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1 Introduction
If {ei}i∈I is an orthonormal basis of H, we say that A ∈ B (H) is trace class provided

‖A‖1 :=
∑
i∈I
〈|A| ei , ei〉 < ∞.

The de�nition of ‖A‖1 does not depend on the choice of the orthonormal basis {ei}i∈I . We denote byB1 (H)
the set of trace class operators inB (H) .

The following properties are also well known:
(i) We have

‖A‖1 =
∥∥∥A*∥∥∥

1

for any A ∈ B1 (H) ;
(ii)B1 (H) is an operator ideal inB (H) , i.e.

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii)
(
B1 (H) , ‖·‖1

)
is a Banach space.

We de�ne the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I
〈Aei , ei〉 , (1.1)

where {ei}i∈I is an orthonormal basis of H. Note that this coincides with the usual de�nition of the trace if
H is �nite-dimensional. We observe that the series (1.1) converges absolutely and it is independent from the
choice of basis.
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The following results collect some properties of the trace:
(i) If A ∈ B1 (H) then A* ∈ B1 (H) and

tr
(
A*
)

= tr (A);

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

tr (AT) = tr (TA) and |tr (AT)| ≤ ‖A‖1 ‖T‖ ;

(iii) tr (·) is a bounded linear functional onB1 (H) with ‖tr‖ = 1;
(iv)B�n (H) , the space of operators of �nite rank, is a dense subspace ofB1 (H) .
Now, for the �nite dimensional case, it is well known that the trace functional is submultiplicative, that

is, for positive semide�nite matrices A and B in Mn(C),

0 ≤ tr(AB) ≤ tr (A) tr (B) .

Therefore
0 ≤ tr(Ak) ≤ [tr (A)]k ,

where k is any positive integer.
In 2000, Yang [31] proved a matrix trace inequality

tr
[

(AB)k
]
≤ (trA)k(tr B)k , (1.2)

where A and B are positive semide�nite matrices over C of the same order n and k is any positive integer.
If (H, 〈·, ·〉) is a separable in�nite-dimensional Hilbert space then the inequality (1.2) is also valid for any

positive operators A, B ∈ B1 (H) . This result was obtained by L. Liu in 2007, see [20].
In 2001, Yang et al. [32] improved (1.2) as follows:

tr
[
(AB)m

]
≤
[

tr
(
A2m

)
tr
(
B2m

)]1/2
, (1.3)

where A and B are positive semide�nite matrices over C of the same order and m is any positive integer.
Stronger results than inequalities (1.2) and (1.3) had been obtained in the last 70s by Lieb and Thirring in

[19].
In [25] the authors have proved many trace inequalities for sums and products of matrices. For instance,

if A and B are positive semide�nite matrices in Mn (C) , then

tr
[

(AB)k
]
≤ min

{
‖A‖k tr

(
Bk
)
, ‖B‖k tr

(
Ak
)}

for any positive integer k. Also, if A, B ∈ Mn (C) then for r ≥ 1 and p, q > 1 with 1
p + 1

q = 1 we have the
following Young type inequality

tr
(∣∣∣AB*∣∣∣r) ≤ tr

[(
|A|p
p + |B|

q

q

)r]
. (1.4)

Ando [1] proved a strong form of Young’s inequality - it was shown that if A and B are inMn(C), then there is
a unitary matrix U such that ∣∣∣AB*∣∣∣ ≤ U (1

p |A|
p + 1

q |B|
q
)
U*,

where p, q > 1 with 1
p + 1

q = 1, which immediately gives the trace inequality

tr
(∣∣∣AB*∣∣∣) ≤ 1

p tr
(
|A|p

)
+ 1
q tr

(
|B|q

)
.

This inequality can also be obtained from (1.4) by taking r = 1.
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The following Hölder’s type inequality has been obtained by Ruskai in [23]

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|p

)]1/p [tr (|B|q)]1/q

where p, q > 1 with 1
p + 1

q = 1 and A, B ∈ B (H) with |A|p , |B|q ∈ B1 (H) .
In particular, for p = 2 we get the Schwarz inequality

|tr (AB)| ≤ tr (|AB|) ≤
[

tr
(
|A|2

)]1/2 [
tr
(
|B|2

)]1/2

with |A|2 , |B|2 ∈ B1 (H) .
Assume that A, B are positive invertible operators on a complex Hilbert space (H, 〈·, ·〉) . We use the

following notation
A]νB := A1/2

(
A−1/2BA−1/2

)ν
A1/2, (1.5)

for the weighted geometric mean.When ν = 1
2 , we write A]B for brevity.

