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OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES
RELATED TO POMPEIU’S MEAN VALUE THEOREM
WITH COMPLEX EXPONENTIAL WEIGHT

PIETRO CERONE, SEVER S. DRAGOMIR AND EDER KIKIANTY

(Communicated by A. Agli¢ Aljinovic)

Abstract. We present some inequalities of Ostrowski and trapezoid type with complex exponen-
tial weight, for complex-valued absolutely continuous functions. These inequalities are related to
Pompeiu’s mean value theorem. Special cases of these inequalities are applied to obtain (i) some
approximation results for the finite Fourier and Laplace transforms; (ii) refinements of the Os-
trowski and trapezoid inequalities; and (iii) new Ostrowski and trapezoid type inequalities.

1. Introduction
In 1938, Ostrowski [17] proved the following estimate of the integral mean:

THEOREM 1. Let f: [a,b] — R be continuous on [a,b] and differentiable on
(a,b) with |f'(t)| < M < e forall t € (a,b). Then, for any x € [a,b], we have

1 b
b—a/a fl)dr

The constant % is best possible, in the sense that it cannot be replaced by a smaller
quantity.

_atb

1 X—%

<

|f<x> -

Inequality (1) is referred to as Ostrowski’s inequality. For its generalisations and
related results we refer the readers to Dragomir and Rassias [15]. Another estimate of
the integral mean is given by the trapezoid rule as follows.

THEOREM 2. (Cerone and Dragomir [7]) Under the assumptions of Theorem 1,
we have

— — _atb
L “)f(“Zfab x)f(b)—bia/abf(t)dt < %+ —= |M@-a).
()

forany x € [a,b]. The constant Alf is best possible.
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Inequality (2) is known as the trapezoid inequality. For its generalisations and
related results, we refer the readers to Cerone and Dragomir [7].

It is important to note that the bounds in inequalities (1) and (2) are the same.
Cerone [6, Remark 1] stated that there is a strong relationship between the Ostrowski
and the trapezoidal functionals which is highlighted by the symmetric transformations
amongst their kernels.

In 1946, Pompeiu [19] derived a variant of Lagrange’s mean value theorem, known
as Pompeiu’s mean value theorem (cf. Sahoo and Riedel [21, p. 83]), as given below:

THEOREM 3. For every real-valued function f differentiable on an interval [a,b]
not containing 0 and for all pairs x| # x; in |a,b), there exists a point & between x|

and xp such that
x1f (x2) —x2f (x1)

XL —X2

=f(&)-¢r(&). 3)

Pompeiu’s mean value theorem is utilised in order to provide another approxima-
tion of the integral mean, as given below.

THEOREM 4. (Dragomir, 2005 [9]) Let f: [a,b] — R be continuous on [a,b] and
differentiable on (a,b) with [a,b] not containing 0. Then for any x € [a,b], we have
the inequality

2
a+b f(x) 1 b b—a |l x—# /
2L a2 () |-l @

where ((t) =t, t € [a,b]. The constant § is best possible.

We refer the readers to Popa [20], Pecari¢ and Ungar [18], Acu and Sofonea [1],
and Acu et al. [2] for the generalisations and extensions of Theorem 4. Inequalities
of Ostrowski type which are related to the Pompeiu’s mean value theorem are given
in the papers by Dragomir [10, 11]. Further inequalities of Ostrowski and trapezoid
types which are related to the Pompeiu’s mean value theorem can be found in Cerone,
Dragomir, and Kikianty [8].

Some exponential Pompeiu type inequalities for complex-valued absolutely con-
tinuous functions are given in Dragomir [12], with applications to obtain some new
Ostrowski type inequalities. We recall the results on the Ostrowski type inequalities, in
the next theorem.

