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Abstract: The brain network is the function of a structurally and 
functionally organized complex system. Its structure and activity analysis is 
one of the most significant challenges. The graph based techniques of brain 
complex networks have been successfully used in various types of image 
and medical data analysis. In this survey paper, we focus on a 
comprehensive study of the analytical methods for complex brain network 
based on graph theory. This review paper is intended to provide automated 
brain disease diagnosis based on functional and diffusional MRI modalities. 
Furthermore, we discuss subjective and objective quality evaluations of 
complex brain networks, important tools for automated brain disease 
diagnosis, challenging issues and future research directions in this 
increasingly evolving research field. 
 
Keywords: Functional MRI, Diffusion MRI, Graph Theory, Complex 
Network, Modality 

 
Introduction 

Our brain is a function of complex networks because 
its function is connected within different neural networks 
and brain regions. Almost everything we think, say and 
do is controlled by our brain, so when our brain is 
damaged, it is possibility to affect every aspect of our 
life (Bullmore and Sporns, 2012).  

In the field of mathematics, graph theory is a major 
area to model relations between objects and to represent 
a connected network structure. Researchers are using 
graph theory to quantify aspects such as similarity, 
hierarchy and network efficiency of complex network 
structure in many other fields. Recently neuroscience 
researchers are proposed to use graph theory analysis to 
identify topological properties of complex brain network 
structure (Thirion et al., 2006; Bullmore and Sporns, 
2009). A few years back, Grady and Polimeni (2010) 
published a book related to discrete calculus on graphs 
and described discrete calculus, matrix algebra briefly. In 
recent years, various researchers suggested that the 
combination of discrete calculus, matrix algebra on 
graph provides the extremely powerful computational 
toolbox for the analysis of human brain functions and 
structure. However, the ability to perform these 

computations on graphs was not possible even in recent 
history of the field.  

Over the last decade, researchers have tried to 
improve their understanding of the functionality of 
human brain and machine diagnosis of mental illness. A 
large number of technique have been applied to learn 
about complex brain system and these techniques were 
intended to aid diagnosis and assessment of the extent of 
brain damage. Though hese techniques are able to detect 
damage to the brain, they are unable to provide the clear 
image in some circumstances. They have not the 
capacity to cover the entire brain rather provide a limited 
coverage of its parts. However, in the field of medical 
science especially in brain diagnosis research, there are 
various prominent techniques which have been studied 
and investigated to present promising diagnosis result. 
Functional and Diffusional magnetic resonance imaging 
are non-invasive techniques. These (fMRI and DMRI) 
advanced techniques have been used to investigate 
physiological disturbances and now developing leads to 
manifest psychiatric illness.  

The purpose of this review paper is to examine 
existing techniques and to outline the types of challenges 
that can be addressed. To our knowledge, this review 
report represents the first effort to check impairment 
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detection with an exact application on complex brain 
network. In this review, we do not consider any specific 
brain disorders. Rather, we aimed to identify the 
prominent techniques which have been applied to 
analyse complex brain networks based on the graph 
theory However, we found that many relevant tasks were 
mostly published in the area of neuroscience that we 
have focussed below. Therefore, we have elected to limit 
the scope of our review that can be focussed in future of 
neuroscience research.  

The paper is organized as follows: Section 2 presents 
the review of related works and contributions, while the 
analysis of graph based complex brain network is 
discussed in section 3. We focus on Functional MRI as 
well as Diffusional MRI techniques in section 4. Finally, 
the guidance of future research directions and conclusion 
is provided in section 5.  

Literature Review  

Van der Horn et al. (2017) Illustrated on mild 
Traumatic Brain Injury (mTBI) that is one of the most 
widespread disorders in neuroscience. They found that 
although the complaints of post-traumatic injury are 
reported frequently, a consistent solution has not yet 
been found. To gain a comprehensive understanding, 
they used graph theory analysis of complex interactions 
between complaints, functional brain networks, 
depression and anxiety in the sub-acute phase after 
mTBI. Several recent studies present a review of 
advances in neuroscience focusing on the graph based 
research on exact areas of brain connectivity. Del Etoile and 
Adeli (2017) presented a detailed outline of brain 
connectivity and graph theory analysis as a great 
solutions of Alzheimer’s disease. McColgan et al. (2017) 
proposed that functional and structural brain network 
correlates as a possible solutions of Huntington's disease. 
Using resting state fMRI data they examined how 
different functional and structural brain networks 
chronicle to depressive affection in premanifest HD and 
advantageous controls and finally got significant results. 
Hart et al. (2016) discussed about human brain as the 
most powerful complex system and recently this idea of 
complex brain networks with graph theory has entered a 
new era in neuroscience. Using resting state fMRI they 
provided new ideas in brain mapping with graph applied 
to neurosurgery especially to traumatic brain injury.  

Bullmore and Sporns (2009) reviewed and told that 
recent development of graph theory analysis has changed 
the dimension of complex brain network research. To 
achieve a complete understanding of complex brain 
network, they provided important information of 
measuring the brain network organization using 
functional MRI, structural MRI, diffusion MRI, EEG, 
MEG. Chen and Glover (2015) described functional 
MRI shown great direction to understand cognition in 

both healthy and dysfunctional brain. (Hart et al., 
2016) used functional MRI with BOLD contrast imaging 
to generate better-recorded images. Bullmore and Sporns 
(2009) explained the quantitative analysis of complex 
networks using graph theory to improve the patterns of 
human brain complex networks. 

Fox and Raichle (2007) believed that resting-state 
BOLD fMRI studies accept broadly acclimated 
functional connectivity to explore the alignment of 
functional networks. It can accomplish admitting 
indirect, strong, inferences about the functional access. 
Song et al. (2008; van den Heuvel et al., 2009; Zhou et al., 
2007) examined that Many exploratory readings have 
inspected the record between the structures of the brain 
network from the point of appearance of graph theory 
and multiplicities of behavioural phenotypes in health 
and disease, including calibration scores, affliction 
continuance and genotypic variations (Liu et al., 2010; 
Glahn  et al., 2010). Iannetti and Wise (2007; Honey et al., 
2009) discussed that the functional connectivity from 
diffusion MRI will provide good complements for 
modelling functional networks. Moreover, they believed 
that although resting-state functional connectivity is 
mutable and is frequently present between regions without 
direct structural links, its strength, spatial statistics and 
tenacity are nevertheless controlled by the large-scale 
functional structure of the human cerebral cortex.  