We have the following Hölder type trace inequality for the weighted geometric mean [9]: If A, B are pos-
itive invertible operators, p, q > 1 with 1

p + 1
q = 1 and Ap , Bq ∈ B1 (H) , then Bq]1/pAp ∈ B1 (H) and

tr
(
Bq]1/pA

p) ≤ [tr (Ap)]1/p [tr (Bq)]1/q .

In particular, if A2, B2 ∈ B1 (H) , then B2]A2 ∈ B1 (H) and[
tr
(
B2]A2

)]2
≤ tr

(
A2
)

tr
(
B2
)
.

Also, if A, B are positive invertible operators, p, q > 1 with 1
p + 1

q = 1 and C ∈ B1 (H) , C ≥ 0 then CAp ,
CBq, C

(
Bq]1/pAp

)
∈ B1 (H) and

tr
(
C
(
Bq]1/pA

p)) ≤ [tr (CAp)]1/p [tr (CBq)]1/q .

In particular, if C ∈ B1 (H) , then CA2, CB2, C
(
B2]A2) ∈ B1 (H) and[

tr
(
C
(
B2]A2

))]2
≤ tr

(
CA2

)
tr
(
CB2

)
.

Related inequalities may be found in [9] as well.
For the theory of trace functionals and their applications the reader is referred to [27].
For some classical trace inequalities see [4], [6], [22] and [33], which are continuations of the work of

Bellman [2]. For related works the reader can refer to [1], [3], [4], [12], [17], [20], [21], [24] and [30].
Motivated by the above results, we establish in this paper some new trace inequalities via recent scalar

Young type inequalities.

2 Trace Inequalities Via Kittaneh-Manasrah Results
Kittaneh and Manasrah [15], [16] provided a re�nement and a reverse for Young’s inequality as follows:

r
(√

a −
√
b
)2
≤ (1 − ν) a + νb − a1−νbν ≤ R

(√
a −
√
b
)2

, (2.1)

where a, b > 0, ν ∈ [0, 1], r = min {1 − ν, ν} and R = max {1 − ν, ν} . The case ν = 1
2 reduces (2.1) to an

identity.
We can give a simple direct proof for (2.1) as follows. Recall the following result obtained by the author

in 2006 [7] that provides a re�nement and a reverse for the weighted Jensen’s discrete inequality:

n min
j∈{1,2,...,n}

{
pj
}1

n

n∑
j=1

Φ
(
xj
)
− Φ

1
n

n∑
j=1

xj

 (2.2)
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≤ 1
Pn

n∑
j=1

pjΦ
(
xj
)
− Φ

 1
Pn

n∑
j=1

pjxj


≤ n max

j∈{1,2,...,n}

{
pj
}1

n

n∑
j=1

Φ
(
xj
)
− Φ

1
n

n∑
j=1

xj

 ,
where Φ : C → R is a convex function de�ned on convex subset C of the linear space X,

{
xj
}
j∈{1,2,...,n} are

vectors in C and
{
pj
}
j∈{1,2,...,n} are nonnegative numbers with Pn =

∑n
j=1 pj > 0. For n = 2, we deduce from

(2.2) that

2 min {ν, 1 − ν}
[
Φ(x) + Φ(y)

2 − Φ
( x + y

2

)]
≤ νΦ (x) + (1 − ν)Φ (y) − Φ [νx + (1 − ν) y] (2.3)

≤ 2 max {ν, 1 − ν}
[
Φ(x) + Φ(y)

2 − Φ
( x + y

2

)]
for any x, y ∈ R and ν ∈ [0, 1]. If we take Φ (x) = exp (x), then we get from (2.3)

2 min {ν, 1 − ν}
[

exp (x) + exp (y)
2 − exp

( x + y
2

)]
≤ ν exp(x) + (1 − ν) exp(y) − exp [νx + (1 − ν) y] (2.4)

≤ 2 max {ν, 1 − ν}
[

exp (x) + exp (y)
2 − exp

( x + y
2

)]
for any x, y ∈ R and ν ∈ [0, 1]. Further, denote exp(x) = a, exp(y) = bwith a, b > 0, then from (2.4) we obtain
the inequality (2.1).

