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Abstract
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its
marginal (one-dimensional) distribution functions. In this paper, we obtain
Chebyshev type inequalities by utilising copulas.
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1 Introduction
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its
marginal (one-dimensional) distribution functions. Mathematically defined, a copula C is
a function C : [, ] → [, ] with the following properties:

(C) C(u, ) = C(, u) = , C(u, ) = u, and C(, u) = u for all u ∈ [, ],
(C) C(u, v) – C(u, v) – C(u, v) + C(u, v) ≥  for every u, u, v, v ∈ [, ] such

that u ≤ u and v ≤ v.
Property (C) is referred to as the -increasing property, or moderate growth []. The
-increasing property implies the following properties for any copula C:

(C) C is nondecreasing in each variable;
(C) C satisfies the Lipschitz condition: for all u, u, v, v ∈ [, ],

∣
∣C(u, v) – C(u, v)

∣
∣ ≤ |u – u| + |v – v|.

For further reading on copulas, we refer the readers to [] and [].
While copulas join probability distributions, t-norms join membership functions of

fuzzy sets, and hence combining probabilistic information and combining fuzzy informa-
tion are not so different []. Mathematically defined, a t-norm T is a function T : [, ] →
[, ] with the properties []:

(T) Commutativity: T(x, y) = T(y, x) for all x, y ∈ [, ],
(T) Associativity: T(x, T(y, z)) = T(T(x, y), z) for all x, y, z ∈ [, ],
(T) Monotonicity: T(x, y) ≤ T(x, z) for all x, y, z ∈ [, ] with y ≤ z,
(T) Boundary condition: T(x, ) = T(, x) = x, T(x, ) = T(, x) = x for all x ∈ [, ].
A copula is a t-norm if and only if it is associative; conversely, a t-norm is a copula if

and only if it is -Lipschitz []. The three main continuous t-norms, namely the minimum
operator (M(x, y) = min{x, y}), the algebraic product (P(x, y) = xy), and the Lukasiewicz t-
norm (W (x, y) = max{x + y – , }), are copulas.
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The first importance of these copulas is given by the following: Let C be a copula, then

W (u, v) ≤ C(u, v) ≤ M(u, v) for all u, v ∈ [, ]. (.)

The above inequality is referred to as the Fréchet-Hoeffding bounds for copulas and pro-
vides a basic inequality for copulas. Inequality (.) also holds in the contexts of probability
theory and fuzzy probability calculus [] and is referred to as the Bell inequalities. Further
inequalities for copulas of Bell type are given in []. Other inequalities for copulas are given
in [] in relation to a family of continuous functions L from [,∞] × [,∞] onto [,∞]
which are nondecreasing in each variable with limx→∞ L(x, x) = ∞.

Egozcue et al. [] established Grüss type bounds for covariances by assuming the depen-
dence structures such as quadrant dependence and quadrant dependence in expectation.
They utilise copulas to illustrate these dependent structures.

In the same spirit to [], it is our aim here to establish inequalities by utilising copulas.
Firstly, we note the connection between the -increasing property and the Chebyshevian
mappings. A mapping F : [a, b] → R is called Chebyshevian on [a, b] if the following
inequality is satisfied:

F(x, x) + F(y, y) ≥ F(x, y) + F(y, x) for all x, y ∈ [a, b].

Let C be a copula, x, y ∈ [, ], and set u = u = x and v = v = y in property (C) (-
increasing property) above to obtain C(x, x) – C(x, y) – C(y, x) + C(y, y) ≥ , or equivalently,

C(x, x) + C(y, y) ≥ C(x, y) + C(y, x), (.)

i.e. C is Chebyshevian on [, ].
Dragomir and Crstici [] established the relationship between two synchronous func-

tions and Chebyshevian mappings. Two functions f , g : [a, b] → R are synchronous on
[a, b] if they have the same monotonicity, that is,

(

f (x) – f (y)
)(

g(x) – g(y)
) ≥  for all x, y ∈ [a, b].

The relationship between the two notions is given in the following result.

Proposition  (Dragomir and Crstici []) If f , g are synchronous on [a, b] and F : [a, b] →
R, where F(x, y) = f (x)g(y), then F is Chebyshevian on [a, b].

Consequently, the following Chebyshev type inequalities can be stated (see also Leh-
mann [, Lemma ]).

Proposition  (Dragomir and Crstici []) Let p : [a, b] →R be integrable and nonnegative
on [a, b].

