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Some inequalities associated with the
Hermite–Hadamard inequalities for operator

h-convex functions

V. Darvish, S. S. Dragomir, H. M. Nazari, and A. Taghavi

Abstract. We introduce the concept of operator h-convex functions
for positive linear maps, and prove some Hermite–Hadamard type
inequalities for these functions. As applications, we obtain several trace
inequalities for operators.

1. Introduction and preliminaries

Let B(H) stand for the C∗-algebra of all bounded linear operators on a
complex separable Hilbert space H with inner product 〈·, ·〉. An operator
A ∈ B(H) is positive if 〈Ax, x〉 ≥ 0 for all x ∈ H; in this case we write
A ≥ 0. Let B(H)+ stand for the set of all positive operators in B(H).

A linear map Φ : B(H)→ B(H) is positive if Φ(A) ≥ 0 whenever A ≥ 0,
and Φ is said to be unital if Φ(I) = I.

The maps Φ : B(H) → B(H), defined by Φ(A) = X∗AX, where X is an
operator in B(H), and Φ(A) = A∗ for A ∈ B(H) are examples of positive
linear maps.

We say that a linear map is invertible preserving if Φ(A) is invertible
whenever A is invertible.

Let A be a self-adjoint operator in B(H). The Gelfand map establishes
a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous
functions defined on the spectrum of A, denoted Sp(A), and the C∗-algebra
C∗(A) generated by A and the identity operator 1H on H as follows (see,
for instance, [8, page 3]).
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For any f, g ∈ C(Sp(A))) and any α, β ∈ C, we have:

• Φ(αf + βg) = αΦ(f) + βΦ(g);
• Φ(fg) = Φ(f)Φ(g) and Φ(f̄) = Φ(f)∗;
• ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A) |f(t)|;
• Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for
t ∈ Sp(A).

With this notation, we define

f(A) = Φ(f) for all f ∈ C(Sp(A)),

and we call it the continuous functional calculus for a self-adjoint operator
A.

If A is a self-adjoint operator and f is a real-valued continuous function
on Sp(A), then, whenever f(t) ≥ 0 for any t ∈ Sp(A), one has f(A) ≥ 0, i.e.,
f(A) is a positive operator on H. Moreover, if both f and g are real-valued
functions on Sp(A), then the following important property holds:

whenever f(t) ≥ g(t) for any t ∈ Sp(A), one has f(A) ≥ g(A),

in the operator order of B(H).

The following inequality holds for any convex function f defined on R:

(b− a)f

(
a+ b

2

)
≤
∫ b

a
f(x)dx ≤ (b− a)

f(a) + f(b)

2
, a, b ∈ R. (1)

It was first discovered by Hermite in 1881 in the journal Mathesis (see [11]).
But this result was nowhere mentioned in the mathematical literature and
was not widely known as Hermite’s result (see [14]).

Beckenbach [1], a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by Hadamard in 1893. In
1974, Mitrinovič [11] found Hermite’s note in Mathesis. Since (1) was known
as Hadamard’s inequality, the inequality is now commonly referred to as the
Hermite–Hadamard inequality.

Let X be a vector space, x, y ∈ X,x 6= y. Define the segment

[x, y] := {(1− t)x+ ty : t ∈ [0, 1]}.

We consider the function f : [x, y]→ R and the associated function

g(x, y) : [0, 1]→ R, g(x, y)(t) := f [(1− t)x+ ty], t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].
For any convex function defined on a segment [x, y] ⊂ X, we have the

Hermite–Hadamard integral inequality (see [4, page 2], [5, page 2])

f

(
x+ y

2

)
≤
∫ 1

0
f [(1− t)x+ ty]dt ≤ f(x) + f(y)

2
, (2)
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which can be derived from the classical Hermite–Hadamard inequality (1)
for the convex function g(x, y) : [0, 1]→ R.

Since f(x) = ‖x‖p (x ∈ X and 1 ≤ p <∞) is a convex function, we have
the following norm inequality from (2) (see [13]):∥∥∥∥x+ y

2

∥∥∥∥p ≤ ∫ 1

0
‖(1− t)x+ ty‖pdt ≤ ‖x‖

p + ‖y‖p

2
for any x, y ∈ X.