THEOREM 5. Let f: [a,b] — C be an absolutely continuous function on the in-
terval [a,b] and a = B +iy € C with B > 0. Then, for any x € |a,b] we have

RO ey [ piryar ®
1B|B1(a,b,x,0)|| f"— otf o, f'—af € Lala,b),
G 1B1 (b~ ) 1B (e b 0) O~ ufl f— acf € Lyla,b],
p>1 L4+i=1,

Bw(a»b»%a)\\f/ - af”l'
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where

baP y paqB
| B _a+b L feriP 4t s
By(a,b,x, o) 2[6 (x 7 ) + P — ¢ ,
for =1 and Bw(a,b,x, ) := exp(xp)(x —a) + B~ [exp(bB) —exp(xB)]. If B =0,
then for any x € [a,b] we have

) SR i) [ fieyar

a+b
3+ (52)7 - aPlly - ixfl- £ —iyf € Lula,b),

b—x\ "¢ x—a ol q atl ! . / .
)7+ (28 7 17506 —a) 7 |f —ivfllp, [ —ivf € Lyla,b],
p>1, %4— é =1,

(6)

G—a)llf —ivfl-

In this paper, we give refinements of the inequalities in Theorem 5. We also present
similar results for trapezoid type inequalities with complex exponential weights.

The paper is organised as follows. We present the main theorems concerning in-
equalities with complex weights in Section 2. We consider special cases of the main
theorems, by choosing x = (a+b)/2, in Section 3. The inequalities involving the
p-norms (with imaginary weights) where p # 1 are proven to be sharp.

The Fourier transform has been a principal analytical tool in many fields of re-
search, such as probability theory, quantum physics, and boundary-value problems [3].
The approximations of the finite Fourier transform of different classes of functions have
been considered by employing integral inequalities of Ostrowski type. We refer to Bar-
nett and Dragomir [4] for the approximations of the Fourier transform of absolutely
continuous functions; to Barnett, Dragomir, and Hanna [5] for functions of bounded
variation; and to Dragomir, Cho, and Kim [13] for Lebesgue integrable mappings. Us-
ing a pre-Griiss type inequality, Dragomir, Hanna, and Roumeliotis [14] obtained some
approximations of the finite Fourier transform for complex-valued functions. We apply
the inequalities in Section 3 to obtain some approximation results for the finite Fourier
and Laplace transforms.

Finally, we provide some refinements of the Ostrowski and trapezoid inequalities
in Section 4 by considering special cases of the main theorems in Section 2. We also
obtain some new Ostrowski and trapezoid type inequalities.

2. Main theorems

The main results concerning the Ostrowski and trapezoid type inequalities with
complex exponential weights are given in this section.

2.1. Ostrowski type inequalities

We recall the definition of the Gamma and incomplete Gamma functions:

F(z):/ X le™*dx, and F(spc):/ et dr.
0 x
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Throughout the text, for ¢ = B +iy € C and 1 < ¢ < e, we use the following
notation:

W (s,) = e P(gB) T [T(g+1)—T(g+1,qB(t— )]

and

_—=

¥, o(5.) = e B(=gB) "7 [N(q+1)—T(g+1,—gB(1—5))7.

THEOREM 6. Let f : [a,b] — C be an absolutely continuous function on [a,b],
oa=B+iyeCand 1 < p<e. Let 1 < g < oo bethe Holder conjugate of p. If B #0,

then
/ f dt
eax O([

<@ = oS liap+ ¥galeb)F = af i, @
< W u(a,x) + ¥, 0 D] = 0 f i) po

for x€la,b]. If B =0, then

b
o b—x)'s
g% Hf _lny[ugc],p & ||f _ZYfHXh (8)
((q+;2li+(b )ﬂl g+1)a
xX—a) 4 —X) 4 / .
< ( +1)i If _lYf”[a,b].,p’
q q

for x € |a,b]. The inequalities in (8) are sharp.