We have:

Theorem 1. Let A, B be two positive operators and P, Q ∈ B1 (H) with P, Q > 0. Then for any ν ∈ [0, 1] we
have

r

 tr (PA)
tr (P)

− 2
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

+ tr (QB)
tr (Q)

 ≤ (1 − ν) tr (PA)
tr (P)

+ ν tr (QB)
tr (Q)

−
tr
(
PA1−ν)
tr (P)

tr (QBν )
tr (Q)

(2.5)

≤ R

 tr (PA)
tr (P)

− 2
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

+ tr (QB)
tr (Q)

 ,

where r = min {1 − ν, ν} and R = max {1 − ν, ν} .

Proof. Fix b > 0, and by using the functional calculus for the operator A, we have from (2.1) that

r
(
〈Ax, x〉 − 2

√
b
〈
A1/2x, x

〉
+ b 〈x, x〉

)
≤ (1 − ν) 〈Ax, x〉 + νb 〈x, x〉 − bν

〈
A1−νx, x

〉
(2.6)

≤ R
(
〈Ax, x〉 − 2

√
b
〈
A1/2x, x

〉
+ b 〈x, x〉

)
for any x ∈ H.

Now, �x x ∈ H \ {0} . Then by using the functional calculus for the operator B, we have by (2.6) that

r
(
〈Ax, x〉 ‖y‖2 − 2

〈
A1/2x, x

〉〈
B1/2y, y

〉
+ ‖x‖2 〈By, y〉

)
(2.7)

≤ (1 − ν) 〈Ax, x〉 ‖y‖2 + ν ‖x‖2 〈By, y〉 −
〈
Bνy, y

〉〈
A1−νx, x

〉
≤ R
(
〈Ax, x〉 ‖y‖2 − 2

〈
A1/2x, x

〉〈
B1/2y, y

〉
+ ‖x‖2 〈By, y〉

)
for any x, y ∈ H and ν ∈ [0, 1] .

This inequality is of interest in itself as well.
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184 | S. S. Dragomir

Now, let x = P1/2e, y = Q1/2f where e, f ∈ H. Then by (2.7) we get

r
(〈
P1/2AP1/2e, e

〉
〈Qf , f 〉 − 2

〈
P1/2A1/2P1/2e, e

〉〈
Q1/2B1/2Q1/2f , f

〉
(2.8)

+ 〈Pe, e〉
〈
Q1/2BQ1/2f , f

〉)
≤ (1 − ν)

〈
P1/2AP1/2e, e

〉
〈Qf , f 〉 + ν 〈Pe, e〉

〈
Q1/2BQ1/2f , f

〉
−
〈
P1/2A1−νP1/2e, e

〉〈
Q1/2BνQ1/2f , f

〉
≤ R
(〈
P1/2AP1/2e, e

〉
〈Qf , f 〉

− 2
〈
P1/2A1/2P1/2e, e

〉〈
Q1/2B1/2Q1/2f , f

〉
+ 〈Pe, e〉

〈
Q1/2BQ1/2f , f

〉)
for any e, f ∈ H.

Let {ei}i∈I and
{
fj
}
j∈J be two orthonormal bases of H. If we take in (2.8) e = ei , i ∈ I and f = fj , j ∈ J and

summing over i ∈ I and j ∈ J, then we get

r

∑
i∈I

〈
P1/2AP1/2ei , ei

〉∑
j∈J

〈
Qfj , fj

〉
− 2
∑
i∈I

〈
P1/2A1/2P1/2ei , ei

〉∑
j∈J

〈
Q1/2B1/2Q1/2fj , fj

〉

+
∑
i∈I
〈Pei , ei〉

∑
j∈J

〈
Q1/2BQ1/2fj , fj

〉
≤ (1 − ν)

∑
i∈I

〈
P1/2AP1/2ei , ei

〉∑
j∈J

〈
Qfj , fj

〉
+ ν
∑
i∈I
〈Pei , ei〉

∑
j∈J

〈
Q1/2BQ1/2fj , fj

〉
−
∑
i∈I

〈
P1/2A1−νP1/2ei , ei

〉∑
j∈J

〈
Q1/2BνQ1/2fj , fj

〉

≤ R

∑
i∈I

〈
P1/2AP1/2ei , ei

〉∑
j∈J

〈
Qfj , fj

〉
− 2
∑
i∈I

〈
P1/2A1/2P1/2ei , ei

〉∑
j∈J

〈
Q1/2B1/2Q1/2fj , fj

〉

+
∑
i∈I
〈Pei , ei〉

∑
j∈J

〈
Q1/2BQ1/2fj , fj

〉 .

