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Abstract
Aim: This study explored the effects of blood flow restriction (BFR) on mRNA

responses of PGC-1a (total, 1a1, and 1a4) and Na+,K+-ATPase isoforms (NKA;

a1-3, b1-3, and FXYD1) to an interval running session and determined whether

these effects were related to increased oxidative stress, hypoxia, and fibre type-

specific AMPK and CaMKII signalling, in human skeletal muscle.

Methods: In a randomized, crossover fashion, 8 healthy men (26 � 5 year and

57.4 � 6.3 mL kg�1 min�1) completed 3 exercise sessions: without (CON) or

with blood flow restriction (BFR), or in systemic hypoxia (HYP, ~3250 m). A

muscle sample was collected before (Pre) and after exercise (+0 hour, +3 hours)

to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II

fibres, and catalase and HSP70 mRNA), metabolites, and a-AMPK Thr172/a-

AMPK, ACC Ser221/ACC, CaMKII Thr287/CaMKII, and PLBSer16/PLB ratios in

type I and II fibres.

Results: Muscle hypoxia (assessed by near-infrared spectroscopy) was matched

between BFR and HYP, which was higher than CON (~90% vs ~70%; P < .05).

The mRNA levels of FXYD1 and PGC-1a isoforms (1a1 and 1a4) increased in

BFR only (P < .05) and were associated with increases in indicators of oxidative

stress and type I fibre ACC Ser221/ACC ratio, but dissociated from muscle hypox-

ia, lactate, and CaMKII signalling.

Conclusion: Blood flow restriction augmented exercise-induced increases in mus-

cle FXYD1 and PGC-1a mRNA in men. This effect was related to increased

oxidative stress and fibre type-dependent AMPK signalling, but unrelated to the

severity of muscle hypoxia, lactate accumulation, and modulation of fibre type-

specific CaMKII signalling.
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1 | INTRODUCTION

A decline in the ability to perform high-intensity exercise
coincides with a critical threshold of locomotor muscle fati-
gue,1 suggesting factors within or around skeletal muscle
partly limit human exercise performance. One of these fac-
tors is the capacity for maintenance of resting transmem-
brane sodium (Na+) and potassium (K+) ion gradients,2,3

which is determined primarily by the activity of the Na+,
K+-ATPase (NKA).4-6 The functional NKA complex is
composed of several subunits, including a catalytic a, regu-
latory b, and an ancillary protein, phospholemman
(FXYD), and these subunits are expressed as multiple iso-
forms (a1-3, b1-3, and FXYD1) in human skeletal muscle.7

Most of the isoforms have been shown to be regulated at
the mRNA level by exercise,8-13 and their relative distribu-
tion and assembly are critical for maximal NKA activity.14

However, little is known about the effects of different ergo-
genic interventions (eg hypoxia and cold-water immersion)
on exercise-induced modulation of the expression of these
isoforms in human skeletal muscle.7,11,15

Another limiting factor for human exercise performance
is the muscle capability to generate ATP via oxidative
phosphorylation.16 Accordingly, increases in both mito-
chondrial respiratory function and content (as assessed by
citrate synthase activity) have been temporally related to
enhanced exercise performance.17 A key determinant of
these endurance-type adaptations is the transcriptional co-
activator, the peroxisome proliferator-activated receptor-c
co-activator 1a (PGC-1a). It has recently been shown that
human muscle contains different PGC-1a isoforms,18 and
these isoforms may regulate different aspects of the muscle
response to exercise.19 Furthermore, there is evidence
for18,20 and against21,22 some of these isoforms (PGC-1a1
and PGC-1a4) responding to different types of exercise.
But like the NKA isoforms, there is limited evidence about
the effects of different ergogenic strategies on the regula-
tion of the level of these isoforms in human muscle.

One potential strategy to augment increases in the
expression of these isoforms could be to exercise with
reduced muscle blood flow (blood flow restriction, BFR).
To our knowledge, no study has explored the effects of
BFR on exercise-induced mRNA responses of NKA iso-
forms and FXYD1 in skeletal muscle. Given these isoforms
likely exert different functions in skeletal muscle23,24 and
are regulated at the mRNA level by muscle activity,7,11 this
would seem of great physiological relevance. Furthermore,
although 3 studies have assessed the effects of BFR on
exercise-induced changes in PGC-1a mRNA content in
human muscle, only one study measured different PGC-1a
transcripts.25 In these studies, BFR either attenuated,25 aug-
mented,26 or had no effect27 on changes in PGC-1a mRNA
content after exercise. These contradictory findings are

likely related to the different experimental approaches used
(eg type and intensity of exercise and the timing of BFR).
Thus, to maximize the effectiveness of BFR training, there
is need to improve our understanding of the physiological
stressors involved in the regulation of the expression of
NKA and PGC-1a isoforms and how these stressors can be
influenced by BFR in humans.

Blood flow restriction has typically been achieved by
inflation of an occlusion cuff fixed around the limb(s)
proximal to locomotor muscles and has been applied dur-
ing various exercise modes, including walking, cycling,
and resistance training.28-30 Inflation of the cuff compro-
mises both the arterial and venous flow,31,32 resulting in a
hypoxic and more acidic intramuscular environment.31 Suc-
cessive deflation of the cuff promotes local reactive hyper-
aemia.33 In combination, these mechanisms seem a
powerful stimulus for amplifying the transient bursts in
reactive oxygen species (ROS) levels and the resultant
oxidative stress that accompany consecutive bouts of exer-
cise.34-36 In rat and human skeletal muscles, ROS appear
required for exercise-induced increases in the mRNA con-
tent of the catalytic NKA isoforms (a1, a2, a3),

10 and those
of PGC-1a in skeletal muscle cells in vitro.37 In the latter
study, the effect of ROS was mediated by activation of the
AMP-activated protein kinase (AMPK). Several human
studies have reported simultaneous increases in muscle
AMPK activation (as assessed by protein phosphorylation)
and PGC-1a mRNA,38-40 supporting AMPK may be
involved in the regulation of these mRNA transcripts.
However, it remains unknown in humans whether muscle
oxidative stress may be related to the effect of BFR on
NKA- and PGC-1a-isoform mRNA content in skeletal
muscle, and whether this effect is associated with increased
AMPK signalling.

Disturbances in blood flow during exercise invoked by
BFR may also affect muscle ion (K+ and Ca2+) homeosta-
sis by modulating the function of ion channels and trans-
port systems, including NKA.41,42 Furthermore, substantial
increases in muscle release of, and interstitial and venous
blood, lactate have been reported in response to BFR exer-
cise.31,43 Both modulation of intracellular ion concentra-
tions13,44 and lactate45 have been implicated in transient,
excitation-induced increases in NKA and/or PGC-1a
mRNA levels. However, no study has explored if lactate is
associated with exercise-induced increases in the mRNA
content of NKA and PGC-1a isoforms in humans. In 2
independent cell culture studies, the Ca2+/calmodulin-
dependent protein kinase (CaMK) was shown to mitigate
increases in NKA and PGC-1a mRNA invoked by ionic
perturbations in vitro.13,46 Thus, activation of CaMKII due
to ionic perturbations, or indirectly through stimulation of
ROS production,47 could be another mechanism by which
BFR could augment increases in NKA and PGC-1a mRNA
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content in human muscle. However, this hypothesis
remains to be evaluated.

The first aim of this study was to explore the effect of
BFR on changes in the mRNA content of PGC-1a (total
and isoform 1a1 and 1a4) and NKA isoforms (a1-3, b1-3,
and FXYD1) in response to a single, moderate-intensity,
interval exercise session in human skeletal muscle. The
second aim was to elucidate some of the potential cellular
stressors and molecular signalling proteins involved. Our
working hypotheses were as follows: (1) BFR would aug-
ment the effect of exercise on the expression of NKA and
PGC-1a isoforms, and (2) higher expression of these iso-
forms would coincide with increases in markers representa-
tive of responses to oxidative stress (HSP27 protein
content in type I and II muscle fibres and whole-muscle
catalase and heat-shock protein 70, HSP70 mRNA),
AMPK signalling (as assessed by the ACC Ser221/ACC
ratio), and CaMKII activation (as determined by CaMKII
Thr287/CaMKII). Evidence from astrocytes in vitro suggests
the reperfusion phase and resulting tissue re-oxygenation,
rather than hypoxia, may be a primary stimulus underlying
increases in the expression of NKA isoforms in response to
hypoxia-reperfusion.48 Thus, we designed our BFR proto-
col to induce multiple bursts in hypoxia-reperfusion by
incorporating repeated exercise bouts with BFR inter-
spersed by periods with cuff deflation. We also included a
hypoxic condition (ie exercising in normobaric, systemic
hypoxia) to assess the hypothesis that (3) exercise-induced
increases in isoform expression in the BFR condition
would not be attributed to the concomitant muscle hypoxia.