Proof. We use the Montgomery identity for the absolutely continuous function
g la,b] — C (cf. Mitrinovié, Pe€ari¢, and Fink [16, p. 565]):

x)(b—a)—/ubg(t)dtz/:(t—a)g'(t)dt—i—/xb(t—b)g'(t)dn ©)

where x € [a,b]. If g(¢t) = f(¢)/e™, then g'(t) = (f'(¢) — af(¢))/e™ ; and with this
choice of g, (9) becomes:

eax

—/t— m+/ ?ﬂ)

(10)
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Take the modulus of (10) and make use of the Holder’s inequality to obtain the follow-
ing inequalities for 1 < p < o and its Holder’s conjugate ¢q:

o[ @
ea)( (Xt
X b é
<(/ ((r—a>|e°">‘fdt) 1=l ([ (@-0le)? ar) " 1=,

1 1
X q b q
= ([emarePa) 17 = artus,+ ([ 000 Par) 17 - @t

We evaluate the integral

x qB (x—a)
/ (t—a)le "B ar = B (gp)-1-! / e *dz
a 0

= e P (g) 7' [T(g+1)—T(q+1,qB(x—a))],
by letting z = (¢t — a)gf3, and thus

(/:(t —a)le P dt) %

a _gtl
— e P(g)" 7 [T(g+1)—T(g+1,gB(x—a))]
Now, we evaluate the integral
b q(=B)(b—x)
/ (b—1)le "B gr = eibqﬁ(—qﬁ)f‘rl/ Zle™*dz
X 0

= ¢ PP (—gB) ' [M(g+1) —T(g+1,—gB(b—x))],
by letting z = — (b —1)gf3, and thus

S =

‘P;a(a,x).

(/xb(b —1)de19B dt) "

—bB _gtl 1 _
=e P(=qB) 7 [(qg+1)=T(qg+1,—gB(b—x))]7 =¥, 4(x,b),
and this proves (7). If B =0, then

P f@)
ezx)/ lty

1
q
<(/ <z—a>th) 1~ 0 ( p=nyar) I~ xSl
q_
q

q ;. b—
G >i T [ ) P TH
@+ 1), L
B s
R ) KR P T

(g+1)
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for any x € [a,b]. This completes the proof. The sharpness of the inequalities in (8) is
given by Proposition 1. [

In particular, when p = (g = 1) in Theorem 6, inequalities (7) and (8) take
simpler forms as follows:

COROLLARY 1. Let f:[a,b] — C be an absolutely continuous function on [a,b]
and o =B +iye C. If B #0, then we have

LIRS OF

—aP _[(v_ e
B ﬁc;)lﬂ L g
B+ [(b—x)B—1]eP
e P +[( l;;)ﬁ Je 1f" = of |l ) o
< % [eaﬁ 4ot ((a;b —X) B 1) exﬁ} 1" = o f ).

forany x € [a,b]. If B =0, then we have

’f(X)(b—a) iU

. — dt
ey a ety

1 / . / .
<3 [((x=a)?lf" = i¥f oo+ (B =21 = iVF || ) o) 12)

< H(b—a)z—i- (x ““’)

for any x € [a,b]. The constants % and % in (12) are sharp.

Hf - l’)/f”[a b),e0»

The case for the 1-norm is as follows:

THEOREM 7. Let f : [a,b] — C be an absolutely continuous function on |a,b],
a=B+iyeC.If B #0, then

b f(t)
)—/a Wdl
%36* (af+1) ||f’—O£fHux 1+(b x) *xﬁHf/_afH[xb]l, ﬁ >O&a+l13 <X,
(x—a)e *Xﬁ||f/_06fHux 1+_/3€ (bB+1) Hf/_af||[xb]17[3<0&b+l3 >x
(.X ) 7Xﬁ||f/ (XfHux 1+(b )C) 7xﬁHf/—af||[xb]1, Otherwzse
%6 aﬁ+l (b )C) Xﬁ]Hf/_af”[ab]h ﬁ >0&a+l3 S
(X Xﬁ+ [3 hﬁJrleHf/_af”[ab]lvﬁ<0&b+ﬁ/
b— a) xﬁHf/ O‘fo,h,, otherwise,

(13)

N

[
<4
(
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forany x € [a,D]. If B =0, then

Lo [ Lar) < (o=l = it + -0 = a1
< b=a)lf' =ivflliap)1:
forany x € [a,b].