() Let F : [a, b] →R. If F is Chebyshevian on [a, b], then

∫ t

a
p(x) dx

∫ t

a
p(x)F(x, x) dx ≥

∫ t

a

∫ t

a
p(x)p(y)F(x, y) dx dy (.)

for all t ∈ [a, b].
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() Let f , g : [a, b] →R be integrable on [a, b]. If f and g are synchronous on [a, b], then
we have Chebyshev’s inequality

∫ t

a
p(x) dx

∫ t

a
p(x)f (x)g(x) dx ≥

∫ t

a
p(x)f (x) dx

∫ t

a
p(x)g(x) dx (.)

for all t ∈ [a, b].

If f , g : [a, b] → [, ] are synchronous, then by Proposition , the product copula given
by

P
(

f (x), g(y)
)

= f (x)g(y), x, y ∈ [a, b]

is Chebyshevian on [a, b], as a consequence of the -increasing property. If we define
a function F : [a, b] → [, ] by F(x, y) = P(f (x), g(y)) = f (x)g(y), and if p : [a, b] → R is
integrable and nonnegative, then Proposition  gives us

∫ t

a
p(x) dx

∫ t

a
p(x)P

(

f (x), g(x)
)

dx ≥
∫ t

a

∫ t

a
p(x)p(y)P

(

f (x), g(y)
)

dx dy.

Motivated by this observation, we aim to obtain other types of Chebyshev inequalities by
utilising (the general definition of) copulas instead of the product copula as demonstrated
above. Specifically, we provide inequalities for the dispersion of a function f defined on a
measure space (�,�,μ), with respect to a positive weight ω on � with

∫

�
ω(t) dμ(t) = ,

that is,

(∫

�

ωf  dμ –
(∫

�

ωf dμ

)) 


.

2 Chebyshev type inequalities
The -increasing property of copulas gives us the following result.

Proposition  Let C : [, ] → [, ] be a copula and p : [, ] →R be an integrable func-
tion. Then

() C is Chebyshevian on [, ].
() If p is nonnegative, then

∫ t


p(x) dx

∫ t


p(x)C(x, x) dx ≥

∫ t



∫ t


p(x)p(y)C(x, y) dx dy.

Proof follows by (.) and Proposition  part .
Now we state a more general form of this inequality. We start with the following lemma.

Lemma  Let f , g : [a, b] → [, ] be two synchronous functions and C be a copula. Then
F : [a, b] → [, ] defined by

F(x, y) := C
(

f (x), g(y)
)

is Chebyshevian on [a, b].
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Proof Since f and g are synchronous, they have the same monotonicity on [a, b]. Let A
be the collection of subsets of [a, b] where f and g are both nondecreasing. Suppose that
x, y ∈ A. Without loss of generality, let x ≤ y, and set

u = f (x), u = f (y), v = g(x), v = g(y).

Thus, u ≤ u and v ≤ v since f and g are nondecreasing. Therefore, the -increasing
property of C gives

 ≤ C(u, v) – C(u, v) – C(u, v) + C(u, v)

= C
(

f (x), g(x)
)

– C
(

f (x), g(y)
)

– C
(

f (y), g(x)
)

+ C
(

f (y), g(y)
)

= F(x, x) – F(x, y) – F(y, x) + F(y, y).

Suppose that x, y ∈ [a, b] \ A. Without loss of generality, let x ≤ y,

u = f (y), u = f (x), v = g(y), v = g(x).

Thus, u ≤ u and v ≤ v since f and g are decreasing. Therefore, the -increasing prop-
erty of C gives

 ≤ C(u, v) – C(u, v) – C(u, v) + C(u, v)

= C
(

f (y), g(y)
)

– C
(

f (y), g(x)
)

– C
(

f (x), g(y)
)

+ C
(

f (x), g(x)
)

= F(y, y) – F(y, x) – F(x, y) + F(x, x).

We show that F is Chebyshevian in both cases. �

Lemma  and Proposition  part  give us the following.

Theorem  Let C be a copula, f , g : [a, b] → [, ] be two synchronous functions, p :
[a, b] →R be an integrable function. If p is nonnegative, then

∫ t

a
p(x) dx

∫ t

a
p(x)C

(

f (x), g(x)
)

dx

≥
∫ t

a

∫ t

a
p(x)p(y)C

(

f (x), g(y)
)

dx dy.