2 | RESULTS

2.1 | Na+,K+-ATPase and FXYD1 mRNA
transcripts (Figures 1 and 2)

NKAa1 mRNA was not changed in BFR (P = .90,
d = 0.44), in CON (P = .39, d = 0.54), or in HYP
(P = .43, d = 0.47; Figure 1A). There were no significant
differences among conditions for the change in NKAa1
mRNA from Pre to +3 hours (P ≥ .54, d = 0.19-0.62).
NKAa2 mRNA increased from Pre to +3 hours in BFR
(P = .050, d = 0.90), but there was no change in CON
(P = .089, d = 1.1) or in HYP (P = .18, d = 1.0; Fig-
ure 1B). There were no differences among conditions for
the change in NKAa2 mRNA from Pre to +3 hours
(P ≥ .31, d = 0.26 to 0.45). NKAa3 mRNA was not chan-
ged in BFR (P = .47, d = 0.57), in CON (P = .26,
d = 0.63), or in HYP (P = .071, d = 1.1; Figure 1C), and
there were no differences among conditions for the change
in NKAa3 mRNA from Pre to +3 hours (P ≥ .31,
d = 0.11-0.96).

NKAb1 mRNA increased from Pre to +3 hours in CON
(P = .049, d = 1.2), but there was no change in BFR
(P = .064, d = 0.79) or in HYP (P = .077, d = 1.1; Fig-
ure 2A). There were no differences among conditions for
the change in NKAb1 mRNA from Pre to +3 hours
(P ≥ .47, d = 0.04-0.53). NKAb2 mRNA was not changed
in BFR (P = .69, d = 0.24), in CON (P = .51, d = 0.40),
or in HYP (P = .55, d = 0.45; Figure 2B), and there were
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FIGURE 1 NKA-a-isoform mRNA responses to moderate-
intensity interval running performed without or with blood flow
restriction or in systemic hypoxia. (A) a1, (B) a2, and (C) a3, mRNA
content. Individual changes from before (Pre) to 3 hours after
exercise (+3 hours) are displayed on the left with each symbol
representing one participant across trials and figures. On the right are
bars representing mean (�SEM) changes relative to Pre for exercise
alone (CON, white; n = 8), with blood flow restriction (BFR, blue;
n = 6) or in systemic hypoxia (HYP, grey; n = 5). *P ≤ .05, different
from Pre
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no differences among conditions for the change in NKAb2
mRNA from Pre to +3 hours (P ≥ .76, d = 0.01-0.10).
NKAb3 mRNA was also not changed in BFR (P = .63,
d = 0.34), in CON (P = .58, d = 0.55), or in HYP
(P = .40, d = 0.74; Figure 2C), with no differences among
conditions for the change in NKAb3 mRNA from Pre to
+3 hours (P ≥ .34, d = 0.03-0.73).

FXYD1 mRNA increased from Pre to +3 hours in BFR
(P = .058, d = 1.1), but there was no change in CON
(P = .51, d = 0.20) or in HYP (P = .42, d = 51; Fig-
ure 2D). There were no differences among conditions for
the change in FXYD1 mRNA from Pre to +3 hours
(P ≥ .19), although the effect size was large (0.95) for the
comparison BFR vs CON. The effect size was lower for
the remaining comparisons: CON vs HYP (d = 0.33) and
BFR vs HYP (d = 0.66).

2.2 | PGC-1a mRNA transcripts (Figure 3)

PGC-1a total mRNA increased from Pre to +3 hours in BFR
(P = .031, d = 1.3) and in CON (P = .047, d = 1.1), but was
not altered in HYP (P = .12, d = 1.1; Figure 3A). There were

no differences among conditions for the change in PGC-1a
total mRNA from Pre to +3 hours, although there was a low
P-value (.088) and large effect size (1.11) for the comparison
BFR vs CON. The P-value was higher and the effect size
lower for the remaining comparisons: CON vs HYP (P = .36,
d = 0.74) and BFR vs HYP (P = .38, d = 0.52). PGC-1a1
mRNA increased from Pre to +3 hours in BFR (P = .010,
d = 1.36), but was not altered in CON (P = .65, d = 0.29) or
in HYP (P = .52, d = 0.35; Figure 3B). The increase in BFR
was greater compared to that in CON (P = .047, d = 1.34),
but not compared to that in HYP, although the P-value was
low (.075) and the effect size large (1.19) for this comparison.
There was no difference for the change from Pre to +3 hours
between CON and HYP (P = .75, d = 21). PGC-1a4 mRNA
increased from Pre to +3 hours in BFR (P = .037, d = 1.3),
but was not increased in CON (P = .10, d = 1.1) or in HYP
(P = .18, d = 0.96). There were no differences among condi-
tions for the change in PGC-1a4 mRNA from Pre to +3 hours
(P ≥ .11), although the effect size was large (1.1) for the com-
parison BFR vs CON. The effect size was moderate for the
remaining comparisons: CON vs HYP (0.58) and BFR vs
HYP (0.61).
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FIGURE 2 NKA-b-isoform and FXYD1 mRNA responses to moderate-intensity interval running performed without or with blood flow
restriction or in systemic hypoxia. (A) b1, (B) b2, (C) b3 and (D) FXYD1, mRNA content. Individual changes from before (Pre) to 3 hours after
exercise (+3 hours) are displayed on the left with each symbol representing one participant across trials and figures. On the right are bars
representing mean (�SEM) changes relative to Pre for exercise alone (CON, white; n = 8), with blood flow restriction (BFR, blue; n = 6) or in
systemic hypoxia (HYP, grey; n = 5). *P < .05, different from Pre
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2.3 | Muscle hypoxia and indicators of
responses to oxidative stress (Figure 4)

Muscle hypoxia, as assessed by deoxygenated haemoglobin
concentration (muscle HHb), was higher during exercise in
BFR (P = .007) and HYP (P = .007), relative to CON, except

for the 7th bout of exercise (P ≥ .45). During the recovery
from the 1st (P = .002), 4th (P = .005), and 5th bout
(P = .016), muscle HHb was higher in BFR, relative to CON.
During the recovery from the 2nd bout, muscle HHb was
higher in BFR (P < .001) and HYP (P = .037) compared to
CON (Figure 4A). No differences were detected between
BFR and HYP at any time point (P = .1). Catalase mRNA
content increased in BFR (P = .024, d = 0.70), but there was
no change in CON (P = .881, d = 0.34) or in HYP
(P = .505, d = 0.15; Figure 4B). HSP27 protein content
increased from Pre to +0 hour in both type I (P = .003) and
type II fibres (P = .004) in BFR, with the increase in type II
fibres being greater relative to CON (P = .030). No changes
occurred in CON (P ≥ .80) or in HYP (P ≥ .32; Figure 4C).
HSP70 mRNA increased in BFR (P = .057, d = 0.86), but
there was no significant change in CON (P = .669, d = 0.18)
or in HYP (P = .176, d = 0.95; Figure 4D).

2.4 | Muscle metabolites (Figure 5)

ATP remained unchanged in all conditions (P = .904; Fig-
ure 5A). Lactate increased in BFR (P < .001) and in HYP
(P < .001), but was not significantly changed in CON
(P = .075). The increases in BFR and HYP were greater than
CON (P = .017 and .015, respectively; Figure 5B). PCr
decreased in CON (P = .027) and in HYP (P = .011), but
was not altered in BFR (P = .335; Figure 5C). Similarly, Cr
increased in CON (P = .027) and in HYP (P = .011), but
was not changed in BFR (P = .335; Figure 5D). The PCr/Cr
ratio decreased in CON (P = .026) and in HYP (P = .018),
but was not altered in BFR (P = .261; Figure 5E). PCr and
Cr content, and PCr/Cr ratio, were not different between con-
ditions at Pre or +0 hour (P > .05).

2.5 | Venous blood lactate, pH, and K+

concentration (Figure 6)

In BFR, blood lactate concentration ([lac�]) increased
(P < .05) after the 3rd exercise bout and remained elevated
throughout the trial compared to rest. Blood [lac�] was
higher (P < .05) in BFR than in CON after the 3rd bout,
the 5th to 9th bout, and after 3 minutes of recovery. In
HYP, blood [lac�] increased (P < .05) after the 3rd, 5th,
6th, 8th and 9th bout and in recovery, compared to rest.
Blood [lac�] was higher (P < .05) in HYP than in CON
after the 3rd, 5th and 9th exercise bout. In CON, blood
[lac�] remained unchanged throughout the trial, compared
to rest (P > .05; Figure 6A).