Using the properties of the trace we get

r
(

tr (PA) tr (Q) − 2 tr
(
PA1/2

)
tr
(
QB1/2

)
+ tr (P) tr (QB)

)
≤ (1 − ν) tr (PA) tr (Q) + ν tr (P) tr (QB) − tr

(
PA1−ν

)
tr
(
QBν

)
≤ R
(

tr (PA) tr (Q) − 2 tr
(
PA1/2

)
tr
(
QB1/2

)
+ tr (P) tr (QB)

)
and the inequality (2.5) is proved.

Corollary 1. Let A be a positive operator and P ∈ B1 (H) with P > 0. Then for any ν ∈ [0, 1] we have

2r

 tr (PA)
tr (P)

−

 tr
(
PA1/2

)
tr (P)

2 ≤ tr (PA)
tr (P)

−
tr
(
PA1−ν)
tr (P)

tr (PAν )
tr (P)

(2.9)

≤ 2R

 tr (PA)
tr (P)

−

 tr
(
PA1/2

)
tr (P)

2 ,

where r = min {1 − ν, ν} and R = max {1 − ν, ν} .

Remark 1. If P, Q are positive invertible operators with P, Q ∈ B1 (H), then by (2.9) for A = P−1/2QP−1/2 we
get

2r
(

tr (Q)
tr (P)

−
(

tr (P]Q)
tr (P)

)2
)
≤ tr (Q)

tr (P)
− tr (P]1−νQ)

tr (P)
tr (P]νQ)

tr (P)
≤ 2R

(
tr (Q)
tr (P)

−
(

tr (P]Q)
tr (P)

)2
)
,
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where the operator weighted geometric mean is de�ned in (1.5).

Corollary 2. Let A, B two positive operators and P, Q ∈ B1 (H) with P, Q > 0. If p, q > 1 with 1
p + 1

q = 1, then
we have

t

 tr
(
PAp

)
tr (P)

− 2
tr
(
PAp/2

)
tr (P)

tr
(
QBq/2

)
tr (Q)

+
tr
(
QBq

)
tr (Q)

 ≤ 1
p

tr
(
PAp

)
tr (P)

+ 1
q

tr
(
QBq

)
tr (Q)

− tr (PA)
tr (P)

tr (QB)
tr (Q)

(2.10)

≤ T

 tr
(
PAp

)
tr (P)

− 2
tr
(
PAp/2

)
tr (P)

tr
(
QBq/2

)
tr (Q)

+
tr
(
QBq

)
tr (Q)

 ,

where t = min
{

1
p ,

1
q

}
and T = max

{
1
p ,

1
q

}
.

The proof follows by (2.5) on replacing A with Ap , B with Bq and ν = 1
q .

Remark 2. If P, Q, S, V are positive invertible operators with P, Q, S, V ∈ B1 (H) , then by (2.10) we get for
A = P−1/2SP−1/2 and B = Q−1/2VQ−1/2 that

t
(

tr (P]pS)
tr (P)

− 2
tr
(
P]p/2S

)
tr (P)

tr
(
Q]q/2V

)
tr (Q)

+ tr (Q]qV)
tr (Q)

)
≤ 1
p

tr (P]pS)
tr (P)

+ 1
q

tr (Q]qV)
tr (Q)

− tr (S)
tr (P)

tr (V)
tr (Q)

(2.11)

≤ T
(

tr (P]pS)
tr (P)

− 2
tr
(
P]p/2S

)
tr (P)

tr
(
Q]q/2V

)
tr (Q)

+ tr (Q]qV)
tr (Q)

)
,

where t = min
{

1
p ,

1
q

}
and T = max

{
1
p ,

1
q

}
.

In particular, if we take in (2.11) S = Q and V = P, then we get

t
(

tr (P]pQ)
tr (P)

− 2
tr
(
P]p/2Q

)
tr (P)

tr
(
Q]q/2P

)
tr (Q)

+ tr (Q]qP)
tr (Q)

)
≤ 1
p

tr (P]pQ)
tr (P)

+ 1
q

tr (Q]qP)
tr (Q)

− 1

≤ T
(

tr (P]pQ)
tr (P)

− 2
tr
(
P]p/2Q

)
tr (P)

tr
(
Q]q/2P

)
tr (Q)

+ tr (Q]qP)
tr (Q)

)
,

where t = min
{

1
p ,

1
q

}
and T = max

{
1
p ,

1
q

}
.

3 Trace Inequalities Via Liao-Wu-Zhao and Zuo-Shi-Fujii Results
We consider the Kantorovich’s ratio de�ned by

K (h) := (h + 1)2

4h , h > 0.

