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1. Introduction. Following [4] (see also [26]) we say that the
function f : I ⊂ R \ {0} → R is HA-convex if

f

(
xy

tx+ (1− t) y

)
≤ (1− t) f (x) + tf (y) (1)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1) is reversed, then f is
said to be HA-concave.

If I ⊂ (0,∞) and f is convex and nondecreasing function then f is
HA-convex and if f is HA-convex and nonincreasing function then f is
convex.

If [a, b] ⊂ I ⊂ (0,∞) and if we consider the function g :
[
1
b ,

1
a

]
→ R,

defined by g (t) = f
(
1
t

)
, then we can state the following fact [4]:

Lemma 1. The function f is HA-convex on [a, b] if and only if g is convex
in the usual sense on

[
1
b ,

1
a

]
.

Therefore, as examples of HA-convex functions we can take f (t) =
= g

(
1
t

)
, where g is any convex function on

[
1
b ,

1
a

]
.

In the recent paper [16] we obtained the following characterization
result as well:
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Lemma 2. Let f, h : [a, b] ⊂ (0,∞) → R be so that h (t) = tf (t) for
t ∈ [a, b]. Then f is HA-convex on the interval [a, b] if and only if h is
convex on [a, b].

Following [4] (see also [26]) we say that the function f : I ⊂ R \ {0} →
→ (0,∞) is HG-convex if

f

(
xy

tx+ (1− t) y

)
≤ [f (x)]

1−t
[f (y)]

t
(2)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (2) is reversed, then f is
said to be HG-concave.

By the geometric-mean - arithmetic mean inequality we have that any
HG-convex function is HA-convex. The converse is obviously not true.

We observe that f : I ⊂ R \ {0} → (0,∞) is HG-convex if and only if
the function ln f : I ⊂ R \ {0} → R is HA-convex on I.

Using Lemmas 1 and 2 we have:

Theorem 1. Let f : [a, b] ⊂ (0,∞) → (0,∞) and define the associated
functions Gf :

[
1
b ,

1
a

]
→ R defined by Gf (t) = ln f

(
1
t

)
and Hf : [a, b] ⊂

⊂ (0,∞) → R defined by Hf (t) = t ln f (t). Then the following state-
ments are equivalent:

(i) The function f is HG-convex on [a, b];
(ii) The function Gf is convex on

[
1
b ,

1
a

]
;

(iii) The function Hf is convex on [a, b].

For a convex function h : [c, d] → R, the following inequality is well
known in the literature as the Hermite-Hadamard inequality

h

(
c+ d

2

)
≤ 1

d− c

d∫
c

h (t) dt ≤ h (c) + h (d)

2
. (3)

For related results, see [1] – [10], [12] – [28].
Motivated by the above results, we establish in this paper some ine-

qualities of Hermite-Hadamard type for HG-convex functions defined on
positive intervals. Applications for special means are also provided.

2. Main Results. The following result holds.

Theorem 2. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then for any λ ∈ [0, 1] we have the inequalities

f

(
2ab

a+ b

)
≤
[
f

(
2ab

(1− λ) a+ (λ+ 1) b

)]1−λ [
f

(
2ab

(2− λ) a+ λb

)]λ
≤
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≤ exp

 ab

b− a

b∫
a

ln f (t)

t2
dt

 ≤ (4)

≤

√
f

(
ab

(1− λ) a+ λb

)
[f (a)]

1−λ
[f (b)]

λ ≤
√
f (a) f (b).

If we take λ = 1
2 in (4), then we get

f

(
2ab

a+ b

)
≤

√
f

(
4ab

a+ 3b

)
f

(
4ab

3a+ b

)
≤

≤ exp

 ab

b− a

b∫
a

ln f (t)

t2
dt

 ≤ (5)

≤

√
f

(
2ab

a+ b

)√
f (a) f (b) ≤

√
f (a) f (b).

The identric mean I (a, b) for two distinct positive numbers a, b is
defined by

I (a, b) :=
1

e

(
bb

aa

) 1
b−a

while the logarithmic mean is defined by

L (a, b) :=
b− a

ln b− ln a
.

Theorem 3. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then

f (L (a, b)) ≤ exp

 1

b− a

b∫
a

ln f (t) dt

 ≤ [f (b)]
(L(a,b)−a)b
(b−a)L(a,b) [f (a)]

(b−L(a,b))a
(b−a)L(a,b) .

