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Abstract  

Background  

Serotonin (5-hydroxytryptamine, 5-HT) has been linked with several inflammation-

associated intestinal diseases including ulcerative colitis (UC). The largest pool of 5-HT in 

the body is in enterochromaffin (EC) cells located throughout the intestinal tract. EC cells are 

mechanosensitive and detect noxious stimuli, inducing secretion of 5-HT which plays an 

important role in enteric reflexes and immunomodulation. In this study, we evaluated 

intestinal 5-HT levels in the Winnie mouse model of spontaneous chronic colitis which 

closely replicates UC.   

Methods 

Real-time electrochemical recordings of 5-HT oxidation currents were obtained from ex vivo 

preparations of jejunum, ileum, proximal and distal colon from Winnie (5-25 weeks old) and 

age matched C57BL/6 mice. EC cells were examined by immunohistochemistry, and the 

gene expression of tryptophan hydroxylase 1 (5-HT synthesis) and the serotonin reuptake 

transporter (SERT) were determined by quantitative Real-Time Polymerase Chain Reaction 

(RT-qPCR).  

Results  

Compression-evoked, and basal 5-HT concentrations were elevated in the distal and proximal 

colon of Winnie mice. EC cell hyperplasia and downregulation of SERT on the 

transcriptional level were identified as mechanisms underlying increased levels of 5-HT. 

Increase in mucosal 5-HT release was observed at the onset of disease at 7-14 weeks, 

confirmed by disease activity scores. Furthermore, increases in 5-HT levels and progression 

of disease activity correlated linearly with age but not sex.  

Conclusions  
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Our findings in the Winnie mouse model of spontaneous chronic colitis demonstrate for the 

first time that the onset and progression of chronic UC-like intestinal inflammation is 

associated with increased 5-HT levels in the colonic mucosa. 

 
Key words: 5-HT, Serotonin, Winnie mouse model, IBD, Ulcerative colitis 
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Introduction 

 

Inflammatory bowel disease (IBD) is a chronic disorder consisting of two main pathologies: 

Crohn’s disease (CD) and ulcerative colitis (UC). Primarily these diseases are distinguished 

by severe chronic inflammation observed as transmural skip lesions throughout the intestinal 

tract in CD, while in UC the mucosal and submucosal inflammation continuously ascends 

from the rectum to colon. IBD manifestations and sequela include diarrhoea and/or 

constipation, ulceration, strictures, the formation of fistulae and intense abdominal pain  (1). 

Due to the idiopathic nature of IBD there is no cure; thus, relief from its debilitating 

symptoms is paramount. Managing IBD over a long period is difficult due to either the 

toxicity of therapies, or refractory responses in patients (2). The inefficacy of current 

treatments are highlighted by the bowel resection rate in up to 90% of CD patients (3). 

Investigation of endogenous biochemical signals contributing to chronic intestinal 

inflammation may lead to the development of more effective therapies. 

 

Serotonin (5-hydroxytryptamine, 5-HT) has long been linked with intestinal diseases 

including CD, UC, irritable bowel syndrome (IBS), coeliac disease and diverticulitis (4). The 

largest pool of 5-HT in the body is secreted by a specialised subset of enteroendocrine cells 

called enterochromaffin (EC) cells located throughout the intestinal tract (5). EC cells 

produce 5-HT from exogenous tryptophan via tryptophan hydroxylase 1 (Tph1) and package 

it into vesicles for organised release. Subsequently, 5-HT acts as an agonist for a variety of 5-

HT receptors; these actions conclude by the uptake of 5-HT into epithelial cells by the 

serotonin reuptake transporter (SERT) where it is metabolised via monoamine oxidase A (6). 

5-HT release from EC cells is mechanosensitive (7), albeit EC cells possess a variety of 

receptors that detect nutrients and noxious stimuli including pro-inflammatory mediators, 
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bacterial metabolites and chemical irritants that induce 5-HT secretion (6, 8-10). Once 

released, 5-HT acts in a paracrine manner stimulating both intrinsic afferent nerve terminals 

that regulate peristaltic reflexes (11), and extrinsic afferent nerve terminals transmitting 

sensory information via vagal and spinal pathways (12). Thus increased 5-HT release has 

been associated with altered motility and visceral discomfort in intestinal inflammation. 

Furthermore, 5-HT alters the functions of innate leukocytes including monocytes, 

macrophages, dendritic cells, T and B-lymphocytes (13). 5-HT may also have chemotactic 

properties on leukocytes as observed in eosinophils and dendritic cells (14, 15).   

 

Increased 5-HT availability has been reported in animal models of chemically-induced acute 

intestinal inflammation (16-20). The association between 5-HT and inflammation has been 

further demonstrated by reduced severity of colitis in Tph1 null mice (21). The significance 

of 5-HT in the inflamed gut has not been determined in a chronic model replicating the 

disease course of human IBD. Winnie mice with spontaneous chronic colitis are an ideal 

model of IBD due to its close pathophysiological resemblance to human UC (22-26). These 

mice have a single point missense mutation in the Muc2 gene causing aberrant assembly of 

mucin, resulting in epithelial barrier dysfunction, and Th17 (CD4+ and interleukin 17+ T-

cell)-type chronic inflammation leading to UC-like symptoms including altered 

gastrointestinal transit, motility and chronic diarrhoea. The objectives of this study were to 

define whether the levels of mucosa-derived 5-HT are changed in Winnie mice, elucidate 

mechanisms underlying any changes, and determine whether 5-HT levels are associated with 

the onset and progression of chronic colitis.     

