a reduction in training load. Conversely, if the opposite pattern is observed 

with a decrease in x-axis between-section z-score and a z-axis within-section z-score 

that is approximating to zero then it could be concluded that the athlete can tolerate an 

increased training load (or are at least approaching a period of low general fatigue). 

This information can be incorporated with other athlete monitoring tools to increase the 

precision in prescribing training load for individuals or groups. 

Low waveform variability in the between-section analysis is a characteristic found in the 

“structural post” classification. All axes have p-values smaller than 0.14, and both the x-

axis (p=0.02) and y-axis (p=0.04) have p-values below 0.05, indicating that the mean of 

the sub-set is significantly higher than the mean of the unmodified set of games to a 

high level of confidence. The low waveform variability may be an indicator of 

constraints placed on the system due to the structural injury, where variability that is 
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normally present as the game progresses is diminished due to the subject placing 

constraints on the movement. A practical application of these results may be in the 

identification of athletes who will need training modification in the week following a 

game where an injury has occurred. In addition, there may be a possibility of using this 

analysis to identify athletes who are ready to return to normal activity in that when their 

between-section variability returns to their long term average the effect of the injury has 

diminished. 

When the side to side differences in season average raw CMD scores within axis and 

analysis condition were collated with the instances of modified activity, subjects with no 

difference between side 1 and side 2 in the z-axis were very unlikely to require a 

training modification classified as “load” (only two out of eleven subjects with no 

significant side to side difference in the z-axis required a modification due to “load” 

throughout the season), and subjects with no difference between side 1 and side 2 in 

the x-axis were very unlikely to require a training modification classified as “groin” (one 

out of ten subjects was incorrectly classified using this method). This provides 

extremely valuable practical information on an athlete’s risk of requiring a training 

modification during the season, which can be incorporated with other monitoring tools 

to assess overall risk of injury when designing a training program. 

Other methods of analysing the data extracted by the analysis tool do not appear to 

provide practical benefits. Individual instances of significant z-scores do not appear to 

have any link to instances of missed or modified training, although establishing 

individual confidence intervals that indicate clinically significant z-scores rather than 

using statistical tools to establish confidence intervals may aid make this form of 

analysis more effective. In addition, as some subjects had more incidents of modified 

activity during the year, there is no guarantee that an accurate baseline z-score that 

represents an uninjured state can be established across the subject group. By using an 

expanded set of data to establish a baseline average and standard deviation that 

represents the un-injured state of an individual there may be more merit in using 

individual instances of significant z-scores to predict when a training modification is 

required. Similarly, low raw CMD results do not appear have any value in predicting 

instances of modified activity. Although the predictive value of this method may be 

improved if full medical profiles are used to identify subjects whose performance is 

hampered by an injury, if training or game activity does not require modification as a 

result of an injury the practical impact of that injury must be questioned. Consequently, 

although further research could reveal more practical benefits from these forms of 

analysis, the current data does not advocate the use of these analysis techniques. 
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 General Conclusions 

Instances of missed and modified training and game activity were identified and 

collated with results generated by the analysis tool. Analysis of group average z-scores 

revealed within-section z-axis z-scores appear to have some value in predicting 

instances where training requires modification due to “load”, and between-section x-

axis z-scores appear to have some value in predicting instances where physical load 

has been reduced due to a bye in the previous round of games. Season average 

differences in raw CMD value between side 1 and side 2 within axis and analysis 

condition also appear to have some predictive value in identifying subjects who are at 

reduced risk of requiring a training modification due to “load” or “groin” during the 

season. Other methods of analysis do not appear to have any practical application. 
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 General Discussion and Conclusions 

This research outlined a technique to extract stride accelerometer waveforms from 

athlete tracking data collected with a device with integrated GPS and accelerometer 

sensors. Although previous research has demonstrated that movement patterns can be 

identified and stride characteristics can be extracted from data collected with similar 

devices (Buchheit et al., 2015), to the author’s knowledge this is the first time a method 

has been outlined that combines both an identification of movement pattern to limit the 

analysis to periods of common activity (namely straight line running at high speed) and 

then extracts full-stride waveforms (as opposed to metrics describing specific aspects 

of the stride such as stride time) to examine their consistency across an entire game or 

training session. In addition, as the data used to develop the model was collected 

during competitive games and not from specially designed activities, the ability of the 

tool to extract data and provide information to scientists, coaches and trainers in the 

applied environment is assured. 