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any h > 0 and K (h) = K
( 1
h
)
for

any h > 0.
The following multiplicative re�nement and reverse of Young inequality in terms of Kantorovich’s ratio

holds
Kr
(a
b

)
a1−νbν ≤ (1 − ν) a + νb ≤ KR

(a
b

)
a1−νbν , (3.1)

where a, b > 0, ν ∈ [0, 1], r = min {1 − ν, ν} and R = max {1 − ν, ν} .
The �rst inequality in (3.1) was obtained by Zuo et al. in [34] while the second by Liao et al. [18].
We can give a simple direct proof for (3.1) as follows.
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186 | S. S. Dragomir

Indeed, if wewrite the inequality (2.3) for the convex functionΦ (x) = − ln x, and for the positive numbers
a and b we get

2 min {ν, 1 − ν}
[

ln
(
a + b

2

)
− ln a + ln b

2

]
≤ ln [νb + (1 − ν) a] − (1 − ν) ln a − ν ln b

≤ 2 max {ν, 1 − ν}
[

ln
(
a + b

2

)
− ln a + ln b

2

]
that is equivalent to

min {ν, 1 − ν} ln
(
a + b
2
√
ab

)2
≤ ln

[
νb + (1 − ν) a
a1−νbν

]
≤ max {ν, 1 − ν} ln

(
a + b
2
√
ab

)2

and to (3.1), as stated.
If a ∈ [m1,M1] and b ∈ [m2,M2] with 0 < m1 < M1, 0 < m2 < M2 then

m1
M2

≤ ab ≤
M1
m2

.

Denote
m =: min

(a,b)∈[m1 ,M1]×[m2 ,M2]
K
(a
b

)
and M =: max

(a,b)∈[m1 ,M1]×[m2 ,M2]
K
(a
b

)
.

Taking into account the properties of Kantorovich’s ratio we have

m :=



K
(
M1
m2

)
> 1 if M1

m2
< 1,

1 if m1
M2
≤ 1 ≤ M1

m2
,

K
(
m1
M2

)
> 1 if 1 < m1

M2
,

=



K
(
m2
M1

)
> 1 if M1

m2
< 1,

1 if m1
M2
≤ 1 ≤ M1

m2
,

K
(
M2
m1

)
> 1 if 1 < m1

M2

(3.2)

and

M :=



K
(
m1
M2

)
> 1 if M1

m2
< 1,

max
{
K
(
m1
M2

)
, K
(
M1
m2

)}
> 1 if m1

M2
≤ 1 ≤ M1

m2
,

K
(
M1
m2

)
> 1 if 1 < m1

M2
,

(3.3)

=



K
(
M2
m1

)
> 1 if M1

m2
< 1,

max
{
K
(
M2
m1

)
, K
(
M1
m2

)}
> 1 if m1

M2
≤ 1 ≤ M1

m2
,

K
(
M1
m2

)
> 1 if 1 < m1

M2
.

We have the following result:

Theorem 2. Let A, B be two operators such that

0 < m1I ≤ A < M1I, 0 < m2I ≤ B ≤ M2I (3.4)

and P, Q ∈ B1 (H) with P, Q > 0. Then for any ν ∈ [0, 1] , we have for m, M as de�ned by (3.2) and (3.3) that

mr tr
(
PA1−ν)
tr (P)

tr (QBν )
tr (Q)

≤ (1 − ν) tr (PA)
tr (P)

+ ν tr (QB)
tr (Q)

≤ MR tr
(
PA1−ν)
tr (P)

tr (QBν )
tr (Q)

, (3.5)
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where r = min {1 − ν, ν} and R = max {1 − ν, ν} .
In particular, we have

m1/2
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

≤ 1
2

[
tr (PA)
tr (P)

+ tr (QB)
tr (Q)

]

≤ M1/2
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

.