 
Methods 

Animals 



7 
 

Male and female Winnie mice aged 14-16 weeks (total n=13) were obtained from the 

University of Tasmania (Launceston, Tasmania, Australia) and Victoria University 

(Melbourne, Victoria, Australia) for 5-HT measurements, immunohistochemistry and 

quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) studies. Winnie mice were 

compared to aged matched male and female C57BL/6 mice (total n=10) obtained from the 

Animal Resource Centre (Perth, Western Australia, Australia). For disease onset and 

progression studies, male and female Winnie mice aged 5-6, 7-14, 15-19 and 20-25 weeks 

(total n=24) were obtained from the University of Tasmania (Launceston, Tasmania, 

Australia) and Victoria University (Melbourne, Victoria, Australia). All mice had access to 

food and water ad libitum, and were housed in a temperature-controlled environment with a 

12-h day/night cycle. All mice were acclimatised for at least one week at the Western Centre 

for Health, Research and Education (Melbourne, Victoria, Australia) to reduce the 

environmental impact on intestinal health. Mice were killed by cervical dislocation and 

tissues were collected for subsequent ex vivo procedures. In humans, differential effects of 5-

HT on the distal and proximal colon  have been reported (27). Furthermore, differences in 

colitis are observed between the distal colon and proximal colon in Winnie mice (25, 26); 

thus these tissues were separated for all subsequent experiments and analysis. All animal 

experiments in this study complied with the guidelines of the Australian Code of Practice for 

the Care and Use of Animals for Scientific Purposes and were approved by the Victoria 

University Animal Experimentation Ethics Committee. 

 

5-HT measurements  

Intestinal 5-HT was measured using an electrochemical technique previously validated in 

multiple species including mice (16, 28-30). Segments of the jejunum, ileum, proximal and 

distal colon were visualised under a dissecting microscope, cut along the mesenteric border 
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and loosely pinned mucosal side up in a silicon-lined recording chamber. The chamber was 

superfused with carbogen (95% O2 and 5% CO2) bubbled physiological Krebs solution 

(composition in mmol L−1: NaCl, 117; NaH2PO4, 1.2; MgSO4, 1.2; CaCl2, 2.5; KCl, 4.7; 

NaHCO3, 25; and glucose, 11) at 35°C at a flow rate of ~5mL/min. Tissues were equilibrated 

for 60 min before amperometric recordings of 5-HT oxidation commenced. Microelectrodes 

were prepared by insulating a 7μm carbon fibre with a borosilicate glass capillary (outer 

diameter, 1.5-mm; inner diameter, 0.86-mm; Harvard Apparatus, Holliston, MA, USA) 

leaving ∼200μm of carbon fibre exposed at the recording tip. Within the capillary, a pellet of 

woods metal was used to join the remaining carbon fibre and copper wire to provide a 

connection point for the head-stage. Carbon fibre electrodes were voltage clamped at 

+400 mV; 5-HT oxidation was detected as a positive current deflection. Recordings of the 

current generated by the oxidation of 5-HT were made using a VA-10 amplifier (NPI 

Electronics, Tamm, Germany), digitized at 1–5 kHz (Digidata 1440; Axon Instruments, 

Union City, CA, USA) to a personal computer using PClamp 9.0 (MDS Analytical 

Technologies, Mississauga, ON, Canada, 0.5 kHz filtering with a 50-Hz notch filter). All 

manufactured electrodes were individually calibrated with a 10μL spritz of 10μM serotonin 

hydrochloride (Sigma-Aldrich, Sydney, Australia) in Krebs solution prior to performing 

recordings. A precision micromanipulator was used to compress the mucosa with the carbon 

fibre microelectrode to induce mechanically stimulated 5-HT release (peak) and the decay of 

5-HT back to baseline levels (steady state).  

  

Immunohistochemistry  

Colonic segments were viewed under a dissection microscope, cut along the mesenteric 

border and pinned mucosal side up in a silicon lined Petri dish (31). Tissues were fixed in 4% 

paraformaldehyde and 3% sucrose in 0.1 M phosphate buffered saline (PBS) for 4h at 4°C. 
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Tissues were permeabilised in dimethyl sulfoxide (DMSO) (3x10 min) and washed with 0.1 

M PBS (3x10 min) before embedding in optimal cutting temperature (OCT) compound 

(Tissue Tek-Sakura, Tokyo, Japan). Tissues were cut into 12μm sections using a cryostat and 

were mounted onto glass slides. OCT sections were allowed to thaw before incubation with 

10% normal donkey serum (NDS) and 0.5% Triton X-100 diluted in 0.1 M PBS at room 

temperature to prevent nonspecific binding with subsequent immunolabeling. Sections were 

washed as described above, and incubated with rabbit anti-5-HT antiserum (1:5000; 

Immunostar, Hudson, WI, USA) and 2% NDS overnight at 4°C. Sections were washed as 

previous, and incubated with donkey anti-rabbit IgG AlexaFluor 647 (Jackson 

Immunoresearch, West Grove, PA, USA) and 2% NDS for 1 h at room temperature before 

being counterstained with the nuclei marker, 4',6-diamidino-2-phenylindole (DAPI) for 2 

min. Sections were washed prior to being mounted and coverslipped onto glass slides for 

imaging using DAKO mounting medium (Agilent Technologies, Melbourne, Australia). 

  

 

Imaging and analysis  

Immunoreactivity for 5-HT and DAPI staining was visualised using an Eclipse Ti confocal 

laser scanning system (Nikon, Tokyo, Japan). Z-series images were acquired using the 40X 

objective at a nominal thickness of 1μm (512x512 pixels). 5-HT immunoreactivity was 

pseudo-coloured green for greater visual distinction against DAPI. Only strongly labelled 5-

HT positive cells located within the epithelial layer were considered EC cells. The number of 

EC cells and the number of crypts were quantified in six nonadjacent fields totalling ~4mm2 

per individual sample. From this, the average number of EC cells per crypt was calculated as 

previously described (16). The height and width of individual crypts were recorded using 

Image J software (National Institute of Health, Bethesda, MD, USA). For crypt height, 5 



10 
 

measurements were recorded per section in 6 non-adjacent sections per sample (total 30 

measurements/sample). For crypt width, 10 measurements were recorded per section in 6 

non-adjacent sections per sample (total 60 measurements/sample).      