A real-valued continuous function f on an interval I is said to be operator
convex (operator concave) if

f((1− λ)A+ λB) ≤ (≥)(1− λ)f(A) + λf(B)

(in the operator order) for all λ ∈ [0, 1] and for all self-adjoint operators A
and B on a Hilbert space H, whose spectra are contained in I (see [6]).

As an example of such functions, we note that f(t) = tr is operator convex
on (0,∞) if either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, and is operator concave on
(0,∞) if 0 ≤ r ≤ 1 (see [2, p. 147]).

Motivated by the above results, Dragomir [6] investigated the operator
version of the Hermite–Hadamard inequality for operator convex functions.
His result asserts that if f : I → R is an operator convex function on the
interval I, then, for any self-adjoint operators A and B with spectra in I,
the following inequalities hold:

f

(
A+B

2

)
≤ 1

2

[
f

(
3A+B

4

)
+ f

(
A+ 3B

4

)]
≤
∫ 1

0
f ((1− t)A+ tB) dt

≤ 1

2

[
f

(
A+B

2

)
+
f(A) + f(B)

2

]
≤ f(A) + f(B)

2
.

(3)

To prove the above inequalities, the author considered the convex function
ϕ(t) = 〈f(tA+(1−t)B)x, x〉 on [0, 1] for any x ∈ H with ‖x‖ = 1, self-adjoint
operators A and B with spectra in I, and an operator convex function f .

By considering ϕ(t) on [14 ,
3
4 ], we can give a refinement for (3) as follows:

ϕ

(
1
4 + 3

4

2

)
≤ 2

∫ 3
4

1
4

ϕ(t)dt ≤
ϕ(14) + ϕ(34)

2
.

So,〈
f

(
A+B

2

)
x, x

〉
≤ 2

∫ 3
4

1
4

〈f(tA+ (1− t)B)x, x〉dt
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≤ 1

2

[〈
f

(
A+ 3B

4

)
x, x

〉
+

〈
f

(
3A+B

4

)
x, x

〉]
.

The continuity of f implies that for any x ∈ H with ‖x‖ = 1,∫ 3
4

1
4

〈f(tA+ (1− t)B)x, x〉dt =

〈∫ 3
4

1
4

f(tA+ (1− t)B)dtx, x

〉
.

Therefore, for self-adjoint operators A and B with spectra in I,

f

(
A+B

2

)
≤ 2

∫ 3
4

1
4

f(tA+ (1− t)B)dt

≤ 1

2

[
f

(
A+ 3B

4

)
+ f

(
3A+B

4

)]
.

Another class of functions considered by Hudzik and Maligranda [10] are
s-convex functions which are defined as follows. A function f : R+ → R,
where R+ = [0,∞), is said to be s-convex in the second sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y),

for all x, y ∈ [0,∞), λ ∈ [0, 1], and for a fixed s ∈ (0, 1]. The class of s-convex
functions in the second sense is usually denoted by K2

s .
In [7], Dragomir and Fitzpatrick proved the following Hermite–Hadamard

type inequality for s-convex functions in the second sense. Let f : [0,∞)→
[0,∞) be an s-convex function in the second sense, where s ∈ (0, 1], and let
a, b ∈ [0,∞) such that a < b. If f ∈ L1[a, b], then the following inequalities
hold:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

s+ 1
.

In order to extend this class of functions to operators, Ghazanfari [9]
defined operator s-convex functions as follows. Let I be an interval in [0,∞).
A continuous function f : I → R is said to be operator s-convex on I for
operators in B(H)+ if

f((1− λ)A+ λB) ≤ (1− λ)sf(A) + λsf(B),

(in the operator order in B(H)) for all λ ∈ [0, 1], for all positive operators A
and B in B(H)+ whose spectra are contained in I, and for a fixed s ∈ (0, 1].
The author proved that if f : I → R is an operator s-convex function on the
interval I ⊆ [0,∞), then the following inequalities hold:

2s−1f

(
A+B

2

)
≤
∫ 1

0
f((1− t)A+ tB)dt ≤ f(A) + f(B)

s+ 1
.

In this paper, we introduce the concept of operator h-convex functions
and obtain some Hermite–Hadamard type inequalities for this class of func-
tions for positive linear maps. These results lead us further to obtain some
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inequalities for the trace functional of operators. Some of these inequalities
improve recent results.

2. Inequalities for operator h-convex functions of positive
linear maps

Let I, J ⊆ R and (0, 1) ⊆ J . Suppose that f and h are real non-negative
functions on I and J , respectively.