The major contributions of our survey paper are as 
follows, we aim to familiarize graph based study of 
complex brain network. We describe brain as a complex 
network and graph based methods can be applied to 
extract the features. In addition, we discuss many of the 
relevant works on graph based complex brain network 
that has been used to "real-world" scenarios for brain 
disorders. Finally, with these ideas established we then 
explain the contributions of functional and Diffusion 
MRI with brain connectivity. We discuss how these 
technologies can help ameliorate the future guidance of 
complex brain network research.  

Complex Brain Network Analysis  

Brain network consists of a number of elements 
including nodes and edges that are mutually interconnected 
to each other (Kabbara et al., 2016a). These systems are not 
monitored centrally rather it presents collective dynamics 
with self-organization (Fig. 1). Overall, a network is any 
system with sub-units that are linked into a whole. 

For example, in social relationships, individual 
people indicates as nodes and it expresses as V and the 
joint relations between two nodes are indicating whether 
the corresponding peoples are accompanied or not. It's 
artlessly accurate as a bend as E. The groups of nodes 
and edges indicate together as a graph: G = (V, E) 
(Thirion et al., 2006). 
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Fig. 1: Complex brain network: Hubs and modules in the brain. Image courtesy of Bullmore and Sporns (2012) 
 

The human brain is organized into complex system 
allowing within individual components by structurally and 
functionally. But compassionate its structure and action one 
of the absolute accurate challenges in neuroscience. To 
overcome the challenges in neuroscience, many techniques 
have developed and already applied to make sense of the 
bewildering complexity of this most mysterious structure.  

From past decade, many researchers tried to find the 
patterns of structural and functional connectivity of 
brain network by accumulation an array of different 
imaging technologies like EEG, MEG and structural, 
functional, Diffusion MRI with adult analytic strategies 
such as vivo imaging, activating causal modelling, 
fractional atomic squares and structural graph 
modelling (Table 1) (Bullmore and Sporns, 2012). 
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Table 1: Reviews of different automated disease diagnosis techniques applied to implement complex brain network analysis 
 Application of  
Techniques brain networks Acquisition  Strengths  Weaknesses 
Structural MRI Analyses of structural Single 3D volume of Simple to acquire Limited by degree of 
(Bullmore and covariance of morph-  the brain (e.g., T1 and not limited by infe-rence one can 
Sporns, 2009; ological measures (e.g., MPRAGE), usually   artefacts to the same deduce based on 
Guye et al., 2010; cortical thickness or acquired as standard degree as other cortica measures 
Sporns, 2011; volume) between brain in most MRI protocols  MRI-based  
Hagmann et al., 2007) regions (high correlation  sequences 
 implies a network link) 
Functional MRI Analyses of statistical Specific 4D sequence Reasonably high An indirect measure 
(Bullmore and dependencies between sensitive to BOLD  temporal and good of neuronal activity. 
Sporns, 2009; brain regions. contrast reflecting spatial resolution Significant artefacts 
Guye et al., 2010;  hemodynamic response  require careful  
Wang et al., 2010;  of neuronal activity  pre-processing 
Maihöfner et al., 2005)  
Diffusion MRI Uses reconstruction of Measures free water Suggests a clear Variations in 
(Iturria-Medina et al., tracts to imply  diffusion. relationship with sequences and 
2008; Li et al., 2009)  structural connectivity  underlying structural algorithms can 
 between brain regions   and functional brain significantly affect 
   connectivity.  network para-meters. 
PET  Covariance in glucose Injection of a It is a good Radiation, limits on 
(Bullmore and metabolism bet-ween radioisotope followed biomarker for   repeatability. 
Sporns, 2009; regions by detection of gamma Alzheimer’s dis-ease   Potentially lower 
Maihöfner et al.,2005;  rays and provides direct spatial resolution. 
Power et al., 2011;   metabolic data 
Debaere et al., 2001)  
EEG Measures statistical To measure electrical Direct measure of Due to skull and scalp 
(van Straaten and dependency between all signals in the brain neuronal currents it has some impor- 
Stam, 2013; pair wise combinations directly it uses and best temporal tant limitations and 
Rubinov and Sporns, of cha-nnels, often in electrodes. resolution. distortion. 
2010; Boersma et al., multiple frequency bands 
2011; de Haan et al., 
2009; Hassan et al., 
2017a)  
MEG  Measures statistical To measures magnetic Exceptionally high Difficulties with 
(van Straaten and dependency between all field alterations using temporal re-solution focusing signal 
Stam, 2013; pairwise combi-nations magneto-meter but limited spatial spatially and for low 
Rubinov and Sporns, of channels  resolution (particularly signal-to-noise ratio 
2010)    subcortical)  

 

Graph Based Analysis of Complex Brain 

Network 

Graph is simple model of complex structures, 
define as a set of nodes and edges which can be 
represented as G = (V, E) (Fig. 2). This method have 
become a great tool in the field of technological, 
biological and amusing sciences such as the science of 
ecological networks, the World Wide Web, amusing 
networks and neuroscience. Onias et al. (2014) 
described that a network is a way to code a set of 
elements together with their connections. The 
elements are identified as nodes and their connections 
are identified as edges. When two nodes are 
connected by an edges, they are considered 
neighbours. In addition, edges can be categorized as 
directed , undirected and weighted (Fig. 3 and Fig. 4). 

 
 
Fig. 2: Graphical representation of graph 

 
Node 

 
Edge 
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Fig. 3: Examples of (a) undirected, (b) directed and (c) weighted networks (top row) and their corresponding adjacency matrices, 

coded with a gray-scale colour map (bottom row). Image courtesy of (Onias et al., 2014) 
 

 
 
Fig. 4: Examples of complex brain network based on graph. Image courtesy of (Boccaletti et al., 2006; Fallani et al., 2014)  

 
Moreover, a network framework with N nodes is 

said to accept labels N that assigns a representation 
(weight) to each link is called weighted network. 
Otherwise, if the links of a network do not accept 
labels, the system is named unweighted network. 
Previously described that the brain can be seen as a 
complex network: An affiliated network area where 
nodes represent different specialized regions and edge 
represent advice pathways. From the functional 
viewpoint, communication is coded by temporal 
dependence between the activities of different brain areas. 
The use of graph based technique in translational 
neuroscience has become great to measure brain 
dysfunctions in agreement of anomalous reconfiguration 
of brain networks. Besides, graph theory analysis of brain 

networks can be blindly activated to brain signals. The 
adversity with integrating data from multiple 
modalities is that it is computationally actual 
ambitious to analyse and it is acutely difficult to 
anticipate anticipate the relationships between objects in 
the data (Fallani et al., 2014). 