 

Quantitative Real-Time PCR 

Total RNA was extracted from fresh frozen distal colons using TRIzol™ (Thermo Fisher 

Scientific: Invitrogen, Melbourne, Australia) and purified using an RNeasy® Mini kit 

(Qiagen, Melbourne, Australia). RNA was treated with DNase (on-column) for 15 min to 

remove residual genomic DNA. RNA integrity was assessed with an Agilent 2100 

Bioanalyzer using Eukaryotic RNA 6000 Nano chips (Agilent Technologies). Only samples 

with RNA Integrity Numbers (RIN) of greater than 7.9 were included in the study. Total 

DNase-treated RNA (750ng) from C57BL/6: n=4 animals/group, Winnie: n=6 animals/group) 

was denatured for 5 min at 65°C and reverse transcribed for 1 h at 50°C using Superscript III 

Reverse Transcriptase (Thermo Fisher Scientific: Invitrogen). The cDNA synthesis reaction 

was performed in a 20µL reaction volume containing 50mM Tris-HCl pH 8.3, 75mM KCl, 

3mM MgCl2, 0.5mM dNTP, 5mM DTT, 40U RNaseOUT, 0.5µg oligo(dT)12-18 and 200U 

Superscript III Reverse Transcriptase. The resulting cDNA was diluted 1/25 with nuclease-

free water and used for quantitative PCR. The mRNA levels of SERT (Slc6a4), Tph1 and 

reference genes villin 1 (vil1) and Gapdh, were detected using PrimePCR™ Assays (Bio-

Rad, Sydney, Australia) which comprise pre-designed and validated primer pairs specific for 

each gene.  Descriptions of these assays are provided according to the guidelines proposed by 

Bustin, et al. (32)  (Table 1). Amplification conditions were 95°C for a 2 min cycle followed 

by 40 cycles at 95°C for 15 sec and 60°C for 1 min. RT-qPCR was performed in a Bio-Rad 

CFX96 real-time thermal cycler in a reaction volume of 20µL consisting of 10µL 

2×SsoAdvanced™ SYBR® Green supermix (Bio-Rad), 4µL diluted cDNA template, 1µL 
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gene-specific primer pair (PrimePCR™ Assay, Bio-Rad) and 5µL nuclease-free water. The 

data was processed using the Bio-Rad CFX Manager™ software (version 3.1), using a 

constant threshold level to determine crossing point (Ct) values. Four technical replicates 

were included per sample. 

  

Disease activity index  

Colitis is observed in Winnie mice by changes to colon weight and body weight, diarrhoea, 

rectal prolapses and rectal bleeding (25, 26). Colitis was confirmed by a disease activity 

index (DAI) which included symptoms of chronic diarrhoea (faecal water content: 60-

64%=1, 65-69%=2, 70-74%=3, 75-79%=4, ≥80%=5), rectal manifestations (bleeding=1, 

prolapse=2), weight loss (from highest recorded weight: 1-4%=1, 5-9%=2, ≥10%=3), and 

ratios of colon weight:length from the caecum to the anus (0.0110-0.0140=1, 0.0141-

0.0160=2, 0.0161-0.0180=3, 0.0181-0.0200=4, ≥0.0200=5). 

 

Statistical analysis  

Data analysis was performed using GraphPad Prism v7 (GraphPad Software Inc., San Diego, 

CA, USA). For direct comparisons, data were analysed using Student’s t-test (two-tailed). X, 

Y correlations were determined using a linear regression analysis with P-values for 

significant slope relationships recorded. For multiple groups, a one-way ANOVA was 

performed with post hoc test including the Holm-Sidak method for multiple comparisons and 

analysis for linear trends. For all analyses P≤0.05 was considered significant. All data were 

presented as mean ± standard error of the mean (SEM). For RT-qPCR data, relative gene 

expression values were calculated relative to one of two reference genes (villin 1 or Gapdh) 

as -∆Ct values, where ∆Ct  = Ct target – Ct reference. Fold expression was calculated by the 2-
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ΔΔCt method (33). Statistical analysis was performed using Student’s t-test (two-tailed) 

between -∆Ct values (34). P≤0.05 was considered significant. 

 
 
Results 
 
Winnie mice with chronic colitis exhibit increased release of 5-HT from the mucosa of the 

distal and proximal colon 

All Winnie mice had severe colitis confirmed by symptoms of chronic diarrhoea, rectal 

bleeding, lack of weight gain and increased colon weight:length ratios. Electrochemistry was 

used to measure extracellular 5-HT oxidation currents spatially and temporally in the colonic 

mucosa of C57BL/6 and Winnie mice (Figure 1). The carbon fibre recording electrode was 

used to quickly compress EC cells in the mucosal crypts which momentarily stimulated 5-HT 

release (peak) before returning to basal levels (steady state) in the distal (Figure 1A) and 

proximal (Figure 1B) colon. Quantification of 5-HT in the distal colon revealed a significant 

elevation of peak and steady state levels in Winnie (n=7) mice (peak: 20.8±1.9µM, steady 

state: 10.2±1.0µM) compared to C57BL/6 (n=5) controls (peak: 9.1±1.6µM, steady state: 

4.6±0.7µM, P<0.01 for both) (Figure 1Aʹ). Similar results were observed in the proximal 

colon with peak and steady state 5-HT concentrations approximately double in Winnie (n=7) 

mice (peak: 19.8±2.9µM, steady state: 12.5±2.3µM) compared to C57BL/6 (n=5) controls 

(peak: 10.2±2.3, steady state: 5.3±1.2µM, P<0.05 for both) (Figure 1Bʹ). No differences were 

observed between the distal and proximal colon for peak and steady state concentrations in 

C57BL/6 or Winnie mice. No differences were observed in 5-HT levels in the ileum and 

jejunum between Winnie and C57BL/6 mice (data not shown).   

 

Enterochromaffin cell hyperplasia correlates with the hypersecretion of 5-HT in the 

chronically inflamed distal and proximal colon 
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To determine the cause of increased 5-HT levels in Winnie mice, EC cells were quantified by 

immunohistochemical labelling of vesicular 5-HT stored in the distal and proximal colon 

(Figure 2A-Eʹʹʹ). EC cell numbers in the distal colon were almost two-fold higher in Winnie 

mice (1.9±0.1 EC cells/crypt) compared to C57BL/6 mice (1.1±0.1 EC cells/crypt, P<0.001) 

(Figure 2E; n=5 animals/group). Likewise, EC cell numbers were elevated in the crypts of the 

proximal colon in Winnie mice (1.9±0.3 EC cells/crypt) compared to C57BL/6 mice (1.0±0.1 

EC cells/crypt, P<0.05) (Figure 2F; n=5 animals/group). A linear regression analysis was 

performed to determine if a relationship between 5-HT levels in the distal and proximal colon 

correlated with EC cell numbers per crypt in C57BL/6 and Winnie mice (n=5 animals/group). 

