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1   |   INTRODUCTION

Near-infrared spectroscopy (NIRS) is a common tool to 
indirectly measure muscular oxygen availability and mi-
crovascular reactivity noninvasively.1-5 Implementation 
of NIRS relies on the transparency of human tissue and 
the light absorbing characteristics of oxy- (O2Hb) and  
deoxyhaemoglobin (HHb) chromophores for the determina-
tion of their concentration ([O2Hb] and [HHb], respectively) 
in a localized tissue bed.6 Changes in [O2Hb] and [HHb] 

reflect the dynamic balance between muscle oxygen (O2) 
delivery and extraction in the underlying tissue.7 In contin-
uous exercise where NIRS responses are relatively stable, 
averages can be calculated over discrete and predetermined 
time points for identification of overall trends within the 
exercise bout.1,2 When maximal sprint efforts are repeated, 
however, there is a rapid deoxygenation at exercise onset 
that slowly recovers at sprint cessation.8-10 The evolution of 
peaks and nadirs across the NIRS signal is often used to 
describe the quality of metabolic recovery between sprint 
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Near-infrared spectroscopy (NIRS) is a common tool used to study oxygen availability 
and utilization during repeated-sprint exercise. However, there are inconsistent methods 
of smoothing and determining peaks and nadirs from the NIRS signal, which make inter-
pretation and comparisons between studies difficult. To examine the effects of averaging 
method on deoxyhaemoglobin concentration ([HHb]) trends, nine males performed ten 
10-s sprints, with 30 seconds of recovery, and six analysis methods were used for deter-
mining peaks and nadirs in the [HHb] signal. First, means were calculated over predeter-
mined windows in the last 5 and 2 seconds of each sprint and recovery period. Second, 
moving 5-seconds and 2-seconds averages were also applied, and peaks/nadirs were de-
termined for each 40-seconds sprint/recovery cycle. Third, a Butterworth filter was used 
to smooth the signal, and the resulting signal output was used to determine peaks and 
nadirs from predetermined time points and a rolling approach. Correlation and residual 
analysis showed that the Butterworth filter attenuated the “noise” in the signal, while 
maintaining the integrity of the raw data (r = .9892; mean standardized residual 
−9.71 × 103 ± 3.80). Means derived from predetermined windows, irrespective of 
length and data smoothing, underestimated the magnitude of peak and nadir [HHb] com-
pared to a rolling mean approach. Consequently, sprint-induced metabolic changes (in-
ferred from Δ[HHb]) were underestimated. Based on these results, we suggest using a 
digital filter to smooth NIRS data, rather than an arithmetic mean, and a rolling approach 
to determine peaks and nadirs for accurate interpretation of muscle oxygenation trends.
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bouts.9,11,12 Because of the rapid oxygenation adjustments 
and short duty cycle of repeated-sprint exercise,10,12,13 ac-
curate identification of peaks and nadirs in the NIRS signal 
is critical.

Analysis of NIRS data obtained during repeated-sprint ex-
ercise is often constrained to [HHb]8,11,13-15 due to Δ[O2Hb] 
being influenced by rapid blood volume and perfusion variations 
caused by forceful muscle contractions.3,16 Additionally, the 
HHb signal is considered to be relatively independent of blood 
volume2,3 and taken to reflect venous [HHb] which provides an 
estimate of muscular oxygen extraction.1,2 However, across stud-
ies, there are differing methods used to smooth the NIRS signal 
and determine peak and nadir [HHb], which can potentially af-
fect comparisons between studies and, therefore, interpretation.