Proof. Take the modulus of (10) and make use of the Holder’s inequality to obtain:

f()
ea)( / (Xt dt
< sup (1 —a)e Pl f" = of g+ sup (b—1)e P = af e
t€la,x] t€[x,b]

Define the functions: A(r) = (t —a)e P for t € [a,x] and B(t) = (b —1)e'P for r €
[x,D].

Case 1: B >0. We have B'(t) = —e P'(14+B(b—1)). If B >0, then B'(r) <0
for all 7 € [x,b], thus, the supremum is attained at = x. We have A’(r) = e P"(1 —
B(t —a)). The stationary pointof A is z, = (a3 +1)/8.

Case la: t, < x (a+% < x), we have A”(1,) = —Be P+ < 0; thus, the
supremum is attained at t =¢,.

Case 1b: 1> x (a+§ >x), we have 1 —B(t —a) > 1 - B(x—a) > 0, which
implies that A’(¢) > 0 for all 7 € [a,x]. Thus, the supremum is attained at 7 = x.

Case 2: B <0. We have A'(t) > 0 forall 7 € [a,x], thus, the supremum is attained
at t = x. The stationary point of B is 1, = (bf +1)/P.

Case 2a: t, > x (b+% > x) , we have B"(1,) = ﬁe’(”ﬁ“) < 0; thus, the supre-
mum is attained at t =1;,.

Case 2b: t, <x (b+ % <x),wehave 0 <1+ B(b—x) <14 B(t—x), which
implies that B'(z) < 0 for all 7 € [x,b]. Thus, the supremum is attained at # = x. This
completes the proof of (13). If B =0, then

1050 [ 104

< sup (t—a)llf = iyflljan + sup (b—=1)|f" = ivflp)1

r€fax] t€x,b]
< (x— a)Hf/— iYf a1 + & =2 = ivf ) 1
< (b=a)lf = ivfllap).1-

This completes the proof. [

etx)/

2.2. Trapezoid type inequalities

The proofs for Theorems 8, 9, and Corollary 2 below are similar to Theorems 6,
7, and Corollary 1. We utilise the trapezoid identity for absolutely continuous function
g:la,b)—C

()60 +e@i-a) - [ gar=[(—0g0a xelatl, 13
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instead of the Montgomery identity. We omit the proofs.

THEOREM 8. Let f : [a,b] — C be an absolutely continuous function on |a,b],
a=B+iyeCand 1 <p<o. Let 1 < g < oo beareal number such that %—!—}1 =1

If B#0, then
b fla b f
‘ ‘feg(x) (l '() eia) ( X a) /a e((ltt) 4

< le;a(arx)”f/ - O‘fH[u,x],p —|—"I’;a(x,b)Hf/ - af”[x,b],p (16)
< [¥ou (@) + ¥ o (D) IS = 0f s,

forany x € [a,b]. If B =0, then

10) 1@ PO,

eiby elay " ety
g+l
G- (b—x)
(g+ (g+1

cx—a

(bx

~—

_|_

‘ —_

Hf i’J/fH[u,x],p—*—

0T,
T .
q+1)7

for any x € [a,b]. The inequalities in (17) are sharp.

I = ivf s, p (17)

~—
Q= Q

[y
IS ~—

a|+ Q= =

COROLLARY 2. Let f:[a,b] — C be an absolutely continuous function on [a,b]
and o =B +iye C. If B #0, then we have

%(b—x)jt%(x—a)—/ab%d"

—xp _ 1 —af
X ‘ +[(x [;;)ﬁ ]e Hf/_af”[a,x],oo
e B _[(p -bp
il ﬁﬁ)ﬁ U e (18)
1
<o [P @B 1e P [0 =2)B+ e ]I oo
forany x € [a,b]. If B =0, then we have
f f@)
’ Sy (0= x)+ my / iy
1 / . / .
<3 [(x=a)?lf" = i7f g oo+ (B =X = 0VF || ) o) (19)

Hf - l’)/f”[a b),e0»