Proof. From (3.1) we have
mra1−νbν ≤ (1 − ν) a + νb ≤ MRa1−νbν , (3.6)

where a ∈ [m1,M1] , b ∈ [m2,M2] and ν ∈ [0, 1].
Using the functional calculus for the operator A, we have

mrbν
〈
A1−νx, x

〉
≤ (1 − ν) 〈Ax, x〉 + νb ‖x‖2 ≤ MRbν

〈
A1−νx, x

〉
, (3.7)

for any x ∈ H, b ∈ [m2,M2] and ν ∈ [0, 1].
Using the functional calculus for B we get from (3.7) that

mr
〈
A1−νx, x

〉〈
Bνy, y

〉
≤ (1 − ν) 〈Ax, x〉 ‖y‖2 + ν ‖x‖2 〈By, y〉 (3.8)

≤ MR
〈
A1−νx, x

〉〈
Bνy, y

〉
,

for any x, y ∈ H and ν ∈ [0, 1].
This is an inequality of interest in itself as well.
Further, let x = P1/2e, y = Q1/2f where e, f ∈ H. Then by (3.8) we have

mr
〈
P1/2A1−νP1/2e, e

〉〈
Q1/2BνQ1/2f , f

〉
≤ (1 − ν)

〈
P1/2AP1/2e, e

〉
〈Qf , f 〉 + ν 〈Pe, e〉

〈
Q1/2BQ1/2f , f

〉
≤ MR

〈
P1/2A1−νP1/2e, e

〉〈
Q1/2BνQ1/2f , f

〉
,

for any e, f ∈ H and ν ∈ [0, 1].
Now, onmaking use of a similar argument as in the proof of Theorem 1, we get the desired result (3.5).

Remark 3. Let A, B be two operators such that the condition (3.4) is valid and P ∈ B1 (H) with P > 0. Then for
any ν ∈ [0, 1] , we have for m, M as de�ned by (3.2) and (3.3) that

mr tr
(
PA1−ν)
tr (P)

tr (PBν )
tr (P)

≤ tr (P [(1 − ν)A + νB])
tr (P)

≤ MR tr
(
PA1−ν)
tr (P)

tr (PBν )
tr (P)

,

where r = min {1 − ν, ν} and R = max {1 − ν, ν} .
In particular, we have

m1/2
tr
(
PA1/2

)
tr (P)

tr
(
PB1/2

)
tr (P)

≤
tr
(
P
( A+B

2
))

tr (P)

≤ M1/2
tr
(
PA1/2

)
tr (P)

tr
(
PB1/2

)
tr (P)

.

For 0 < m1 < M1, 0 < m2 < M2 and p, q > 1 with 1
p + 1

q = 1 we de�ne

mp,q :=



K
(
Mp

1
mq

2

)
> 1 if M

p
1

mq
2
< 1,

1 if m
p
1

Mq
2
≤ 1 ≤ Mp

1
mq

2
,

K
(
Mq

2
mp

1

)
> 1 if 1 < mp

1
Mq

2

(3.9)
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and

Mp,q :=



K
(
Mq

2
mp

1

)
> 1 if M

p
1

mq
2
< 1,

max
{
K
(
Mq

2
mp

1

)
, K
(
Mp

1
mq

2

)}
> 1 if m

p
1

Mq
2
≤ 1 ≤ Mp

1
mq

2
,

K
(
Mp

1
mq

2

)
> 1 if 1 < mp

1
Mq

2
.

(3.10)

Corollary 3. Let A, B be two operators such that (3.4) is valid and P, Q ∈ B1 (H) with P, Q > 0. Then for any
p, q > 1 with 1

p + 1
q = 1 we have for mp,q , Mp,q as de�ned by (3.9) and (3.10) that

mt
p,q

tr (PA)
tr (P)

tr (QB)
tr (Q)

≤ 1
p

tr
(
PAp

)
tr (P)

+ 1
q

tr
(
QBq

)
tr (Q)

(3.11)

≤ MT
p,q

tr (PA)
tr (P)

tr (QB)
tr (Q)

,

where t = min
{

1
p ,

1
q

}
and T = max

{
1
p ,

1
q

}
.

Proof. From (3.4) we have
0 < mp

1 I ≤ A
p < Mp

1 I, 0 < mq
2I ≤ B

q ≤ Mq
2I.

By replacing A by Ap , B by Bq and ν = 1
q in (3.5) then we get the desired result (3.11).

Remark 4. If we take Q = P in (3.11), then we get

mt
p,q

tr (PA)
tr (P)

tr (PB)
tr (P)

≤
tr
[
P
(

1
pA

p + 1
qB

q
)]

tr (P)

≤ MT
p,q

tr (PA)
tr (P)

tr (PB)
tr (P)

.