To analyze a NIRS signal, single values for each sprint 
and recovery are typically determined for each peak and 
nadir.8,10,13,17,18 A mean is calculated over a predetermined du-
ration within the closing seconds of each sprint and recovery 
periods to smooth fluctuations in raw NIRS data during sprint 
exercise.8-10,19-22 This method has been used on numerous oc-
casions in acute settings,9,13 varying inspired O2 fraction,11,20-22 
active vs passive rest,8,23 after respiratory muscle warm-up,24 
and in response to training.14,17,25 However, a possible draw-
back is that the true, physiological peak and/or nadir [HHb] may 
not fall within the predefined analysis window. It may be that 
[HHb] continues to rise if tissue O2 consumption remains ele-
vated post sprint and/or if O2 delivery decreases. Additionally, 
the recovery nadir may be affected by limb activity when the 
athlete prepares for the next sprint (ie, leg movement to place 
the pedal in the right position and static contraction of the 
quadriceps). To overcome this, a rolling mean approach may 
be applied to smooth the data to determine the true peak and 
nadir of the NIRS signal.10,12,15,18,19,26 But currently, there is 
no comparison of means calculated from predetermined time 
periods or a rolling mean approach. Additionally, there is no 
consistency of the moving average window duration, which 
may be constrained to sprint duration.11,12 A digital filter is 
another typical technique used to attenuate noise and smooth 
raw data.27 For example, when a low-pass filter is used, a cut-
off frequency is chosen so that lower signal frequencies remain 
and higher frequencies are attenuated.28 Such filters have been 
employed to smooth the NIRS signal during repeated-sprint 
exercise,9,18,29 but again, the relevance of such technique has 
yet to be confirmed compared to more widely used averaging 
methods.

Therefore, the purpose of this study was to compare and eval-
uate the effect of different NIRS signal analysis methods (pre-
determined temporal window, rolling mean, and Butterworth 
filter) on muscle tissue oxygenation trends during a repeated-
sprint protocol. We propose that the combination of a digital 
filter to smooth the NIRS signal and the identification of a local 
maximum and minimum for each sprint/recovery phase will 
improve our ability to detect changes in the signal.

2  |   METHODS

2.1  |  Participants

Nine males accustomed to high-intensity activity were 
recruited for this study (mean ± SD: age 25 ± 3 years; 
height, 183.2 ± 7.7 cm; body mass, 81.0 ± 8.7 kg; V Ȯ2peak, 
54.6 ± 6.2 mL·min-1·Kg-1). All participants reported to be 
healthy and with no known neurological, cardiovascular, or 
respiratory diseases. After being fully informed of the require-
ments, benefits, and risks associated with participation, each 
participant gave written consent. Ethical approval for the study 
was obtained from the institutional Human Research Ethics 
Committee and conformed to the declaration of Helsinki.

2.2  |  Experiment design
Participants were part of a larger project that required six sepa-
rate laboratory visits. Data presented here were taken from 
the control trial that took place after familiarization. Testing 
was performed on an electronically braked cycle ergometer 
(Excalibur, Lode, Groningen, The Netherlands), set to “isoki-
netic” mode. In this mode, a variable resistance is applied to 
the flywheel proportional to the torque produced by the subjects 
to constrain their pedaling rate to 120 rpm. Below 120 rpm, no 
resistance is applied to the flywheel. This mode was chosen to 
avoid cadence-induced changes in mechanical power produc-
tion,30 and hemodynamics,31 within and between sprints. After 
a 7-minute warm-up consisting of 5 min of unloaded cycling 
at 60-70 rpm and two 4-seconds sprints (separated by 1 min-
ute each), participants rested for another 2.5 minute before the 
repeated-sprint protocol was initiated. The repeated-sprint pro-
tocol consisted of ten 10-seconds self-paced sprints separated 
by 30 seconds of passive rest. Participants were instructed to 
give an “all-out” effort for every sprint and verbally encouraged 
throughout to promote a maximal effort. Each sprint was per-
formed in the seated position and initiated with the crank arm 
of the dominant leg at 45°. Before sprint one, subjects were in-
structed to accelerate the flywheel to 95 rpm over a 15-seconds 
period and assume the ready position 5 seconds before the com-
mencement of the test. This ensured that each sprint was initi-
ated with the flywheel rotating at ~90 rpm so that subjects could 
quickly reach 120 rpm. Five seconds prior to the initiation of 
each sprint, participants were asked to assume the ready posi-
tion, followed by a verbal 3-2-1 countdown.