Example  In this example, we obtain some Chebyshev type inequalities by choosing
some examples of copulas. Let f , g : [a, b] → [, ] be two synchronous functions, and
p : [a, b] → R be a nonnegative integrable function. Theorem  and (.) give us the fol-
lowing inequalities:

∫ t

a

∫ t

a
p(x)p(y) max

{

f (x) + g(y) – , 
}

dx dy

≤
∫ t

a
p(x) dx

∫ t

a
p(x) max

{

f (x) + g(x) – , 
}

dx
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≤
∫ t

a
p(x) dx

∫ t

a
p(x)C

(

f (x), g(x)
)

dx

≤
∫ t

a
p(x) dx

∫ t

a
p(x) min

{

f (x), g(x)
}

dx. (.)

The first inequality follows from Theorem  (by choosing the W copula) and the rest fol-
lows from the Fréchet-Hoeffding bound (.). Similarly, we have

∫ t

a

∫ t

a
p(x)p(y) max

{

f (x) + g(y) – , 
}

dx dy

≤
∫ t

a

∫ t

a
p(x)p(y)C

(

f (x), g(y)
)

dx dy

≤
∫ t

a

∫ t

a
p(x)p(y) min

{

f (x), g(y)
}

dx dy

≤
∫ t

a
p(x) dx

∫ t

a
p(x) min

{

f (x), g(x)
}

dx. (.)

The last inequality follows from Theorem  (by choosing the M copula), and the rest fol-
lows from the Fréchet-Hoeffding bounds (.).

In what follows, we generalise Theorem  and Example .

Theorem  Let (�,�,μ) be a measure space, f : � → [, ] be a measurable function, and
C be a copula. Then F : � → [, ] defined by

F(x, y) := C
(

f (x), f (y)
)

is Chebyshevian on �. We also have, for a nonnegative integrable function p : � →R,

∫

�

p(x) dμ(x)
∫

�

p(x)C
(

f (x), f (x)
)

dμ(x)

≥
∫

�

∫

�

p(x)p(y)C
(

f (x), f (y)
)

dμ(x) dμ(y).

Proof The Chebyshevian property of F follows from the -increasing property of copulas.
Therefore, we have F(x, x) + F(y, y) ≥ F(x, y) + F(y, x) for all x, y ∈ �, or equivalently

C
(

f (x), f (x)
)

+ C
(

f (y), f (y)
) ≥ C

(

f (x), f (y)
)

+ C
(

f (y), f (x)
)

.

Multiplying both sides by p(x) and p(y) and taking double integrals over �, we have

∫

�

p(x) dμ(x)
∫

�

p(x)C
(

f (x), f (x)
)

dμ(x)

≥
∫

�

∫

�

p(x)p(y)C
(

f (x), f (y)
)

dμ(x) dμ(y).

This completes the proof. �
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Example  In this example, we obtain some Chebyshev type inequalities by choosing
some examples of copulas. Let (�,�,μ) be a measure space, f : � → [, ] be a measur-
able function, and p : � →R be a nonnegative integrable function. We have the following
inequalities:

∫

�

∫

�

p(x)p(y) max
{

f (x) + f (y) – , 
}

dμ(x) dμ(y)

≤
∫

�

p(x) dμ(x)
∫

�

p(x) max
{

f (x) – , 
}

dμ(x)

≤
∫

�

p(x) dμ(x)
∫

�

p(x)C
(

f (x), g(x)
)

dμ(x)

≤
∫

�

p(x) dμ(x)
∫

�

p(x) min
{

f (x), g(x)
}

dμ(x), (.)

and
∫

�

∫

�

p(x)p(y) max
{

f (x) + g(y) – , 
}

dμ(x) dμ(y)

≤
∫

�

∫

�

p(x)p(y)C
(

f (x), g(y)
)

dμ(x) dμ(y)

≤
∫

�

∫

�

p(x)p(y) min
{

f (x), f (y)
}

dμ(x) dμ(y)

≤
∫

�

p(x) dμ(x)
∫

�

p(x)f (x) dμ(x). (.)

We also have the following result.

Theorem  Let (�,�,μ) be a measure space, f : � → [, ] be a measurable function. Let
ω be a positive weight on � with

∫

�
ω(t) dμ(t) = . Let C : [, ] → [, ] be a copula. We

have the following inequalities:

∫

�

ωC(f , f ) dμ + C
(

f
(∫

�

ωf dμ

)

, f
(∫

�

ωf dμ

))

≥
∫

�

ωC
(

f , f
(∫

�

ωf dμ

))

dμ +
∫

�

ωC
(

f
(∫

�

ωf dμ

)

, f
)

dμ. (.)