For p = q = 2 we consider

m̃2 :=



K
[(

M1
m2

)2
]
> 1 if M1

m2
< 1,

1 if m1
M2
≤ 1 ≤ M1

m2
,

K
[(

M2
m1

)2
]
> 1 if 1 < m1

M2

(3.12)

and

M̃2 :=



K
[(

M2
m1

)2
]
> 1 if M1

m2
< 1,

max
{
K
[(

M2
m1

)2
]
, K
[(

M1
m2

)2
]}

> 1 if m1
M2
≤ 1 ≤ M1

m2
,

K
[(

M1
m2

)2
]
> 1 if 1 < m1

M2
.

(3.13)

Corollary 4. Let A, B be two operators such that (3.4) is valid and P, Q ∈ B1 (H) with P, Q > 0. Then for m̃2,
M̃2 as de�ned by (3.12) and (3.13) we have that

m̃1/2
2

tr (PA)
tr (P)

tr (QB)
tr (Q)

≤ 1
p

tr
(
PA2)

tr (P)
+ 1
q

tr
(
QB2)

tr (Q)

≤ M̃1/2
2

tr (PA)
tr (P)

tr (QB)
tr (Q)

.
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In particular,

m̃1/2
2

tr (PA)
tr (P)

tr (PB)
tr (P)

≤
tr
[
P
(
A2+B2

2

)]
tr (P)

≤ M̃1/2
2

tr (PA)
tr (P)

tr (PB)
tr (P)

.

Corollary 5. If P, Q, S, V are positive invertible operators with P, Q, S, V ∈ B1 (H) and for 0 < m1 < M1,
0 < m2 < M2,

0 < m1P ≤ S ≤ M1P, 0 < m2Q ≤ V ≤ M2Q. (3.14)

Then for any ν ∈ [0, 1] , we have for m, M as de�ned by (3.2) and (3.3) that

mr tr (P]1−νS)
tr (P)

tr (Q]νV)
tr (Q)

≤ (1 − ν) tr (S)
tr (P)

+ ν tr (V)
tr (Q)

(3.15)

≤ MR tr (P]1−νS)
tr (P)

tr (Q]νV)
tr (Q)

,

where r = min {1 − ν, ν} and R = max {1 − ν, ν} .
In particular, we have

m1/2 tr (P]S)
tr (P)

tr (Q]V)
tr (Q)

≤ 1
2

[
tr (S)
tr (P)

+ tr (V)
tr (Q)

]
≤ M1/2 tr (P]S)

tr (P)
tr (Q]V)

tr (Q)
.

Proof. From (3.14) we have

0 < m1 ≤ P−1/2SP−1/2 ≤ M1, 0 < m2 ≤ Q−1/2VQ−1/2 ≤ M2.

If we use the inequality (3.5) for A = P−1/2SP−1/2 and B = Q−1/2VQ−1/2 then

mr
tr
(
P
(
P−1/2SP−1/2

)1−ν
)

tr (P)

tr
(
Q
(
Q−1/2VQ−1/2

)ν)
tr (Q)

≤ (1 − ν)
tr
(
PP−1/2SP−1/2

)
tr (P)

+ ν
tr
(
QQ−1/2VQ−1/2

)
tr (Q)

≤ MR
tr
(
P
(
P−1/2SP−1/2

)1−ν
)

tr (P)

tr
(
Q
(
Q−1/2VQ−1/2

)ν)
tr (Q)

,

which, by the properties of trace, is equivalent to (3.15).

Remark 5. If P, S, V are positive invertible operatorswith P, S, V ∈ B1 (H)and for0 < m1 < M1, 0 < m2 < M2,

0 < m1P ≤ S ≤ M1P, 0 < m2P ≤ V ≤ M2P,

then for any ν ∈ [0, 1] , we have for m, M as de�ned by (3.2) and (3.3) that

mr tr (P]1−νS)
tr (P)

tr (P]νV)
tr (P)

≤ tr ((1 − ν) S + νV)
tr (P)

≤ MR tr (P]1−νS)
tr (P)

tr (P]νV)
tr (P)

,

where r = min {1 − ν, ν} and R = max {1 − ν, ν} .
In particular, we have

m1/2 tr (P]S)
tr (P)

tr (P]V)
tr (P)

≤
tr
(
S+V

2

)
tr (P)

≤ M1/2 tr (P]S)
tr (P)

tr (P]V)
tr (P)

.
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4 Trace Inequalities Via Tominaga and Furuichi Results
We recall that Specht’s ratio is de�ned by [28]

S (h) :=


h

1
h−1

e ln
(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
( 1
h
)
> 1 for h > 0, h ≠ 1. The function is decreasing on (0, 1)

and increasing on (1,∞) .
The following inequality provides a re�nement and a multiplicative reverse for Young’s inequality

S
((a

b

)r)
a1−νbν ≤ (1 − ν) a + νb ≤ S

(a
b

)
a1−νbν , (4.1)

where a, b > 0, ν ∈ [0, 1], r = min {1 − ν, ν}.
The second inequality in (4.1) is due to Tominaga [29] while the �rst one is due to Furuichi [11].
If a ∈ [m1,M1] and b ∈ [m2,M2] with 0 < m1 < M1, 0 < m2 < M2 then

m1
M2

≤ ab ≤
M1
m2

.