Brain Network Connectivity 

The human brain is organized by structurally and 
functionally and it is one of the most complex systems. 
Brain connectivity may be analysed and considered 
application as a broad range of network analysis 
methods and categorized as: Structural connectivity and 
functional connectivity (Fig. 5) (Ciric et al., 2016). 

 

 
Undirected graph            Directed graph             Weighted graph 

(a) (b) (c) 
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Fig. 5: Graph theory analysis of functional and structural brain network can be shown through the subsequent four phases. First, 

establish the network nodes. Second, Estimate connected admeasurements of affiliation between nodes. In third, Generate a 
connection cast by accumulation all pairwise links between nodes. In fourth, analyse the parameters of brain networks. 
Image courtesy of (Bullmore and Sporns, 2009) 

 
Many of the brain connectivity methods are already 
activated in alongside efforts to map and call added 
biological systems, e.g., those of cellular metabolism, 
ecology or gene regulation. The approach of directed graphs 
is one of the most popular methods to map networks of 
structural and functional brain connectivity at all stages. 

Graphs are collection of nodes and edges which are 
corresponding to brain regions and pathways. In the 
easiest form, graphs can be declared by a connection 
matrix with binary elements that identify the existence or 
lack of a directed edge between pairs of nodes. 
Generally, nodes can connect with other nodes through 
indirectly or directly. Indirect interaction is a connection 
of multiple edges and the functional effectiveness of 
these indirect connections are depends on the path length. 
Besides the distance between two nodes are corresponding 
to the length of the shortest path and the all-around average 
of all distances is called the path length. 

According to formal outline of graph based analysis, 
complex brain network consists of a set of structural and 

functional connectivity and can be processed by the 
following several steps. 

Structural Brain Network Connectivity  

Structural brain connectivity represents the structural 
associations a part of altered neuronal elements including 
both the morphometric alternation and accurate 
anatomical connectivity. At the complex brain networks, 
this access about accredits to white amount projections 
bond cortical and subcortical regions. The structural 
connectivity of human brain in vivo can be completed by 
structural and diffusion MRI. (Bullmore and Sporns 2009; 
Van der Horn et al., 2017). Structural connectivity of this 
affectionate is anticipate to be almost abiding on under time 
scales (seconds to minutes) but only some of artificial 
experience-dependent variations at best time scales (hours 
to days) (Friston et al., 1993). In addition, in the field of 
neuroimaging, as the directionality of projections currently 
cannot be detected, the structural brain connectivity is 
mostly abstinent as a set of accidental relations. 
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Functional Brain Network Connectivity  

Functional brain connectivity denotes the functional 
relations of brain areas accepting by quantifying the 
temporal correlations between spatially limited 
neurophysiological contest from fMRI and EEG/MEG 
data (Friston et al., 1993; Kabbara et al., 2016b). It is 
largely derived from time series analysis of complex 
brain networks because it is highly time-dependent and 
describes patterns of statistical reliance among neural 
elements (nodes and edge) (Joo et al., 2016; Zhang et al., 
2017). A various number of neuroimaging techniques, 
including diffusion MRI, functional MRI, 
Electroencephalography (EEG), Magnetoencephalography 
(MEG) may be applied to analyze time series data of 
functional brain connectivity and can be figure out in a 
number of ways, including as spectral coherence, mutual 
information, or cross-correlation. 

The future indications of functional brain 
connectivity is to apply an algorithm in time-evolving 
graphs, where the challenging factors are to extract 
features and to find patterns incrementally over time. 
Another indication of brain connectivity is if the 
functional brain connectivity features are extracted 
from the neuroimaging data, graph based techniques 
can be further applied to complex brain networks and 
examine their essential topological properties to detect 
abnormalities.  

Role of Imaging Techniques for Complex 

Brain Network Analysis  

Graph based analysis of complex brain networks 
have given significant output to find a variety of brain 
and mental disorders. Functional and Diffusion MRI has 
given rise to rich and flexible structure function 
relationships of complex brain network analysis. Besides 
these imaging techniques already contributed to 
developing better diagnoses and treatment options of 
neurodegenerative disorders like as Schizophrenia 
disease, Alzheimer's disease, traumatic brain injury, 
Epilepsy, Parkinson’s disease etc., Sporns (2014). 
However, the studies and major contributions of 
functional and diffusion MRI for complex brain network 
analysis based on graph provides are as follows.  

Funtional Magnetic Resonance Imaging (fMRI) 

Functional MRI has released an important window 
for the non-invasive analysis of the circuitous human 
brain. Because it can evaluate different brain regions 
over times, which is the basic need to consider the brain 
network as a complex system. Functional MRI is a 
neuroimaging procedure using MRI method that 
measures brain activity to detect changes in blood flow. 

Functional MRI is also known as Blood Oxygenation 
Level Dependent (BOLD) MRI which is one of the 
most great technique to recognize activity in the human 
health and brain (Matthews and Jezzard, 2004). BOLD 
fMRI was first developed and described in 1989. It has 
rapidly developed as a non-invasive method to map 
brain activities. Although a number of methods have 
been applied to measure functional brain networks 
connectivity, functional Magnetic Resonance Imaging 
(fMRI), especially resting state fMRI has played great 
rules for identifying clinical biomarkers for brain 
diseases (Rodic and Zhao, 2015; Song and Jiang, 2012). 

Basic Goals and Current Applications of 

Functional MRI  

Functional MRI is a well-developed imaging 
technique to detect changes in the signals used to 
produce magnetic resonance images that are linked with 
neuronal action in the brain. Besides, it can be advised to 
abide specific hypotheses apropos the attributes of the 
broadcast systems amenable for assorted 
anatomic/functional responses of the brain. Hennig et al. 
(2003; Gore, 2003) illustrated that although many of the 
imaging techniques have been used to detect the brain 
disorder, fMRI covers all domain of systemic 
neurosciences. Functional MRI is just about to enter the 
domain of clinical applications. Daimiwal et al. (2012; 
Hennig et al., 2003) described that functional magnetic 
resonance imaging techniques have confirmed to be vital 
to understand the functional, cellular and molecular 
mechanisms of the brain (Daimiwal et al., 2012).  