In BFR, blood pH dropped (P < .05) following the 1st
exercise bout and remained lower (P < .05) compared to
rest throughout the trial and 3 minutes into recovery, but
returned to resting level after 6 minutes of recovery
(P > .05). The drop in pH in BFR was lower, relative to

PG
C
-1
a

to
ta

lm
R

N
A

(fo
ld

r e
la

ti v
e

to
m

ea
n

at
Pr

e)

0

1

2

3

4

5

6

7

8

9
CON
BFR
HYP

*

PG
C
-1
a1

m
R

N
A

(fo
ld

re
la

tiv
e

to
m

ea
n

at
Pr

e)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

*
†

PG
C
-1
a4

m
R

N
A

(fo
ld

re
la

tiv
e

to
m

ea
n

at
Pr

e)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CON
Pre     +3 h

*
†

BFR
Pre     +3 h

HYP
Pre     +3 h

(A)

(B)

(C)

FIGURE 3 PGC-1a total and PGC-1a-isoform mRNA responses
to moderate-intensity interval running performed without or with
blood flow restriction or in systemic hypoxia. (A) PGC-1a total, (B)
PGC-1a1 and (C) PGC-1a4, mRNA content. Individual changes from
before (Pre) to 3 hours after exercise (+3 hours) are displayed on the
left with each symbol representing one participant across trials and
figures. On the right are bars representing mean (�SEM) changes
relative to Pre for exercise alone (CON, white; n = 8), with blood
flow restriction (BFR, blue; n = 6) or in systemic hypoxia (HYP,
grey; n = 5).*P ≤ .05, different from Pre; †P ≤ .05, different from
CON and HYP
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CON, after the 6th, before the 7th, and after the 8th and
9th, bout relative to CON (P < .05). In HYP, blood pH
was lower, compared to rest, following the 3rd, 5th, and
6th bout, and before the 7th bout, but returned to resting
level after the 7th bout, from where it remained unchanged.
The drop in pH in HYP was lower following the 6th and
before the 7th bout, relative to CON (P < .05). In CON,
blood pH remained unchanged throughout the trial
(P > .05; Figure 6B).

In all trials, blood K+ concentration ([K+]) increased
after warm-up, and after the 1st to 8th exercise bout, com-
pared to rest. In CON, blood [K+] was also elevated
(P < .05) after the 9th bout, relative to rest. Compared to
CON, blood [K+] was lower (P < .05) in BFR 4 minutes

into recovery from the 3rd bout, and 6 minutes into recov-
ery from the 9th bout, with no differences at other time
points (P > .05), nor between HYP and CON at all time
points (P > .05; Figure 6C).

2.6 | AMPK and ACC total and
phosphorylated protein content (Figures 7 and 8)

Representative blots for AMPK and ACC are shown in
Figure 7A.

In HYP, a-AMPK protein abundance decreased (P = .023)
from Pre to +0 hour in type I, but did not change in type II
(P = .11) fibres. In BFR and CON, a-AMPK abundance was
not altered in either fibre type (P ≥ .42; Figure 8A). The a-
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AMPK abundance was higher in type II vs type I fibres in all
conditions (P ≤ .027). In HYP, the phosphorylation of a-
AMPK at Thr172 relative to total a-AMPK abundance (a-
AMPK Thr172/a-AMPK) increased in type I (P = .003), but
not in type II (P = .558) fibres. In BFR and CON, there was
no change in a-AMPK Thr172/a-AMPK in either fibre type
(P ≥ .11). The a-AMPK Thr172/a-AMPK was higher in type
II vs type I fibres in all conditions (P ≤ .017; Figure 8B).

ACC protein abundance was not altered in both fibre
types in all conditions (P ≥ .17), and overall, it was higher
in type II vs type I fibres (P ≤ .015; Figure 8C). The phos-
phorylation of ACC at Ser79 to total ACC abundance
(ACC Ser79/ACC) increased from Pre to +0 hour in type I
fibres in BFR (P ≤ .020), with the increase being higher
relative to CON (P = .052). In the same condition, there
was no change in ACC Ser79/ACC in type II fibres
(P = .260). No changes in ACC Ser79/ACC occurred in
CON and HYP (P ≥ .21; Figure 8D).

2.7 | CaMKII and phospholamban total and
phosphorylated protein content (Figures 7 and 9)

Representative blots for CaMKII and PLB are shown in
Figure 7B.

CaMKII protein abundance did not change in either fibre
type in all conditions (P ≥ .11). In BFR and CON, it was
higher in type I vs type II fibres (main effect of fibre type,
P ≤ .038), but not different between fibre types in HYP
(P = .20; Figure 9A). Phosphorylation of CaMKII at Thr287

to total CaMKII abundance (CaMKII Thr287/CaMKII)
decreased in type II fibres in CON (P = .023) and tended to
decrease in BFR (P = .056), but did not change in HYP
(P = .75). No changes in CaMKII Thr287/CaMKII occurred in
type I fibres in any condition (P ≥ .21). CaMKII Thr287/CaM-
KII was significantly higher in type II vs type I fibres in all
conditions (main effect of fibre type, P ≤ .023; Figure 9B).

In type I fibres, PLB protein abundance decreased in CON
(P = .037), whereas it did not change in BFR (P = .79) or in
HYP (P = .43) in the same fibre type. PLB abundance did not
change in type II fibres in any condition (P ≥ .29). PLB abun-
dance was lower in type II vs type I fibres (main effect of fibre
type, P ≤ .050; Figure 9C). The phosphorylation of PLB at
Ser16 relative to total PLB abundance (PLB Ser16/PLB)
increased in type I fibres in CON (P = .023) and in BFR
(P = .010), but it remained unchanged in HYP in the same
fibre type (P = .41). In type II fibres, PLB Ser16/PLB
increased in BFR (P ≤ .026) and in HYP (P = .025), but did
not change in CON (P = .35; Figure 9D).
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3 | DISCUSSION

The main novel findings of the present study, which are
summarized in Figure 10, were that moderate-intensity
interval running performed with blood flow restriction
(BFR) increased the mRNA content of the NKA regulatory
subunit, FXYD1 (~2.7-fold), and of PGC-1a (total, 4.3-

fold), 1a1 (2.3-fold), and 1a4 (6-fold), in human skeletal
muscle. These responses to BFR were associated with
increases in indicators of responses to oxidative stress
(HSP27 protein in both fibre types, 70%; catalase and
HSP70 mRNA, 1.5- to 1.9-fold) and fibre type-dependent
AMPK downstream signalling, reflected by elevated (2-
fold) ACC Ser79/ACC ratio in type I, but not in type II,
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fibres. Furthermore, the effect of BFR on changes in
FXYD1 and PGC-1a mRNA levels was unrelated to the
severity of muscle hypoxia, lactate accumulation, and fibre
type-specific modulation of the CaMKII Thr287/CaMKII
ratio.

3.1 | Blood flow restriction augments
increases in FXYD1 mRNA content after
moderate-intensity interval running in human
skeletal muscle

A novel result was that FXYD1 mRNA content increased
(2.7-fold) due to BFR (Figure 2D). Despite similar
increases in deoxygenated HHb between the BFR and
HYP conditions (Figure 4A), systemic hypoxia was with-
out impact on FXYD1 expression. This suggests the magni-
tude of muscle hypoxia was not important for the BFR-
induced increase in FXYD1. Nor may the increase be
related to the severity of metabolic stress, as muscle lactate
increased, whereas PCr content and PCr/Cr ratio decreased,
to a similar level (+0 hour) in the BFR and HYP condition
(Figure 5). In contrast, the induction of FXYD1 mRNA in

BFR was accompanied by increases in indicators of
responses to oxidative stress (Figure 4), implicating ROS
in the regulation of FXYD1 mRNA by BFR exercise in
human skeletal muscle. In agreement, FXYD1 overexpres-
sion has been shown to protect myocytes against ROS-
induced NKA dysfunction,49 highlighting a ROS-protective
effect of elevated FXYD1 content. In cell culture, AMPK
can be activated by ROS,37 and this regulates FXYD tran-
scription in mouse glycolytic skeletal muscles.50 In line
with these observations, we found that the increases in
FXYD1 mRNA and indicators of oxidative stress were par-
alleled by elevated AMPK downstream signalling, reflected
by a higher ACC Ser79/ACC ratio. Taken together, FXYD1
mRNA content can be induced by a single session of BFR
interval exercise in human skeletal muscle. This effect is
likely related to greater oxidative stress and (or) AMPK
activation. Moreover, the promoted FXYD1 mRNA content
in BFR was dissociated from changes in phosphorylated
CaMKII and PLB in type I and II fibres (Figure 9), sug-
gesting transcriptional upregulation of FXYD1 mRNA con-
tent in human muscle does not require alterations in
CaMKII autonomous activity.51

p-ACC Ser79 (257 kDa)

Total protein

I    II     I    II
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I    II     I    II
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I    II     I    II
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FIGURE 7 Representative blots for
AMPKa, ACC, CaMKII and
phospholamban (PLB) protein abundance
and phosphorylation in type I and II human
skeletal muscle fibres. Protein abundance
and phosphorylation of (A) AMPK and
ACC, and (B) CaMKII and PLB in human
skeletal muscle in response to moderate-
intensity interval running without (CON) or
with blood flow restriction (BFR), or in
systemic hypoxia (HYP) before (Pre) and
immediately after (+0 hour) exercise. Total
protein was determined in each lane from
the stain-free gel images obtained after
electrophoresis. CaMKII isoforms (bM and
r/c) are indicated in (B)
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3.2 | The effects of moderate-intensity
interval running on Na+,K+-ATPase a1 and b3
mRNA content in human skeletal muscle are
not influenced by blood flow restriction

The content of NKAa1 and b3 mRNA was unaffected by
all exercise conditions (Figures 1A and 2C), despite pro-
nounced differences among the conditions for changes in
indicators of responses to oxidative stress, muscle hypoxia
and lactate, and blood metabolites. This indicates the
level of these mRNA transcripts are not severely affected
by the nature of metabolic and ionic fluctuations, nor by
the degree of hypoxia and oxidative stress, in human
skeletal muscle. In support, raising the metabolic stress
by performing simultaneous arm exercise was without
effect on increases in muscle a1 and b3 mRNA content
after isolated knee extensions.52 Based on the individual
changes for a1 and b3 in the present study (Figures 1A
and 2C), these isoforms seem to be similarly regulated at
the mRNA level in human muscle. For example, the
same 2 individuals who decreased their a1 mRNA content

with BFR also reduced their b3 expression in the same
condition. Further, parallel and selective increases in a1
and b3 mRNA levels have been observed following sprint
interval cycling with or without cold-water immersion in
humans.11 In another human study, NKAa1 and b3 were
the only mRNA transcripts of those investigated (a1-3 and
b1-3) that remained unaltered in response to 45 minutes of
cycling at 71% VO2max.