2.3  |  NIRS
Participants were instrumented with NIRS probes (Oxymon 
MKIII, Artinis, the Netherland) fixed over the distal part of the 
vastus lateralis muscle belly of their dominant leg, approxi-
mately 10-15 cm above the proximal border of the patella and 
held in place with plastic spacers with an optode distance of 
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4 cm. Skinfold thickness was measured between the emitter 
and detector using a skinfold caliper (Harpenden Ltd.) to ac-
count for skin and adipose tissue thickness covering the mus-
cle. The skinfold thickness (12.4 ± 6.9 mm) was less than half 
the distance between the emitter and the detector in each case. 
Probes were attached using double-sided stick disks, secured 
with tape, and shielded from light with black elastic band-
ages. Between sprints, participants were asked to minimize leg 
movement by remaining seated and relax their dominant leg in 
the extended position. A modified form of the Beer-Lambert 
law was used to calculate micromolar changes in tissue [HHb] 
across time using received optical density from one continuous 
wavelength of NIR light (763 nm). A differential pathlength 
factor of 4.95 was used.20,21 Data were acquired at 10 Hz and 
exported to Excel for analysis. These data were expressed as a 
percentage so that resting baseline represented 0% and maxi-
mal [HHb] represented 100% (Δ%[HHb]). Maximal [HHb] 
was obtained with femoral arterial occlusion using a pneu-
matic tourniquet (inflated to 300-350 mm Hg) around the root 
of the thigh for 3-5 minutes until the [HHb] increase reached a 
plateau. Arterial occlusion was performed after the completion 
of the repeated-sprint protocol (within 10 minutes), while the 
subjects lay on an examination bed with the leg under exami-
nation at 90° knee flexion, and foot on the bed. During the tri-
als, markers were placed in the NIRS software at sprint onset 
to demarcate the 40-s sprint/recovery windows for analysis.

The application of the 10th order zero-lag low-pass 
Butterworth filter was conducted in the R environment32 using 
the signal package.33 The filter order was determined based 
on previous research,9,18 and the effects of filter order on the 
sharpness of filter response. The filters cutoff frequency (ƒc) 
was determined based on a combination of previous research,18 
residual analysis (of data from three subjects) of the effects of a 
range of different normalized ƒc on HHb (Figure 1), and visual 
inspection with attention paid to local maxima and minima of 
filtered data compared to the raw signal.34 Based on these, it was 
concluded that 0.1 was suitable ƒc to be applied to the data for 
the remaining subjects. After the filter passed through the data, 
the resulting output was exported to Excel for standardization to 
occlusion values and determination of peaks and nadirs.

2.4  |  Data analysis
Six methods were used to obtain a single peak and nadir 
%Δ[HHb] value for every sprint and recovery period based 
on the methods outlined in previous research.8-12,18-22,29

1.	 Averages calculated from a predetermined range over 
the final 2 seconds of exercise (peak) and recovery 
(nadir): 2PD.

2.	 Averages calculated from a predetermined range over the 
final 5 seconds of exercise (peak) and recovery (nadir): 
5PD.

3.	 Moving average with a window of 2 seconds applied to 
the data, followed by the identification peaks and nadirs 
within each 40-second exercise-recovery cycle: 2MA.

4.	 Moving average with a window of 5 seconds applied to 
the data, followed by the identification peaks and nadirs 
within each 40-second exercise-recovery cycle: 5MA

5.	 Application of a Butterworth filter to smooth the raw 
NIRS data, followed by the identification of peaks and na-
dirs from predetermined time points. A single value prior 
to each phase change (ie, end of exercise and end of recov-
ery, 0.1 second): BWFPD.

6.	 The application of a Butterworth filter to smooth the data, 
followed by the identification of a peak and nadir using a 
rolling approach within each 40-seconds exercise-recov-
ery cycle (0.1 second): BWFMA.

Tissue reoxygenation (ΔReoxy) was calculated as the dif-
ference between the peak and nadir for each analysis method.

2.5  |  Statistical analyses
Data in text and figures are presented as mean ± SD. Relative 
changes (%) are expressed with 95% confidence limits (95% 
CL). Effects of the Butterworth filter on the NIRS signal was 
assessed by calculating Pearson’s product-moment correla-
tion (r), and standardized residuals of the raw vs filtered data 
in the R environment using the stats package.32 The correla-
tion between the raw and filtered NIRS signal was assessed 
by fitting a linear regression model to the pooled subject data. 
The following criteria were adopted to interpret the magnitude 
of the correlation between variables: ≥0.1, trivial; >0.1-0.3, 
small; >0.3-0.5, moderate; >0.5-0.7, large; >0.7-0.9, very 
large; and >0.9-1.0, almost perfect.35 To determine the effects 