(6)

If we write the classical Hermite-Hadamard inequality for the function
Hf that is convex on [a, b] when f : [a, b] ⊂ (0,∞) → (0,∞) is an HG-
convex function on [a, b] and perform the required calculations, we get:
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Theorem 4. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then we have

[
f

(
a+ b

2

)] a+b
2

≤ exp

 1

b− a

b∫
a

t ln f (t) dt

 ≤√[f (b)]
b

[f (a)]
a
. (7)

We have the reverse inequalities as well:

Theorem 5. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then we have

1 ≤
exp

(
ab
b−a

b∫
a

ln f(t)
t2 dt

)
f
(

2ab
a+b

) ≤ (8)

≤ exp

(
1

8

[
f ′− (b)

f (b)
b2 −

f ′+ (a) a2

f (a)

](
b− a
ab

))
and

1 ≤
√
f (a) f (b)

exp

(
ab
b−a

b∫
a

ln f(t)
t2 dt

) ≤ (9)

≤ exp

(
1

8

[
f ′− (b)

f (b)
b2 −

f ′+ (a) a2

f (a)

](
b− a
ab

))
.

The following related result also holds:

Theorem 6. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then we have

1 ≤

√
[f (a)]

a
[f (b)]

b

exp

(
1
b−a

b∫
a

t ln f (t) dt

) ≤

≤
(
f (b)

f (a)

) 1
8 (b−a)

exp

(
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

))
(10)
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and

1 ≤
exp

(
1
b−a

b∫
a

t ln f (t) dt

)
[
f
(
a+b
2

)] a+b
2

≤

≤
(
f (b)

f (a)

) 1
8 (b−a)

exp

(
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

))
. (11)

From a different perspective we have:

Theorem 7. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be an HG-convex function
on the interval [a, b]. Then

exp

 ab

b− a

b∫
a

ln f (t)

t2
dt

 ≤√f (x) [f (b)]
a(b−x)
x(b−a) [f (a)]

b(x−a)
x(b−a) (12)

for any x ∈ [a, b].

If we take in (12), x = a+b
2 , then we get from (12) that

exp

 ab

b− a

b∫
a

ln f (t)

t2
dt

 ≤√f (a+ b

2

)
[f (b)]

a
a+b [f (a)]

b
a+b . (13)

3. Proofs. In [15], in order to improve Işcan’s inequality [26] for
HA-convex functions g : [a, b] ⊂ (0,∞)→ R,

g

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

g (t)

t2
dt ≤ g (a) + g (b)

2
, (14)

we obtained the following result:

g

(
2ab

a+ b

)
≤ (1− λ) g

(
2ab

(1− λ) a+ (λ+ 1) b

)
+

+λg

(
2ab

(2− λ) a+ λb

)
≤ ab

b− a

b∫
a

g (t)

t2
dt ≤
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≤ 1

2

[
g

(
ab

(1− λ) a+ λb

)
+ (1− λ) g (a) + λg (b)

]
≤

≤ g (a) + g (b)

2
, (15)

where λ ∈ [0, 1] .
Now, if f : [a, b] ⊂ (0,∞) → (0,∞) is an HG-convex function on the

interval [a, b], then g := ln f is HA-convex on [a, b], and by (15) we get

ln f

(
2ab

a+ b

)
≤ (1− λ) ln f

(
2ab

(1− λ) a+ (λ+ 1) b

)
+

+λ ln f

(
2ab

(2− λ) a+ λb

)
≤ ab

b− a

b∫
a

ln f (t)

t2
dt ≤

≤ 1

2

[
ln f

(
ab

(1− λ) a+ λb

)
+ (1− λ) ln f (a) + λ ln f (b)

]
≤

≤ ln f (a) + ln f (b)

2
, (16)

that is equivalent to

ln f

(
2ab

a+ b

)
≤

≤ ln

([
f

(
2ab

(1− λ) a+ (λ+ 1) b

)]1−λ [
f

(
2ab

(2− λ) a+ λb

)]λ)
≤

≤ ab

b− a

b∫
a

ln f (t)

t2
dt ≤ ln

√
f

(
ab

(1− λ) a+ λb

)
[f (a)]

1−λ
[f (b)]

λ ≤

≤ ln
√
f (a) f (b),

and by taking the exponential we get the desired result (4).
We have the following result for HA-convex functions [15]:

Lemma 3. Let g : [a, b] ⊂ (0,∞)→ R be an HA-convex function on the
interval [a, b]. Then

g (L (a, b)) ≤ 1

b− a

b∫
a

g (x) dx ≤ (L (a, b)− a) bg (b) + (b− L (a, b)) ag (a)

(b− a)L (a, b)
.