10 Together, these results highlight
a1 and b3 are likely regulated at the mRNA level by a
similar pattern of cellular stress, which may be different
from that (or those) important for changes in other NKA-
isoform mRNA transcripts (eg compare the individual
changes for a1 and a2; Figure 1A,B).

3.3 | The effects of blood flow restriction on
changes in NKA a2, b1, b2, and a3 mRNA
content in human skeletal muscle after
moderate-intensity running

The NKA a2 isoform is limiting for a muscle’s contractile
performance53 and forms up to 90% of NKA complexes in
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adult rat skeletal muscles.54 Together with the b1 isoform, it
constitutes the largest NKA pool in this tissue. Understand-
ing the cellular stressors regulating a2 and b1 expression is
therefore fundamental. In the present study, BFR signifi-
cantly elevated NKAa2 mRNA content (large effect),
whereas it remained unaltered in CON and HYP. As the rise
in the BFR condition was associated with increases in indi-
cators of responses to oxidative stress, this could indicate
ROS production may have been important for the potent
effect of BFR on NKAa2 mRNA in the present study. In
accordance, ROS have previously been shown to play a role
in the transcriptional induction of this isoform in human
muscle.10 However, the large effect size for CON and HYP
(despite these conditions did not result in statistically signifi-
cant gains) indicates the possibility of a statistical type II
error for the change (Pre to +3 hours) in these conditions.
Likewise, NKAb1 mRNA was significantly elevated in CON
(large effect), but not in BFR (P = .064) or in HYP
(P = .077), despite a large effect (d = 0.8 and 1.1, respec-
tively). These observations may have been due to the small
sample size used and preclude us from unequivocally

interpreting our data related to these isoforms. More research
is required to clarify whether ROS production (or oxidative
stress) is important for alterations in NKAa2 mRNA in
response to a session of BFR exercise in humans.

No changes in the mRNA levels of NKAa3 and b2 were
found for any condition (Figures 1C and 2B). We have
previously observed no change in human muscle a3 mRNA
content after sprint interval cycling of short duration (4-sec-
onds sprints).11 In contrast, exercise-induced increases in
a3 mRNA have been reported in other human studies. In
these studies, induction of a3 mRNA occurred immediately
after exercise, with the level returning to basal state after
3 hours of recovery.8,10,55 Thus, the time point of mRNA
measurement may have influenced the current outcome
and is a limitation of the present study. Another likely,
at least contributing, explanation is the low expression of
this transcript in human skeletal muscle55 and so the
noise is much higher (CV 3-fold higher vs other tran-
scripts measured). The effect of a single session of exer-
cise on b2 mRNA content is controversial with human
studies reporting either increased, decreased, or
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FIGURE 9 Changes in CaMKII and phospholamban (PLB) protein abundance and phosphorylation in type I and II human skeletal muscle
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unchanged, levels 3 hours after the end of exercise. In
the present study, the level of b2 mRNA remained
unchanged at the same time point. The reason for these

conflicting findings is not clear,11 and further mechanistic
studies are necessary to understand how the b2 isoform
is regulated by exercise in human muscle.
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FIGURE 10 Summary of key findings. Effects of moderate-intensity interval running without (CON) or with blood flow restriction (BFR),
or in normobaric, systemic hypoxia (HYP) on the mRNA content of Na+,K+-ATPase (NKAa1-3, NKAb1-3, FXYD1) and PGC-1a (total, 1a1, 1a4)
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activated protein kinase; CaMKII, Ca2+/calmodulin-dependent protein kinase II; PLB, phospholamban; LT, lactate threshold
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3.4 | Blood flow restriction augments
increases in PGC-1a total and isoform mRNA
content after moderate-intensity running

A single session of moderate-intensity interval running
raised the total muscle mRNA content of PGC-1a by 1.8-
fold (Figure 3). This increase is small compared to those
previously detected (8-fold to 10-fold) after endurance
exercise sessions (eg 5 to 10 9 4 minutes at 90%-95% of
VO2max).

56-58 However, the smaller gain in the present
study is not surprising given our use of a low relative
exercise intensity (105% LT, ~12 km h�1), the consider-
ably high training status of our participants, and the posi-
tive relationship between exercise intensity and exercise-
induced increases in muscle PGC-1a mRNA content pre-
viously reported.39,59 Nevertheless, we chose this intensity
as it was the highest tolerable mean speed, by which the
exercise protocol could be performed with the chosen
magnitude of BFR (cf. Materials and Methods). The small
increase in PGC-1a mRNA could also relate to a low
exercise volume, as our participants spent substantially less
time exercising compared to the protocols previously stud-
ied (eg 5 to 10 9 4 minutes or 1 hour of cycling).56-58

In the present study, BFR augmented the exercise-
induced increase in total PGC-1a mRNA (4.3-fold) and
promoted the levels of the 1a1 (2.5-fold) and 1a4 (6-fold)
transcripts (Figure 3). Consistent with these results, a
reduction of ~15% to 20% in muscle blood flow during
knee-extensor exercise (45 min at 26% of one-leg peak
load) raised total PGC-1a mRNA in human skeletal mus-
cle.1,26 These findings contrast with 2 previous human
studies that reported either attenuated25 or unaltered27

effects of BFR on exercise-induced change in skeletal mus-
cle PGC-1a mRNA. The changes in PGC-1a levels in
these studies may likely be explained by a low relative
exercise intensity (40% of VO2max in BFR vs 70% in
CON) or the timing of BFR (15 s into passive recovery
from each cycling sprint), respectively, as these conditions
seem suboptimal for sufficient facilitation of the cellular
stressors and signalling proteins involved in PGC-1a tran-
scription.39,59 In support, inductions of PGC-1a mRNA
transcripts in the present study were closely related to the
degree of oxidative stress and downstream AMPK sig-
nalling, which is discussed in detail below.

3.5 | Augmented PGC-1a-isoform mRNA
content after blood flow-restricted exercise is
related to muscle oxidative stress and AMPK
signalling

A novel result was that the BFR-induced induction of PGC-
1a mRNA levels was temporally associated with increases
in indicators of responses to oxidative stress. Specifically,

HSP27 protein increased in both fibre types, whereas cata-
lase and HSP70 mRNA was upregulated at the whole-mus-
cle level. As these indicators are particularly sensitive to
increases in hydrogen peroxide (H2O2) levels in either astro-
cytes60 or myocytes,61,62 these results indicate the effect of
BFR on PGC-1a transcripts may have been mediated, in
part, by exacerbated ROS production or the resultant oxida-
tive stress. This is consistent with a previous observation in
young men of an attenuated exercise-induced rise in PGC-
1a mRNA after oral consumption of antioxidants (vitamin C
and E),63 and with those of a number of in vitro experiments
where incubation of C2C12 cells with H2O2 promoted PGC-
1a mRNA content (1.4-fold) and promoter activity,37

whereas pre-incubation with the ROS scavenger, N-acetyl-
cysteine (NAC), abolished these effects.37,64

Treatment of C2C12 cells with the AMPK activator, 5-ami-
noimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR),
has been found to increase both PGC-1a mRNA (2.2-fold) and
PGC-1a promoter activity (3.5-fold), and several AICAR-sen-
sitive PGC-1a promoter sites have been identified.65 In a more
recent experiment, activation of PGC-1a transcription by ROS
coincided with promoted AMPK activation.37 In agreement
with these in vitro observations, BFR provoked simultaneous
exercise-induced increases in PGC-1a-isoform mRNA, indica-
tors of responses to oxidative stress, and ACC Ser79/ACC ratio
(which strongly reflects AMPK activity66) in the present study.
These findings support increased activation of AMPK could
have been involved in the BFR-induced upregulation of PGC-
1a-isoform mRNA levels. Factors other than ROS could partly
account for the increased AMPK downstream signalling with
BFR in the current study. For example, circulating nora-
drenaline can stimulate AMPK activity in skeletal muscle
cells,67 and BFR has been shown to exacerbate exercise-
induced increases in circulating noradrenaline.68 In addition,
the increase in ACC Ser79/ACC ratio was most pronounced in
type I fibres (Figure 8D), indicating BFR-induced facilitation
of AMPK signalling was fibre type-dependent. Consistent with
this result, circulatory occlusion (250 mm Hg) accelerated
glycogenolysis in type I fibres during repeated contractions in
humans,69 indicating altered metabolic activation of this fibre
type during BFR exercise. Thus, future work should examine
if modulation of exercise-induced mRNA responses by BFR is
fibre type-specific. Moreover, inconsistent with the changes in
ACC Ser79/ACC ratio, a-AMPK Thr172/a-AMPK was dissoci-
ated from increases in PGC-1a mRNA levels (eg differences
between BFR and HYP). This result is in agreement with a
number of previous human studies.70,71 Dissociation of ACC
Ser79/ACC and a-AMPK Thr172/a-AMPK in the present study
could relate to different exercise effects on total abundance of
these proteins (eg compare the mean values for a-AMPK pro-
tein after BFR vs HYP; Figure 8), and/or alternatively to the
high sensitivity of ACC, in terms of phosphorylation, for
(small) changes in AMPK activity.
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3.6 | The effects of blood flow-restricted
exercise on PGC-1a-isoform mRNA are
unrelated to the severity of hypoxia, lactate
accumulation, and modulation of fibre type-
dependent CaMKII signalling in human
skeletal muscle