In the distal colon a significant regression equation was found for the peak (F(1,8) = 71.01, 

P<0.0001) and steady state (F(1,8) = 63.26, P<0.0001) of 5-HT measurements with an R2 of 

0.8987 and 0.8877, respectively (Supplementary Figure 1A-B). Predicted 5-HT 

concentrations (µM) in the distal colon were equal to -7.60+(15.45×no. of EC cells) for peak 

responses and -3.32+(7.44×no. of EC cells) for steady state levels. Similarly in the proximal 

colon, a linear regression analysis revealed a significant equation for the peak (F(1,8) = 

34.82, P<0.001) and steady state (F(1,8) = 35.45, P<0.001) of 5-HT measurements with an 

R2 of 0.8132 and 0.8159, respectively (Supplementary Figure 1C-D; n=5 animals/group). 

Linear regression equations predicted 5-HT concentrations (µM) to be equal to 

0.2+(10.03×no. of EC cells) for peak responses and -0.39+(6.32×no. of EC cells) for steady 

state levels in the proximal colon.    

 

Crypt morphology shows changes consistent with inflammation in distal and proximal 

colon of Winnie mice 

 Alterations to colonic morphology, including crypt height and width, are sensitive metrics of 

the severity of colonic inflammation in mouse models of inflammation (35). Morphology of 
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the colonic crypts was analysed in the distal (Figure 3A-B) and proximal (Figure 3C-D) colon 

of C57BL/6 and Winnie mice. In the distal colon, crypts were more elongated in Winnie mice 

(564.2±64.5µm) than C57BL/6 (196.1±13.5µm, P<0.0001) (Figure 3E; n=5 animals/group). 

In the proximal colon the crypts of Winnie mice (242.6±36.5µm) were shorter than in the 

distal colon, however, were still significantly longer than those in the proximal colon from 

C57BL/6 mice (147.9±17.2µm, P<0.05) (Figure 3G). Similarly, measurements of crypt 

widths revealed significant difference (P<0.05) in the Winnie distal colon (28.70±1.86µm) 

compared to C57BL/6 mice (21.46±0.73µm) (Figure 3F; n=5 animals/group) with 

comparable values obtained in the proximal colon of Winnie mice (28.04±1.30µm) and 

C57BL/6 (20.97±1.05µm, P<0.01) (Figure 3H; n=5 animals/group). 

 

Epithelial cell hyperplasia is not specific to enterochromaffin cells in the colon of Winnie 

mice 

Measuring the lengths of the crypts provides a robust indication of epithelial cell hyperplasia 

originating from the stem cell pool (36). EC cells originate from the same stem cell niche as 

all epithelial cells at the base of the crypts (37). A linear regression analysis was performed to 

determine whether the increase in EC cell numbers was due to epithelial hyperplasia as 

determined by crypt length in the distal and proximal colon. A significant regression equation 

was found in the distal colon (F(1,8) = 33.46, P<0.001) and proximal colon (F(1,8) = 45.52, 

P<0.0001), with an R2 of 0.8070 and R2 of 0.8505, respectively (Supplementary Figure 2A-

B; n=5 animals/group). This suggests that the observed increase in EC cell counts per crypt 

may have been related to the general hyperplasia of epithelial cells.  

 

5-HT levels per quantity of EC cells are disproportionately low in the colon of Winnie mice  
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Considering our observation of EC cell hyperplasia, we predicted that if changes to EC cell 

numbers were solely responsible for the increase in 5-HT concentrations then individual EC 

cells from Winnie and C57BL/6 mice would release equal quantities of 5-HT. This was 

assessed using ratios of electrochemical 5-HT measurements per number of EC cells/crypt 

measured by immunohistochemistry in  colon samples from the same mouse (Figure 4). 

Ratios of 5-HT:EC cells were significantly higher in the distal colon of Winnie mice for both 

peak and steady state responses (peak: 11.6±0.7, steady state: 5.9±0.4) compared to C57BL/6 

(peak: 8.1±0.9, P<0.05; steady state: 4.0±0.3, P<0.01) suggesting there may be alterations in 

5-HT synthesis and/or reuptake in the Winnie distal colon (Figure 4A-B; n=5 animals/group). 

No differences were found in the ratios of 5-HT:EC cells in the proximal colon for peak 

(Figure 4C) and steady state (Figure 4D) measurements between Winnie (peak: 10.1±0.5, 

steady state: 6.5±0.5) and C57BL/6 (peak: 10.2±2.1, steady state: 5.3±1.0) mice (n=5 

animals/group).  

 

Decreased 5-HT reuptake contributes to increased 5-HT levels in the colon of Winnie mice 

To determine whether the altered ratio of 5-HT availability per EC cell in the distal colon 

between C57BL/6 and Winnie mice was due to inhibition of 5-HT uptake or increased 5-HT 

synthesis, mRNA expression of SERT (5-HT uptake) and Tph1 (5-HT synthesis) was 

investigated using RT-qPCR (Figure 5). In Winnie mice, SERT was downregulated over two-

fold compared to C57BL/6 relative to both Gapdh (2-ΔΔCt = 0.36; P=0.04) and villin 1 (2-ΔΔCt 

= 0.36; P=0.01) (Figure 5A-B,E). There was no significant difference in expression of Tph1 

gene expression between C57BL/6 (n=4) and Winnie (n=6) mice relative to either Gapdh or 

villin 1 (Figure 5C-D,E).  
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Changes to 5-HT levels in Winnie mice are affected by age, not gender, and parallel the 

changes in severity of colitis 

The progression of colitis was observed in Winnie mice aged 5 to 25 weeks by a disease 

activity index (DAI) which included symptoms of chronic diarrhoea, rectal bleeding, lack of 

weight gain and increased colon weight:length ratios (Figure 6A). Onset of disease was 

observed at 7-14 weeks (DAI 5.4±0.5) when compared to mice aged 5-6 weeks (DAI 

0.2±0.2, P<0.0001). By 15-19 weeks, Winnie mice exhibit significantly increased disease 

activity (DAI 8.4±0.5) compared to mice aged 5-6 weeks (P<0.0001) and 7-14 weeks 

(P<0.01). Similar observations were made in mice aged 20-25 weeks with the disease activity 

increased (DAI 10.4±0.8) compared to those aged 5-6 and 7-14 weeks (P<0.0001 for both) as 

well as to mice aged 15-19 weeks (P<0.05) (Figure 6A; n=5 animals/group). Post hoc 

analysis for linear trends revealed a significant relationship between disease activity scores 

and these age groups (F(1,16) = 185.1, P<0.0001) with an R2
alerting of 0.9555.  