(17)
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If f : [a, b] ⊂ (0,∞)→ (0,∞) is an HG-convex function on the interval
[a, b], then g := ln f is HA-convex on [a, b], and by (17) we have

ln f (L (a, b)) ≤ 1

b− a

b∫
a

ln f (x) dx ≤

≤ (L (a, b)− a) b ln f (b) + (b− L (a, b)) a ln f (a)

(b− a)L (a, b)
=

= ln
(

[f (b)]
(L(a,b)−a)b
(b−a)L(a,b) [f (a)]

(b−L(a,b))a
(b−a)L(a,b)

)
. (18)

By taking the exponential in (18) we get the desired result (6).
We use the following results obtained by the author in [10] and [11]:

Lemma 4. Let h : [α, β] → R be a convex function on [α, β]. Then we
have the inequalities

0 ≤ h (α) + h (β)

2
− 1

β − α

β∫
α

h (t) dt ≤ 1

8

[
h′− (β)− h′+ (α)

]
(β − α) (19)

and

0 ≤ 1

β − α

β∫
α

h (t) dt− h
(
α+ β

2

)
≤ 1

8

[
h′− (β)− h′+ (α)

]
(β − α) . (20)

The constant 1
8 is best possible in (19) and (20).

If ` : [a, b] ⊂ (0,∞) → R is an HA-convex function on the interval
[a, b], then the function g :

[
1
b ,

1
a

]
→ R, g (s) = `

(
1
s

)
, is convex on

[
1
b ,

1
a

]
.

Now, by (19) and (20) we have

0 ≤
g
(
1
a

)
+ g

(
1
b

)
2

− 1
1
a −

1
b

1
a∫

1
b

g (t) dt ≤

≤ 1

8

[
g′−

(
1

a

)
− g′+

(
1

b

)](
1

a
− 1

b

)
(21)
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and

0 ≤ 1
1
a −

1
b

1
a∫

1
b

g (t) dt− g
( 1
a + 1

b

2

)
≤

≤ 1

8

[
g′−

(
1

a

)
− g′+

(
1

b

)](
1

a
− 1

b

)
. (22)

We also have

g′± (s) = `′∓

(
1

s

)(
− 1

s2

)
and then

g′−

(
1

a

)
= −`′+ (a) a2 and g′+

(
1

b

)
= −`′− (b) b2.

From (21) and (22) we have

0 ≤ ` (a) + ` (b)

2
− ab

b− a

1
a∫

1
b

`

(
1

s

)
ds ≤

≤ 1

8

[
`′− (b) b2 − `′+ (a) a2

](b− a
ab

)
(23)

and

0 ≤ ab

b− a

1
a∫

1
b

`

(
1

s

)
ds− `

(
2ab

a+ b

)
≤

≤ 1

8

[
`′− (b) b2 − `′+ (a) a2

](b− a
ab

)
. (24)

If we change the variable 1
s = u, then ds = −duu2 and (23) and (24) can be

written as

0 ≤ ` (a) + ` (b)

2
− ab

b− a

b∫
a

` (t)

t2
dt ≤

≤ 1

8

[
`′− (b) b2 − `′+ (a) a2

](b− a
ab

)
(25)
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and

0 ≤ ab

b− a

b∫
a

` (t)

t2
dt− `

(
2ab

a+ b

)
≤

≤ 1

8

[
`′− (b) b2 − `′+ (a) a2

](b− a
ab

)
. (26)

If f : [a, b] ⊂ (0,∞)→ (0,∞) is an HG-convex function on the interval
[a, b], then ` := ln f is HA-convex on [a, b] , and by (25) and (26) we have

0 ≤ ln
√
f (a) f (b)− ab

b− a

b∫
a

ln f (t)

t2
dt ≤

≤ 1

8

[
f ′− (b)

f (b)
b2 −

f ′+ (a) a2

f (a)

](
b− a
ab

)
(27)

and

0 ≤ ab

b− a

b∫
a

ln f (t)

t2
dt− ln f

(
2ab

a+ b

)
≤

≤ 1

8

[
f ′− (b)

f (b)
b2 −

f ′+ (a) a2

f (a)

](
b− a
ab

)
, (28)

and the Theorem 5 is proved.