Definition 2.1 (see [18]). Let h : J → R be a non-negative function with
h 6≡ 0. We say that f : I → R is an h-convex function (or that f belongs to
the class SX(h, I)) if f is non-negative, and for all x, y ∈ I and λ ∈ [0, 1] we
have

f(λx+ (1− λ)y) ≤ h(λ)f(x) + h(1− λ)f(y). (4)

If inequality (4) is reversed, then f is said to be h-concave, and we write
f ∈ SV (h, I).

It is clear that if h(λ) = λ, then all non-negative convex functions belong
to SX(h, I), and all non-negative concave functions belong to SV (h, I); if
h(λ) = λs, where s ∈ (0, 1], then K2

s ⊆ SX(h, I).

The following inequalities due to Sarikaya [15] give Hermite–Hadamard
type inequalities for h-convex functions. Let f ∈ SX(h, I), a, b ∈ I, with
a < b and f ∈ L1([a, b]). Then

1

2h(12)
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ (f(a) + f(b))

∫ 1

0
h(t)dt. (5)

Now, we introduce the concept of an operator h-convex function.

Definition 2.2. Let A, B ∈ B(H) be two self-adjoint operators whose
spectra are contained in I. A continuous function f : I → R is said to be
operator h-convex on I if, for all λ ∈ [0, 1],

f(λA+ (1− λ)B) ≤ h(λ)f(A) + h(1− λ)f(B).

Lemma 2.3. If f is an operator h-convex function, then for any x ∈ H
with ‖x‖ = 1, the function

ϕx,A,B(t) = 〈f(tA+ (1− t)B)x, x〉
is an h-convex function on [0, 1].

Proof. Let f be an operator h-convex function. Then for u, v ∈ [0, 1] we
have

ϕx,A,B(tu+ (1− t)v) = 〈f [(tu+ (1− t)v)A+ (1− (tu+ (1− t)v)B)]x, x〉
= 〈f(t[uA+ (1−u)B] + (1−t)[(vA+ (1−v)B)]x, x〉
≤ h(t)〈f(uA+ (1− u)B)x, x〉
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+ h(1− t)〈f(vA+ (1− v)B)x, x〉
= h(t)ϕx,A,B(u) + h(1− t)ϕx,A,B(v).

So, ϕx,A,B is an h-convex function on [0, 1]. �

Theorem 2.4. Let f be an operator h-convex function. Then

1

2h(12)
f

(
A+B

2

)
≤
∫ 1

0
f(tA+ (1− t)B)dt ≤ (f(A) + f(B))

∫ 1

0
h(t)dt,

for self-adjoint operators A,B ∈ B(H) whose spectra are contained in I.

Proof. Since f is operator h-convex function, by Lemma 2.3 we have that

ϕx,A,B(t) = 〈f(tA+ (1− t)B)x, x〉
is h-convex function on [0, 1]. So, by (5) we obtain

ϕx,A,B(12)

2h(12)
≤
∫ 1

0
ϕx,A,B(t)dt

≤ (ϕx,A,B(0) + ϕx,A,B(1))

∫ 1

0
h(t)dt.

Hence,

1

2h(12)

〈
f

(
A+B

2

)
x, x

〉
≤
∫ 1

0
〈f(tA+ (1− t)B)x, x〉dt

≤ (〈f(A)x, x〉+ 〈f(B)x, x〉)
∫ 1

0
h(t)dt

for any x ∈ H with ‖x‖ = 1 and self-adjoint operators A and B with spectra
in I.

By the continuity of f , we have∫ 1

0
〈f(tA+ (1− t)B)x, x〉dt =

〈∫ 1

0
f(tA+ (1− t)B)dtx, x

〉
.

The proof is complete. �

Let I = [0,∞) in the above theorem. Since Φ is a positive linear map and
the spectrum of a positive operator is in [0,∞), we have the following result.

Corollary 2.5. Let f : [0,∞)→ R be an operator h-convex function for
operators in B(H)+, and let Φ : B(H) → B(H) be a positive linear map.
Then

1

2h(12)
f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt

≤ [f(Φ(A)) + f(Φ(B))]

∫ 1

0
h(t)dt.
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We can obtain some results for positive linear operators when h(t) = ts

and h(t) = t.
If h(t) = ts for some s ∈ (0, 1] in Corollary 2.5, then we have

2s−1f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt

≤ f(Φ(A)) + f(Φ(B))

s+ 1
.