In a previous human study, 1 hour of moderate-intensity
cycling (60% of cycling peak power output) at simulated
altitude (3000 m) had no effect on PGC-1a mRNA in the
skeletal muscle of recreationally active men.72 In agree-
ment, PGC-1a total and isoform mRNA levels were unaf-
fected by systemic hypoxia (3250 m) in the present study,
despite deoxygenated HHb was matched between the BFR
and HYP condition (Figure 4A). Thus, the severity of exer-
cise-induced muscle hypoxia was not decisive for the
effects of BFR on PGC-1a levels in the present study. In
cardiac myocytes, long-term exposure to hypoxia (8 hours
at 0.5% O2) elevated PGC-1a mRNA by 3- to 6-fold,73

indicating chronic exposure to hypoxia, at least in vitro,
induces different mRNA responses compared to the inter-
mittently hypoxic protocol applied in the present study.
Given the comparable levels of muscle and blood metabo-
lites after exercise with BFR or in systemic hypoxia (Fig-
ures 5 and 6), inadequate metabolic stress may also not
account for the lack of an effect of systemic hypoxia.
Rather, our results support the absence of an effect of sys-
temic hypoxia was due, at least partly, to its insufficiency
to substantially promote oxidative stress and activate
AMPK compared to BFR. In addition, a novel result was
that CaMKII Thr287/CaMKII ratio decreased in type II
fibres after exercise with (P = .056) and without BFR, but
not when systemic hypoxia was superimposed. This is the
first indicator in humans that decreased arterial oxygen sat-
uration may affect contraction-stimulated CaMKII sig-
nalling in a fibre type-dependent manner in skeletal muscle.
CaMKII phosphorylation at Thr287 has been positively cor-
related (r2 = .884) with CaMKII autonomous activity in
this tissue.51 Given running in systemic hypoxia was with-
out impact on PGC-1a levels, this indicates increases in the
mRNA levels of PGC-1a isoforms in human muscle by a
session of moderate-intensity running with BFR does not
involve changes in CaMKII autonomous activity. It should
be noted our data are limited to the time point immediately
after exercise, whereas a transient increase (0.7- to 1.5-fold)
in CaMKII autonomous, but not maximal activity has been
detected early after the onset of moderate-intensity (76%
VO2max) cycling in human skeletal muscle.74

3.7 | Conclusion and perspectives

In summary, a single session consisting of moderate-inten-
sity interval running with blood flow restriction augmented

increases in the mRNA content of the NKA regulatory sub-
unit, FXYD1, and of PGC-1a (total) and its isoforms 1a1
and 1a4, in the skeletal muscle of men. These effects of
BFR were associated with increased oxidative stress and
fibre type-specific AMPK downstream signalling, whereas
the magnitude of muscle hypoxia, lactate accumulation,
and fibre type-dependent modulation of CaMKII signalling
was unlikely involved. Thus, intermittent BFR exercise is a
potent strategy to augment the acute signalling and gene
response associated with ion transport and mitochondrial
adaptation in human skeletal muscle. Based on this work,
future research should examine whether the effects of
repeated interval exercise sessions with BFR over time
could translate to improvements in the muscle capacity for
K+ handling and oxidative ATP production in humans.

4 | MATERIALS AND METHODS

4.1 | Ethical approval

This study was approved by the Human Research Ethics
Committee of Victoria University, Melbourne, Australia
(HRE14-309), and was performed in accordance with the
latest instructions in the Declaration of Helsinki. Partici-
pants provided oral and written informed consent before
enrolment in the study.

4.2 | Participants

Eight healthy men, engaged in team sports at a recreational
level (5 in soccer, 2 in Australian-rules football and one in
basketball), participated in the study. Their physical charac-
teristics are shown in Table 1. All participants were non-
smokers and engaged in their sport 2 to 4 times per week.

4.3 | Randomization and blinding

The study was a randomized, crossover experiment and
took place in the Exercise Physiology Laboratory at the
Institute of Sport, Exercise and Active Living (ISEAL),
Victoria University, Melbourne, Australia. All sessions
were performed on a Katana Sport XL treadmill (Lode,
Groningen, Netherlands) in 21.4 � 1.1°C and 40.8 � 6.8%
humidity. Participants completed 3 main trials matched for
total work, duration (34 minutes) and work:rest ratio. These
trials were separated by 1 week and consisted of interval
running without (CON) or with blood flow restriction
(BFR), or in normobaric, systemic hypoxia (HYP). Each
participant was allocated a trial order using a random-num-
ber generator (MS Excel 2013, Microsoft, Redmond, WA,
USA). To minimize any perceived placebo effect (not to be
confused with a true placebo effect),75 the participants were
not informed about which trial was hypothesized to be of
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greatest value to the physiological response, and whether
they were breathing hypoxic or normoxic air. A pneumatic
tourniquet (Riester, Jungingen, Germany) was attached to
the participant’s preferred kicking (dominant) leg by adhe-
sive tape in all trials, but it was only inflated in BFR. In
addition, the participants were informed that the study pur-
pose was to evaluate the effect of different degrees of BFR.
Information about what trial was to be performed on each
occasion was given on the day of execution.

4.4 | Pre-testing

Prior to the main trials, the participants visited the laboratory
on 4 separate occasions interspersed by at least 48 hours. On
the first visit, participants performed a graded exercise test
(GXT). This test was used to assess the participant’s lactate
threshold (LT) and maximum oxygen consumption
(VO2max). On the second visit, participants performed the BFR
trial with near-infrared spectroscopy (NIRS) probes placed
over the vastus lateralis muscle belly of their dominant leg to
assess muscle oxygen content (cf. section on Muscle deoxy-
genation), and to accustom the participants to BFR and the
equipment. During the third visit, participants completed the
same running protocol with NIRS probes attached. The first 3
exercise bouts during this visit were performed without BFR
or systemic hypoxia. The remaining 6 bouts were completed in
normobaric, systemic hypoxia to accustom the participants to
HYP and to allow estimation of individual inspired oxygen
fraction (FiO2) to be used in HYP to match the level of muscle
hypoxia during ISC (detailed in BFR and systemic hypoxia).
The tourniquet was worn during both the second and third

visit. The fourth visit consisted of a GXT similar to the one
performed during the first visit. The LT from the fourth visit
was used to determine individual running speed during the
main trials (ie ISC, CON and HYP).

4.5 | Main trials

On the days of the main trials, the participants reported to
the laboratory between 8 and 9 AM after 7.3 � 1.1 hours of
sleep and after consuming a standardized dinner and break-
fast (detailed in Diet and activity control) 15 and 2.5 hours,
respectively, prior to arrival. After approx. 30 minutes of
rest in the supine position, a catheter was inserted into an
antecubital vein, allowing mixed-venous blood to be sam-
pled. After an additional 15 minutes of rest, blood and mus-
cle were sampled, also in the supine position. Next, the
participants moved to the treadmill where they were instru-
mented with one pair of NIRS optodes on the belly of the
vastus lateralis muscle of their preferred kicking (dominant)
leg to reliably and non-invasively monitor muscle deoxy-
genation in vivo.76 A belt was placed around their chest to
measure heart rate. In a sitting position with the dominant
leg unloaded, muscle deoxygenation was measured for at
least 2 minutes until a plateau was reached and a stable
baseline reading was recorded. Next, participants were fitted
with a facemask covering the mouth and nose to enable
them to breathe normoxic or hypoxic air. A pneumatic
tourniquet was attached to the participant’s dominant leg by
adhesive tape. The tourniquet was inflated only in BFR
before each bout of exercise and deflated upon termination
of each bout. A time-aligned schematic representation of
the experimental protocol is shown in Figure 11. Every trial
commenced with a 5-minutes warm-up (WU) at 75% LT
followed by 5 minutes of rest. At the third and fourth min-
ute of the WU, a 5-seconds acceleration to ~110% LT, fol-
lowed by a 5-seconds deceleration to 75% LT, was
performed. Next, 3 series of three 2-minutes running bouts
were executed at a fixed relative intensity (105% LT,
11.6 � 1.7 km h�1; no incline). The runs were separated
by 1 minute, and the series by 5 minutes, of walking
(~5 km h�1), respectively. This design was introduced to
promote repeated periods of hypoxia-reperfusion, which is a
key stimulus for increases in NKA and PGC-1a mRNA in
cell culture.37,77 The duration of the running bouts and the
work:rest ratio were based on pilot work and balanced to
achieve the highest tolerable mean speed by which the exer-
cise regimen could be completed with the chosen magnitude
of BFR (3.0 mm Hg cm�1). Antecubital venous blood was
sampled at rest before exercise, prior to each series, imme-
diately after each bout, and at 3 and 6 minutes after the end
of exercise. Muscle was sampled at rest in the supine posi-
tion before (Pre), immediately after (64 � 28 seconds;
+0 hour) and 3 hours post (+3 hours) exercise.