F I G U R E   1   A plot of the root-mean-square (RMS) residuals 
between filtered and unfiltered signals as a function of the filter cutoff 
frequency from the data of a representative subject. A line of best fit 
(ab) is projected to the Y-axis. At the intercept c, the horizontal line cd 
is drawn to intersect with the residuals. The chosen cutoff frequency ƒc 
is at this point of intersection
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of analysis method, practical significance was also assessed by 
standardized effects and presented with 95% CL.36 Effect sizes 
(ES) between0- < 0.2, >0.2-0.5, >0.5-0.8, and >0.8 were con-
sidered to as trivial, small, moderate, and large, respectively. 
Probabilities were also calculated to establish whether the 
chance the true (unknown) differences were lower, similar, or 
higher than the smallest worthwhile change (0.2 multiplied by 
the between-subject SD, based on Cohen’s effect size princi-
ple). Quantitative probability of lower, similar, or higher dif-
ferences was assessed qualitatively as follows: <1%, almost 
certainly not; >1%-5%, very unlikely; >5%-25%, unlikely; 
>25%-75%, possible; >75%-95%, likely; >95%-99%, very 
likely; and >99%, almost certainly. If the probability of having 
higher/lower values than the smallest worthwhile difference 
was both >5%, the true difference was assessed as unclear.35,37 
Data analysis was performed using a modified statistical Excel 
spreadsheet.38 To examine the interaction effects between the 
method for identifying Δ%[HHb] peak, nadir and ΔReoxy 
(predetermined and moving), and the size of the analysis 
window (0.1, 2, and 5 seconds), two-way repeated measure 
ANOVAs were performed. Post hoc analysis was conducted 
using the Holm-Šídák method and adjusted for multiple com-
parisons. A threshold for significance was set at the P < .05 
level. Analysis was performed GraphPad Prism 6.

3  |   RESULTS

3.1  |  Application of the Butterworth filter
An example of the raw compared to the filtered data of a repre-
sentative subject is presented in Figure 2. There was an almost 
perfect Pearson’s correlation between the raw NIRS data and 
that after the Butterworth filter (Figure 3A). The mean stand-
ardized residual of the raw data compared to the filtered was 
-9.71 × 103 ± 3.80 (Figure 3B). When rectified, the mean re-
sidual was 2.51 ± 2.86 with a relative difference of 2.5% [CL: 
1.7, 3.4].

3.2  |  Peak muscle [HHb]
Mean results of the different analysis methods are presented 
in Figure 4A. Comparisons of analysis methods are shown 
in Table 1. There was a significant effect of the method for 
identify peaks on peak muscle Δ%[HHb] at the P < 0.05 
level [F (1, 8) = 5.346, P = .0495]. The size of the analysis 
window also had a significant effect on peak muscle [HHb] 
[F (2, 16) = 29.68, P < .0001]. There was also a significant 
interaction effect [F (2, 16) = 6.445, P = .0089]. Changes 
in Δ%[HHb] across all sprints were almost certainly higher 
when calculated from 5MA compared to 5PD with a small effect 
(15.3% [11.7, 19.1]; P < .0001). There was also a likely small 
difference between 2MA and 2PD (8.2% [5.4, 11.0]; P < .0001). 
An almost certainly small effect was also observed when 2PD 

was compared to 5PD. Differences between 2MA and 5MA were 
almost certainly trivial. Means determined from BWFPD were 
almost certainly higher than 5PD and almost certainly trivial 
compared to 2PD. When the results from BWFMA were com-
pared to other moving averages, BWFMA was almost certainly 
higher than 5MA (19.2% [15.4, 23.1]; P < .0001), but there was 

FIGURE 2   Representative data from a single subject illustrating 
the effects of a 10th order zero-lag low-pass Butterworth filter compared 
with raw data. (A) Deoxyhaemoglobin concentration changes (Δ%[HHb]) 
over the entire repeated-sprint protocol. (B) Residuals between raw and 
filtered data shown in panel A. (C) Change in Δ%[HHb] during sprint 
one and subsequent recovery period. Gray shaded areas represent the 10-s 
sprint periods. The black lines represent raw HHb data. Red lines are the 
resulting data after the application of the Butterworth filter
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an almost certainly trivial difference when compared to 2MA 
(0.4% [0.1, 0.7]; P = .4348). There was a likely trivial differ-
ence between BWFMA and BWFPD.