(6)

If h(t) = t in Corollary 2.5, then

f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt

≤
(
f(Φ(A)) + f(Φ(B))

2

)
.

(7)

Recall that AB +BA is called the symmetrized product of A and B.

Example 2.6 (see [9]). Let S = {A,B ∈ B(H)+;AB + BA ≥ 0}. Then
the continuous function f(t) = ts, 0 < s ≤ 1, is an operator s-convex
function on [0,∞) for operators in S.

It should be mentioned here that f(t) = ts is not necessarily operator s-
convex function for s ∈ (0, 1] without the additional condition AB+BA ≥ 0.
For showing this, let

A =

[
1 2
2 4

]
and B =

[
1 −2
−2 4

]
.

One can check that AB +BA � 0 and (A+B)
1
2 
 A

1
2 +B

1
2 .

It is obvious that f(t) = ts, for s ∈ (0, 1], is an operator s-convex function
on [0,∞) if the C∗-algebra B(H) is commutative. Uchiyama [17, Theorem 1]
showed the relation between commutativity and symmetrized product of A
and B. Later Nagisa et al. [12, Theorem 2] gave a weaker condition for
two commuting operators. They proved that an unital C∗-algebra A is
commutative if and only if positive operators A and B in A satisfy AB +
BA ≥ 0 and AB2 +B2A ≥ 0.

By inequalities (6) and Example 2.6, we have that

2s−1
(

Φ

(
A+B

2

))s

≤
∫ 1

0
(Φ(tA+ (1− t)B))sdt ≤ (Φ(A))s + (Φ(B))s

s+ 1

for A,B ∈ B(H)+ such that AB +BA ≥ 0.

The following Jensen type inequality is due to Davis [3].

Lemma 2.7. Let Φ : B(H)→ B(H) be a unital positive linear map, and
let f be an operator convex function on [0,∞). Then, for every A ≥ 0,

f(Φ(A)) ≤ Φ(f(A)).
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Now, by applying the above lemma and inequalities (7), we obtain the
following inequalities for a unital positive linear map Φ:

f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt ≤ Φ

(
f(A) + f(B)

2

)
,

where f is an operator convex function on [0,∞).
Also, by making use of the following lemma, we can improve the above

inequalities for a specific interval I ⊆ [0,∞). The following lemma is well
known. However, for reader’s convenience, we provide a short proof.

Lemma 2.8. Let Φ : B(H)→ B(H) be a unital linear invertible preserv-
ing map. Then Φ is spectrum compressing (i.e., Sp(Φ(A)) ⊆ Sp(A)).

Proof. If A ∈ B(H) and λ ∈ C, then Φ(λI − A) = λI − Φ(A). Since Φ
is invertible preserving map, λ /∈ Sp(Φ(A)) whenever λ /∈ Sp(A). Hence,
Sp(Φ(A)) ⊆ Sp(A). �

By Corollary 2.5 and the above lemma, we have the following corollary.

Corollary 2.9. Let f : I ⊆ [0,∞)→ R be an operator s-convex function
for operators in B(H)+ with Sp(A),Sp(B) ⊆ I, and let Φ : B(H) → B(H)
be a unital positive linear invertible preserving map. Then

2s−1f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt ≤ f(Φ(A)) + f(Φ(B))

s+ 1
.

If s = 1 in the above corollary, then we have

f

(
Φ

(
A+B

2

))
≤
∫ 1

0
f(Φ(tA+ (1− t)B))dt ≤ Φ

(
f(A) + f(B)

2

)
for an operator convex function f .

3. Some trace inequalities for operators

In this section, by applying inequalities from Section 2, we obtain some
trace inequalities.

We begin with some basic properties of the trace for operators. Let {ei}i∈I
be an orthonormal basis of H. We say that A ∈ B(H) is trace class if

‖A‖1 :=
∑
i∈I
〈|A|ei, ei〉 <∞.

The definition of ‖A‖1 does not depend on the choice of the orthonormal
basis {ei}i∈I . We denote by B1(H) the set of trace class operators in B(H).