If f : [a, b] ⊂ (0,∞)→ (0,∞) is an HG-convex function on the interval
[a, b], then Hf is convex on [a, b] and by (19) and (20) we have after
appropriate calculations

0 ≤ ln

√
[f (a)]

a
[f (b)]

b − 1

b− a

b∫
a

t ln f (t) dt ≤

≤ 1

8

[
ln f (b) +

bf ′− (b)

f (b)
− ln f (a)−

af ′+ (a)

f (a)

]
(b− a) =

= ln

(
f (b)

f (a)

) 1
8 (b−a)

+
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

)
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and

0 ≤ 1

b− a

b∫
a

t ln f (t) dt− ln

([
f

(
a+ b

2

)] a+b
2

)
≤

≤ ln

(
f (b)

f (a)

) 1
8 (b−a)

+
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

)
.

These inequalities are equivalent to

0 ≤ ln


√

[f (a)]
a

[f (b)]
b

exp

(
1
b−a

b∫
a

t ln f (t) dt

)
 ≤

≤ ln

[(
f (b)

f (a)

) 1
8 (b−a)

exp

(
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

))]
and

0 ≤ ln


exp

(
1
b−a

b∫
a

t ln f (t) dt

)
[
f
(
a+b
2

)] a+b
2

 ≤

≤ ln

[(
f (b)

f (a)

) 1
8 (b−a)

exp

(
1

8
(b− a)

(
bf ′− (b)

f (b)
−
af ′+ (a)

f (a)

))]
and by taking the exponential we get the desired results (10) and (11).

The following lemma is of interest in itself:

Lemma 5. Let g : [a, b] ⊂ (0,∞) → R be a HA-convex function on the
interval [a, b]. Then

1

2x

(
g (b) a (b− x) + g (a) b (x− a)

b− a
+ xg (x)

)
≥ ab

b− a

b∫
a

g (y)

y2
dy (29)

for any x ∈ [a, b] .



Inequalities of Hermite-Hadamard type for HG-convex functions 35

Proof. Since h (t) = tg (t) for t ∈ [a, b] is convex, then by the gradient
inequality for convex functions we have

xg (x)− yg (y) ≥
(
g (y) + yg′− (y)

)
(x− y)

for any x, y ∈ (a, b) .
This is equivalent to

xg (x)− xg (y) ≥ yg′− (y) (x− y) (30)

for any x, y ∈ (a, b) .
From (30) we have, by division with xy2 > 0, that

1

y2
g (x)− 1

y2
g (y) ≥

g′− (y)

y

(
1− y

x

)
for any x, y ∈ (a, b) .

Taking the integral mean over y we have

g (x)
1

b− a

b∫
a

1

y2
dy − 1

b− a

b∫
a

g (y)

y2
dy ≥

≥ 1

b− a

b∫
a

g′− (y)

y
dy − 1

x

1

b− a

b∫
a

g′− (y) dy

that is equivalent to

g (x)

ab
− 1

b− a

b∫
a

g (y)

y2
dy ≥

≥ 1

b− a

g (b)

b
− g (a)

a
+

b∫
a

g (y)

y2
dy

− 1

x

g (b)− g (a)

b− a
=

=
1

b− a

(
g (b)

b
− g (a)

a

)
+

1

b− a

b∫
a

g (y)

y2
dy − 1

x

g (b)− g (a)

b− a
,
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for any x ∈ (a, b). This can be written as

1

x

g (b)− g (a)

b− a
− 1

b− a

(
g (b)

b
− g (a)

a

)
≥ 2

b− a

b∫
a

g (y)

y2
dy − g (x)

ab

or as

1

2

(
1

b− a

[
g (b)

b− x
xb

+ g (a)
x− a
ax

]
+
g (x)

ab

)
≥ 1

b− a

b∫
a

g (y)

y2
dy.