3.3  |  Nadir muscle [HHb]
Mean results of the different analysis methods are presented 
in Figure 4B. Comparisons of analysis methods are shown in 
Table 2. A significant effect of the method for identify nadirs 
on peak muscle Δ%[HHb] was detected [F (1, 8) = 5.346, 
P = .0495]. The size of the analysis window also had a signifi-
cant effect on nadir Δ%[HHb] [F (2, 16) = 29.68, P < .0001]. 
A significant interaction effect was also detected [F (2, 
16) = 6.445, P = .0089]. The difference between 5MA and 5PD 
during recovery was trivial. However, a likely small differ-
ence did exist between 2MA and 2PD (−19.7% [−33.8, −2.7]; 
P < .0001). A possibly small effect was also present when 2PD 
was compared to 5PD. There was a very likely small effect with 
2MA being lower than 5MA. The BWFPD nadir was likely lower 

than both 5PD and 2PD. Using BWFMA to calculate the nadir 
of Δ%[HHb] yielded very likely and likely lower means than 
5MA (−40.4% [−58.1, −15.2]; P < .0001) and 2MA (−25.3% 

F I G U R E   3   Correlation and residual analysis of the pooled 
subject data comparing the output from the Butterworth filter to the 
raw deoxyhaemoglobin (HHb) data. (A) Pearson’s product-moment 
correlation (r) with associated P value of a linear regression model 
fitted to the filtered and raw HHb data. (B) Standardized residuals from 
the raw vs filtered data of the pooled subject data set

F I G U R E   4   Mean and standard deviation of deoxyhaemoglobin 
concentration changes (Δ%[HHb]) over the entire repeated-sprint 
protocol determined from the different analysis methods. (A) Peak 
Δ%[HHb] averages of each analysis method. (B) Nadir Δ%[HHb] 
averages of each analysis method. (C) ΔReoxy calculated from peak 
and nadir Δ%[HHb] of the different analysis methods. The number 
of symbols one and two represent a difference at the P < 0.05 and 
P < 0.01 level, respectively (Holm-Šídák test). Symbols denote a 
difference from 5PD, *; 2PD, †; 5MA, §; BWFPD, ‡. No significant 
difference was found between BWFMA – 2MA (P = 0.4348), and  
2PD – 5PD (P = 0.0524)
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[−39.5, −7.8]; P < .0001). Additionally, BWFMA was likely 
lower than BWFPD (−20.8% [−32.2, −7.4]; P < .0001).

3.4  |  Muscle reoxygenation
Mean results of the different analysis methods are presented 
in Figure 4C. Comparisons of analysis methods are shown in 
Table 3. There was a significant effect of the method for iden-
tify peaks and nadirs on ΔReoxy [F (1, 8) = 40.00, P = .0002]. 
A significant effect of the window size was also detected [F 
(2, 16) = 108.9, P < .0001]. There was also a significant in-
teraction effect [F (2, 16) = 13.31, P = .0004]. Using the 5MA 
method to calculate ΔReoxy yielded almost certainly higher 
results than 5PD (28.2% [17.7, 39.7]; P < .0001). Similarly, 2MA 
was very likely greater than 2PD (19.4 [11.2, 28.3]; P < .0001). 
Comparing the predetermined mean approaches, 2PD was very 
likely greater than 5PD. Rolling means were possibly higher 
when the 2MA approach was used compared to 5MA. When the 
Butterworth filter was used, values from predetermined time 
points (BWFpd) were almost certainly greater than 5PD (31.0% 
[22.4, 40.3]; P < .0001) and possibly greater than 2PD (10.9% 
[8.3, 13.5]; P < .0001). Means calculated from the BWFMA ap-
proach were almost certainly higher than 5MA, almost certainly 

trivial compared to 2MA, and likely greater than BWFPD (13.2% 
[7.9, 18.7]; P < .0001).