 

The extraction of matched sections of running is an important element of this study. In 

a similar vein to Gabbett (2012) who used GPS to identify periods of sprinting in 

competitive rugby league matches, as well as Spencer, Bishop, Dawson, and 

Goodman (2005) and Faude et al. (2012) who used video-based time motion analysis 

to identify periods of sprint running during competitive hockey and football games 

respectively, the current study used GPS to identify periods of high speed running in a 

straight line. This process allows data from normal matchplay and training to be 

analysed rather than requiring data to be collected from specially designed drills or 

pattern runs. This will ensure that data to be analysed is taken from sections of running 

where the athlete is less focussed on maintaining correct technique and more focussed 

on the gameplay implications of their actions, thereby maximising the ecological validity 

of the process. 

 

Instances where training and game activity was modified influenced the outputs from 

the analysis tool were identified. These results have many practical applications in 

professional sporting clubs. The ability to predict the need for modifying normal activity 

is a much sought after goal of applied scientists, coaches and trainers who are 

endeavouring to maintain athletes at their optimal physical condition over the course of 
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a season. In this respect, identifying trends in individual results that would indicate a 

heightened possibility of the need to modify normal activity provides crucial insight. 

Another possible application would be to use group average results from training 

sessions and games to help identify when the group as a whole is experiencing periods 

of high or low physical load. This could be especially useful in times of specific training 

such as during the pre-season where much of the squad is experiencing similar training 

loads as the random element of gameplay is not present to the same degree as during 

the regular competitive season and physical conditioning is generally tightly controlled. 

By analysing longitudinal trends of the group average results insights can be gained 

into the overall effect the training program is having on the group’s physical condition 

which can then be compared with the expected outcome given the training load that 

has been prescribed. 

As there appears to be some clear increases in between-section results when a 

“structural” injury has been identified, there is a possibility that this analysis tool can be 

used as an indicator of when the effect of the injury has subsided and the athlete is 

ready to return to training or competitive games. Healthy baseline values could be used 

as a reference for return to play, and criteria could be established that indicate when 

variability is close enough to the baseline value to indicate they were ready to return to 

normal activity. 

A particular benefit provided by the methods presented in this study is the ability to 

generate results without any extra effort in terms of data collection or specialised 

activity. The analysis tool uses data that is routinely collected during training and 

competitive games, and extracts the key sections to be analysed from normal game 

activities. This is an important point because there are many competing demands on 

the limited training time available at a professional sporting club, and requiring 

specialised testing often renders a test or metric unusable due to an unwillingness to 

alter normal training activities to accommodate the specialised test or equipment. One 

of the key criteria in the overall design of the analysis tool was to maximise its practical 

usefulness, and a fundamental part of that was to only use data that is routinely 

collected currently rather than rely on a specific test that may encounter resistance in 

its application. This study demonstrated that the analysis tool not only is able to extract 

sufficient data from normal competitive gameplay, but results generated by the analysis 

tool have real practical outcomes for the prediction of modifications to normal activity. 

In addition, results in this study have been generated from a small number of games in 

comparison to the total number of games and training sessions that are prescribed 
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during a normal season. It is therefore encouraging that significant results have been 

identified with such a limited set of data. 

Data from competitive games were used in this study as it was thought that competitive 

games would provide the greatest weekly physical stress to the subjects. It was 

assumed that the greatest physical stress would also provide the greatest chance of 

the analysis tool uncovering characteristics that could be used as predictors of injury. 

However the analysis tool can be extended to be used with training data as well. The 

amount of SLHS sections that are able to be identified within a standard training 

session is currently unknown. It is possible that given the reduced duration of training 

compared to games there would be fewer SLHS sections which may compromise the 

accuracy of the between-section measures. However, as training sessions are often 

interspersed with periods of physical conditioning that often involve straight line running 

at high speed there is the possibility that an adequate number of sections of SLHS 

running can be identified. If needed there is also the possibility of incorporating the 

need to generate straight line high speed running during training into the design of 

training drills, allowing for more valid data to be available. Further research into the 

applicability of the analysis tool to training data needs to be conducted before its worth 

in identifying important aspects of an athlete’s physical condition from training data can 

be established. 

An additional benefit to including training data within the analysis would be that a more 

complete time series of data would be available. In the current data the time between 

data points is irregular in that games available for analysis are often separated by a 

number of weeks. This does not allow for an analysis of how results change over small 

time periods. Analysis of training data could possibly uncover associations and more 

stable transitions from high to low z-scores (and vice versa) as time progresses. More 

detailed data on the physical condition of the athlete may identify subtle variations in 

athlete condition that can be identified and predicted by outputs from the analysis tool, 

thus strengthening results presented in this study. 

Another aspect of the underlying data that could be investigated further is the time 

during the game where sections of SLHS running occurred. The selection of sections 

used in the between-section analysis (with respect to when those sections occurred 

during the game) was not controlled, resulting in the likelihood that sections within 

games used for between-section analysis overly represent periods within games. Also, 

the time within a game that sections of straight line high speed running occurred will be 

inconsistent across the season. A more detailed data set may provide further clarity on 
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results and conclusions presented in the current study and may offer insights into how 

outputs from the analysis tool change during the course of the game. These findings 

would provide useful practical information in relation to an athlete’s ability to maintain 

physical condition throughout the course of a game. 