Advantages and Limitations of Functional MRI 

The benefit of fMRI is that it is non-invasive and 
doesn’t use radiation like Computed Tomography (CT) 
Positron Emission Tomography (PET) and X-rays scans. 
It can evaluate brain function securely and efficiently. 
Virtually fMRI has no risks. Besides, it is analogously 
cheap, as no trace or adverse appropriate and easy to 
use. Functional Magnetic Resonance Imaging (fMRI) 
can produce are very high-resolution images. Also, 
fMRI is far more objective to compare with the other 
traditional questionnaire methods of psychological 
evaluation. Although fMRI has many advantages yet it 
has some difficulties. First, it is costly. Second, it can 
alone abduction bright images contrarily its imaging 
action may abduction exceptionable artefacts. Third, it 
is an aberrant admeasurement of academician action 
that may be suffered by non-neural changes in the 
body and fourth, advisers still don’t absolutely accept 
how it works (Chen and Glover, 2015; Ahsan et al., 
2009). In addition the goals and clinical applications 
of fMRI are listed in Table 2. 
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Table 2: The goals and clinical applications of fMRI based on graph theory 

Techniques Goals Applications of fMRI Graph used References 

Functional MRI  Examine the structure Aging and √ Bullmore and Sporns (2009; 
 of the complex Alzheimer’s disease.  Achard and Bullmore, 2007; 
 brain networks.    Meunier et al., 2009; 
    Supekar et al., 2008;  
    Buckner et al., 2009; 
    Buckner et al., 2009; 
    Hata et al., 2016) 
 Clearly, determine which Relationship of √ Chang et al. (2016) 
 part of the brain is handling Carotid stenosis. 
 critical functions including 
 speech, thought, movement 
 and sensation are called 
 brain map-ping.  
 Help assess the effects In migraine. √ Colombo et al. (2015) 
 of disease on brain  
 function.  
 Investigating the growth Traumatic Brain  √ van der Horn et al. (2017; 
 and function of brain injury.  Hart et al., 2016; 
 connectivity.    Nakamura et al., 2009)  
 Monitor the developments Parkinson’s disease  √  Gao and Wu (2016;  
 of surgery, radiate-on   Hassan et al., 2017b) 
 therapy, or other surgical Pearson correlation √  Wang et al. (2017) 
 actions for the complex of brain disorder. 
 brain networks.  Drug addicts  √  Nakamura et al. (2009; 
    Liu et al., 2009)  
  Hyperactivity disorder.  √  Wang et al. (2009)  
  Schizophrenia disease.  √  Liu et al. (2008) 
  Epilepsy disease.  √ Liao et al. (2010)  

 
Brain Network Connectivity with Functional MRI 

According to the graph theory concepts brain networks 
connectivity can be articulated as a graph G = (V, E) area 
where V can be the accumulating of nodes absorption the 
academician regions and E can be the anatomic access 
amid these brain regions. van Den Heuvel et al. 
(2009; van Straaten and Stam, 2013) explored a 
schematic amount of a graph symbol of the functional 
brain network in (Fig. 6). 

Hagmann et al. (2007; Valencia, et al., 2009; 
Meunier et al., 2009) studied about the resting-state 
fMRI for measuring of the functional brain network. 
They also told that the functional brain networks 
interactions between regions are abundant because it has 
an intrinsically cohesive modular (community) 
structure and functionally linked with brain regions. 
Nakamura et al. (2009) illustrated that the topological 
properties (connectivity strength, small-world attributes) 
of functional brain networks at individual time points 
through the recovery from traumatic brain injury had 
changed using graph based resting fMRI. Liao et al. 
(2010) showed that graph based resting-state fMRI 
analysis of functional brain networks in epilepsy was 
related with smaller clustering coefficients and shorter 

path lengths. Liu et al. (2008) provided the first graph 
based analysis of functional brain networks in 
schizophrenia using resting fMRI and also showed that 
several topological measurements, like local efficiency, 
global efficiency and clustering coefficient. Supekar et 

al. (2008) reported that the unusual small-world group in 
functional brain networks was first demonstrated by 
applying resting state fMRI in Alzheimer’s disease. 
Wang et al. (2009) discussed the deficit hyperactivity 
condition are associated with the unusual small-world 
topology in functional brain networks.  

In Addition, several fMRI studies have examined 
age-related variations in the functional forms of the brain 
utilizing graph-based network models. Fair et al. (2009) 
reported that using a fMRI dataset (210 individuals: 66 
aged 7-9 years; 53 aged 10-15 years; 91 aged 19-31 
years), functional brain networks composed of 34 
predefined brain areas were connected over age by the 
small-world measurements. In contrast, Supekar et al. 
(2009) reported that module assignments change over 
age because the progress of brain networks can be 
considered by an abrasion of short-range functional 
connectivity and a deepening of all-embracing anatomic 
connectivity. So, this suggests a dynamic developmental 
trajectory   of   brain   functional   network  topology. 
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Fig. 6: The model of functional brain network consists of nodes and edges between regions that are functionally affiliated and can 

be bidding as a circuitous graph. In the console (a), the accumulating of nodes is represented and these can be brain regions. 
In the console (b), the actuality of functional interactions between the nodes in the network needs to be clear, because it 
represents the level of interactions between different nodes of the network. In the console (c) the actuality of interactions 
amid two nodes can be identified as for whether their similar of functional interactions exceeds an assertive predefined 
threshold. This after-effect in modelling the brain as a functional network with linked between different areas that are 
functionally connected. Image courtesy of (Guye et al., 2010) 

 
Achard and Bullmore (2007) showed that in older adults, 
the interregional connectivity of functional brain 
networks derived from resting fMRI had reduced 
efficiency than in young adults. Wang et al. (2017) 
studied of Functional Brain Network (FBN) and have 
been introduced depression disorder classification 
including Pearson correlation, extracting features from 
constructed FBN where functional MRI shown a 
successful impact. To address these challenging issues 
they have developed a method using a sparse low-rank 
model to automatically remove weak relationship of FBN. 

Several recent studies have shown that in the context 
of behaviour, development and disease states functional 
connectivity has proven a powerful method for analysing 
complex brain networks measuring by resting-state 
fMRI. Warren et al. (2017) applied functional brain 
connectivity to structural brain connectivity to eliminate 
functional connectivity with other brain regions 
measuring derived from the fMRI BOLD signal. 
Goelman et al. (2017) described an analysis method by 
using frequencies and phase of resting-state functional 

MRI data that have shown the correlation between 
coupled time-series functions. Besides they illustrated 
that this analysis can be applied to any coupled functions 
in numerous areas containing electrophysiology, EEG or 
MEG in neuroscience research. Xu et al. (2016) 
discussed Borderline Personality Disorder (BPD) 
neuroimaging research that has to appear structural and 
functional deviations in brain networks. To accept the 
topological backdrop of academician networks, they active 
blueprint approach by investigating anatomic alluring 
Resonance Imaging (fMRI) data. Although the additional a 
lot of accepted neurodegenerative ataxia is Parkinson’s ache 
(PD) primarily affecting the aging populations, its 
neurophysiological mechanisms still unclear. 