< H(b—a)z—i- (x ““’)

forany x € [a,b]. The constants 5 L and 1 7 in (19) are sharp.
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THEOREM 9. Let f : [a,b] — C be an absolutely continuous function on [a,b],
a=B+iyeC.If B #0, then

b a b f(t
%(b—x)—i—fe—ia) (x—a)—/a %dl’ (20)
(x—a)e—aﬁHf/ — O(f”[a#]’l + %e_(xﬁ-‘rl)Hf/ — af”[xj)],l» B>0&x+ % >a,
_1—l3e—(x13+1)Hf’ — g + (= x)e B|f — aflliesns B <O & x+ % < b,
(x—a)eP|f = atf a1+ (b —x)eP|[ £ = 0f 1.1, otherwise,
[(x—a)e B + Fe (xB+1) s =ofllgpi, B>0 & x+ 4 /3 >a,

< [#e (B+1) 4 +(b—x)e —bﬁ]Hf —fllfap1 B <0&x+ﬁ <b,
[

N

x—a)e P+ (b—x)e PP || f' = otf |1, otherwise,

f(b) f@)

elby (b_x) ta)/ / ety ‘

< (x—a)Hf’—lYfll[a,x],l = = 11N
< b=allf' = ivfljap1,

21

for x € [a,b].

REMARK 1. Note the similarity of the bounds in Corollaries 1 and 2 [also, Theo-
rems 6 and 8, and similarly, Theorems 7 and 9]. The first set of upper bounds in (11)
[(7) and (13), respectively] and (12) [(8) and (14), respectively] can be obtained by let-
ting @ = x, x = b in the first term, and x = a, b = x in the second term in (18) [(16)
and (20), respectively] and (19) [(17) and (21), respectively].

3. Special cases of the main theorems and approximations of the Laplace and
Fourier transforms

One may obtain simpler inequalities from the main theorems, by choosing x =
(a+Db)/2. These special cases are applied to approximate the Laplace and Fourier
transforms. For inequalities involving the p-norms where p # 1, the choice of x = (a+
b)/2 proves that the inequalities are sharp. We summarise the results in this section.

COROLLARY 3. Let f:[a,b] — C be an absolutely continuous function on [a,b],
a=fB+iyeCand 1 < p <eo. Let q > 1 be a real number such that %—Fé =1.1f
B # 0, then the following inequalities hold:

f(552) (b—a) e —[22B+
‘ ( ()a2+h) " J;Ext) dt S [ ﬁ2 }
e P+ [25B — e
ﬂ2

< gl P e =2 ] ol

a+b

I1f = afll g 52 0 (22)

e
atb

I = ol o .
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For the case of the p-norms (1 < p < o), we have:

f u+b f
a+b / (23)
e
a+b a+b
<‘P;a( e LT s v A [ T
a+b _ (a+b
< |:LP;:O¢ <a7T> +‘.Pq,oc (Tab)] ||f/_ (XfH[a,b],p
For the case of the 1-norm, we have:
f % £()
2o~ [ 10 @4
e”

(af+1) ||f/ (fo a+b +Te__l3Hf/_af||["+h ﬁ >0&a+ﬁ X

Be
—a a+b

< hT ath ﬁHf’_afH[a ath] +Lﬁe (bB+1) Hf/_af”[a;h?hJ, B <0&b+ﬁ >x,
bode- P [”f Oﬂf\\um + |1/ - af||[a+b ] otherwise,

atb
[%e (aB+1) ha_+l3:|||f/_afHab ﬁ>0&a+l3\
[l%e a+bl3+ ﬁ bﬁ+l]||f/ (XfHuh 1aB<0&b+ﬁ/
(b—a)e “3"B||f' — 0 f|lap).15 otherwise,

N

If B =0, then the following inequalities hold:

a+b l . ' ) '

'f / i St < 2= [ =101 g+ 1S =02
1

Z(b a)’If = ivflljap) oo (25)

For the case of the p-norms (1 < p <o), we have:

£(452) b (1) ‘ (b—a)T .
(b-a)~ [ Zar) < 2= TN iy ey, + 1 = 0
“ a € Y 2(2q+2)5 [ ! [ ! [ o) 7b]717:|

< cb—a) 7
(29 +2)

1" = 17 f 1l b, (26)

U=

For the case of the 1-norm, we have:

f j / fw

é'

—a . .
= 17 = i1 gy + 1 = i g

< (b—a)llf’—iyfmu,b],l. (27)
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PROPOSITION 1. Inequalities (25) and (26) are sharp.