At the same time points, peak and steady state 5-HT release was determined by 

electrochemical recordings at the mucosal surface of the distal colon in Winnie mice (Figure 

6B). Peak and steady state 5-HT levels were elevated as early as the 7-14 week (n=8) time 

point (peak: 15.1±1.0µM, steady state: 8.8±1.2µM) compared to 5-6 week (n=7) old mice 

(peak: 8.15±0.7µM, steady state: 4.1±0.7µM, P<0.05 for both). These results were consistent 

between 5-6 week old mice and the latter time points of 15-19 weeks (n=9) (peak: 

21.3±2.2µM, steady state: 10.4±1.2µM) and 20-25 weeks (n=10) (peak: 21.1±1.4µM, steady 

state: 11.3±1.0µM) which displayed an elevation in both peak (5-6 vs 15-19 weeks, 

P<0.0001; 5-6 vs 20-25 weeks, P<0.0001) and steady state (5-6 vs 15-19 weeks, P<0.01; 5-6 

vs 20-25 weeks, P<0.001) 5-HT levels. In addition, increased peak 5-HT levels were 

observed in Winnie mice aged 15-19 and 20-25 weeks compared to those aged 7-14 weeks 

(P<0.05 for both); however no difference was observed between the 15-19 and 20-25 week 
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time points. Paralleling our observations with disease activity, post hoc tests suggested 5-HT 

release was linearly correlated with age for peak (F(1, 30) = 33.43, P<0.0001) and steady 

state 5-HT levels (F(1, 30) = 23.29, P<0.0001) with a R2
alerting value of 0.9201 and 0.9308, 

respectively. 

 

Previously it was shown that serum levels of mucosa-derived 5-HT are influenced by gender 

in equines (38); therefore the impact of gender on mucosal 5-HT release in colitis was 

investigated (Figure 6C). 5-HT concentrations obtained from male and female Winnie mice 

aged 15-25 weeks were compared as this age group provided the most prominent 

hypersecretion of 5-HT in our study. No significant differences were observed in male (n=9) 

and female (n=10) Winnie mice for peak (male 23.6±2.2µM, female 21.0±1.4 µM) or steady 

state (male: 11.5±1.3µM, female: 10.9±1.1µM) 5-HT levels. 

 
 
Discussion 
 

In this study we observed increased basal and mechanically stimulated 5-HT availability in 

the distal and proximal colon of Winnie mice with spontaneous chronic colitis. Correlation 

analysis revealed that this paralleled an increase in EC cells in the crypts of Winnie mice. 

Crypt hyperplasia, as observed through an increase in crypt length and width in the distal and 

proximal colon of Winnie mice, strongly correlated with an increase in EC cells. However, 

increased 5-HT availability was not proportional to the number of EC cells alone in the distal 

colon of Winnie mice. Our study revealed that altered 5-HT reuptake due to the 

downregulation of SERT, together with EC cell hyperplasia, are the underlying mechanisms 

of increased 5-HT availability in Winnie mice. Furthermore, this was the first study to 

determine intestinal 5-HT release throughout the onset and progression of chronic colitis. We 
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demonstrated that the hypersecretion of 5-HT parallels the disease severity during its 

progression which was independent of gender.  

 

Winnie mice used in this study offer several advantages as a model of UC. Like patients with 

UC, these mice begin to develop spontaneous, chronic inflammation in the colon at early 

adulthood similar to humans (39, 40). Furthermore, the resemblance in symptoms indicates 

that similar perturbations may ensue on the cellular and molecular level. Indeed the 

inflammatory cytokine profile and leukocyte cell populations reflect changes observed in UC 

patients (25, 26). The similarities between Winnie mice and UC patients have been further 

confirmed by our group by determining alterations in colon morphology and neural 

innervation, myenteric neuronal damage, changes to colonic motility and transit time as well 

as faecal microbial and metabolomic profiles (22-24, 41). Together these studies demonstrate 

that Winnie mice provide a robust model of UC. The beginning of disease at 7 weeks of age 

and chronic ongoing inflammation of the colon in Winnie mice permits long-term studies 

mimicking the onset and progression of UC. Previously, 5-HT levels have been measured in 

several models of chemically-induced colitis in guinea-pigs, rats and mice (16-20). The 

majority of these studies investigated 5-HT concentrations in the acute models of 2,4,6-

trinitrobenzenesulfonic acid (TNBS) or dextran sulphate sodium (DSS)-induced colitis 4 – 7 

days after the induction of inflammation. Due to the short timeframe of these studies, the 

association between long-term chronic inflammation and 5-HT levels was unknown. Using 

Winnie mice, we were well positioned to study mucosal serotonin release throughout the 

disease course up to ~175 days of age. This facilitated novel findings that connected 

increased secretion of mucosa-derived 5-HT with the onset and progression of the disease. 
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In our study we observed greatly elevated 5-HT levels in the distal and proximal colon in 

response to chronic colitis using amperometric methods. Previous studies in murine DSS and 

TNBS-induced colitis have demonstrated increased 5-HT levels in tissue homogenates 

detected by ELISA (19, 20), however no differences in 5-HT secretion where observed in 

TNBS-treated animals (20). Similarly, studies in tissues from IBD patients assessing 5-HT 

levels by ELISA have yielded mixed results (8, 42, 43). Using ELISA, 5-HT levels 

normalised to tissue weight were decreased in biopsies from UC patients and no changes in 