We define the trace of a trace class operator A ∈ B1(H) to be

Tr(A) :=
∑
i∈I
〈Aei, ei〉, (8)
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where {ei}i∈I is an orthonormal basis of H. Note that this definition coin-
cides with the usual definition of the trace if H is finite-dimensional. We
observe that the series (8) converges absolutely and it is independent from
the choice of basis.

The following result collects some properties of the trace.

Theorem 3.1. The following statements hold:
(i) If A ∈ B1(H), then A∗ ∈ B1(H) and Tr(A∗) = Tr(A);
(ii) If A ∈ B1(H) and T ∈ B(H), then AT, TA ∈ B1(H), Tr(AT ) =

Tr(TA), and |Tr(AT )| ≤ ‖A‖1‖T‖;
(iii) Tr(·) is a bounded linear functional on B1(H) with ‖Tr ‖ = 1;
(iv) If A,B ∈ B1(H), then Tr(AB) = Tr(BA).

For the theory of trace functionals and their applications, the reader is
referred to [16].

Example 3.2. Let Φ : B1(H) → R+, where Φ(A) = Tr(A). Then Φ is
a positive linear map which preserves invertibility. Moreover, for the finite-

dimensional case, Φ(A) = Tr(A)
n is also unital, where n is the size of the

matrix A.

If Φ(A) = Tr(A) in inequalities (6), then we have

(Tr(A+B))s

2
≤
∫ 1

0
(Tr(tA+ (1− t)B))sdt ≤ (Tr(A))s + (Tr(B))s

s+ 1

for s ∈ (0, 1] and A,B ∈ B1(H)+.
Similarly, by making use of (7) for operator convex functions, we obtain

the inequalities

f

(
Tr

(
A+B

2

))
≤
∫ 1

0
f(Tr(tA+ (1− t)B))dt ≤ f(Tr(A)) + f(Tr(B))

2
.

(9)
Since f(t) = tr is an operator convex function on (0,∞) for −1 ≤ r ≤ 0

and 1 ≤ r ≤ 2, inequalities (9) imply(
Tr

(
A+B

2

))r

≤
∫ 1

0
(Tr(tA+(1−t)B))rdt ≤ (Tr(A))r + (Tr(B))r

2
. (10)

If r = 2 in inequalities (10), then we have(
Tr

(
A+B

2

))2

≤
∫ 1

0
(Tr(tA+(1−t)B))2dt ≤ (Tr(A))2 + (Tr(B))2

2
. (11)

It is well known that the trace functional is sub-multiplicative, that is, for
operators A and B in B1(H)+,

0 ≤ Tr(AB) ≤ Tr(A) Tr(B).
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So, by the above inequality we have, for all A ∈ B1(H)+,

Tr(A2) ≤ (Tr(A))2. (12)

Applying inequality (12) to the left side of inequality (11), we have

Tr

((
A+B

2

)2
)
≤
∫ 1

0
(Tr(tA+ (1− t)B))2dt ≤ (Tr(A))2 + (Tr(B))2

2
.

Let M+
n stand for all positive matrices in Mn, and let λ(A) denote the set

of all eigenvalues of a matrix A. If A is a positive semi-definite matrix, then
all of its eigenvalues are non-negative.

As mentioned in Example 3.2, Φ(A) = Tr(A)
n is a unital positive linear

invertible preserving map. By Corollary 2.9, we have the following result.

Theorem 3.3. Let f : I ⊆ (0,∞) → R be an operator convex function

for matrices in M+
n with λ(A), λ(B) ⊆ I, and let Φ(A) = Tr(A)

n be a map
from Mn to R+. Then

f

(
Tr

(
A+B

2n

))
≤
∫ 1

0
f

(
Tr

(
tA+ (1− t)B

2n

))
dt ≤ Tr

(
f(A) + f(B)

2n

)
.

(13)

Moreover, by inequalities (13), for the operator convex function f(t) = tr

we obtain that(
Tr

(
A+B

2n

))r

≤
∫ 1

0

(
Tr

(
tA+ (1− t)B

2n

))r

dt ≤ Tr

(
Ar +Br

2n

)
.

So, we have

(Tr(A+B))r ≤
∫ 1

0
(Tr(tA+ (1− t)B)rdt ≤ (2n)r−1 Tr(Ar +Br)

for −1 ≤ r ≤ 0 or 1 ≤ r ≤ 2.
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[13] J. E. Pečarić and S. S. Dragomir, A generalization of Hadamards inequality for iso-
tonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103–107.
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