Proof The -increasing property of copulas gives us

C(x, x) + C(y, y) ≥ C(x, y) + C(y, x)

for all x, y ∈ [, ]. Take x = f (t) and y =
∫

�
w(t)f (t) dμ(t), we have

C
(

f (t), f (t)
)

+ C
(

f
(∫

�

w(t)f (t) dμ(t)
)

, f
(∫

�

w(t)f (t) dμ(t)
))

≥ C
(

f (t), f
(∫

�

w(t)f (t) dμ(t)
))

+ C
(

f
(∫

�

w(t)f (t) dμ(t)
)

, f (t)
)

.

Multiplying with ω(t) ≥  and integrating over � give the desired result. �

In the next section, we provide further inequalities of this type.
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3 More inequalities
We denote the following:

Eω(f ) :=
∫

�

ωf dμ,

Kω(C; f , g) :=
∫

�

∫

�

ω(x)ω(y)C
(

f (x), g(y)
)

dμ(x) dμ(y),

Hω(f ) :=
∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωf dμ

∣
∣
∣
∣
dμ =

∫

�

ω
∣
∣f – Eω(f )

∣
∣dμ,

where ω : � → [,∞) is μ-integrable with
∫

�
ω dμ = , f , g : � → [, ] are μ-measurable

and f , g ∈ Lω(�), and C : [, ] → [, ] is a copula.
We denote by Dω(f ) the dispersion of a function f defined on a measure space (�,�,μ),

with respect to a positive weight ω on � with
∫

�
ω(t) dμ(t) = , that is,

Dω(f ) :=
(∫

�

ωf  dμ –
(∫

�

ωf dμ

)) 


. (.)

Theorem  Let (�,�,μ) be a measure space, f , g : � → [, ] be measurable functions.
Let ω be a positive weight on � with

∫

�
ω(t) dμ(t) = . Let C : [, ] → [, ] be a copula.

We have the following inequalities:

∣
∣Kω(C; f , g) – C

(

Eω(f ), Eω(g)
)∣
∣

≤
∫

�

∫

�

ω(x)ω(y)
∣
∣C

(

f (x), g(y)
)

– C
(

Eω(f ), Eω(g)
)∣
∣dμ(x) dμ(y)

≤ Hω(f ) + Hω(g) ≤ Dω(f ) + Dω(g).

Proof Firstly, we have

∣
∣Kω(C; f , g) – C

(

Eω(f ), Eω(g)
)∣
∣

=
∣
∣
∣
∣

∫

�

∫

�

ω(x)ω(y)
(

C
(

f (x), g(y)
)

– C
(

Eω(f ), Eω(g)
))

dμ(x) dμ(y)
∣
∣
∣
∣

≤
∫

�

∫

�

ω(x)ω(y)
∣
∣C

(

f (x), g(y)
)

– C
(

Eω(f ), Eω(g)
)∣
∣dμ(x) dμ(y).

From the Lipschitz property of copulas, we have

∣
∣
∣
∣
C

(

f (x), g(y)
)

– C
(∫

�

ωf dμ,
∫

�

ωg dμ

)∣
∣
∣
∣
≤

∣
∣
∣
∣
f (x) –

∫

�

ωf dμ

∣
∣
∣
∣

+
∣
∣
∣
∣
g(y) –

∫

�

ωg dμ

∣
∣
∣
∣
.

Multiplying with ω(x)ω(y) ≥  and integrating twice over � give

∫

�

∫

�

ω(x)ω(y)
∣
∣
∣
∣
C

(

f (x), g(y)
)

– C
(∫

�

ωf dμ,
∫

�

ωg dμ

)∣
∣
∣
∣
dμ(x) dμ(y)

≤
∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωf dμ

∣
∣
∣
∣
dμ +

∫

�

ω

∣
∣
∣
∣
g –

∫

�

ωg dμ

∣
∣
∣
∣
dμ = Hω(f ) + Hω(g).
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Finally, Schwarz’s inequality gives

(∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωf dμ

∣
∣
∣
∣
dμ

)

≤
(∫

�

ω

(

f –
∫

�

ωf dμ

)

dμ

)(∫

�

ω dμ

)

=
∫

�

ωf  dμ – 
∫

�

ωf
(∫

�

ωf dμ

)

dμ +
∫

�

ω

(∫

�

ωf dμ

)

dμ

=
∫

�

ωf  dμ – 
(∫

�

ωf dμ

)

+
(∫

�

ωf dμ

)

=
∫

�

ωf  dμ –
(∫

�

ωf dμ

)

,

that is,

∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωf dμ

∣
∣
∣
∣
dμ ≤

(∫

�

ωf  dμ –
(∫

�

ωf dμ

)) 


= Dω(f ).