Gao and Wu (2016) proposed that the development 
of neuroimaging techniques can be allowed to detect 
Parkinson's Disease (PD) in patients. Especially they 
described the functional MRI neuroimaging technique 
for detecting of the functional connectivity of brain 
networks in patients with Parkinson's Disease (PD). 
Traumatic Academician Injury (TBI), after-effects from 
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accident to academician tissue acquired by an external 
force. The neurobiological mechanisms of Traumatic 
Brain Injury (TBI) underlying specific disorders still 
are not fully clear. Several of the neuroimaging 
techniques have been applied to detect these disorders. 
To find a clear image, Diffusion MRI, Diffusion tensor 
imaging and Functional MRI provided new insights of 
the animal academician in both health and disease 
focussing on structural and functional connectivity 
patterns. Xiao et al. (2015) identified several studies 
that many of functional connectivity abnormalities in 
brain networks, but researchers are still working to 
identify abnormalities. Colombo et al. (2015) 
discovered functional connectivity abnormalities in 
migraine by resting-state fMRI which is a new field of 
neuroscience research. Because, to explore the 
functional connectivity of brain areas, resting-state 
fMRI is one of best methods.  

Functional brain connectivity is a relatively new 
research topic in the field of complex brain networks. 
Several studies found that the function of brains can be 
changed by aging and Alzheimer's Disease (AD) and 
shown recent innovations neuroimaging techniques have 
detected abnormalities in functional networks. To detect 
diseases and analyse functional connectivity Dennis and 
Thompson (2014) applied three primary methods 
including seed-based, ICA and graph theory. In the field 
of neuroscience, especially in brain complex network 
graph theory is playing a great role. Chang et al. (2016) 
identified that Carotid stenosis changes the functional 
connectivity and decline the cognitive functions. To 
evaluate the relationships between hemodynamic injury 
and cognitive decline, they applied graph theory based 
on resting state fMRI.  

Diffusion Magnetic Resonance Imaging (DMRI)  

Diffusion MRI uses the diffusion of water molecules 
to generate contrast in MR images. Although over the 
last 30 years various technologies have been 
developed to detect physiological illness, Diffusion 
MRI has become an accustomed address with an 
abundant appulse on bloom affliction and 
neurosciences (Gallichan, 2017). From the mid-1980s, 
Diffusion MRI is as well-known as Diffusion-
Weighted Magnetic Resonance Imaging (DWI or DW-
MRI) (Delouche et al., 2016; Le Bihan et al., 2006). 

Goals and Current Applications of Diffusion MRI  

Diffusion MRI is a quickly establishing the 
experimental tool for the evaluation of brain diagnosis. 
Its goal is to examine the white matter in the brain and to 
determine diffusion coefficient in-vivo which has great 
potential for further understanding of normal and 
abnormal physiology (Bammer, 2003; Mori and Barker, 
1999). Recently, Diffusion MRI is an imperative 

technique that already widely used for the study of stoke 
and other neuroimaging disorders. This technique is very 
important to apprehend the baptize circulation in 
academician which allows us to abstraction academician 
fibre structures (Mori and Barker, 1999; Booth and 
Hamarneh, 2010; Mueller et al., 2015). The applications 
of Diffusion MRI in brain disorder and clinical 
neuroscience which are summarized in Table 3. 

Advantages and Limitations of Diffusion MRI  

Diffusion alluring Resonance Imaging (DMRI) is one 
of a lot of rapidly developing diagnosis tools in the field 
of MRI which image adverse is based on the circulation 
of baptizing molecules in tissue. Besides, Circulation 
MRI can appraise white amount in the brain. As DMRI 
has been activated to studies of brain disorders so it can 
have some advantages and limitations (Table 4) (Jones, 
2010; Chenevert et al., 2000). 

Brain Network Connectivity with Diffusion MRI  

Kahn et al. (2017) described that to allow for actual 
information transmission, human expertise learning has 
to need to fine-scale coordination of distributed networks 
of brain areas associated with white matter tracts. For 
testing this hypothesis they collected structural imaging 
data and to identify streamlines linking cortical and 
subcortical brain areas, they used deterministic 
tractography which has made structural networks for 
each participant. Finally, they decided that enlarged 
white matter connectivity linking early visual areas was 
related with a faster learning level. 

Hagmann et al. (2007) proposed that mapping of 
the structural brain network connectivity with 
circulation MRI is an action fabricated of four 
accomplish which apparent in beneath (Fig. 7). First, 
they acclimated Circulation Spectrum MRI (DSI) 
which is performed on a sample abstracts set. This 
accretion provided a 3D circulation action at anniversary 
abode in the brain. This abstracts set is alleged a 
circulation map. It is formed by the bounded tissue 
features, in accurate by the acclimatization of axonal 
bundles absolute in the brain. Second, based on this map 
they generated an amount of 3D curves (called fibres) 
that followed the aisle laid by the white amount axonal 
bundles. Third, alone from the beforehand step, they 
acclimated a heuristic that far the academician white 
matter gray amount interface into baby zones of 
according apparent (called Regions Of Interest-ROIs) 
accoutrement the accomplished case and abysmal 
bookish nuclei boundaries. In the fourth step, they 
abutting the achievement of accomplishing two and 
three: The ROIs become nodes and the fibres are adapted 
into edges in the consistent graph. Finally, they appropriate 
that this blueprint estimates the body of white amount 
access amid any two regions of gray matter. 
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Table 3: Applications of diffusional MRI based on graph 
Technique  Applications of DMRI  Graph used  References  
Diffusion MRI  Diffusion Tensor Imaging (DTI) √  Hüppi and Dubois (2006; Neil et al., 
 in brain development.   2002; Vakhtin et al., 2013)  
 Diffusion in acute stroke.  √  van Gelderen et al. (1994; 
   van Everdingen et al., 1998; 
   Warach et al., 1995; Kamalian et al., 2011) 
 Diffusion in chronic stroke and  √  Wardlaw et al. (2013; Schaefer et al., 
 small vessel disease.  2000; Hachinski et al., 2006)  
 Diffusion imaging in brain tumors.  √  Hachinski et al. (2006; Holodny and 
   Ollenschlager, 2002; Maier et al., 2010; 
   Provenzale et al., 2006)  
 Diffusion tensor MRI in  √  Rovaris and Filippi (2007; Li et al., 2013) 
 multiple sclerosis. 
 Diffusion MRI in Epilepsy.  √  Bullmore and Sporns (2009; Govindan and 
   Chugani, 2010; Engel Jr. et al., 2013; 
   Arfanakis et al., 2002)  
 DTI and Tractography in   Clark and Byrnes (2008) 
 neurosurgical planning.  
 Diffusion MRI in psychiatric disorders. √  White et al. (2008; 
   Johansen-Berg and Behrens, 2013)  
 DTI in crumbling (Aging) and age  √  Sullivan and Pfefferbaum (2011; 
 related neurodegenerative disorders.  Brown et al., 2011; Sun et al., 2012)  

