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Abstract

A copula is a function which joins (or ‘couples’) a bivariate distribution function to its
marginal (one-dimensional) distribution functions. In this paper, we obtain
Chebyshev type inequalities by utilising copulas.
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1 Introduction
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its
marginal (one-dimensional) distribution functions. Mathematically defined, a copula C is
a function C: [0,1]2 — [0,1] with the following properties:

(C1) C(#,0)=C(0,u) =0, C(u,1) = u, and C(1,u) = u for all u € [0,1],

(C2) C(ug,v1) — Cug, va) — Cluz,v1) + Clug, v2) > 0 for every uy, us, v1,v2 € [0,1] such

that u; < uy and v; < vs.

Property (C2) is referred to as the 2-increasing property, or moderate growth [1]. The
2-increasing property implies the following properties for any copula C:

(C4) Cisnondecreasing in each variable;

(C5) C satisfies the Lipschitz condition: for all u;, uy,v1, v, € [0,1],

|Cluz,v2) — Clur,v1)| < lup — | + [va — vl

For further reading on copulas, we refer the readers to [2] and [3].

While copulas join probability distributions, £-norms join membership functions of
fuzzy sets, and hence combining probabilistic information and combining fuzzy informa-
tion are not so different [4]. Mathematically defined, a -norm T is a function T : [0,1]*> —
[0,1] with the properties [4]:

(T1) Commutativity: T'(x,y) = T(y,x) for all x,y € [0,1],

(T2) Associativity: T'(x, T(y,2)) = T(T (x,9),z) for all x,7,z € [0,1],

(T3) Monotonicity: T(x,y) < T(x,z) for all x,y,z € [0,1] withy <z,

(T4) Boundary condition: T'(x,1) = T(1,x) = x, T(x,0) = T(0,x) = x for all x € [0, 1].

A copula is a t-norm if and only if it is associative; conversely, a £-norm is a copula if
and only if it is 1-Lipschitz [1]. The three main continuous ¢-norms, namely the minimum
operator (M(x,y) = min{x, y}), the algebraic product (P(x,y) = xy), and the Lukasiewicz ¢-
norm (W(x,y) = max{x + y — 1,0}), are copulas.
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
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The first importance of these copulas is given by the following: Let C be a copula, then
W(u,v) < C(u,v) < M(u,v) forallu,ve[0,1]. (1.1)

The above inequality is referred to as the Fréchet-Hoeffding bounds for copulas and pro-
vides a basic inequality for copulas. Inequality (1.1) also holds in the contexts of probability
theory and fuzzy probability calculus [1] and is referred to as the Bell inequalities. Further
inequalities for copulas of Bell type are given in [1]. Other inequalities for copulas are given
in [5] in relation to a family of continuous functions L from [0, c0] x [0, c0] onto [0, 00]
which are nondecreasing in each variable with lim,_, « L(x,x) = oco.

Egozcue et al. [6] established Griiss type bounds for covariances by assuming the depen-
dence structures such as quadrant dependence and quadrant dependence in expectation.
They utilise copulas to illustrate these dependent structures.

In the same spirit to [6], it is our aim here to establish inequalities by utilising copulas.
Firstly, we note the connection between the 2-increasing property and the Chebyshevian
mappings. A mapping F : [a,b]> — R is called Chebyshevian on [a,b)? if the following
inequality is satisfied:

F(x,x) + F(y,y) > F(x,y) + F(y,x) forallx,y € [a,b].

Let C be a copula, %,y € [0,1], and set u; = up = x and v; = v, = y in property (C2) (2-
increasing property) above to obtain C(x,x) — C(x,y) — C(y,x) + C(y,y) > 0, or equivalently,

C(x,x) + C(y,y) = C(x,9) + C(y,%), (1.2)

i.e. C is Chebyshevian on [0,1]%.

Dragomir and Crstici [7] established the relationship between two synchronous func-
tions and Chebyshevian mappings. Two functions f,g : [4,b] — R are synchronous on
[a, b] if they have the same monotonicity, that is,

(f&®) -f»)(ex) —g(») =0 forallx,y e [a,b].
The relationship between the two notions is given in the following result.

Proposition 1 (Dragomir and Crstici [7]) Iff, g are synchronous on [a,b] and F : [a, b]* —
R, where F(x,y) = f(x)g(y), then F is Chebyshevian on [a, b)>.