This is equivalent to the desired result (29). �

If f : [a, b] ⊂ (0,∞)→ (0,∞) is an HG-convex function on the interval
[a, b], then g := ln f is HA-convex on [a, b] , and by (29) we have

1

2x

(
a (b− x) ln f (b) + b (x− a) ln f (a)

b− a
+ x ln f (x)

)
≥

≥ ab

b− a

b∫
a

ln f (y)

y2
dy

for any x ∈ [a, b].
This is clearly equivalent to

ln

(√
[f (b)]

a(b−x)
x(b−a) [f (a)]

b(x−a)
x(b−a)

√
f (x)

)
≥ ab

b− a

b∫
a

ln f (y)

y2
dy (31)

for any x ∈ [a, b] .
If we take the exponential in (31), then we get the desired result (12).
4. Applications. Consider the function f : [a, b] ⊂ (0,∞)→ (0,∞),

f (t) = t. Using the geometric mean - harmonic mean inequality, we have

f

(
xy

tx+ (1− t) y

)
=

xy

tx+ (1− t) y
≤ x1−tyt = [f (x)]

1−t
[f (y)]

t
,

which shows that f is HG-convex on [a, b] .
We need the following integrals

1

b− a

b∫
a

ln f (t) dt =
1

b− a

b∫
a

ln tdt = ln I (a, b) ,
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1

b− a

b∫
a

t ln f (t) dt =
1

b− a

b∫
a

t ln tdt =

=
1

2
A (a, b) ln I

(
a2, b2

)
= ln

[
I
(
a2, b2

) 1
2A(a,b)

]
and

b∫
a

ln f (t)

t2
dt =

b∫
a

ln t

t2
dt =

b− a
ab

ln
[
I
(
a−1, b−1

)]−1
giving that

ab

b− a

b∫
a

ln f (t)

t2
dt = ln

[
I
(
a−1, b−1

)]−1
.

Now, if we write the inequality (4) for the function f : [a, b] ⊂ (0,∞) →
→ (0,∞), f (t) = t, we get

H (a, b) ≤
(

2ab

(1− λ) a+ (λ+ 1) b

)1−λ(
2ab

(2− λ) a+ λb

)λ
≤

≤
[
I
(
a−1, b−1

)]−1 ≤√( ab

(1− λ) a+ λb

)
a1−λbλ ≤ G (a, b) , (32)

where H (a, b) := 2ab
a+b is the harmonic mean.

If we use the inequality (6) for f (t) = t, then we have

(L (a, b) ≤) I (a, b) ≤ b
(L(a,b)−a)b
(b−a)L(a,b) a

(b−L(a,b))a
(b−a)L(a,b) . (33)

If we use the inequality (7) for f (t) = t, t ∈ [a, b], then we also get

[A (a, b)]
A(a,b) ≤ I

(
a2, b2

) 1
2A(a,b) ≤ G

(
bb, aa

)
. (34)

From (8) and (9) for f (t) = t we have

1 ≤
[
I
(
a−1, b−1

)]−1
H (a, b)

≤ exp

(
(b− a)

2

8ab

)
(35)

and

1 ≤ G (a, b)

[I (a−1, b−1)]
−1 ≤ exp

(
(b− a)

2

8ab

)
. (36)
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From (10) and (11) we also have

1 ≤
G
(
aa, bb

)
[I (a2, b2)]

1
2A(a,b)

≤
(
b

a

) 1
8 (b−a)

(37)

and

1 ≤
[
I
(
a2, b2

)] 1
2A(a,b)

[A (a, b)]
A(a,b)

≤
(
b

a

) 1
8 (b−a)

. (38)

Finally, from (13) we obtain

[
I
(
a−1, b−1

)]−1 ≤√A (a, b) b
a

a+b a
b

a+b . (39)

Now consider the function f : [a, b] ⊂ (0,∞)→ (0,∞), f (t) = exp (t).
Using the harmonic mean-arithmetic mean inequality we have

f

(
xy

tx+ (1− t) y

)
= exp

(
xy

tx+ (1− t) y

)
≤ exp ((1− t)x+ ty) =

= [exp (x)]
1−t

[exp (y)]
t

= [f (x)]
1−t

[f (y)]
t

for any x, y ∈ [a, b] and t ∈ [0, 1] .
Now, if we use the inequality (4) for the HG-convex function f : [a, b] ⊂

⊂ (0,∞)→ (0,∞), f (t) = exp (t), then we get, after suitable calculations,
that

H (a, b) ≤ 2 (1− λ) ab

(1− λ) a+ (λ+ 1) b
+

2λab

(2− λ) a+ λb
≤

≤ G2 (a, b)

L (a, b)
≤ 1

2

(
ab

(1− λ) a+ λb
+ (1− λ) a+ λb

)
≤ A (a, b) ,

for any λ ∈ [0, 1] .
If we use the inequalities (8) and (9) for the HG-convex function f :

[a, b] ⊂ (0,∞)→ (0,∞), f (t) = exp (t), then, by performing the required
calculations, we get

0 ≤ G2 (a, b)

L (a, b)
−H (a, b) ≤ 1

4

A (a, b)

G2 (a, b)
(b− a)

2
(40)

and

0 ≤ A (a, b)− G2 (a, b)

L (a, b)
≤ 1

4

A (a, b)

G2 (a, b)
(b− a)

2
. (41)
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From the inequality (13) we also have

G2 (a, b)

L (a, b)
≤ 1

2

(
A (a, b) + b

a
a+b a

b
a+b

)
. (42)

Acknowledgement. The author would like to thank the anonymous
referees for valuable comments that have been implemented in the final
version of the paper.