5-HT secretion were observed in biopsy supernatants (42). Nonetheless, 5-HT release is 

greatly increased EC cells isolated from CD patients compared to healthy controls when 

exposed to lipopolysaccharides and interleukin 1β.  Furthermore, a recent comprehensive 

study with 75 UC patients observed increased plasma 5-HT levels which could not be 

explained by an association with SERT polymorphisms (44, 45). Considering that 5-HT in 

the plasma is originally synthesised and released from EC cells, these results may be 

indicative of increased local 5-HT concentrations in the mucosa which contrasts prior 

findings. As previously proposed, quantifying 5-HT by ELISA can be confounded by altered 

mass of the inflamed tissue or mucosal damage leading to crypt loss and ulcerations, all of 

which are prominent in intestinal inflammation (17, 46). Electrochemical methods of 5-HT 

quantification have been utilised by many labs (47, 48) and are less likely to be affected by 

these structural changes because normalisation to weight or reference proteins is not required. 

This advantage is highlighted in a mouse model of DSS-induced colitis, whereby increases in 

5-HT secretion were obvious using amperometric recordings, but not ELISA (16). Another 

advantage of amperometric 5-HT recordings is the precise quantification of 5-HT 

concentrations spatially and temporally. This provides accurate measurements of 

physiological concentrations of 5-HT released by EC cells in resting and stimulated states. 

Nevertheless, amperometric quantification of 5-HT also poses limitations including the 
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availability of equipment, trained personnel and slow data collection in comparison to 

ELISA.    

 

In our study, increases in mucosal 5-HT paralleled the onset of colonic inflammation rather 

than preceding it; therefore, this is not likely to be a direct cause of colitis. Nonetheless, 

hypersecretion of 5-HT may contribute to symptoms of IBD and progression of the disease. 

In a UC flare, the two most prominent features are abdominal pain and diarrhoea, both 

symptoms are associated with perturbations of the serotonergic system which plays a role in 

intestinal nociception and motility as demonstrated in IBS patients (49, 50). In IBD, 

investigations determining mucosa-derived 5-HT levels and clinical implications of these 

changes are scarce. Due to the commonality in some symptoms, data from IBS patients may 

offer insight into the role of 5-HT in manifestations of IBD. In diarrhoea-predominant IBS 

(IBS-d), increased 5-HT levels are observed in the platelets and platelet-deprived plasma with 

these stores originating from EC cells of the mucosa (51). Interestingly, in the same study, 

patients with high 5-HT levels exhibited increased abdominal pain and urgency to defecate. 

In our study, all Winnie mice with high mucosal 5-HT release had loose stool. Previously we 

demonstrated that diarrhoea in Winnie mice was associated with colonic dysmotility and 

changes in intestinal transit that are similar to IBD patients (24). In the current study we 

demonstrated that both secreted 5-HT levels and disease activity progress linearly with age. 

This revealed a trend in the extent of 5-HT hypersecretion with the severity of colitis, 

including faecal water content. Mucosa-derived 5-HT is thought to have an important role in 

regulating motility (52). Thus, data presented in our study and those in IBS-d patients may 

indicate that hypersecretion of 5-HT is at least partially responsible for dysmotility and 

diarrhoea. Taken together this suggests that altered 5-HT signalling may directly influence 

the onset of chronic diarrhoea observed in UC. However, the parallels between 5-HT 
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hypersecretion and colonic hypertrophy observed in our study by ratios of colon 

weight:length and rectal manifestations suggest that 5-HT signalling has a role in the 

pathophysiology of colonic inflammation and dysmotility (53).     

 

Due to the abundance of 5-HT receptors throughout the intestinal tract, high 5-HT levels may 

impact many physiological functions of the inflamed intestine; however, 5-HT may also 

contribute to the inflammation itself. In animal models of colitis, the importance of 5-HT in 

the inflammatory response has been demonstrated by applying exogenous 5-HT by enema 

(46, 54) or its precursor 5-hydroxytryptophan subcutaneously (21). In these studies 5-HT 

exacerbated colitis in rats with TNBS-induced and mice with DSS-induced colitis 

establishing a strong pro-inflammatory role for 5-HT (21, 46, 54). This is further evidenced 

by the abolished effects of chemical inducers of colitis in Tph1 null mice (21) and those 

orally administered with Tph1 inhibitors (55). These studies demonstrate that 5-HT has a 

clear role in chemically-induced colitis and that this 5-HT is produced by Tph1, however 

mechanisms instigating this increase remain disputed. Our results demonstrated that 

downregulation of SERT elevates secreted 5-HT concentrations in chronic colitis as opposed 

to increased synthesis by Tph1. Similar observations are documented after TNBS and DSS-

induced colitis in mice and guinea-pigs (16, 17, 19, 20). Importantly, SERT expression is also 

reduced in colonic tissues from UC patients on the protein and transcriptional levels (42). The 

reduction of SERT is observed in the inflamed mucosa; however its downregulation is also 

noted in the non-inflamed mucosa of UC patients (56). Previously, it was demonstrated that 

media conditioned by activated T lymphocytes decreases 5-HT uptake in epithelial cells in 

vitro (57). T lymphocytes were found to secrete TNF-α and IFN-γ; application of these 

specific cytokines decreased SERT expression and 5-HT uptake with additive effects. Re –

activated T lymphocytes isolated from Winnie mice show a progressive increase in TNF-α 
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and IFN-γ secretion with disease progression and may explain how SERT was downregulated 

in the distal colon of Winnie mice (26). Previously, it was shown that SERT deletion 

exacerbates TNBS-colitis in mice, this strengthens the notion of reducing interstitial 5-HT 

levels to elicit an anti-inflammatory effect (58). Moreover, it must be noted that 

administration of the serotonin reuptake inhibitors, fluoxetine and fluvoxamine, have been 

shown to ameliorate DSS and acetic acid-induced colitis, respectively (59, 60). However, 

these drugs also act on many other transporters and receptors, thus their mechanisms of 

action are unclear.     