Consequently, the following Chebyshev type inequalities can be stated (see also Leh-

mann [8, Lemma 2]).
Proposition 2 (Dragomir and Crstici [7]) Let p: [a, b] — R be integrable and nonnegative

on |a,b].
(1) Let F:[a,b]> — R.IfF is Chebyshevian on |a,b)?, then

[ () dx f P)F (5, 2) dx = f / PPO)E () dxdy 13)

forall t € [a,b].
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(2) Letf,g:[a,b] — R be integrable on [a,b). If f and g are synchronous on [a, b], then
we have Chebyshev's inequality

f () dx f P (x)g(x) dx > / P () dx / ple)g(x) dx (14)
forall t € [a,b].

If f,g: [a,b] — [0,1] are synchronous, then by Proposition 1, the product copula given
by

P(f(x),g() =f(®)g), %,y € [a,b]

is Chebyshevian on [a,b]?, as a consequence of the 2-increasing property. If we define
a function F : [a,b]> — [0,1] by F(x,y) = P(f(x),g(»)) = f(x)g(y), and if p : [a,b] — R is
integrable and nonnegative, then Proposition 2 gives us

/ px)dx / pX)P(f (%), g(x)) dx > / f p)py)P(f (x),g(y)) dx dy.

Motivated by this observation, we aim to obtain other types of Chebyshev inequalities by
utilising (the general definition of) copulas instead of the product copula as demonstrated
above. Specifically, we provide inequalities for the dispersion of a function f defined on a
measure space (€2, X, u), with respect to a positive weight w on Q with fQ w®)du(t) =1,
that is,

(Lo (e

2 Chebyshev type inequalities
The 2-increasing property of copulas gives us the following result.

Proposition 3 Let C:[0,1]> — [0,1] be a copula and p : [0,1] — R be an integrable func-
tion. Then

(1) C is Chebyshevian on [0,1]2.
(2) If p is nonnegative, then

/0 pl) dx /0 ) Cloy ) dx > /0 /0 PIP()Clx,y) dxdy.

Proof follows by (1.2) and Proposition 2 part 1.
Now we state a more general form of this inequality. We start with the following lemma.

Lemmal Letf,g: [a,b] — [0,1] be two synchronous functions and C be a copula. Then
F:a,b)* — [0,1] defined by

F(x,9) := C(f(x), ()

is Chebyshevian on [a, b)?.
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Proof Since f and g are synchronous, they have the same monotonicity on [a,b]. Let A
be the collection of subsets of [4, b] where f and g are both nondecreasing. Suppose that
x,y € A. Without loss of generality, let x < y, and set

uy =f(x), uy =f(»), v =gx), Ve =g().

Thus, 3 < u; and v; < v, since f and g are nondecreasing. Therefore, the 2-increasing
property of C gives

0 < C(u1,v1) — Clun, v2) — Clua, v1) + Clua, v2)

= C(f(x),g) - C(f(x),g») — C(f(»),g®)) + C(f (), (7))
= F(x,x) = F(x,y) = F(y, %) + F(5,9).

Suppose that x,y € [a, b] \ A. Without loss of generality, let x <3y,
L1 :f(y)’ U :f(x)r 1 :g()’), Va :g(x)

Thus, u; < uy and v; < v, since f and g are decreasing. Therefore, the 2-increasing prop-
erty of C gives

0 < C(uy,v1) — Clu,v2) — Clug, v1) + Clua, v2)
= C(f(1),£) - C(f),gw)) — C(f(x),g)) + C(f (x),g(x))
= F(y,y) = F(9,%) — F(x,y) + F(x, x).

We show that F is Chebyshevian in both cases. O
Lemma 1 and Proposition 2 part 1 give us the following.