TABLE 1 Participant characteristics

Age (y) 26 � 5

Height (cm) 177.3 � 7.6

Body mass (kg) 74.3 � 7.2

Body mass index (kg m�2) 23.6 � 1.3

Upper thigh circumference (relaxed/
contracted; cm)

57.5 � 3.0/57.9 � 2.8

Upper thigh skinfold thickness (mm) 8.2 � 2.7

VO2max (mL O2 min�1) 4243 � 408

VO2max (mL O2 kg�1 min�1) 57.4 � 6.2

Peak treadmill speed during the GXT
(km h�1)

14.9 � 1.8

Lactate threshold (running speed in
km h�1)

11.1 � 1.6

GXT, graded exercise test.
Data are presented as mean � SD. The lactate threshold was determined using
the modified Dmax method. Skinfold thickness was measured over the vastus
lateralis muscle belly and is the mean of 3 consecutive measurements. Peak
treadmill speed was calculated as the sum of the last completed stage and the
product of the fractional time at the last stage and the increment (1 km h�1).
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4.6 | BFR and systemic hypoxia

In all trials, a pneumatic tourniquet made of nylon with a
width of 13 cm (Riester) was externally applied to the most
proximal part of the participant’s preferred kicking leg. In
BFR, 15 seconds prior to the onset of a run, the tourniquet
was rapidly inflated over ~10 seconds to reach an end-pres-
sure of 3.0 mm Hg cm�1 (ie relative to thigh circumfer-
ence, TCF; see below). The mean pressure was in the
lower end of the range of pressures used in previous stud-
ies (~3-5 mm Hg cm�1).28,29,78-80 The pressure during run-
ning ranged from (mean � SD) 123 � 12 (range: 109-
139) mm Hg in the float phase to 226 � 24 (range: 200-
260) mm Hg in the landing phase. The difference between
our predetermined (~175 mm Hg) and actual (mean � SD)
pressure during the trials was �1 � 8.5 mm Hg. The
tourniquet was deflated immediately after termination of
exercise. After 15 minutes of recovery from exercise, the
tourniquet was inflated to 320 mm Hg until there was a
maximum plateau in muscle deoxygenation. TCF was mea-
sured before exercise as one-third of the distance midline
from the inguinal crease to the proximal border of patella.
This represented the site of tourniquet application. In HYP,
the participants executed the exercise bouts in normobaric,
systemic hypoxia with a FiO2 of 14.0%, corresponding to
an altitude of approx. 3250 m.

4.7 | Muscle deoxygenation

Deoxygenation at the muscle level was measured by con-
tinuous-wave, near-infrared spectroscopy (NIRS), as
described previously.76 A pair of NIRS optodes was

positioned over the distal part of the vastus lateralis mus-
cle ~15 cm above the proximal border of patella. Optodes
were fixed in a plastic spacer, which was attached to the
skin by double-sided sticky discs to ensure direct contact
between optodes and skin. A black bandage was placed
over the optodes and around the leg for further fixation
and to shield against extraneous light, and to minimize
loss of transmitted near-infrared light. The interoptode dis-
tance was 40 mm. Skinfold thickness was measured
between the emitter and receiver optodes using a skinfold
calliper (Harpenden). Skinfold thickness (8.2 � 2.7 mm)
was less than half the distance separating the optodes.
Circumference of the plastic spacer was marked on the
skin using an indelible pen, and pictures were taken to
ensure that optodes were placed at the same position in
all trials. Light absorption signals were converted to HHb
deoxygenation changes using a differential pathlength fac-
tor (DPF) calculated according to participant’s age. The
DPF was the same across trials for each participant. Data
were acquired at 10 Hz and subsequently filtered in R
software (ver. x64 3.2.5, R Foundation for Statistical
Computing, USA) using a 10th order zero-lag, low-pass
Butterworth filter with a cut-off frequency of 0.1. The
optimal cut-off frequency (ie reducing over- and underes-
timation of local means) was predetermined by an itera-
tive analysis of root-mean-squared residuals derived from
the application of multiple filters by use of a range of
cut-off frequencies (0.075-0.150). Filtered data were used
for the final analysis. Time alignment and normalization
to the signal range between baseline (resting) and maxi-
mum (full occlusion) readings were completed in Excel
(Ver. 2013, MS Office, Microsoft).

Pre

Rest

Muscle:

Blood:

NIRS:

Blood flow restriction/hypoxia:

Warm-up

Time (min):

+0 h +3 h

+3 min +6 min

+15 min

–10 –5 0 3 6 8 13 16 19 21 26 29 32 34 37 40 214

Walk

Run

FIGURE 11 Time-aligned, schematic representation of the experimental design. The participants performed 3 exercise trials separated by
1 week consisting of running without (control) or with the muscle blood flow partially occluded (blood flow restriction, BFR), or in normobaric,
systemic hypoxia (hypoxia). The exercise intensity was set according to the participants’ individual lactate threshold (~12 km h�1). Muscle was
sampled at rest before, immediately post (+0 hour) and after 3 hours (+3 hours) of recovery from each trial. Blood was sampled from an
antecubital vein at the time points indicated. BFR was induced by inflation of a tourniquet (123 � 12 to 226 � 24 mm Hg during exercise and
320 mm Hg post-exercise)
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4.8 | Graded exercise test (GXT)

Participants completed the GXT following a light, standard-
ized meal ~3 hours prior to arrival. The test consisted of 4-
minutes runs punctuated by 1 minute of rest. The first run
commenced at 5.0 km h�1, and the second at 8 km h�1.
The speed was then increased by 1 km h�1 at the onset of
each subsequent run until volitional exhaustion, defined as
an inability to maintain the required speed. This progres-
sion in speed allowed a minimum of 7 running stages to be
completed (range: 7-11). After 5 minutes of rest, partici-
pants commenced running at the speed of the last com-
pleted run, after which the speed was increased by
1 km h�1 per minute until volitional exhaustion. This
incremental bout was performed to ascertain attainment of
a maximum 30-seconds plateau in oxygen consumption.
Before the test, a facemask was placed over the mouth and
nose and connected to an online, gas-analysing system for
measurement of inspired and expired gases. To determine
LT, blood was sampled at rest and immediately after each
running stage from a 20-gauge, antecubital venous catheter.
The catheter was inserted at rest in a supine position on a
laboratory bed at least 20 minutes prior to the test. The LT
was calculated using the modified Dmax method as it has
been shown to better discriminate between individuals in
comparison with other methods.81 VO2max was determined
as the mean of the 2 peak consecutive 15-seconds values
recorded during the test.

4.9 | Diet and activity control

Participants consumed a standardized dinner (55 kJ kg�1

BM; 2.1 g carbohydrate kg�1 BM, 0.3 g fat kg�1 BM,
and 0.6 g protein kg�1 BM) and breakfast (41 kJ kg�1

BM; 1.8 g carbohydrate kg�1 BM, 0.2 g fat kg�1 BM,
and 0.3 g protein kg�1 BM) 15 and 3 hours, respectively,
before every main trial. They recorded their dietary pattern
within 48 hours prior to each laboratory visit and were
asked to replicate the same nutritional intake as per before
their first exercise trial. Participants were instructed to
maintain their normal dietary pattern throughout the study
and were free of anti-inflammatory drugs and supplements,
as well as medicine. The participants were instructed to
replicate their weekly, routine physical activity throughout
the study and to avoid activity beyond daily living in the
48 hours prior to each visit. In the 3-hours period from ter-
mination of exercise to the +3 hours biopsy, oral consump-
tion was limited to ad libitum water.

4.10 | Muscle sampling

Vastus lateralis muscle biopsies were collected from the
dominant leg in all trials for consistency using the

Bergstr€om needle biopsy technique with suction, amounting
to 9 biopsies per participant. To minimize bleeding, the
biopsy in ISC was obtained immediately after deflation of
the tourniquet. In preparation for a muscle sample, a small
incision was made under local anaesthesia (5 mL, 1% Xylo-
caine) through the skin, subcutaneous tissue and fascia of
the muscle. Incisions were separated by approx. 1-2 cm in
3 parallel lines of 3. Immediately after sampling, samples
were rapidly blotted on filter paper to remove excessive
blood and frozen in liquid nitrogen. The samples were
stored at �80°C until being analysed. The incisions were
covered with sterile Band-Aid strips and a waterproof Tega-
derm film dressing (3M, North Ryde, NSW, Australia).