This completes the proof. �

Corollary  Let (�,�,μ) be a measure space, f , g : � → [, ] be measurable functions.
Let ω be a positive weight on � with

∫

�
ω(t) dμ(t) = . Let C : [, ] → [, ] be a copula. If

f and g satisfy

 ≤ mf ≤ f ≤ Mf ≤ , and  ≤ mg ≤ g ≤ Mg ≤ ,

then we have the inequalities

∣
∣Kω(C; f , g) – C

(

Eω(f ), Eω(g)
)∣
∣

≤ Dω(f ) + Dω(g)

≤ 


(Mf – mf ) +



(Mg – mg) ≤ .

The proof follows from Theorem  and a Grüss type inequality

Dω(f ) ≤ 


(M – m) ≤ 


for f with the property that  ≤ m ≤ f ≤ M ≤ . We omit the details.
Recall the notation

Eω(f ) :=
∫

�

ωf dμ,

Kω(C; f , g) :=
∫

�

∫

�

ω(x)ω(y)C
(

f (x), g(y)
)

dμ(x) dμ(y),
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and introduce the following notation:

Kω(C; f ) :=
∫

�

∫

�

ω(x)ω(y)C
(

f (x), f (y)
)

dμ(x) dμ(y),

Lω(C; f , g) :=
∫

�

ωC
(

f ,
∫

�

ωg dμ

)

dμ,

Lω(C, f ) :=
∫

�

ωC
(

f ,
∫

�

ωf dμ

)

dμ.

Theorem  Let ω : � → [,∞) be μ-integrable with
∫

�
ω dμ = . Let f , g : � → [, ] be

μ-measurable and f , g ∈ Lω(�). If C : [, ] → [, ] is a copula, then

max
{

Eω(f ) + Eω(g) – , 
} ≤ Kω(C; f , g) ≤ min

{

Eω(f ), Eω(g)
}

. (.)

In particular, we have

max
{

Eω(f ) – , 
} ≤ Kω(C; f ) ≤ Eω(f ). (.)

We also have

max
{

Eω(f ) + Eω(g) – , 
} ≤

∫

�

ω max
{

f + Eω(g) – , 
}

dμ

≤ Lω(C; f , g)

≤
∫

�

ω min
{

f , Eω(g)
}

dμ

≤ min
{

Eω(f ), Eω(g)
}

. (.)

In particular,

max
{

Eω(f ) – , 
} ≤

∫

�

ω max
{

f + Eω(f ) – , 
}

≤ Lω(C, f ) ≤
∫

�

ω min
{

f , Eω(f )
}

dμ ≤ Eω(f ). (.)

Proof We know that for any μ-ω-integrable functions k and l, we have

∫

X
ω min{k, l}dμ ≤ min

{∫

X
ωk dμ,

∫

X
ωl dμ

}

(.)

and

∫

X
ω max{k, l}dμ ≥ max

{∫

X
ωk dμ,

∫

X
ωl dμ

}

. (.)

Using the Fréchet-Hoeffding bounds (.), we obtain

max
{

f (x) + g(y) – , 
} ≤ C

(

f (x), g(y)
) ≤ min

{

f (x), g(y)
}

(.)
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for all x, y ∈ �. If we multiply (.) by w(x)w(y) ≥  and integrate twice over �, then we
get

∫

�

∫

�

ω(x)ω(y) max
{

f (x) + g(y) – , 
}

dμ(x) dμ(y)

≤
∫

�

∫

�

ω(x)ω(y)C
(

f (x), g(y)
)

dμ(x) dμ(y)

≤
∫

�

∫

�

ω(x)ω(y) min
{

f (x), g(y)
}

dμ(x) dμ(y). (.)