Theorem 1 Let C be a copula, f,g : [a,b] — [0,1] be two synchronous functions, p :
[a,b] — R be an integrable function. If p is nonnegative, then

t t
/ plx)dx / Px)C(f(x),g(x)) dx
a a
t t
> [ [ pepIC(oew) dsar
Example 1 In this example, we obtain some Chebyshev type inequalities by choosing
some examples of copulas. Let f,g : [a4,b] — [0,1] be two synchronous functions, and

p: [a,b] — R be a nonnegative integrable function. Theorem 1 and (1.1) give us the fol-

lowing inequalities:

[ [ poowtor maxts + 2 1.0} s

< /tp(x)dx/tp(x)max{f(x) +g(x)-1,0} dx
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< / i) dx / PEC( (), g()) dx
5[ p(x)dxf p(x) min{f (x),g(x) } dx. (2.1)

The first inequality follows from Theorem 1 (by choosing the W copula) and the rest fol-
lows from the Fréchet-Hoeffding bound (1.1). Similarly, we have

/ t / plply) max{f () + g0) ~ 1,0} dxdy
< / t / tp(x)p(y)C(f (x),8(y)) dxdy
< [ [ powtminisetn) avay
< / ' plo) dx / ') min{f (), g} . (2.2)

The last inequality follows from Theorem 1 (by choosing the M copula), and the rest fol-
lows from the Fréchet-Hoeffding bounds (1.1).

In what follows, we generalise Theorem 1 and Example 1.

Theorem 2 Let (2, X, ) be a measure space, [ : Q — [0,1] be a measurable function, and
C be a copula. Then F : Q* — [0,1] defined by

F(x,y) := C(f(x).f())
is Chebyshevian on Q*. We also have, for a nonnegative integrable function p: Q@ — R,
| Pyt [ pc(r. ) duto
Q Q

> / / PEPOIC(F),S0)) di@) dpa(y).
QJIQ

Proof The Chebyshevian property of F follows from the 2-increasing property of copulas.
Therefore, we have F(x,x) + F(y,y) > F(x,y) + F(y,x) for all x,y € Q, or equivalently

C(f®),f®) + CFO).f ) = C(fx),f ) + C(f).f (x)).
Multiplying both sides by p(x) and p(y) and taking double integrals over Q2, we have
[ podnts) [ paIC(fw) duto
Q Q
> [ [ pp0)C(r0.f0) disordn
eJa

This completes the proof. O
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Example 2 In this example, we obtain some Chebyshev type inequalities by choosing
some examples of copulas. Let (€2, ¥, 1) be a measure space, f : Q2 — [0,1] be a measur-
able function, and p : 2 — R be a nonnegative integrable function. We have the following
inequalities:
[ [ peopoymax{r) +0) - 1,0} duta) diay
eJa
< [ P duts) [ pla)max{2f(e) -1,0} dias)
Q Q
< [ P duts) [ pWIC().g0) dnto)
Q Q
< [ @) [ po)minfs o))} duts) 23)
and
[ [ powomax{fa) + ¢0) 1,0} dutx) diey
eJa
< [ [ pepoICr@)e0) duts)diy)
< [ [ o) minlf .09} dia) dut)
< [ @ du) [ ey duto 4
We also have the following result.

Theorem 3 Let (2, X, i) be a measure space, f : Q@ — [0,1] be a measurable function. Let
w be a positive weight on Q2 with fQ o(t)du(t) =1. Let C: [0,1]> — [0,1] be a copula. We
have the following inequalities:

[oct.nansc(r( [ oran)s( [ oran))
el Ll [y oo

Proof The 2-increasing property of copulas gives us
Clx,x) + C(r,9) = Clx, ) + C(y,%)

forall x,y € [0,1]. Take x = f(¢) and y = fQ w(t)f (¢) du(t), we have
CFO.f©) + C(f( [ war dum),f( [ war du(ﬂ))
Q Q

2C<f(t),f< / w(tyf(t)du(t))) +C<f< | W(t)f(t)du(t)),f(t)).

Multiplying with w(£) > 0 and integrating over 2 give the desired result. 0

In the next section, we provide further inequalities of this type.
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3 More inequalities
We denote the following:

E,(f) ::/;wadu,
Ko(Cifg) = /Q /Q 0@ )C(f(),¢0)) di() di(),

Hw(f>:=/9wp—/9wfdu‘du=/lef—Ew(f)!du,

where @ : Q@ — [0,00) is p-integrable with [, wdu =1,f,g: Q2 — [0,1] are 1-measurable
and f,g € L,(R), and C: [0,1]?> — [0,1] is a copula.