References

[1] Alomari M., Darus M. The Hadamard’s inequality for s-convex function.
Int. J. Math. Anal., 2008, vol. 2, no. 13-16, pp. 639–646.

[2] Alomari M., Darus M. Hadamard-type inequalities for s-convex functions.
Int. Math. Forum, 2008, vol. 3, no. 37-40, pp. 1965–1975.

[3] Anastassiou G. A. Univariate Ostrowski inequalities, revisited. Monatsh.
Math., 2002, vol. 135, no. 3, pp. 175–189.

[4] Anderson G. D., Vamanamurthy M. K., Vuorinen M. Generalized convexity
and inequalities. J. Math. Anal. Appl., 2007, vol. 335, pp. 1294–1308.

[5] Barnett N. S., Cerone P., Dragomir S. S., Pinheiro M. R., Sofo A. Os-
trowski type inequalities for functions whose modulus of the derivatives
are convex and applications. Inequality Theory and Applications, vol. 2
(Chinju/Masan, 2001), 19–32, Nova Sci. Publ., Hauppauge, NY, 2003.
Preprint: RGMIA Res. Rep. Coll., 2002, vol. 5, no. 2, art. 1 [Online

http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].

[6] Beckenbach E. F. Convex functions. Bull. Amer. Math. Soc., 1948, vol. 54,
pp. 439–460.

[7] Bombardelli M., Varošanec S. Properties of h-convex functions related to
the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl., 2009, vol.
58, no. 9, pp. 1869–1877.

[8] Cristescu G. Hadamard type inequalities for convolution of h-convex func-
tions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity,
2010, vol. 8, pp. 3–11.

[9] Dragomir S. S. On the Ostrowski’s inequality for mappings of bounded va-
riation and applications. Math. Ineq. & Appl., 2001, vol. 4, no. 1, pp.
33–40.

[10] Dragomir S. S. An inequality improving the first Hermite-Hadamard in-
equality for convex functions defined on linear spaces and applications for
semi-inner products. J. Inequal. Pure Appl. Math., 2002, vol. 3, no. 2, art.
31, 8 p.



40 S. S. Dragomir

[11] Dragomir S. S. An inequality improving the second Hermite-Hadamard in-
equality for convex functions defined on linear spaces and applications for
semi-inner products. J. Inequal. Pure Appl. Math., 2002, vol. 3, no. 3, art.
35.

[12] Dragomir S. S. An Ostrowski like inequality for convex functions and ap-
plications. Revista Math. Complutense, 2003, vol. 16, no. 2, pp. 373–382.

[13] Dragomir S. S. Operator Inequalities of Ostrowski and Trapezoidal Type.
Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp.
ISBN: 978-1-4614-1778-1

[14] Dragomir S. S. Some new inequalities of Hermite-Hadamard type for GA-
convex functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art. 30.
[http://rgmia.org/papers/v18/v18a30.pdf].

[15] Dragomir S. S. Inequalities of Hermite-Hadamard type for HA-convex
functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art. 38.
[http://rgmia.org/papers/v18/v18a38.pdf].

[16] Dragomir S. S. New inequalities of Hermite-Hadamard type for HA-
convex functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art.
41. [http://rgmia.org/papers/v18/v18a41.pdf].

[17] Dragomir S. S., Cerone P., Roumeliotis J., Wang S. A weighted version
of Ostrowski inequality for mappings of Hölder type and applications in
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[28] Pečarić J. E., Dragomir S. S. On an inequality of Godunova-Levin and some
refinements of Jensen integral inequality. Itinerant Seminar on Functional
Equations, Approximation and Convexity (Cluj-Napoca, 1989), pp. 263–
268, Preprint, 89-6, Univ. ”Babeş-Bolyai”, Cluj-Napoca, 1989.
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