Denote, for r ∈ (0, 1)

m̆r =: min
(a,b)∈[m1 ,M1]×[m2 ,M2]

S
((a

b

)r)
and M̆ =: max

(a,b)∈[m1 ,M1]×[m2 ,M2]
S
(a
b

)
.

Taking into account the properties of Specht’s ratio we have

m̆r :=



S
((

M1
m2

)r)
> 1 if M1

m2
< 1,

1 if m1
M2
≤ 1 ≤ M1

m2
,

S
((

M2
m1

)r)
> 1 if 1 < m1

M2
,

(4.2)

and

M̆ :=



S
(
M2
m1

)
> 1 if M1

m2
< 1,

max
{
S
(
M2
m1

)
, S
(
M1
m2

)}
> 1 if m1

M2
≤ 1 ≤ M1

m2
,

S
(
M1
m2

)
> 1 if 1 < m1

M2
.

(4.3)

We have the following result:

Theorem 3. Let A, B be two operators such that

0 < m1I ≤ A < M1I, 0 < m2I ≤ B ≤ M2I

and P, Q ∈ B1 (H) with P, Q > 0. Then for any ν ∈ [0, 1] , we have for m̆r , M̆ as de�ned by (4.2) and (4.3) that

m̆r
tr
(
PA1−ν)
tr (P)

tr (QBν )
tr (Q)

≤ (1 − ν) tr (PA)
tr (P)

+ ν tr (QB)
tr (Q)

(4.4)

≤ M̆
tr
(
PA1−ν)
tr (P)

tr (QBν )
tr (Q)

,
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where r = min {1 − ν, ν} and R = max {1 − ν, ν} .
In particular, we have

m̆1/2
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

≤ 1
2

[
tr (PA)
tr (P)

+ tr (QB)
tr (Q)

]

≤ M̆
tr
(
PA1/2

)
tr (P)

tr
(
QB1/2

)
tr (Q)

.

Proof. From (3.1) we have
m̆ra1−νbν ≤ (1 − ν) a + νb ≤ M̆a1−νbν ,

where a ∈ [m1,M1] , b ∈ [m2,M2] and ν ∈ [0, 1].
Now, onmaking use of a similar argument as in the proof of Theorem 2,we get the desired result (4.4).

For 0 < m1 < M1, 0 < m2 < M2 and p, q > 1 with 1
p + 1

q = 1 we de�ne for r ∈ (0, 1)

m̆r,p,q :=



S
((

Mp
1

mq
2

)r)
> 1 if M

p
1

mq
2
< 1,

1 if m
p
1

Mq
2
≤ 1 ≤ Mp

1
mq

2
,

S
((

Mq
2

mp
1

)r)
> 1 if 1 < mp

1
Mq

2

(4.5)

and

M̆p,q :=



S
(
Mq

2
mp

1

)
> 1 if M

p
1

mq
2
< 1,

max
{
S
(
Mq

2
mp

1

)
, S
(
Mp

1
mq

2

)}
> 1 if m

p
1

Mq
2
≤ 1 ≤ Mp

1
mq

2
,

S
(
Mp

1
mq

2

)
> 1 if 1 < mp

1
Mq

2
.

(4.6)

Corollary 6. Let A, B be two operators such that (3.4) is valid and P, Q ∈ B1 (H) with P, Q > 0. Then for any
p, q > 1 with 1

p + 1
q = 1 we have for m̆t,p,q , M̆p,q as de�ned by (4.5) and (4.6) that

m̆t,p,q
tr (PA)
tr (P)

tr (QB)
tr (Q)

≤ 1
p

tr
(
PAp

)
tr (P)

+ 1
q

tr
(
QBq

)
tr (Q)

≤ M̆p,q
tr (PA)
tr (P)

tr (QB)
tr (Q)

,

where t = min
{

1
p ,

1
q

}
.

The interested reader may write similar inequalities to those in the previous section, however we do not
present them here.
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