 

In our study, local 5-HT measurements strongly correlated with the number of EC cells per 

crypt. Increased numbers of EC cells were reported in the colon of mice (16, 19)  and rats 

(18) with DSS-induced colitis and guinea-pigs with TNBS-induced colitis (17), however, no 

significant difference was observed in TNBS-exposed mice (20). Increases in EC cell 

numbers are observed in UC patients (61, 62). Contrarily, EC cell numbers are decreased in 

severe UC but not non-severe UC, this may indicate the  gross architectural  damage to the 

colonic mucosa influences cell counts (42). Similar elevations in EC cells numbers have been 

observed in CD patients (61), which is reportedly present in active CD ileitis (63) but not in 

non-active intestinal regions  (64). It has been demonstrated that in a murine DSS-induced 

colitis, EC cell hyperplasia is regulated by interleukin 13 (65). Similar to UC, Winnie mice 

are dominated by the Th2 immune response, consequently, interleukin 13 production is 

increased in leukocytes from the mesenteric lymph nodes (25, 26) which may contribute to 

EC cell hyperplasia. In our study, the number of EC cells observed per crypt strongly 

correlated with crypt length, which is viewed as an indirect measurement of intestinal 

epithelial cell hyperplasia due to apical migration of superfluous cells increasing the length of 

the crypts (20). Increases to the length of the crypts are regularly observed in models of 
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chemically-induced colitis (20, 36). In our study, chronic inflammation resulted in increased 

crypt length in the distal and proximal colon of Winnie mice. Increased crypt length has 

previously been reported in the distal colon and caecum of the Winnie mouse; however no 

differences were observed in the proximal colon (25). Discrepancies in these data may be 

explained by the older age of Winnie mice used in the present study given that colitis 

exacerbates with age in Winnie mice (26) and inflammation progresses proximally in UC 

(66).  Similar to our observations, the proportion of EC cells to epithelial cells did not change 

in mice with TNBS-induced colitis despite an increase in crypt length and in number of 

epithelial cells (20). Together these data suggest the increased EC cell numbers were likely a 

result of general epithelial cell hyperplasia rather than augmented differentiation of EC cells 

from the epithelial stem cell pool. 

 

All Winnie mice with colitis, regardless of gender, exhibited higher 5-HT release compared to 

control groups. It has previously been demonstrated that 5-HT synthesis is higher in the brain 

of males compared to females (67). However, differences in 5-HT levels have also been 

observed in the serum of equines which indicated that potential gender differences also exist 

in mucosa-derived 5-HT (38). It has long been predicted that 5-HT mediates the 

physiological and pathophysiological effects of oestrogen (68). However it has only recently 

been demonstrated that EC cell hyperplasia is present in oestrus female mice compared to 

both prooestrus females and males (69). Specifically in IBS-d patients, 5-HT levels are 

increased in both men and women; however, in women this was dependent on the menstrual 

cycle with 5-HT levels normalising in women with low progesterone/oestrogen levels (70). 

The menstrual cycle was not investigated in our study, however, these data may explain why 

5-HT levels in female Winnie mice appeared marginally lower than in males.  
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In conclusion, our findings in the Winnie mouse model of spontaneous chronic colitis 

demonstrate for the first time that chronic UC-like intestinal inflammation is associated with 

hypersecretion of 5-HT from the colonic mucosa. Furthermore, changes to mucosal 5-HT 

levels parallel the onset and severity of intestinal inflammation. We identified two 

mechanisms that are responsible for increased levels of 5-HT, EC cell hyperplasia in both the 

distal and proximal colon as well as downregulation of SERT on the transcriptional level in 

the distal colon. Winnie mice may provide a robust model to study the immunomodulatory 

role of 5-HT in colitis and pre-clinically test pharmaceutical compounds targeting the 

serotonergic system.             
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Table 1: Description of PrimePCR™ assay targets.  

 

Gene Gene 
symbol 

Ensembl 
Gene ID 

Chromosome 
Location * 

Bio-Rad 
Unique Assay 

ID 

Amplicon Context Sequence Amplicon 
length (bp) 

Solute carrier 
family 6 

(neurotransmitter 
transporter, 
serotonin), 
member 4 

SERT 
Slc6a4 
5-HTT 

ENSMU
SG000
000208

38 

11:77010683
-77012930 

qMmuCED 
0045158 

CTGGGGCAAGAAGATGGATTTCCTCCT
GTCTGTCATTGGCTATGCCGTGGACCT
GGGCAACATCTGGCGTTTTCCCTACAT
ATGCTACCAGAATGGTGGAGGGGCCT
TCCT 

81 

Tryptophan 
hydroxylase 1 

Tph1 ENSMU
SG000
000400

46 

7:46662129-
46665237 

qMmuCID 
0040148 

AATTCTGAATTTCTTTGCTTTGATTTCC
GGGACTCGATGTGTAACAGGCTCACA
TGATTCTCCTGGAAGATTTTCAGCACT
TTTATGAGTCCTCCGACTTCATTCTCC
AAG GAGAAGATGAGAG 

94 

villin 1 vil1 ENSMU
SG000
000261

75 

1:74416009-
74418428 

qMmuCID 
0021827 

TCTTCGATGGTGACTGCTATGTAGTCC
TGGCTATCCACAAGACCAGCAGCACT
CTCTCCTATGATATCCACTACTGGATT
GGCCAGGACTCGTCCCAGGAT 

71 

Glyceraldehyde-3-
phosphate 

dehydrogenase 

Gapdh ENSMU
SG000
000576

66 

6:125162278
-125162382 

qMmuCED 
0027497 

TGGGAGTTGCTGTTGAAGTCGCAGGA
GACAACCTGGTCCTCAGTGTAGCCCA
AGATGCCCTTCAGTGGGCCCTCAGAT
GCCTGCTTCACCACCTTCTTGATGTCA 

75 
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Figure descriptions 
 
Figure 1. Electrochemical measurements of 5-HT at the mucosal surface of the colon. 5-HT 

was measured using an electrochemical technique where carbon fibre electrodes are used to 

mechanically stimulate the colonic mucosa and oxidise 5-HT when voltage clamped at 

+400mV generating a current proportional to the temporal and spatial availability of 5-HT. 