Proof. We show that the constants % and i in (25) are sharp. We assume that the
inequalities hold for A, B > 0 instead of % and %, respectively:

‘ (%7 - /fw

a)2 Hf/_inH[u7%b]7m+ ||f/_i7fH[%b7b]7m

B(b—a)?||f" = ivfljap]

Let y=0 and choose f(x) = \x— 4| on [a b]. Thus we have (h—) 2A(b a)
B(b — a)?*; which yields A > g and B > ;. It implies that the constants 1} and §
(12) are sharp.

We show that the inequalities in (26) are sharp. We assume the inequalities hold
for C,D > 0 instead of % and 1, respectively:

f(452) 1) b
‘(elxz / il \C((z )>1 1" = 1911 g gy, + = ¥F g2 gy, ]
q q
b-a)'c .,
\D(Z )1 1f = ivf Nl @) p-
q
Let y=0 and take f(x) =[x — 5| on [a,b], and we now have
_ )2 PR~ e
(b—a) SZC(b a) ql gD(b a) ql.
4 (2q+2)q (2q+2)4

Take g — 1, then we have (b_4a)2 < 2C(b_4a)2 < D(b_4a)2, which yields C > 1 and

D > 1. It implies that the inequalities in (8) are sharp. [

Let f:[a,b] = K (K =C,R) be a Lebesgue integrable mapping defined on the fi-
nite interval [a,b]. Let Z(f) and .% (f) be their finite Laplace and Fourier transforms,
respectively, defined by

b
z/f(s)efo“"ds7 oeC,

b .
:/f(s)efzmt“'ds, reR.

REMARK 2. (Laplace transform approximations) By rewriting ff f(s)e ™ dt =
Z(f)(e) in (22), (23), and (24), we obtain error bounds in terms of the p-norms

1 < p < o), for the approximation of Z(f)(a) by f atby(p— ¢ e’w
2
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REMARK 3. (Fourier transform approximations) Let u € R. Choose Y =27u in

(25), (26), and (27). By rewriting ff f(t)e 2™t gt = F (f)(u), we obtain error bounds
in terms of the p-norms (1 < p < o), for the approximation of .7 (f)(r) by

f (a—;b> (b—a)e_i”(“er)t.

COROLLARY 4. Let f:[a,b] — C be an absolutely continuous function on [a,b],
a=B+iyeCand 1< p<oo. Let g> 1 be a real number such that %—l—}] =1.

If B # 0, then the following inequalities hold:

lb—a [f(a) +f§]b)] P,
2 eaO( e o eOCt
~e4bp  tboag _ ),-aP
B < [ 5213 ]e Hf/_af“[a’%b]’oo
~4bg _ 1b—a +1le "B
P gzﬁ L otfll ezt 4. (28)

1 —ath —a —b b—a —a —b
<p[2e B _emaB ﬁ—l—TB(e B_e ﬁ)} Hf/—afH[a’b]’N.

For the case of the p-norms (1 < p < o), we have

b—alfla) fO)] [*f@)
’ 2 [eaa + eba eat (29)
. a+b T a+b
<SY¥iala If' = afllig a0y + ¥ 1F" = aflljage g,
_ a+b a+b
< |:‘.Pq,oc <a7T> +LI1(J]F,0£ (Tab)] ||f/_ (XfH[u,h],p
For the case of the 1-norm, we have
b—alf(a)  f(b) b f)
‘ 2 |:euoc + eba - Wdt (30)
boag-a —(agb
ﬁ”f/ af||[a”+h]1+[15 +ﬁ+l Hf/ af||[a+hb]l, ﬂ>0&x—|—%3>a,
11 b — _
<{ g TP —afll, any  H 250 IS 0 f a4y 10 B <O & xt g <D,
bt [P f = aufl o)+ € P IS = 0 sy | otherwise,
atb
[1% P4 Le —“ﬁ“]llf’ & fllias) 15 B>0&x+ﬁ/