By (.) and (.), we get

∫

�

∫

�

ω(x)ω(y) min
{

f (x), g(y)
}

dμ(x) dμ(y)

≤ min

{∫

�

ωf dμ,
∫

�

ωg dμ

}

and

max

{∫

�

ωf dμ +
∫

�

ωg dμ – , 
}

≤
∫

�

∫

�

ω(x)ω(y) max
{

f (x) + g(y) – , 
}

dμ(x) dμ(y).

This proves (.). We obtain (.) by setting f ≡ g in (.).
From (.), we also have

max

{

f +
∫

�

ωg dμ – , 
}

≤ C
(

f ,
∫

�

ωg dμ

)

≤ min

{

f ,
∫

�

ωg dμ

}

. (.)

If we multiply (.) by w ≥  and integrate over �, then we get

∫

�

ω max

{

f +
∫

�

ωg dμ – , 
}

dμ ≤
∫

�

ωC
(

f ,
∫

�

ωg dμ

)

dμ

≤
∫

�

ω min

{

f ,
∫

�

ωg dμ

}

. (.)

Since

∫

�

ω min

{

f ,
∫

�

ωg dμ

}

≤ min

{∫

�

ωf dμ,
∫

�

ωg dμ

}

(.)

and

max

{∫

�

ωf dμ +
∫

�

ωg dμ – , 
}

≤
∫

�

ω max

{

f +
∫

�

ωg dμ – , 
}

dμ. (.)

By (.), (.), and (.), we get (.). Finally, we obtain (.) by setting f ≡ g in (.). �
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Lemma  If C : [, ] → [, ] is a copula, then we have

 ≤ 

|u – v| ≤ 


(u + v) – C(u, v)

≤ 

|u – v| +




– max

{∣
∣
∣
∣




– u
∣
∣
∣
∣
,
∣
∣
∣
∣




– v
∣
∣
∣
∣

}

≤ 

|u – v| +




(.)

for any u, v ∈ [, ].

Proof Using the Fréchet-Hoeffding bounds (.) and the fact that

min{a, b} =


(

a + b – |a + b|), max{a, b} =


(

a + b + |a – b|),

thus we have



(

u + v –  + |u + v – |) ≤ C(u, v) ≤ 

(

u + v – |u – v|)

for any u, v ∈ [, ]. This inequality is equivalent to



|u – v| ≤ 


(u + v) – C(u, v) ≤ 


(

 – |u + v – |). (.)

Applying the reverse triangle inequality, we have

|u + v – | = |u – v + v – | =
∣
∣u – v – ( – v)

∣
∣ ≥ | – v| – |u – v|

for any u, v ∈ [, ]. Similarly,

|u + v – | ≥ | – u| – |u – v|

for any u, v ∈ [, ]. Therefore,

–|u + v – | ≤ |u – v| – | – v|, and –|u + v – | ≤ |u – v| – | – u|,

giving that

–|u + v – | ≤ |u – v| – max
{| – u|, | – v|}

for all u, v ∈ [, ]. From (.), we then obtain



|u – v| ≤ 


(u + v) – C(u, v)

≤ 


+


|u – v| – max

{∣
∣
∣
∣




– u
∣
∣
∣
∣
,
∣
∣
∣
∣




– v
∣
∣
∣
∣

}

(.)

for all u, v ∈ [, ]. �

Consider the quantities

Iω(f , g) :=
∫

�

∫

�

ω(x)ω(y)
∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y)
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and

Iω(f ) :=
∫

�

∫

�

ω(x)ω(y)
∣
∣f (x) – f (y)

∣
∣dμ(x) dμ(y) = Iω(f , f ).

By the properties of modulus, we have

Iω(f , g) ≥
∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωg dμ

∣
∣
∣
∣
dμ =: Hω(f , g)

and

Iω(f ) ≥
∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωf dμ

∣
∣
∣
∣
dμ = Hω(f ).

By Schwarz’s inequality, we also have

Iω(f , g) ≤
(∫

�

∫

�

ω(x)ω(y)
(

f (x) – g(x)
) dμ(x) dμ(y)

) 


=
(∫

�

ωf  dμ – 
∫

�

ωf dμ

∫

�

ωg dμ +
∫

�

ωg dμ

) 


and

Iω(f ) ≤ √

(∫

�

ωf  dμ –
(∫

�

ωf dμ

)) 


=
√

Dω(f ).

We have the following result.