 
Table 4: Advantages and Limitations of diffusion MRI 
Technique  Advantages  Limitations  

Diffusion MRI  Able to aces up tears in the white amount that Images distortion 
 added imaging browse including (MRI and CT) 
 scans do not aces up. 
 Containing added abyss advice from MRI scans The low spatial resolution which agencies a  
 and allows us to access images of white matter.  of pixels so the images may appear out cryptic at times. 
 DMRI is an effective technique for comprehensive, Extremely sensitive to motion and can cause mis- 
 noninvasive, functional anatomy mapping of the registration if the patient moves. 
 human complex brain networks.  
 Can help solve the mystery of concussions through its Requires extensive computing power, man-hours and 
 deeper and in depth scan of the brain.  expertise.  
 Provides outstanding details of the structural brain 
 connectivity.  
 Provides a 3D visualization of neuronal pathways.  
 Can help doctors predict recovery times for 
 concussion patients.  

 
Structural brain connectivity mapping techniques 

are playing a very significant role to identify 
abnormal connectivity in psychiatric and neurologic 
disease, particularly Small animal connectivity 
techniques are very important to find anomalies in the 
disease model . Calabrese et al. (2015) showed small 
animal diffusion tractography that can be significantly 
improved through the groupings of ex vivo MRI with 
exogenous adverse agents, containing with innovative 
diffusion accretion and face-lifting address and 
probabilistic fibre tracking. 

Schultz et al. (2016) illustrated, although many of 
the researchers has been studied an affluence of 

research into brain connectivity, we are far from a 
complete understanding to change over the 
development of human brain. They studied and 
described Computational Diffusion MRI to insights 
into human brain development. They have presented 
some recent findings on academician connectivity in 
autism, 22q11.2 abatement syndrome, Fragile X, 
Turner syndrome, Williams’s syndrome and ADHD. 
Mostly they have been focused to find the features of 
brain networks development and biological methods 
engaged for detecting brain impairment. The study of 
brain mapping connectivity is still in its infancy. For 
imaging and analyzing brain connections. Li et al. 
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(2016) proposed Diffusion Magnetic Resonance 
Imaging which noninvasively maps academician 
connectivity at an arresting calibration by barometer 
baptize molecules. Besides in recent years, there has 
been studied a lot on network modeling of brain 
connectivity seriously. Analyzing human brain 
networks, many of the researchers applied graph 
theory by using a various number of imaging 
techniques including functional MRI, Structural MRI, 
diffusion MRI and EEG/MEG separately. 

He and Evans (2010) studied all of these 
techniques and shown many crucial properties of 
complex brain networks which can be applied to 

detect the abnormalities of brain regions especially 
focusing on Alzheimer's and Schizophrenia disease. 
To map the structural access of the human brain, 
Thomas et al. (2014) proposed Tractography based on 
diffusion-weighted MRI (DWI) which is one of the 
most prominent widely used technique. Besides, to 
investigate they applied this method and showed the 
highest sensitivity. Overall, for developing brain 
network analysis with fMRI and DMRI , different 
authors applied different software packages. The 
number of software packages for brain network 
analysis with fMRI and DMRI are listed in Table 5.

 

 
 
 

 
Fig. 7: Structural Brain network connectivity with diffusion MRI. Image courtesy of (Sporns, 2011) 

Diffusion map: 
Field of view: 256×256 mm2 with an in plane resolution 
of 2×2 mm2 and 30 sliced of 3 mm thickness. Diffusion 
probability density function sampled with a 3D isotropic 

field of view of 100 µm and resolution of 10 µm. 

500-4000 Regions of Interest (ROIs) 
covering the WGM interface. Each ROI 

has similar surface 
∼3×106 fibers traversing the white 

matter and connecting  
different regions of white matter 

and gray matter (WGM) interface 

Weighted network of brain connectivity: 
500-4’000 nodes, 26’000-100’000 edges 
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Table 5: Review of different Software packages for brain network analysis with fMRI and DMRI 
Package 
name  Descriptions  Category  Website  Refs.  
SPM  SPM has been designed for the analysis Segmentation, time domain www.nitrc.org/projects/spm or Power et al. (2011; 
 of brain imaging data sequences. The analysis, spatial transformation, www.fil.ion.ucl.ac.uk/spm/ Liao et al., 2010) 
 current release of SPM is designed statistical operation,  
 for the analysis of fMRI, PET, SPECT, haemodynamic response. 
 EEG and MEG. 
AFNI  AFNI is a technique for mapping Analysing, processing and www.afni.nimh.nih.gov/afn/ Cole  et al. (2014; 
 human brain activity. displaying functional MRI data  Zhang et al., 2003) 
FSL  FSL is a comprehensive library of Diffusion application, www.fsl.fmrib.ox.ac.uk/fsl/ Iturria-Medina et al. 
 analysis tools for FMRI, MRI and functional application,  (2008;Alexander- 
 DTI brain imaging data. structural application  Bloch et al., 2012) 
GIFT  GIFT can implement multiple Independent module www.mialab.mrn.org/software Vakhtin et al. (2013; 
 algorithms for independent component analysis /gift/index.htm Stevens et al., 2009) 
 analysis and blind source separation    
 of group fMRI data.  
REST  REST is a convenient toolkit to Data Processing of Resting- www.restfmri.net/forum/index.php van Den Heuvel and 
 calculate Functional Connectivity, State fMRI  Pol (2010)  
 Regional Homogeneity, Amplitude of 
 Low-Frequency Fluctuation Fractional 
 ALFF, Granger causality, degree  
 centrality, voxel mirrored homo-topic 
 connectivity and perform statistical 
 analysis. 
CONN  CONN is a Matlab-based cross Connectivity analysis, www.conn-toolbox.org van Den Heuvel and 
 -platform software for the computation, modelling, multivariate,  Pol (2010) 
 display and analysis of functional principal component analysis, 
 connectivity in fMRI (fcMRI). regression, correlation,  
  visualization 
Brain Brain Voyager is a tool for the Visualization www.brainvoyager.com  Watson et al. (2009) 
voyager advanced analysis and visualization 
 of structural and functional MRI data 
 and for combined EEG/MEG 
 distributed source imaging. 
FLASCO  FIASCO is a collection of software Statistical analysis www.stat.cmu.edu/~fiasco/ Lazar et al. (2001) 
 designed to analyse fMRI data 
 using a series of processing steps.  
Brain Net BrainNet Viewer is a brain network Visualization  www.nitrc.org/projectsbnv/  Xia et al. (2013) 
Viewer visualization tool, which can help 
 researchers to visualize structural  
 and functional connectivity patterns 
 from different levels in a quick, easy 
 and flexible way.  
NODDI  NODDI is a new diffusion MRI Atlas application, www.nitrc.org/projects/noddi Inglese et al. (2005; 
 technique for imaging brain tissue diffusion application _toolbox Lemkaddem et al.,  
 microstructure.    2014)  
MRIcron  MRIcron is a cross- platform NIfTI Volume rendering, centre www.nitrc.org/projects/mricron Molenberghs  et al. 
 format image viewer. It can load of mass regression, clipping,  (2012; Figee et al.,  
 multiple layers of images, generate two dimensional display  2013) 
 volume renderings and draw volumes  
 of interest.  
REX  REX is a stand-alone toolkit for the Time domain analysis, www.nitrc.org/projects/rex/  Hosseini  et al.  
 rapid and flexible exploration of ROI visualization, workflow  (2012) 
 response waveforms and other signals 
 from across large fMRI datasets. 
 