Ly (D 4 bt | — g1, B < 0 &ext <D,
_ [ —aB | - bﬁ] I _af”[ab]l’ otherwise,

N
@l_|
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If B =0, then the following inequalities hold
b—alfla)  [f(b) b f(t)
‘ 2 [eiay+eiby _/a Wdt
< 0=l (I = 0fll gty + 17 =0 g . 31
1
< 3= aPIf = 1 la
For the case of the p-norms (1 < p < ), we have
b—alf(a)  [f(b) b f)
' 2 [eiay+eiby _/a Wdt
(b—a)'c
< I = 8 g oy + I = S s, 32)
2(2g+2)7
_ -
< If' = ¥flliasp
(2g+2)7
For the case of the 1-norm, we have
b—alfl@  fO)]_ [0,
2 elay eiby eat
b—a . (33)
<2 I =il o i I = laze .1
<@=a)llf = ivfllas

PROPOSITION 2. The inequalities (31) and (32) are sharp.

The proof follows similarly to that of Proposition 1; and we omit the proof. It
follows from Proposition 2 that inequalities (19), and (17) are sharp

REMARK 4. (Laplace transform approximations) By rewriting ff f(s)e=*dt =
Z(f)(e) in (28), (29), and (30), we obtain error bounds in terms of the p-norms

(1 < p < ), for the approximation of .Z(f)(c) by b%“ [f( ) 4 [8) )}

a0 oho

REMARK 5. (Fourier transform approximations) Let u € R. Choose y = 27u in
(31), (32) and (33). By rewriting fff(t)e’z’”“’ dt (f)(u), we obtain error bounds
in terms of the p-norms (1 < p

o), for the approximation of % (f)(¢) by

el 10)]

2 e2ami e2b7m'
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4. Some new and refined Ostrowski and trapezoid type inequalities

Using the results in Section 2, we obtain inequalities of Ostrowski and trapezoid
type; and we present the result in the following subsections.

4.1. Refinements of Ostrowski’s inequalities

If o« =0 in Corollary 1, Theorems 6 and 7, respectively, then we have refinements
for the Ostrowski inequality, as follows:

r06-a)- [ g0

3 [~ g+ (b—x)zuf’uxb uE
< (Hﬁ 1 o+ L 1 e P> 1 2 +E=1, 34
(g+1)7 . g+ )
(= @)1 f a1 + B =0)1F |15
46—+ (x—252) ]||f'||[ab]m,
q+1 g+l
<\ LT Ty P>l 4=l 9
(g+ )
(b= )| liapp1

for any x € [a,b]. The constants in cases 1 and 2 in (34) and (35) are sharp (cf. Propo-
sition 1).
4.2. New Ostrowski type inequalities

Let hq(t) =e™ for ¢ € [a,b]. If f(t) = g(t)hy(t) = g(t)e™ in Theorem 6, Corol-
lary 1, and Theorem 7, then we have the Ostrowski inequalities: If B # 0, we have

\g<x><b—a>— [ st <

<[ ola,x) +¥, 0 (x,0)] g halliap),ps (36)

‘.Pt;a(a7x)”g/ha”[a,x],p +‘.Pt;0£(x7b) Hglha H [x.b].p

Wherep>1and%+é:1,

(37)

e PBL{(b—x)B—1]e P
l6'halln o + Sl ﬁz’ L

1 —a —b a+b —X
<E[e Bie ﬁ+z<< 5 —x)ﬂ—l)e ﬁ]g’ha||[a7b]7m,

/]
= |
[\
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and
b
- [ g (38)