The predictive value of results generated by the analysis tool is likely to be enhanced 

when combined with other parameters regularly collected in professional clubs. Adding 

information on stride waveform variability to other measures and procedures such as 

medical screening, tests for power and strength, general physiological measures, 

session ratings of perceived exertion and more traditional GPS measures like 

cumulative distance or player load would likely enhance the applicability and predictive 

power of all metrics. This approach has been demonstrated in the past by Colby et al. 

(2014), who investigated injury risk predicted by physical workload. Injury was defined 

in a very similar style to the current study in that instances of modified training in a 

professional AFL team were used as indicators of injury incidents. Another similarity 

was the use of custom analysis tools developed by the authors, similar to the analysis 

tool developed for the current study. Incorporating the analysis tool from the current 

study into the methods used by Colby et al. would likely result in a predictive model that 

is more powerful than if the analysis methods were used in isolation. The results from 

the analysis tool developed for this study can be used as a piece of the overall puzzle 

as well as providing important insights in their own right. 

An absence in side to side difference in z-axis within-section results and a reduced 

possibility of requiring training modification due to “load”, as well as a similar finding 

where an absence in side to side differences in x-axis between-section results reduces 

the possibility of requiring a training modification due to “groin” have implications for the 

management of athletes within professional sporting clubs. If side to side differences 

are present in an athlete then more monitoring, medical screening and other 

preventative and diagnostic measures should be implemented. This is not to imply that 

athletes with no side to side differences should be ignored as far as testing and 

monitoring for “load” and “groin” issues goes, simply that given the reduced probability 

found in this group would help to direct time and energy towards a group with a higher 

probability of requiring training modifications. Additionally, if player tracking data were 

available on potential recruits, identification (or non-identification) of side to side 

differences may aid in the recruitment of athletes to minimise the possibilities of 

recruiting athletes that may require some training modifications (and perhaps miss 

games due to injury) during the season. 
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Overall, the influence of instances of missed or modified training on results generated 

by the analysis tool generally supports previous research. A shift away from an 

athlete’s optimal amount of movement variability (ie. their normal ‘healthy’ state) has 

been associated with a pathological state (Cortes et al., 2014; Hamill et al., 2012; 

Hamill et al., 1999; Heiderscheit et al., 2002; Stergiou & Decker, 2011; Stergiou et al., 

2006). Athletes demonstrated a shift to decreased variability in some situations (such 

as in the week following a ‘leg structural’ injury) and a shift to increased waveform 

variability in other situations (such as in the week following a training modification for 

‘load’, suggesting the training staff felt the athlete was fatigued or in danger of 

becoming functionally over-reached). This pattern is in agreement with Hamill et al. 

(2012), who suggested that a higher or lower level of coordinative variability was 

indicative of an injured state. Indeed, as was suggested by Stergiou et al. (2006), an 

overly rigid system (characterised by too little variability) and an overly chaotic system 

(characterised by too much variability) can both be indicators of a pathological state. 

The indications of a pathological state are statistical variance from a mean value that 

reflects a ‘normal’ amount of movement variability for an athlete. Changes within the 

underlying movement variability displayed by the athlete is reflected in the variance 

from their mean value. This is a common technique used in elite sporting 

environments, as outlined by (Rogalski et al., 2013). 

The practical application of this analysis tool may go some way to enabling movement 

variability to be used in applied situations to identify athletes progression towards and 

recovery from an injured state. There are many benefits to using this analysis tool in 

elite sporting environments. There is no extra equipment required over and above the 

instrumentation already worn in most training and game situations, reducing the need 

for acquisition of the instrumentation, compliance from both the athletes to wear the 

units and staff to manage the administration of the units (including administration of the 

data produced by the units), and regulatory obligations with governing bodies who 

control what instrumentation can be worn during competition. It is hoped that the 

analysis tool presented in this research will be an effective addition to the applied sport 

scientist’s toolkit, and that movement variability can be used, as envisioned by Hamill 

et al. (2012), to help track progression towards or recovery from an injured state, 

thereby assisting athletes to perform at their peak. 