We denote by D,,(f) the dispersion of a function f defined on a measure space (2, X, ),
with respect to a positive weight w on Q with fQ w(t)du(t) =1, that is,

D(f) = ( / wfzdu—< / wfdu)2>é. (31)

Theorem 4 Let (2, X, i) be a measure space, f,g : Q — [0,1] be measurable functions.
Let w be a positive weight on Q with [, o(t)du(t) =1. Let C: [0,1]* — [0,1] be a copula.
We have the following inequalities:

Ko (Cif,8) - C(Eu(f) Eu(@))|
= /Q/Qw(x)a)()’)|c(f(x),g(y)) - C(Ew(f)’Ew(g)HdpL(x) e

< H,(f) + Hu(g) < Du(f) + Du(g).

Proof Firstly, we have

|Ko(C3f ) = C(Eu(f), Eu(®) |
| [ oWt (C(r).g0) - C(E Eute) diee d“@)‘

S/Q/Qw(x)w(y)yc(f(x)’g(y))_C(Ew(f)rEw(g))’d,u(x)d,u(y),

From the Lipschitz property of copulas, we have

clren)-c( [ eran, [ wgan)| <o~ [ orau

Multiplying with w(x)w(y) > 0 and integrating twice over 2 give

+

e [ wgdu“

|/ w(x)w(w‘c(f(x),g(y))—c( [ oran. [ wgd,L)‘dm) o)

5/Qw"/—/wadu‘du+/s;a)’g—/ﬂwgdli’dﬂ=Hw(f)+Hw(g)'
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Finally, Schwarz’s inequality gives

(Lo~ Lorofo)

([l L)) )

foon o) o[
foron{ o) ([ )
[

that is,
2\ 4
[ e[
Q Q Q Q
= D,(f).
This completes the proof. O

Corollary 1 Let (2, X, 1) be a measure space, f,g : Q@ — [0,1] be measurable functions.
Let w be a positive weight on Q with [, o(t)du(t) =1. Let C: [0,1]*> — [0,1] be a copula. If
f and g satisfy

O<mp<f<M;<1, and 0<myz<g=<M,<],
then we have the inequalities

|Ko(Cif.8) = C(Eu(f) Eu(®))]
= Du(f) + Du(g)
1 1
< i(Mf —my) + E(Mg -mg) <1
The proof follows from Theorem 4 and a Griiss type inequality

D,(f) < %(M—m)sé

for f with the property that 0 < m < f <M < 1. We omit the details.
Recall the notation

%W:LMW,

KMCJg%=A;LwWMMMXﬂ@g@DMA@dM@L
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and introduce the following notation:
Ko(Cif) = [ [ oo0)C(w.10) dus) dut)
QJa

LiCife)= [ wc(f, [ wgdu) i,

L@n= [ wC<f» [ orau)an.

Theorem 5 Let w: Q — [0,00) be p-integrable with [, wdu =1. Let f,g : @ — [0,1] be
w-measurable and f,g € L,(Q). If C: [0,1]?> — [0,1] is a copula, then

max{E,(f) + E,(g) - 1,0} < K,(C;f,g) < min{E,(f), E.(2)}. (3.2)
In particular, we have
max{2E,(f) - 1,0} < K,(C;f) < Eu(f). (3.3)
We also have

max{E,(f) + E,(g) - 1,0} 5/9wmax{f+£w(g)—l,0}du
< L,(Cif.8)
§/mein{f,Ew(g)}d,u
< min{E,(f),E.(g)}- (3.4)

In particular,
max{2E,(f) - 1,0} < / wmax{f + E,(f) - 1,0}
Q
< L(Cf) < / wminlf, E,(f)} di < Eu(f). (35)
Q

Proof We know that for any u-w-integrable functions k and /, we have

/wmin{k,l}dufmin{/wkd,u,/wldu} (3.6)
X X X

and

/wmax{k,l}duzmax{/ a)kdu,/ wldu}. (3.7)
X X X

Using the Fréchet-Hoeffding bounds (1.1), we obtain

max{f(x) + g(y) - 1,0} < C(f(x),g(y)) < min{f(x),g(»)} (3.8)
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for all x,y € Q. If we multiply (3.8) by w(x)w(y) > 0 and integrate twice over €2, then we
get

/ / ox)w(y) max{f(x) +g(y) - 1,0} du(x)du(y)
QJIQ
gﬂﬁmmmmmmmmemm>
gffwmmmmmmmﬂmmmw» (3.9)
QJIQ

By (3.6) and (3.7), we get

//MWMMWWﬂMWMWW
QJIQ

ﬂﬂéd%ﬁ%@}

and
max{/ a)fd,u.+/a)gdu_1’0}
2 Q
S/Q/Qw(x)w(Y)max{f(x)+g(y)—1,0}du(x)du(y).