4  |   DISCUSSION

Results indicate that using predefined averaging windows to 
analyze the NIRS signal within sprint and recovery periods, 
Δ%[HHb] peaks and nadirs are consistently underestimated 
compared to a moving average, regardless of the window length. 
Subsequently, muscle reoxygenation between efforts is underes-
timated using 5PD and 2PD compared to 5MA and 2MA. However, 
a drawback of using the arithmetic mean is that each data point 
contributes equally to the average, which allows outlying data 
points to bias the result.39 To overcome this, we applied a 10th 
order zero-lag low-pass Butterworth filter to the NIRS signal, 
which incorporates a weighted mean from several data points 
across the signal. Correlation and residual analysis revealed the 
Butterworth filter attenuated the “noise” yet maintained the in-
tegrity of the raw data (Figure 3). As NIRS responses are used 
as a surrogate for metabolic perturbations, detecting the magni-
tude of change is critical for assessing the influence of interven-
tions and environmental factors. Thus, it appears that a digital 
filter combined with a rolling approach for determining peaks 

Variable
Analysis method 
comparison Standardized effect

Relative 
difference (%)

Peak Δ%[HHb] (%) 2PD – 5PD 0.30 [0.34, 0.25] 9.8 [8.2, 11.4]

2MA – 5MA 0.09 [0.12, 0.06] 2.9 [3.9, 2.0]

5MA – 5PD 0.47 [0.57, 0.36] 15.3 [11.7, 19.1]

2MA – 2PD 0.25 [0.33, 0.17] 8.2 [5.4,11.0]

BWFPD – 5PD 0.40 [0.47, 0.32] 12.9 [10.4, 15.5]

BWFPD – 2PD 0.09 [0.13, 0.06] 2.9 [1.7, 4.0]

BWFMA – 5MA 0.56 [0.66, 0.46] 19.2 [15.4, 23.1]

BWFMA – 2MA 0.01 [0.02, 0.00] 0.4 [0.1, 0.7]

BWFMA – BWFPD 0.17 [0.25, 0.10] 5.6 [3.0, 8.1]

Standardized effects and relative differences are presented as change score [95% confidence limits].

T A B L E   1   Comparison of smoothing 
method responses on peak Δ%[HHb]

Variable
Analysis method 
comparison Standardized effect

Relative difference 
(%)

Nadir Δ%[HHb] 
(%)

2PD-5PD −0.20 [0.18, −0.59] −8.9 [−23.5, 8.6]

2MA-5MA −0.38 [−0.13, −0.64] −20.3 [−31.4, −7.3]

5MA-5PD −0.19 [0.04, −0.42] −8.3 [−17.6, 1.8]

2MA-2PD −0.37 [−0.05, −0.70] −19.7 [−33.8, −2.7]

BWFPD-5PD −0.47 [−0.10, −0.84] −31.0 [−48.5, −7.5]

BWFPD-2PD −0.35 [−0.15, −0.55] −24.3 [−35.3, −11.5]

BWFMA-5MA −0.61 [−0.19, −1.02] −40.4 [−58.1, −15.2]

BWFMA-2MA −0.34 [−0.10, −0.59] −25.3 [−39.5, −7.8]

BWFMA-BWFPD −0.27 [−0.09, −0.46] −20.8 [−32.2, −7.4]

Standardized effects and relative differences are presented as change score [95% confidence limits].

T A B L E   2   Comparison of smoothing 
method responses on nadir Δ%[HHb]
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and nadirs of the NIRS signal is the best method for accurate 
interpretation of oxygenation trends in repeated-sprint exercise.

There were clear differences in peak Δ%[HHb] means be-
tween the predefined averaging methods. The difference be-
tween 2PD and 5PD can be attributed to the length of the averaging 
window. At sprint onset, there is a sharp rise in Δ%[HHb] from 
rest that peaks at sprint cessation or shortly thereafter (Figure 2 
and Ref. [8,10,12,13,18]). In our representative data, Δ%[HHb] 
continued to increase ~40% in the final 5 s of the first sprint 
which led to a significant 10% reduction in peak Δ%[HHb] for 
5PD compared with 2PD (Table 1). Consequently, an averaging 
duration that encapsulates a sharp rise within the window length 
will underestimate the amplitude of Δ%[HHb] change.