Quality Evaluation of Complex Brain 

Networks  

In this study, we have examined structural and 
functional connectivity in the human brain using 
features from graph theory. Because Structural and 
Functional Connectivity (SC and FC) have received 
great attraction over the last decade, as they offer 
unique insight into the coordination of brain 

functioning. To demonstrate the evaluations of complex 
brain network, we presents structural and functional 
graph theory analyses in two separate studies.  

Objectives Evaluations 

Mijalkov et al. (2017) measured the differences in 
global and nodal network topology in healthy controls, 
patients with amnestic MCI and patients with 
Alzheimer’s disease. They carried out a graph theory 
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analysis on the resting-state fMRI data of healthy 
controls and PD patients with MCI from the 
Parkinson’s Progression Markers Initiative. They 
evaluated resting-state functional images that were 
acquired using an echo planar imaging sequence 
(repetition time = 2400 ms; echo time = 25 ms; flip 
angle = 80°; matrix = 68×68; voxel size = 
3.25×3.25×3.25 mm3). Bassett and Sporns (2007), 
illustrated that graph theory has proven to be an 
extremely productive framework in which to 
understand the structure and function of large-scale 
brain network and their implications for human 
cognition (Bassett and Sporns, 2007); alternative 

approaches that build on this framework-such as 
network control theory-necessarily require sceptical 
evaluation to clearly delineate value added. Now we 
just focus different equations on this table to measure 
connectivity of complex brain networks (Table 6). 

Graph theory have provided a toolbox of 
diagnostics to describe the organization of graphs or 
networks. Gu et al. (2015) evaluated that using graph 
theory, they can identify regions of high (low) degree, 
while using network control theory. Moreover, they can 
understand the functional role of these regions as being 
critical for guiding the movement of the brain into many 
easy-to-reach (difficult-to-reach) states. 

 
Table 6: Complex brain network measure: Equations and definitions 

Measures  Ref.  Equations  Definitions  

Degree of node  Liu et al. (2008)  ( ),
i

i G

k a i j
∈

= ∑  G denotes the complete set of network and 

   a(i, j) represents the element of  adjacency 
   matrix. when a(i, j) = 1, there is a link 
   between nodes i and j. otherwise, a(i, j) = 0. 

Degree distribution  Caldarelli (2007)  ( ) k
n

P k
N

=  nk represents the whole number of  

   nodes with degree k and N denotes the 
   whole number of nodes.  

Transivity  Honey et al. (2009)  ( )
( ) ( ) ( )

( )
2 , , ,

1
i G

i ii G

a i j a i h a j h
T G

k k

∈

∈

=
−

∑
∑

 This metrics is represent only to a full 

    network. 

Cluster coefficient  Honey et al. (2009)  

( )

( )

( ) ( ) ( )

( )( ), ,

1

2 , , ,1

1

i V

i j h G i i

C G

C i
N

a i j a i h a j h

N K k

∈

∈

=

=
−

∑

∑

 C(i) denotes the cluster quantity of  nodes 

   i. C(i) = 0 when ki < 3  

Local efficiency  Iannetti and Wise (2007)  
( )

( ) ( ),

1 1

,1 i
i i

lobal

j k G
G G

E i

d j kN N ∈

=
−

∑
 Gi represent the set of neighbors of i.  

Global efficiency  Iannetti and Wise (2007) 
( )

( ) ( )
1 1

1 ,

global

i j G

E G

N N d i j≠ ∈

=
−

∑
 Eglobal evaluates in the full network.  

   Where N denotes the total number  of nodes. 

Cost or probability Iannetti and Wise ( )
( )

1

1cost i

i G

P G k
N N ∈

=
−

∑  This metrics is evaluated in the full 

of connection (2007)  network. Where G represents the  
   network.  

Shortest path  Latora and Marchiori  
( )

( )
, ,

1
,

1 i j G i j

L d i j
N N ∈ ≠

=
−

∑  d(i, j) represent the shortest path length  

length (2001)  between i and j.  

Small-worldness  Fallani et al. (2014;  rand

rand

C C

L L
σ =  Crand and Lrand are cluster coefficient  

 Humphries and  and shortest path length evaluated to  
 Gurney, 2008)  randomly network from original network. 
   The network is small-world if  σ≫1 
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The development of graph-theory based complex 
network analysis provides an important mathematical 
framework to characterize the global and regional 
topology in brain connectivity networks (Ribeiro de 
Paula et al., 2017). Using graph-theory based complex 
network analysis and network based statistic 
approach, Xu et al. (2016) examined the topology and 
connectivity in resting-state functional brain networks 
of adults with BPD versus healthy controls. As 
hypothesized, patients with BPD provided evidence 
for abnormalities both in topological structure and in 
connectivity in the intrinsic functional brain networks. 

These abnormalities appear to be related to specific 
symptoms of BPD and can be used as features to 
distinguish patients with BPD from healthy controls 
using a machine learning classifier. These findings add 
to prior neuroimaging studies that have reported 
abnormal connections between specific brain regions in 
BPD and may provide new, clinically-relevant 
knowledge about the neurophysiology of the disease. 
Their graph analysis identified significant changes of 
small-world properties and network efficiency in patients 
with BPD versus healthy controls at the 0.03–0.06 Hz 
frequency band, including increased size of Largest 

Connected network Component (LCC), 
clusteringcoefficient, small-worldness and local 
efficiency (Table 7). 