This proves (3.2). We obtain (3.3) by setting f = g in (3.2).

From (1.1), we also have

max{f+/ wgdu—l,o} §C(f,/ wgd,u) smin{f,/ wgdu}. (3.10)
Q Q Q
If we multiply (3.10) by w > 0 and integrate over €2, then we get
/a)max{f+/wgd,u—l,O}dug/wC(f,/a)gdu)du
Q Q Q Q
S/wmin{f,/wgdu}. (3.11)
Q Q

Since

/mein{f,/gwgd,u} §min{/ﬂa)fdu,/gwgd,u} (3.12)

and

max{/ wfd,u+/a)gdu—1,0} 5/wmax{f+/wgdu—1,0}d,u. (3.13)
Q Q Q Q

By (3.11), (3.12), and (3.13), we get (3.4). Finally, we obtain (3.5) by setting f =g in (3.4). O
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Lemma 2 IfC:[0,1]> — [0,1] is a copula, then we have

1
0< Iu—vlfi(u+v)—C(u,v)

1

< Z_ul =
- 2

2

-V

’

N~ N

1 1
< =lu—v|+= (3.14)
2 2

1
|lu—v|+ = —max{
2

forany u,v € [0,1].
Proof Using the Fréchet-Hoeftding bounds (1.1) and the fact that
. 1 1
min{a, b} = E(a +b—la+bl), max{a, b} = 3 (a+b+la-Dl),
thus we have

%(u+v—1+|u+v—1l) <C(u,v) < %(u+v—|u—v|)

for any u, v € [0,1]. This inequality is equivalent to
1 1 1
5|u—v|§E(u+v)—C(u,v)§5(1—|u+v—1|). (3.15)
Applying the reverse triangle inequality, we have
lu+v-1l=lu-v+2v-1|= |u—v—(1—2v)| >1-2v|—|u—v|
for any u, v € [0,1]. Similarly,
lu+v—-1|>1|1-2u|—|u-v|
for any u, v € [0,1]. Therefore,
—lu+v-1<|u-v|-1-2v|, and —|u+v-1|<|u—v|-|1-2u|,
giving that
—lu+v-1] < |u—-v|-max{[1-2ul,[1-2v|}
for all u,v € [0,1]. From (3.15), we then obtain

1 1
5|u—v| < §(u+v)—C(u,v)

< + E—M

N =
N =

} (3.16)

|u —v| —max{

for all u,v € [0,1]. (]

Consider the quantities

L(f,9) = /Q /Q o@o)|f() - 0| dunx) duly)
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and
1() = /Q /Q oW () -f0)] dinx) du®) = L{ ).

By the properties of modulus, we have

Q Q
and

Iw(f>zfgwp—/gwfdu‘du:1fw(f>.

By Schwarz’s inequality, we also have

L9 < ( fg fg w(x)w(y)(f(x)—g(x))zdu(x)du(y))z

1
3
= (/ a)fzdu—Z/wfdu/wgdu+/wg2du>
Q Q Q Q

and

1

<[ ([

= “/EDcu(f)
We have the following result.
Theorem 6 Let w: Q — [0,00) be p-integrable with [, wdu =1. Let f,g : Q — [0,1] be

w-measurable and such that f,g € L,(Q2). If C: [0,1]*> — [0,1] is a copula, then (with the
notation in Theorem 5), we have

109 = L (El) + Eul) - Kul(Cif o)

IA

L,(f,2) + % —max{Ew< %—f

)

374

IA
N= N= N =

&

=

&
+

(3.17)

In particular, we have

% o) < Eulf) - Ko(Csf)

IA
N = N =

L,(f) + % —Ew<

)
1

mm+5 (3.18)