L ,—(ap+1) H h H +(b—x)e ﬂcﬁH h I B>0& +lcg
B 8 o uxl 8 Na xh NE) a ﬁ X,

< (X Cl) XﬁthOCHuxl'i__/}e (bB+1) Hg/hOCHxh 17ﬁ<0&b+ﬁ/
(x—a)e xﬁHglhaHa,x,l‘F(b x)e xﬁthaHxJ,J, otherwise,
[pe P+ (b~ w*wmgwmmu7ﬁ>0&a+g<x

< [(x a)e_Xﬁ+ [3 bﬁ+1]||g/h0€Huh 17ﬁ<0&b+ﬁ =Z X
(b—a)e P||g'hall (40,1 otherwise,

for x € [a,b]. If B =0, then we have

-0~ [ s

2= a)? g hall g e+ (0 — %) hall ) ) »
x—a %1 (hf)C)%l / 1 1
<9 ghallogp + L Ighalln P> 1 G =1 (9
q
(x—a)l|g"heall g1 + (B —x)llg"hall e p) 1
[é(b—a>2+(x—%) }nghan[ab]m,
< !
X ()C a) q +(b1 q thaHab p>l7l+l:1, (40)
(q+1)7 b
(b—a)llg'hal @)1,

forany x € [a,b].

4.3. Refinements of the trapezoid inequalities

If a =0 in Corollary 2, Theorems 8 and 9, respectively, then we have refinements
for the trapezoid inequality as follows:

b
r@-a -9 [ 10

%[<x—a>2||f'||[“] (b—x)zuf/uxh oy
< (j“); 1 s+ 2 1 e P> 1, 542 =1, @D
q+
(x—a)[|f a1 + (b~ x>||f||[xb]1
[h- a> ( — 2211y e
q+ q+1
< wa T oy 1y @
(+1)
(b= a)f lasL1
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for any x € [a,b]. The constants in cases 1 and 2 in (41) and (42) are sharp (cf. Propo-
sition 2).

4.4. New trapezoid type inequalities

Let hy(t) = e™ fort € [a,b]. If f(t) = g(t)ha(t) = g(t)e* in Theorem 8, Corol-
lary 2, and Theorem 9, then we have the trapezoid inequalities: If 8 # 0, then we
have

b
g@—a)+g(b) b=~ [ gdr

< qu (X(a X)Hg hOCH lax], +LPtJ]r,O£(x7b)HglhOCH[x,h],p (43)
< [\P (a x)+\P+ (va)] Hg/ha”[a,b],pv

1,1 _
where p > 1 and 5"'5—1’

b

(-0 +e0) o) - [ sl (@4

e B4 (x—a)B—1]e ™ e B _[(b—x e~ B
e s
< 5z [+ (= @B 11 (b= + 11e™] /b

and
b
s(@r—a)+g(b)(b—x)— [ gl0ydr (45)

—a)eP||g'ho g1 +%;€*(xﬁ+l)Hg’haH[x,b B>0&x+ 4% >a,
e P+ ||g/hama7x},1+(b—x)e*bﬁug’hauw,l,ﬁ <0&x+ % <b,
(x a)e P||g'hg | g1 + (b —x)e P g'hg | p)1, otherwise,
[(x—a)e “ﬁ+ﬁ€ BV Ig'helljgp 10 B >0&x+ﬁ >a,
[L5e OB 4 (b —x)e™P]|g'halljap.1, B <O &x+5 <D,
[

(x—a)e P 4+ (b—x)e "P]||g'he |l (4p),1, otherwise,

—
m|" ><

2
<

<

<{
for x € [a,b]. If B =0, then

b
gla)(x—a)+g(b)(b—x)~ [ g(t)ar
%[(lea)zﬂg/haﬂ[a,x], (b—x)z\\g’haﬂ[xb] o)
q
<{ 2T g £ 0T S, ielo1 @6
+1% H OtH[a.,x],p Y H Ot‘xb] )4 v p Ty , (46)
(x—a)llghall a1 + (0 —x)| "ol [x5).15
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(46— a2+ (= 252)*) 18Rl

< § LT o, p>1 Gty=1 @7
(qul)? [a, ]7177 ' p q ’
(b—a)lghalljas.1,
for x € [a,b].
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