4.11 | Blood handling and analysis

To ensure blood samples accurately represented circulating
blood, ~2 mL of blood was withdrawn and discarded
before sampling of approx. 2 mL of blood per sample.
After being drawn, samples were placed on ice until being
analysed for lactate, pH and K+, concentrations after exer-
cise on an ABL 800 Flex blood gas analyzer (Radiometer,
Brønshøj, Denmark).

4.12 | Arterial oxygen saturation (SaO2)

For safety reasons, adhesive optodes were placed on the tip
of the left index finger to monitor arterial oxygen saturation
during the HYP trial by pulse oximetry (Nellcor N-600,
Nellcor, Hayward, CA, USA). Data were recorded at rest
in the standing position on the treadmill and during the
final minute of each bout of running.

4.13 | RNA isolation and reverse
transcription

Muscle samples were homogenized (2 9 2 minutes at
30 Hz) in ~800 lL TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) using an electronic homogeniser (FastPrep
FP120 Homogenizer, Thermo Savant, Thermo Fisher
Scientific, Waltham, MA, USA). After homogenization, the
supernatant was aspirated into a new, freshly autoclaved
microfuge tube containing 250 lL chloroform (Sigma-
Aldrich, St. Louis, MO, USA). After few manual inver-
sions and 5 minutes on ice, the mixture was centrifuged
(15 minutes at 12 280 g) at 4°C. After centrifugation, the
superior phase was pipetted into a new, autoclaved micro-
fuge tube, and 400 lL 2-isopropanol alcohol (Sigma-
Aldrich) and 10 lL of 5 mol L�1 NaCl were added. The
samples were then stored at �20°C for 3 hours to precipi-
tate the amount of RNA. After cooling, the samples were
centrifuged (20 minutes at 12 280 g) at 4°C, and the iso-
propanol aspirated. The RNA pellet was rinsed with 75%
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ethanol made from DEPC-treated H2O (Invitrogen Life
Sciences) and centrifuged (8 minutes at 5890 g) at 4°C.
After pipetting off the ethanol, the pellet was resuspended
in 5 lL of heated (60°C) DEPC-treated H2O. The samples
were stored at �80°C until reverse transcription. RNA pur-
ity (mean � SD, 1.96 � 0.24; 260 nm/280 nm) and con-
centration (mean � SD, 1.317 � 1.311 lg lL�1) were
determined spectrophotometrically on a NanoDrop 2000
(Thermo Fisher Scientific, Wilmington, DE, USA). In addi-
tion, RNA integrity was assessed in 6 randomly chosen
samples on an electrophoresis station (Experion, Bio-Rad,
Hercules, CA, USA) using the manufacturer’s RNA analy-
sis kit (Experion RNA StdSens) and instructions. The RNA
quality indicator (RQI) of the 6 samples was (mean � SD)
8.1 � 0.7. One microgram of RNA per sample was
reverse-transcribed into cDNA on a thermal cycler
(S1000TM Thermal Cycler, Bio-Rad) using a cDNA synthe-
sis kit (iScript RT Supermix, #1708841; Bio-Rad). The fol-
lowing incubation profile was used with random hexamers
and oligo dTs in accordance with the manufacturer’s
instructions: 5 minutes at 25°C, 20 minutes at 46°C and
1 minute at 95°C. cDNA was stored at �20°C until real-
time PCR.

4.14 | Real-time RT-PCR

Real-time RT-PCR was performed to determine the expres-
sion of target and reference genes. Reactions were prepared
on a 384-well plate using an automated pipetting system
(epMotion 5073l, Eppendorf, Hamburg, Germany). One
reaction was composed of 2 lL diluted cDNA, 0.15 lL
forward and reverse primer (100 lmol L�1 concentration),
0.2 lL DEPC-treated H2O and 2.5 lL iTaq universal
SYBR Green Supermix (#1725125; Bio-Rad). Real-time
RT-PCR was performed on a QuantStudio 7 Flex Real-
Time PCR System (#4485701, Thermo Fisher Scientific)
using the following protocol: denaturing at 95°C for 3 min-
utes, followed by 40 cycles of 95°C for 15 seconds, and
60°C for 60 seconds. Reactions were run in duplicate on
the same plate with 4 template-free and 4 RT-negative con-
trols. To account for variations in input RNA amounts and
the efficiency of reverse transcription, target mRNA tran-
script levels were normalized to the geometric mean of 3
housekeeping genes using the 2�DDCT method.82 This cor-
rection has been shown to yield reliable and valid mRNA
data.83 Reference genes used were glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH), TATA-binding protein
(TBP) and b2 microglobulin (b2M). The mean (�SD) coef-
ficient of variation (CV) of duplicate reactions (cycle
threshold, CT), along with the forward and reverse
sequences for the primers, is shown in Table 2. Criteria
and procedure for the design of primers for NKA isoforms
are presented elsewhere.11 Primers for PGC-1a isoforms

were identical to those previously used.18 Primer specificity
was confirmed by performing a melt curve analysis at the
end of each PCR run. The sample size for mRNA content
was n = 8 for CON, n = 6 for BFR and n = 5 for HYP.
Data points were excluded if contaminated (CT > 35,
n = 4) or if unavailable due to a missed biopsy at +3 hours
(n = 1). Limited amount of muscle precluded us from re-
analysing contaminated samples.

4.15 | Dissection and fibre typing of muscle
fibres

All chemicals used for dot blotting and Western blotting
were from Bio-Rad unless otherwise stated. Antibodies are
detailed in Table 3.

One part of each muscle biopsy (50 � 10 mg w.w.) was
freeze-dried for 40 hours, yielding 11.6 � 2.7 mg d.w.
muscle tissue. From these freeze-dried portions, a minimum
of 40 single-fibre segments per sample (range: 40-120; total
n = 2750) were isolated under a dissecting microscope
using fine jeweller’s forceps. The segments were placed in
individual microfuge tubes and incubated for 1 hour at
room temperature in 10-lL denaturing buffer
(0.125 mol L�1 Tris-HCl, 10% glycerol, 4% sodium dode-
cyl sulphate, 4 mol L�1 urea, 10% mercaptoethanol and
0.001% bromophenol blue, pH 6.8), in accordance with pre-
vious procedure.84 The denatured segments were stored at
�80°C until future use.

Fibre type of individual segments was determined using
dot blotting, as recently described (D Christiansen, MJ
MacInnis, E Zacharewicz, BP Frankish, H Xu, RM Mur-
phy, unpublished data). In brief, two 0.45-lm PVDF mem-
branes were activated in 95% ethanol and equilibrated for
2 minutes in cold transfer buffer (25 mmol L�1 Tris,
192 mmol L�1 glycine, pH 8.3, 20% methanol), after
which a 1.5-lL aliquot of denatured sample, corresponding
to one-seventh of a fibre segment, was spotted onto each
membrane. The membranes were placed at room tempera-
ture on a dry piece of filter paper to dry completely (5-
10 minutes), after which they were reactivated in the etha-
nol and re-equilibrated in transfer buffer. After a quick
wash in Tris-buffered saline-Tween (TBST), membranes
were blocked in 5% non-fat milk in TBST (blocking buf-
fer) for 5-15 minutes. One of the blocked membranes was
incubated (1 in 200 in 1% BSA with PBST) with myosin
heavy chain I (MHCI) antibody, and the other membrane
with myosin heavy chain IIa (MHCIIa) antibody for
2 hours at room temperature with gentle rocking. After a
quick wash in blocking buffer, membranes were incubated
(concentration: 1:20 000) with goat anti-mouse IgG
(MHCIIa, #PIE31430, ThermoFisher Scientific) or IgM
(MHCI, #sc-2064, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) horseradish peroxidase (HRP)-conjugated
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secondary antibody for 1 hour at room temperature with
rocking. Membranes were then quickly rinsed in TBST,
exposed to Clarity enhanced chemiluminescence reagent
(Bio-Rad) and imaged on a ChemiDoc MP (Bio-Rad). The
membrane incubated with MHCIIa antibody was reprobed
with MHCIIx antibody for 2 hours with rocking at room
temperature, after which it was exposed to the same sec-
ondary antibody as MHCI (#sc-2064, Santa Cruz Biotech-
nology) for 1 hour at room temperature and imaged
accordingly. The difference in the host immunoglobulin
species of the MHCIIa (IgG) and MHCIIx (IgM) antibodies
allowed both isoforms to be quantified on the same mem-
brane.

The remainder of each denatured fibre segment (7 lL)
was grouped according to MHC expression to form sam-
ples of type I (MHCI) and type II (MHCIIa) fibres for each
biopsy, in line with previous procedure.85 The number of
fibre segments included in each group of muscle fibres per
biopsy was (mean � SD) n = 12 � 6 (range: 5-27) for
type I, and n = 16 � 5 (range 7-33) for type IIa, fibres.
Hybrid fibres (expressing multiple MHC isoforms) and
type IIx fibres (classified by the absence of MHCI and
MHCIIa, but the presence of MHCIIx protein), both

constituting 3.1% of the total pool of fibres, were excluded
from analysis.