=
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We also have

SH(0) = 3 (Bl +Eal@) ~ LulCf 0
1 1 1 1
EH (fg)+5—max{E (2 ), E—Ea,(g)H
1 1
In particular, we have
SHA) = Eulf)~ Lu(Cif)
SN ( __fD < TH) L (3:20)
Proof From Lemma 2 we have
1 1
SV @ =20 = S (F0) +20)) - C(F0).20))
1 1 1 1
Eivx)—gW)|+§—maX{ E—f(x% E_g@)H (3.21)

for any x,y € . We multiply (3.21) by w(x)w(y) > 0 and integrate to get
1 1
ol = 5 [ [ o)) -] dieo) iy
1
=< §</wadu+/s;wgdu> —/Q/S;w(x)a)(y)(f(f(x),g(y)) dp(x) du(y)
1 1
= 5/Q/Qw(x)w(y)[f(x)—g(y)ldu(x)du(y)+ 5
——fx)

- / / oX)o() max{ ;

%1 (fg)+——max[/ﬂw‘%—f‘du,/ﬂw‘%—g'dﬂ}~

E —g(y)‘ } @) du)

Again, from Lemma 2 we have

-] ) o )
S%P—/;ngdu %—f},‘%—/ﬂwgdu”. (3.22)

If we multiply (3.22) by @ > 0 and integrate, then we get

1
+ — —max
2

1
—H,(f,
5 w(f>8)

1
:—/wp—/wgdu‘du
2 Jo Q
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1
< E(/wad,u + /ngdu) -L,(Cf,g)

1 1 1 1
§§Lw‘/—éwgdu‘du+5—fgwmax{ E_f’ E—/ngd,ul}d,u
1 1 1 1
§§Hw(f,g)+§—max{/9a)‘i—f dﬂ, E—‘/g;a)ngH
1 1
<_H(U ) -
=3 (fg)+2

We obtain the particular cases by setting f = g.
Remark 1 We denote the following quantities:
1
E,:= / tw(t) dt,
0
1 el
I, := / / wX)w(y)|x —y| dxdy,
0o Jo
1 1 1
H,:= / a)(t)‘t— / tw(t) dt’ dt = / w(b)|t - E,| dt,
0 0 0
1 el
K,(C):= / / ox)w(y)C(x,y) dx dy,
o Jo

1
L,(C) :=/0 a)(t)C(t,/Qtw(t) dt) dt.

Some particular instances of interest:

(a) Let 2 =1[0,1], w:[0,1] — [0,00), [y () dt =1, f(£) = g(t) = £ (¢ € [0,1]). Then by

(3.3) we get

1 1 p1
maX{Z/ tw(t)dt—l,O} 5/ / ox)w(y)C(x,y) dx dy
0 o Jo
1
=:Kw(C)§/ tw(t) dt,
0
that is,
max{2E, - 1,0} < K,(C) <E,.

By Theorem 6, we have
1 1 1 ! 1 1 1

and

Ly <E, L (C) < T /1 ) L AT
= - —H,+=--| ow@®|=-- —H, + —.

Page 14 of 16
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(b) Take € =[0,1], w(t) =1 (t € [0,1]) to get

1 1
max{/ f(t)dt+f g(t)dt—l,O}
0 0

1 1
< /0 /0 C(f(x),g(»)) dxdy

< min{/olf(t) dt,/olg(t) dt}.

When f = g, we get

1 1 1 1
maX{Z /0 f(t)dt—l,O}s /0 /0 C(f ),/ () dxdy < fo o

By Theorem 6, we have
1
3 | 1) g0l diatoyauty)

<5 ([rans [ ean)- [ [ ctrwem)audut)

1 1 1
5E/Q/Qlf(x)—g(y)!du(x)du(yhE—maX{/ﬂ E—f‘du,/g‘%—g‘du}

1

1
<3 | |16 g0l dutodut) s .

When f = g, we have

5 /Q /Q 1F(5) —£0)| dia@) dpa(y)
< /Q - /Q /Q CF). ) dpu() dpu(y)
<5 [ [ro-rolanemano+ 5 - /QE —f‘ s

<3 | [ -0 duw dut)+ 5.

We also have

= fsar|
[y L) Ll o)
S/J/—/diu‘d,u+%—max{/ﬂ %—f‘d,u,‘%—/ﬂgduu
S/QP—/diu‘dum%,
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