Representative amperometric traces of the current generated by 5-HT oxidisation at the 

mucosal surface of the (A) distal and (B) proximal colon. The current (nA) was converted to 

5-HT (µM) by calibrating carbon fibre electrodes with 10µM 5-HT solution. Mechanical 

stimulation of the colonic mucosa (grey bars) produced a compression-evoked (peak) release 

of 5-HT which decayed back to basal levels (steady state) in both C57BL/6 (grey traces) and 

Winnie (black traces) mice. Dotted lines represent baseline. Comparison of the ‘peak’ and 

‘steady state’ 5-HT levels in the (Aʹ) distal and (Bʹ) proximal colon of C57BL/6 and Winnie 

mice. *P<0.05, **P<0.01; six to ten replicates/sample; C57BL/6: n=5 animals/group, Winnie: 

n=7 animals/group.   

 

Figure 2. Quantification of enterochromaffin (EC) cells in cross sections of the colon. EC 

cells were observed using fluorescent immunohistochemical detection of mucosal 5-HT 

positive (green) cell bodies in the (A-Bʹ) distal colon (DC) and (C-Dʹ) proximal colon (PC) 

of (A,C) C57BL/6 and (B-Bʹ ,D-Dʹ) Winnie mice (Scale bar = 50µm). High magnification 

images (Bʹ, Dʹ) (60X) (Scale bar = 50µm) and serial confocal sections with a Z-step of 0.5 

µm (E-Eʹʹʹ) (Scale bar = 10µm) confirmed that 5-HT immunoreactivity (green) originated 

from nucleated cells (DAPI – blue) within the colonic crypts. Quantification of 5-HT positive 

EC cells in immunofluorescent images per number of crypts in the (E) distal colon and (F) 

proximal colon of C57BL/6 and Winnie mice. *P<0.05, ***P<0.001; six replicates/sample; 

n=5 animals/group. 



32 
 

 

  

 

Figure 3. Crypt morphology in the distal colon and proximal colon. Representative images of 

crypt morphology in the (A-B) distal colon (DC) and proximal colon (C-D) of (A,C) 

C57BL/6 mice and (B,D) Winnie mice visualised using confocal microscopy of cross sections 

labelled with DAPI (20X magnification, scale bar = 50µm). These images were used for the 

quantification of the length of the crypts and the width of the crypts in the (E-F) distal colon 

and (G-H)  proximal colon of C57BL/6 and Winnie mice (note: the crypt length of some 

Winnie mice were quantified in images using the 10X objective to fit within the field of 

view). *P<0.05, ****P<0.0001; six replicates/sample n=5 animals/group. 

 

 

 

Figure 4. 5-HT availability per number of EC cells in the colonic crypts. Ratios calculated 

from 5-HT measurements per average number of EC cells observed in each crypt of 

individual C57BL/6 and Winnie mice. Average ratios of 5-HT release per EC cell in the distal 

colon for (A) compression-evoked 5-HT release (peak) and (B) basal 5-HT levels (steady 

state). Average ratios of 5-HT release per EC cell in the proximal colon for (C) compression-

evoked 5-HT release (peak) and (D) basal 5-HT levels (steady state).*P<0.05, **P<0.01; n=5 

animals/group.  

 

Figure 5. Tph1 and SERT mRNA expression in the distal colon. Box (median, IQR) and 

whisker (range) representation of SERT mRNA expression assessed by RT-qPCR in Winnie 

compared to C57BL/6 mice relative to A) Gapdh and B) villin 1 reference genes. Box 
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(median, IQR) and whisker (range) representation of Tph1 mRNA expression assessed by RT-

qPCR in Winnie compared to C57BL/6 mice relative to C) Gapdh and D) villin 1 reference 

genes. Relative gene expressions are presented as -∆Ct values. Fold expression (2-ΔΔCt) of 

Tph1 and SERT relative to Gapdh and villin 1 reference genes in Winnie mice (E) compared 

to compared to C57BL/6 mice (2-ΔΔCt = 1.00). *P<0.05; six replicates/sample; C57BL/6: n=4 

animals/group, Winnie: n=6 animals/group.   

 

Figure 6. Effects of age/disease activity and gender on 5-HT availability in the inflamed 

distal colon of Winnie mice. (A) The progression of colitis assessed by the disease activity 

index (DAI) in Winnies aged 5-6, 7-14, 15-19 and 20-25 weeks. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001; six to ten replicates/sample; n=5 animals/group. (B) 

Electrochemical quantification of compression-evoked (peak) and basal levels (steady state) 

of 5-HT at the mucosal surface of the colon from Winnie mice at various stages of the 

progression of chronic spontaneous colitis. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; 

six to ten replicates/sample; 5-6 weeks: n=7, 7-14 weeks: n=8, 15-19 weeks: n=9, 20-25 

weeks: n=10 animals/group. (C) Effects of gender on compression-evoked (peak) and basal 

levels (steady state) of 5-HT in colitis determined by electrochemical quantification. six to 

ten replicates/sample;  male: n=9 and female: n=8 animals/group.  

 

Supplementary Figure 1. Linear regression analysis of 5-HT measurements and 

enterochromaffin (EC) cell numbers. Linear correlations of EC cell numbers per crypt (x axis) 

in the distal colon versus (A) compression-evoked 5-HT release (peak, y axis) and from the 

(B) basal levels of 5-HT (steady state, y axis). Linear correlations of EC cell numbers per 

crypt (x axis) in the proximal colon versus (C) compression-evoked 5-HT release (peak, y 

axis) and from the (D) basal levels of 5-HT (steady state, y axis). Grey dots represent values 
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from individual C57BL/6 mice and black dots represent values from individual Winnie mice; 

n=5 animals/group.   

 

Supplementary Figure 2. Linear regression analysis of enterochromaffin cell numbers and 

crypt lengths in the distal and proximal colon. Linear correlation of EC cell numbers per 

crypt (x axis) versus the length of crypts (y axis) from the (A) distal colon and the (B) 

proximal colon. Grey dots represent values from individual C57BL/6 mice and black dots 

represent values from individual Winnie mice; n=5 animals/group.   
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