Although not possible in this study due to ethics requirements and conditions in the 

informed consent provided by subjects, it would be interesting to discover whether 

subjects with large side to side differences in season average CMD results had a 
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history of ACL injury as suggested by Moraiti et al. (2007) and Moraiti et al. (2010). If 

this were the case, it would enhance the possibilities of the methods presented in this 

study to further the theoretical discussions on movement variability by providing 

methods to unobtrusively examine variability during times of physical stress in the field, 

thus maximising ecological validity. Using data from actual gameplay situations will 

allow for theoretical concepts developed in laboratory and more controlled field testing 

to be tested in competitive settings. These applications will require further investigation 

to confirm the results obtained in situ can be replicated in more controlled settings (for 

instance by comparing results generated by the analysis tool when running on a 

treadmill to running in competitive situations), however the possibilities presented when 

analysing stride variability in competitive settings may provide new avenues to resolve 

questions on the role of movement variability in injured and non-injured athlete 

populations. In addition, research into the cause of results presented in this study 

would improve the power of the predictive model through enhancing the theoretical 

base for the results presented here. 

The use of this analysis tool need not be restricted to the population used in the current 

study (elite AFL footballers). Straight line sprinting has been shown to be present in 

other sports (Faude et al., 2012; Gabbett, 2012) and is regularly used in testing 

batteries for elite athletes (Brown, Vescovi, & van Heest, 2004). In some instances, no 

changes in parameters used in identifying valid sections of data would be necessary 

before the analysis tool could be used to measure step waveform variability in other 

sports. In other cases some adjustments may be required to maximise the amount of 

valid data available. Further applications of the methods used in this study can be 

found in other cyclical sports. An example of this could be rowing or kayaking, where 

boat acceleration is regularly measured in competition and training (Janssen & 

Sachlikidis, 2010; Soper & Hume, 2004), though external factors such as weather 

conditions would need to be controlled for. Another sport where movement variability 

has already been investigated is swimming (Dadashi et al., 2015), where inertial 

sensors very similar to the units used in the current study (Slawson et al., 2009) could 

be used to examine movement variability in swimming strokes. The methods in this 

study could also be used in the examination of  non-athletic populations, one example 

being movement variability and healthy gait in elderly subjects which has received 

some research interest in the past (Moe-Nilssen & Helbostad, 2005). 

In many aspects, this study fits the description of a predictive model as described by 

Shmueli (2010). The influence of incidents of missed training on stride variability is not 

intended to imply any causative link. Although previous research has indicated that 
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movement variability away from an optimal individual level may be indicative of some 

pathology (Stergiou & Decker, 2011), the mechanism that is the initial cause of the 

movement variability has not been investigated in this study. The analysis of data in 

this study is only partially based on a theoretical construct, in that an analysis of 

movement variability had the potential to uncover associations between the data and 

practical implications. Any possible associations identified can be used to predict new 

observations and are in this sense prospective. 

Further elements of this study also conform to what could be considered characteristics 

of predictive models. Empirical precision was a high priority in the development of the 

analysis tool, providing sufficient data within the straight-line high-speed running 

sections for an effective statistical analysis was a key goal of identifying parameters for 

the analysis tool. Also, the analyses that have not been found to display a direct 

relationship with instances of missed or modified training (such as the magnitude of the 

raw CMD score in the y-axis, and incidents of significantly high or low z-scores) may, 

when combined with other models, provide a strong predictive relationship. 

Investigations undertaken during the development of the analysis tool identified a 

number of parameters that could be modified to maximise the amount of valid data 

available for further analysis while maintaining best practice with regard to theoretical 

principles. Optimal values defining what constitutes both high speed and straight line 

running were established, and minimum amounts of valid data for analysis conditions 

were identified. However, given the similarities the current study has with predictive 

modelling studies, further investigations should be undertaken to address weaknesses 

in design that are common to predictive modelling research. To ascertain whether 

parameters identified and developed for this analysis tool are universally acceptable 

the performance of the analysis tool should be tested with a new set of data. In 

addition, results demonstrating a strong influence of incidents of missed or modified 

training on outputs from the analysis tool should also be tested against a new set of 

data generated from new subjects with new assessors deciding when normal activity 

should be modified (as well as the reason for that modification). 

The key aspect of the results presented in this study is that they can be readily 

practically applied. Recent research into intra-stride accelerations (Buchheit et al., 

2015) has demonstrated some of the possibilities afforded when these data are 

analysed. Providing another alternative method of analysing intra-step accelerations, in 

particular analysing the entire step waveform rather than stride characteristics 

generated from specific points within the waveform as well as reporting movement 



149 
 

variability within games will aid scientists, coaches and trainers to utilise aspects of 

data being collected on a daily basis in sporting clubs worldwide. These data have 

hitherto remained largely untouched and the analysis presented in this study will aid in 

the accurate assessment and prescription of physical activity to maximise the physical 

condition of athletes. Combining methods presented in this study with other methods of 

analysing athlete tracking data will enhance the power of previous predictive 

approaches as well as increasing the clarity of conclusions drawn from retrospective 

analyses of player tracking data.  
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