Recently, Gong et al. (2008;  Hagmann et al., 2008), 
maps of about 80 cortical and subcortical gray matter 
regions were constructed from DWI data and analysed 
with fMRI data using graph theory. They also found the 
same result. But Eguiluz et al. (2005) found 
controversial result although no statistical test was used. 
To our knowledge, only one study investigated the graph 
properties in both structural and functional connectivity. 
More recently, Messé et al. (2012) have investigated 
with the total of 132 nodes, distributed over the whole 
cortical (n = 92) and subcortical (n = 24) gray matter and 
the cerebellum (n = 16) were defined by all functional 
networks identified (Fig. 8). 

In order to investigate similarities between structural 
and functional aspects of the full-brain network across 
subjects, the structural and functional connectivity 
indices were uniformly thresholded to obtain binary 
graphs of varying density or cost. They performed an 
analysis of variance and found the approximately same 
results (Fig. 9) of the node degrees for Structural and 
functional connectivity of brain network. 

 

Table 7: Number of nodes and edges and the corrected p-value of the connected subnetwork in 0.03- 0.06 Hz that show lower 
connectivity in BPD patients, under different primary threshold in NBS test 

Primary threshold  No. of nodes  No. of links  Corrected p-value  
t = 1.75, p ≈ 0.05 No significant result 
t = 2.05, p ≈ 0.025  68  205 0.048 
= 2.5, p ≈ 0.01  49  87 0.0408  
t = 2.75, p ≈ 0.005  40   57 0.0298  
t = 3.05, p ≈ 0.0025  26  26 0.0304 
t = 3.4, p ≈ 0.001  No significant result 

 

 
 
Fig. 8: Regions of interest location in axial (left) and sagittal (right) views superimposed on a brain template surface. Image 

courtesy of Messé et al. (2012) 
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Fig. 9: Mean and standard deviation across subjects of the characteristic path length L (top left), scaled characteristic path length Ls 
(bottom left), clustering coefficient C (top right) and scaled clustering coefficient Cs (bottom right) as a function of the cost 
value for structural connectivity (red), functional connectivity at rest (dark blue), functional connectivity during the motor 
task (green) and functional connectivity for the visual stimulation (light blue) and the corresponding values for typical 
networks: Random (light grey) and lattice (dark grey), with the same size and density as those of the networks analysed. 
Image courtesy of Messé et al. (2012) 

 

Subjectives Evaluations  

Both structure and function can be indirectly 
imaged in vivo using magnetic resonance imaging 
(MRI). Structural connectivity using Diffusion-
Weighted Imaging (DWI) (Mori and Zhang, 2006) and 
functional connectivity using functional Magnetic 
Resonance Imaging  (fMRI)  (Logothetis et al., 2001). 
DWI provides information about white matter 
organization, allowing the reconstruction of fibre 
bundles (Hagmann et al., 2007; Iturria-Medina et al., 
2007) and fMRI uses Blood-Oxygenation Level-
Dependent (BOLD) contrast to indirectly map neuronal 
activation (Raichle and Mintun, 2006). Various 
approaches have been used to investigate the nodes and 
edges, relaying either on structural or functional 
information. Strogatz (2001; Watts and Strogatz, 1998; 
Reijneveld et al., 2007) were applied graph theory to 
characterize quantitatively the structural and functional 

features of the complex brain network. Previous studies, 
in references, have shown that functional imaging 
(Achard et al., 2006; Salvador  et al., 2005) and 
structural imaging (Gong et al., 2008; Hagmann et al., 
2008) with as common results the small word properties 
of the analysed complex brain networks.  

Future Research Directions  

In the field of neuroscience, Graph-theory analysis of 
brain network is one of the complex task. Although 
many researchers already engaged with this research 
field still there are some challenging issues need to be 
identified. Complex brain network analysis b used on the 
graph could be both useful and feasible for more 
profound studies but still required for more systematic 
assessment. Besides, in complex brain networks, there 
are deficiencies of a gold standard for the meaning and 
descriptions of network nodes and edges or links. 
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Ensuring the suitable use of network analysis, 
researchers still have to need to take attention when 
choosing the right network demonstration of the brain 
connectivity. The most prominent area of expansion is, 
structural brain connectivity had modelled for structural 
associations among different neuronal elements derived 
from resting fMRI and functional brain connectivity had 
modelled for the functional associations among brain 
regions measured with diffusion MRI but nobody tried for 
the whole-brain network. So, the combination of both 
structural and functional connectivity can be modelled as 
networks with different neuroimaging modalities. Because 
the combination of different imaging modalities to 
determine the relationship of the structural and functional 
connectivity of the brain. We hope this multimodal imaging 
techniques of the future will provide integrative evidence to 
map the patterns of whole brain connectivity.  

Conclusion  

Graph based analysis of Complex brain network has 
emerged as an important technique to visualise 
functional and structural brain connectivity. We 
characterized two prominent procedures that measure 
local and global properties of complex brain networks. 
The associated brain connectivity prominent technique 
allows researchers to begin exploring network features of 
complex functional and structural imaging datasets. We 
also show some challenging issues that will be playing 
an increasingly important role in the evolvement of 
brain’s network in near future. 
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Abbreviations  

MRI  Magnetic Resonance Imaging 
PET  Positron Emission Tomography  
FMRI  Functional Magnetic Resonance  
 Imaging (fMRI) 
DSI  Diffusion Spectrum Imaging  
DMRI  Diffusion Magnetic Resonance 
 Imaging  
WM  White Matter  
DTI  Diffusion Tensor Imaging  
FA  Functional Anisotropy  
DKI  Diffusion Kurtosis Imaging 
MD  Mean diffusivity  
FODF  Fiber Diffusion Orientation 
 Distribution Function 
TBI  Traumatic Brain Injury  
CSD  Constrained Spherical Deconvolution 
BOLD  Blood oxygenation level dependent  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EEG  Electroencephalography 
FC  Functional Connectivity  
DMN  Default mode network 
GCS  Glasgow Coma Scale  
SWI  Susceptibility Weighted Imaging 
DWI  Diffusion Weighted Imaging  
FlAIR  Fluid Attenuated Inversion Recovery 
NMR  Nuclear Magnetic Resonance  
GMD  Gray Matter Density 
ADC  Apparent Diffusion Coefficient  
NAWM  Normal-Appearing White Matter 
WMD  White Matter Density  
NAGM  Normal-Appearing Gray Matter 
NABT  Normal-Appearing Brain Tissue  
SDP  Slow Diffusion Phase  
FDP  Fast Diffusion Phase  
SC  Structural Connectivity  
MEG  Magnetoencephalography 