It is clear from Figure 2 that Δ%[HHb] continued to increase 
after the predefined averaging window. This would tend to under-
estimate the peak Δ%[HHb] response. To overcome this potential 
confounding factor, we applied both a 5-second and 2-second mov-
ing average to the NIRS signal. The 2MA and 5MA yielded 15% and 
8% greater peaks compared to 2PD and 5PD, respectively. As maxi-
mal Δ%[HHb] may occur either at, or immediately after sprint ces-
sation, identification of peaks using a moving average will always 
capture this maximal deoxygenation. Therefore, studies that only 
employed predetermined averaging windows9,11,17,20-22 may have 
underestimated the true magnitude of Δ%[HHb] change induced 
by repeated-sprint exercise. To more accurately represent muscle 
oxygenation changes in response to repeated-sprint exercise, values 
need to be determined from a moving average approach.8,10,12,18,19,29 
However, a moving average may not be appropriate when exercise 
protocols incorporate other muscular activity around repeated-
sprint bouts. For example, some authors have used low-intensity 
exercise during recovery periods between sprints,8,10,12 and oth-
ers have used running-based protocols, which impose eccentric 
loading during the negative acceleration phase post-sprint.8,14,17 
Another limitation is that when using arithmetic means (ie, 5PD and 
2PD; 5MA and 2MA), equal weight is given to all data points, which 
can lead to the result being distorted by outliers.39 But in the field 
of repeated-sprint exercise, an arithmetic mean is commonly em-
ployed to smooth perturbations in NIRS data.

To address this methodological limitation, we used a 
Butterworth filter to smooth the data and obtained Δ%[HHb] 
peak from both predetermined time points within each sprint and 
from a rolling approach. The BWFPD approach yielded 13 and 
3% greater peaks than both 5PD and 2PD methods, respectively. 
As BWFPD used the last value within each sprint (in the current 
instance, the 100th value of a 10-second sprint sampled at 10 Hz), 
this was the highest Δ%[HHb] value achieved within each 
10-second sprint period. Similarly, peak Δ%[HHb] determined 
by BWFMA was 19% greater than 5MA. However, only a trivial 
difference was found between BWFMA filtering and 2MA. Various 
studies have applied digital filters to smooth biomechanical and 
biological data,34,40,41 and yet few authors have used a filter to 
smooth a NIRS signal during repeated-sprint exercise.9,18 When 
a low-pass filter is used, a ƒc is chosen so that lower signal fre-
quencies remain and higher frequencies (noise) are attenuated.28 
A low-pass Butterworth filter attenuates signal power above a 
specified ƒc, but also included a weighted average across several 
data points,27 which leads to lag in the signal output. This tempo-
ral shift can be removed by running the filter a second time in the 
reverse direction (zero-lag). Repeated-sprint exercise represents a 
particularly salient challenge to Δ%[HHb] signal due to the rapid 
changes in duty cycle. Our results suggest that an arithmetic mean 
under-represents [HHb] peak in most cases and that both BWFPD 
and BWFMA better reflect peak [HHb] after sprint exercise.

Differences in nadir Δ%[HHb] were less clear between the 
averaging methods. As means were calculated on the flatter 
portion of the NIRS signal during the late stage of recovery, 
differences between averaging methods were minimal. There 
was an 8% and 20% lower Δ%[HHb] nadir from both a 5MA and 
2MA compared to 5PD and 2PD, respectively (Table 2). While the 
difference between nadir 5MA and 5PD did not reach the typ-
ically adopted threshold for statistical significance of P < .05 
(“trivial” standardized effect), we reported a small standardized 
effect (20% relative difference, P < .0001) between the 2MA 
and 2PD analysis methods. The 5-s averaging windows may 
not have the sensitivity to detect subtle differences between the 
nadir determined from predetermined and moving averages. It 

Variable
Analysis method 
comparison Standardized effect

Relative 
difference (%)

ΔReoxy (%) 2PD-5PD 0.34 [0.48, 0.20] 18.2 [10.1, 26.9]

2MA-5MA 0.21 [0.26, 0.17] 10.1 [7.9, 12.3]

5MA-5PD 0.52 [0.71, 0.34] 28.2 [17.7, 39.7]

2MA-2PD 0.39 [0.55, 0.23] 19.4 [11.2, 28.3]

BWFPD-5PD 0.56 [0.70, 0.42] 31.0 [22.4, 40.3]

BWFPD-2PD 0.21 [0.26, 0.16] 10.9 [8.3, 13.5]

BWFMA-5MA 0.32 [0.39, 0.26] 15.7 [12.5, 18.9]

BWFMA-2MA 0.11 [0.14, 0.08] 5.1 [3.5, 6.7]

BWFMA-BWFPD 0.28 [0.38, 0.17] 13.2 [7.9, 18.7]

Standardized effects and relative differences are presented as change score [95% confidence limits].