Theorem  Let ω : � → [,∞) be μ-integrable with
∫

�
ω dμ = . Let f , g : � → [, ] be

μ-measurable and such that f , g ∈ Lω(�). If C : [, ] → [, ] is a copula, then (with the
notation in Theorem ), we have




Iω(f , g) ≤ 

(

Eω(f ) + Eω(g)
)

– Kω(C; f , g)

≤ 


Iω(f , g) +



– max

{

Eω

(∣
∣
∣
∣




– f
∣
∣
∣
∣

)

, Eω

(∣
∣
∣
∣




– g
∣
∣
∣
∣

)}

≤ 


Iω(f , g) +



. (.)

In particular, we have




Iω(f ) ≤ Eω(f ) – Kω(C; f )

≤ 


Iω(f ) +



– Eω

(∣
∣
∣
∣




– f
∣
∣
∣
∣

)

≤ 


Iω(f ) +



. (.)
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We also have




Hω(f , g) ≤ 

(

Eω(f ) + Eω(g)
)

– Lω(C; f , g)

≤ 


Hω(f , g) +



– max

{

Eω

(∣
∣
∣
∣




– f
∣
∣
∣
∣

)

,
∣
∣
∣
∣




– Eω(g)
∣
∣
∣
∣

}

≤ 


Hω(f , g) +



. (.)

In particular, we have




Hω(f ) ≤ Eω(f ) – Lω(C; f )

≤ 


Hω(f ) +



– Eω

(∣
∣
∣
∣




– f
∣
∣
∣
∣

)

≤ 


Hω(f ) +



. (.)

Proof From Lemma  we have



∣
∣f (x) – g(y)

∣
∣ ≤ 


(

f (x) + g(y)
)

– C
(

f (x), g(y)
)

≤ 

∣
∣f (x) – g(y)

∣
∣ +




– max

{∣
∣
∣
∣




– f (x)
∣
∣
∣
∣
,
∣
∣
∣
∣




– g(y)
∣
∣
∣
∣

}

(.)

for any x, y ∈ �. We multiply (.) by ω(x)ω(y) ≥  and integrate to get




Iω(f , g) =



∫

�

∫

�

ω(x)ω(y)
∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y)

≤ 


(∫

�

ωf dμ +
∫

�

ωg dμ

)

–
∫

�

∫

�

ω(x)ω(y)C
(

f (x), g(y)
)

dμ(x) dμ(y)

≤ 


∫

�

∫

�

ω(x)ω(y)
∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y) +




–
∫

�

∫

�

ω(x)ω(y) max

{∣
∣
∣
∣




– f (x)
∣
∣
∣
∣
,
∣
∣
∣
∣




– g(y)
∣
∣
∣
∣

}

dμ(x) dμ(y)

≤ 


Iω(f , g) +



– max

{∫

�

ω

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ,

∫

�

ω

∣
∣
∣
∣




– g
∣
∣
∣
∣
dμ

}

.

Again, from Lemma  we have




∣
∣
∣
∣
f –

∫

�

ωg dμ

∣
∣
∣
∣
≤ 



(

f +
∫

�

ωg dμ

)

– C
(

f ,
∫

�

ωg dμ

)

≤ 


∣
∣
∣
∣
f –

∫

�

ωg dμ

∣
∣
∣
∣

+



– max

{∣
∣
∣
∣




– f
∣
∣
∣
∣
,
∣
∣
∣
∣




–
∫

�

ωg dμ

∣
∣
∣
∣

}

. (.)

If we multiply (.) by ω ≥  and integrate, then we get




Hω(f , g)

=



∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωg dμ

∣
∣
∣
∣
dμ



Dragomir and Kikianty Journal of Inequalities and Applications  (2017) 2017:272 Page 14 of 16

≤ 


(∫

�

ωf dμ +
∫

�

ωg dμ

)

– Lω(C; f , g)

≤ 


∫

�

ω

∣
∣
∣
∣
f –

∫

�

ωg dμ

∣
∣
∣
∣
dμ +




–
∫

�

ω max

{∣
∣
∣
∣




– f
∣
∣
∣
∣
,
∣
∣
∣
∣




–
∫

�

ωg dμ

∣
∣
∣
∣

}

dμ

≤ 


Hω(f , g) +



– max

{∫

�

ω

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ,

∣
∣
∣
∣




–
∫

�

ωg dμ

∣
∣
∣
∣

}

≤ 


Hω(f , g) +



.