4.16 | Immunoblotting

Fibre type-specific protein abundance and phosphorylation
status of AMPK and CaMKII, and their downstream targets
Acetyl-CoA carboxylase (ACC) and phospholamban (PLB),
respectively, and the protein content of heat-shock protein 27
(HSP27) were determined by Western blotting. Fifteen
micrograms of protein per sample (~5 lL) were separated
(45 minutes at 200 V) on 26 wells, 4-15% Criterion TGX
stain-free gels (Bio-Rad). Each gel was loaded with all sam-
ples from one participant, 2 calibration curves (a 4- and a 3-
point) and 2 protein ladders (PageRuler, Thermo Fischer Sci-
entific). Calibration curves were of human whole-muscle
crude homogenate with a known protein concentration,
which was predetermined as described previously.7 After
electrophoresis, gels were UV activated (5 minutes) on a
Criterion stain-free imager (Bio-Rad). Proteins were wet-
transferred to 0.45 lm nitrocellulose membrane (30 minutes
at 100 V) in a circulating bath at 4°C in transfer buffer
(25 mmol L�1 Tris, 190 mmol L�1 glycine and 20%

TABLE 2 Forward and reverse primer sequences used in real-time PCR, their amplification efficiency and the coefficient of variation (CV)
of duplicates

Gene Forward sequence Reverse sequence Efficiency
CV (%)
Mean � SD

Na+,K+-ATPase

a1 CGACAGAGAATCAGAGTGGTGT GCCCTGTTACAAAGACCTGC 1.79 0.7 � 0.6

a2 ACATCTCCGTGTCTAAGCGG AGCCACAGGAGAGCTCAATG 2.25 0.7 � 0.5

a3 ACTGAGGACCAGTCAGGGAC CCTTGAAGACAGCGCGATTG – 3.4 � 2.4

b1 CTGACCCGCCATCGCC TAGAAGGATCTTAAACCAACTGCC 1.76 0.5 � 0.4

b2 TTCGCCCCAAGACTGAGAAC AGAGTCGTTGTAAGGCTCCA 1.83 1.4 � 1.0

b3 TCATCTACAACCCGACCACC GAAGAGCAAGATCAAACCCCAG 1.90 0.8 � 0.6

FXYD1 AGCGAGCAGAATTCCTCCAG GCAGGGACTGGTAGTCGTAAG 1.97 1.4 � 1.6

PGC-1a

Total CAGCCTCTTTGCCCAGATCTT TCACTGCACCACTTGAGTCCAC 2.04 0.7 � 0.5

1a1 ATGGAGTGACATCGAGTGTGCT GAGTCCACCCAGAAAGCTGT 2.03 1.0 � 1.1

1a4 TCACACCAAACCCACAGAGA CTGGAAGATATGGCACAT 2.56 0.9 � 0.8

Oxidative stress

Catalase CTCAGGTGCGGGCATTCTAT TCAGTGAAGTTCTTGACCGCT 1.90 1.2 � 1.0

HSP70 GGGCCTTTCCAAGATTGCTG TGCAAACACAGGAAATTGAGAACT 1.92 0.9 � 0.5

Housekeeping

GAPDH AATCCCATCACCATCTTCCA TGGACTCCACGACGTACTCA 2.12 1.0 � 0.4

b2M TGCTGTCTCCATGTTTGATGTATCT TCTCTGCTCCCCACCTCTAAGT 2.08 0.9 � 0.3

TBP CAGTGACCCAGCAGCATCACT AGGCCAAGCCCTGAGCGTAA 2.24 1.0 � 0.7

Note that the primer set for the Na+,K+-ATPase a3 (like several other sets we and other labs have tested) results in CT values of ~34 (ie upper end of detection
range). This is likely due to the low expression of this isoform in human skeletal muscle.
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methanol). Membranes were then incubated (10 minutes) in
antibody extender solution (Pierce Miser, Pierce, Rockford,
IL, USA), washed in double-distilled H2O and blocked for
2 hours in blocking buffer (5% non-fat milk in Tris-buffered
saline-Tween, TBST) at room temperature with rocking. To
allow multiple proteins to be quantified on the same mem-
brane, the membranes were cut horizontally at appropriate
molecular masses using the 2 protein ladders as markers
prior to probing with the primary antibodies overnight at
4°C, and for 2 hours at room temperature with constant, gen-
tle rocking. Antibody details are presented in Table 3. Pri-
mary antibodies were diluted in 1% bovine serum albumin
(BSA) in phosphate-buffered saline with 0.025% Tween
(PBST) and 0.02% NaN3. After washing in TBST and
probing with appropriate horseradish peroxidase (HRP)-
conjugated secondary antibody (goat anti-mouse immuno-
globulins or goat anti-rabbit immunoglobulins; Pierce) for
1 hour with rocking at room temperature, chemiluminescent
images of membranes were captured on a ChemiDoc Touch
(Bio-Rad), followed by densitometry using Image Lab (Ver.
5.2.1, Bio-Rad). Protein ladders were captured under white
light prior to chemiluminescent imaging without moving the
membranes. Band densities for proteins were quantified by
reference to the mean of the 2 linear calibration curves
loaded on the same gel and normalized to the total amount of
protein in each lane on the stain-free gel image. The same
researcher with substantial experience with the techniques
was responsible for performing all muscle analyses.

4.17 | Muscle metabolites

A portion of each freeze-dried muscle sample (2 mg d.w.)
was dissected free of connective tissue, blood and fat
before being powdered using a Teflon pestle. The content
of ATP, PCr, creatine (Cr) and lactate in each sample was
extracted using pre-cooled perchloric acid/EDTA and
KHCO3, and analysed fluorometrically using a modifica-
tion of a method previously described,86 where samples are
analysed in a 96-well plate format. All samples from each
participant, along with 2 standards of either ATP, PCr, Cr
or lactate, a 4-point NADH standard curve and blanks (ie
double-distilled H2O), were analysed in triplicate on the
same plate. Absorbance readings of samples were normal-
ized to the standards and subtracted blanks. The content of
PCr, Cr and ATP was adjusted to Cr level across trials.

4.18 | Statistics

Data were firstly assessed for normality using the Shapiro-
Wilk test. An appropriate transformation of data was
applied, if necessary, to obtain a normal distribution prior to
subsequent statistical analyses. Paired Student’s t tests were
applied to test the null hypotheses of no effects of time
(Pre, +3 hours) within condition using the 2�DDCt expres-
sion data, and to test for differences between conditions
(CON, BFR, HYP), using the DmRNA values (ie difference
between Pre and +3 hours). For blood and metabolite data,

TABLE 3 Primary antibodies used for dot blotting and Western blotting

Protein Primary antibody and supplier
Host species and isotype (anti-
body type) Concentration

Molecular mass
(kDa)

HSP27 Thermo Fisher Scientific (#MA3-015) Mouse IgG (monoclonal) 1:1000 ~27

p-ACC Ser79 Cell Signaling Technology (#3661S) Rabbit IgG (polyclonal) 1:1000 ~257

ACC Cell Signaling Technology (#3676S) Rabbit IgG (monoclonal) 1:1000 ~257

p-AMPK-a
Thr172

Cell Signaling Technology (#2535) Rabbit IgG (monoclonal) 1:500 ~63

AMPK-a Cell Signaling Technology (#2603) Rabbit IgG (monoclonal) 1:1000 ~63

p-CaMKII
Thr287

Cell Signaling Technology (#12716) Rabbit IgG (monoclonal) 1:1000 ~50-80

CaMKII Cell Signaling Technology (#4436) Rabbit IgG (monoclonal) 1:1000 ~50-80

p-PLB Ser16 Merck Millipore (#07-052) Rabbit IgG (polyclonal) 1:2000 ~25

PLB Abcam (#ab2865) Mouse IgG (monoclonal) 1:1000 ~25

MHC I Developmental Studies Hybridoma Bank, University
of Iowa (#A4.840)

Mouse, IgM (monoclonal) 1:200 ~200

MHC IIa Developmental Studies Hybridoma Bank, University
of Iowa (#A4.74)

Mouse, IgG (monoclonal) 1:200 ~200

MHC IIx Developmental Studies Hybridoma Bank, University
of Iowa (#6H1)

Mouse, IgM (monoclonal) 1:100 ~200

Antibodies were diluted in 1% bovine serum albumin in 19 phosphate-buffered saline with 0.02% sodium azide and 0.025% Tween.
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a 2-way repeated-measures (RM) ANOVA was used to test
the null-hypotheses of no effects of time (Pre, +3 hours) or
condition (CON, BFR, HYP). The same test was used to
assess the null hypotheses of no effects of time (Pre,
+0 hour) or fibre type (type I and type II) within condition
for the content of total and phosphorylated proteins and to
evaluate conditional interactions with time (Pre, +0 hour)
within fibre type. Data normalized to total protein, and not
relative changes, were used for protein analyses. For the
Butterworth-filtered NIRS data, a 2-way RM ANOVA was
used to test the null hypothesis of no time and condition
effects. Multiple pairwise, post hoc analyses used the Tukey
test. Interpretation of effect size (d) was based on Cohen’s
conventions, where <0.2, 0.2-0.5, >0.5-0.8 and >0.8 were
considered as trivial, small, moderate and large effect,
respectively.87 Data are reported as means � SEM unless
otherwise stated. The a-level was set at P ≤ .05. Statistical
analyses were performed in Sigma Plot (Ver. 11.0, Systat
Software, San Jose, CA, USA).
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