T A B L E   3   Comparison of smoothing 
method responses on ΔReoxy
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appears that a short moving average is better suited at detecting 
changes in nadir Δ%[HHb]. As the restoration of NIRS variable 
toward baseline has become a surrogate for metabolic recovery 
between sprints,8,10,11,15,17 an accurate depiction of this variable 
is necessary to assess metabolic perturbations leading to greater 
peripheral fatigue. Additionally, the detection of the magnitude 
of change has important implications for assessing the potency 
of training programs and environmental factors. Unless the 
nadir of the signal is obtained from a rolling approach, the mag-
nitude of [HHb] recovery will be underestimated.

The ΔReoxy is determined from both peak and nadir Δ%[HHb] 
responses, and hence, the analysis method that yields the greatest 
peaks and nadirs will have the greatest ΔReoxy. Consequently, we 
observed clear and substantial differences between all ΔReoxy 
analysis methods apart from BWFMA vs 2MA, with a range of rel-
ative differences from 5% to 31%. Studies reporting ΔReoxy from 
predetermined windows11,17 have likely underestimated reoxy-
genation capacity. The most accurate representation of ΔReoxy 
would come from works that have chosen a moving average ap-
proach for the determination of peaks and nadirs.12,18

Irrespective of the method, a narrow window for analysis 
(2 seconds) allows reporting greater magnitudes of response 
than a longer window (5 seconds). However, care should be 
taken when using a narrow analysis window. It contains less 
data from which the average is calculated, which increases the 
risk that outliers bias the calculated mean.39 Such a method-
ological pitfall is displayed in the sprint phase of Figure 2A, 
where a small number of data points are far above the charac-
teristics of the surrounding data. A narrow analysis window 
would place greater weight on these individual data points in 
the mean compared to a larger window.39 Currently, there is 
no consistency on the length of the analysis window. In some 
cases, a window as large as 5 seconds8,11,21,22 and as small as 
1 seconds10,12 has been used. When a Butterworth filter was 
employed, both peak and nadir values18 and a 2-second aver-
age9 have been used. However, using a Butterworth filter, a 
single data point from the resulting output can be used with 
assurance that it reflects the characteristics of the surround-
ing data. Although our choice to use a Butterworth filter was 
based on previous research,9,18,29 other smoothing/filtering 
techniques which eliminate outliers may also yield similar re-
sults. Readers should also be aware that these data and ana-
lytical methods were collected during isokinetic sprints where 
cadence was constrained to 120 rpm, and, although muscle ox-
ygenation patterns appear similar, one may exert caution when 
analyzing NIRS signal in nonisokinetic conditions where ca-
dence is influenced by gear ratio and neuromuscular fatigue.

5  |   PERSPECTIVE

NIRS-derived variables in sprint exercise are subject to rapid 
and large perturbations. Furthermore, during cyclic movements 

such as running or cycling, there are relatively large oscillations 
in the [HHb] signal response due to mechanical effects of mus-
cle contraction on local blood flow. This requires appropriate 
smoothing of the signal to avoid either over or underestimation 
of peaks and nadirs. Sprint and recovery means calculated over 
a 1-5 seconds window in predetermined time frames are often 
reported,8,9,11,13,14,17,20–25 however, there remains little consist-
ency between studies examining muscle oxygenation during 
repeated-sprint exercise. The current results reveal that mov-
ing averages derive greater changes in muscle oxygenation 
than means calculated from predetermined time points. Hence, 
this method is less prone to underestimation of the maximum 
rate of de- and reoxygenation. However, as these calculations 
are susceptible to signal bias from outliers, especially when a 
shorter averaging window is used,39 we recommend using a 
digital filter9,18,29 or other smoothing/filtering techniques prior 
to analysis. We also suggest that future studies should avoid pre-
determined analysis windows and focus on the determination 
of a single value for peaks and nadirs from a rolling approach.
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