We obtain the particular cases by setting f ≡ g . �

Remark  We denote the following quantities:

Eω :=
∫ 


tω(t) dt,

Iω :=
∫ 



∫ 


ω(x)ω(y)|x – y|dx dy,

Hω :=
∫ 


ω(t)

∣
∣
∣
∣
t –

∫ 


tω(t) dt

∣
∣
∣
∣
dt =

∫ 


ω(t)|t – Eω|dt,

Kω(C) :=
∫ 



∫ 


ω(x)ω(y)C(x, y) dx dy,

Lω(C) :=
∫ 


ω(t)C

(

t,
∫

�

tω(t) dt
)

dt.

Some particular instances of interest:
(a) Let � = [, ], ω : [, ] → [,∞),

∫ 
 ω(t) dt = , f (t) = g(t) = t (t ∈ [, ]). Then by

(.) we get

max

{


∫ 


tω(t) dt – , 

}

≤
∫ 



∫ 


ω(x)ω(y)C(x, y) dx dy

=: Kω(C) ≤
∫ 


tω(t) dt,

that is,

max{Eω – , } ≤ Kω(C) ≤ Eω.

By Theorem , we have




Iω ≤ Eω – Kω(C) ≤ 


Iω +



–
∫ 


ω(t)

∣
∣
∣
∣




– t
∣
∣
∣
∣
dt ≤ 


Iω +




and




Hω ≤ Eω – Lω(C) ≤ 


Hω +



–
∫ 


ω(t)

∣
∣
∣
∣




– t
∣
∣
∣
∣
dt ≤ 


Hω +




.
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(b) Take � = [, ], ω(t) =  (t ∈ [, ]) to get

max

{∫ 


f (t) dt +

∫ 


g(t) dt – , 

}

≤
∫ 



∫ 


C

(

f (x), g(y)
)

dx dy

≤ min

{∫ 


f (t) dt,

∫ 


g(t) dt

}

.

When f ≡ g , we get

max

{


∫ 


f (t) dt – , 

}

≤
∫ 



∫ 


C

(

f (x), f (y)
)

dx dy ≤
∫ 


f (t) dt.

By Theorem , we have




∫

�

∫

�

∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y)

≤ 


(∫

�

f dμ +
∫

�

g dμ

)

–
∫

�

∫

�

C
(

f (x), g(y)
)

dμ(x) dμ(y)

≤ 


∫

�

∫

�

∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y) +




– max

{∫

�

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ,

∫

�

∣
∣
∣
∣




– g
∣
∣
∣
∣
dμ

}

≤ 


∫

�

∫

�

∣
∣f (x) – g(y)

∣
∣dμ(x) dμ(y) +




.

When f ≡ g , we have




∫

�

∫

�

∣
∣f (x) – f (y)

∣
∣dμ(x) dμ(y)

≤
∫

�

f dμ –
∫

�

∫

�

C
(

f (x), f (y)
)

dμ(x) dμ(y)

≤ 


∫

�

∫

�

∣
∣f (x) – f (y)

∣
∣dμ(x) dμ(y) +




–
∫

�

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ

≤ 


∫

�

∫

�

∣
∣f (x) – f (y)

∣
∣dμ(x) dμ(y) +




.

We also have

∫

�

∣
∣
∣
∣
f –

∫

�

g dμ

∣
∣
∣
∣
dμ

≤ 


(∫

�

f dμ +
∫

�

g dμ

)

–
∫

�

C
(

f ,
∫

�

g dμ

)

dμ

≤
∫

�

∣
∣
∣
∣
f –

∫

�

g dμ

∣
∣
∣
∣
dμ +




– max

{∫

�

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ,

∣
∣
∣
∣




–
∫

�

g dμ

∣
∣
∣
∣

}

≤
∫

�

∣
∣
∣
∣
f –

∫

�

g dμ

∣
∣
∣
∣
dμ +




,
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and
∫

�

∣
∣
∣
∣
f –

∫

�

f dμ

∣
∣
∣
∣
dμ ≤

∫

�

f dμ –
∫

�

C
(

f ,
∫

�

f dμ

)

dμ

≤
∫

�

∣
∣
∣
∣
f –

∫

�

f dμ

∣
∣
∣
∣
dμ +




–
∫

�

∣
∣
∣
∣




– f
∣
∣
∣
∣
dμ

≤
∫

�

∣
∣
∣
∣
f –

∫

�

f dμ

∣
∣
∣
∣
dμ +




.
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