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ABSTRACT 

A common null polymorphism (rs1815739; R577X) in the gene that codes for α-

actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals 

who are homozygous for the X allele are unable to express the α-actinin-3 protein in the 

muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle 

does not result in any disease. However, the different ACTN3 genotypes can modify the 

functioning of skeletal muscle during exercise through structural, metabolic or signalling 

changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR 

genotype might favour the ability to generate powerful and forceful muscle contractions. 

Leading to an overall advantage of the RR genotype for enhanced performance in some 

speed and power-oriented sports. In addition, RR genotype might also favour the ability to 

withstand exercise-induced muscle damage, while the beneficial influence of the XX 

genotype on aerobic exercise performance needs to be validated in human studies. More 

information is required to unveil the association of ACTN3 genotype with trainability and 

injury risk during acute or chronic exercise.   

 

Keywords:  Genomics; common human polymorphism; α-actinin-3 deficiency; athletic 

performance; muscle performance. 
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ABBREVIATIONS LIST 

ACE: Angiotensin converting enzyme 

CK: Creatine kinase 

KO: knockout 

mTOR: mammalian target of rapamycin 

SERCA1: Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 

WT: Wild type 
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INTRODUCTION 

There are two muscle sarcomeric isoforms of α-actinin; α-actinin-2, and α-actinin-3, 

which are encoded by ACTN2 and ACTN3 genes, respectively (Beggs et al. 1992). The α-

actinin-2 and α-actinin-3 proteins form major components of the contractile apparatus at the 

Z-line and are structured similarly. However, α- actinin-2 is ubiquitously expressed in all 

muscle fiber types, while α-actinin-3 expression is found only in the fast type II fibers (Mills 

et al. 2001). This indicates that α-actinin-2 and 3 might have different physiological roles in 

the muscle (Lee et al. 2016). The protein α-actinin-2 plays a central role within the sarcomere 

for all types of locomotor activities and displacements (Ribeiro Ede et al. 2014) while the α-

actinin-3 role might be more related to the generation of rapid muscle force and thus, for the 

production fast and explosive movements (MacArthur et al. 2007). Further the role of α-

actinin-3 has been attributed to modulate the response to training, the recovery after exercise-

induced muscle damage and the exercise-associated risk of injury (Pickering and Kiely 

2017). 

North et al. (1999) identified a common stop-codon polymorphism (rs1815739; 

R577X) in the ACTN3 gene. Individuals who are homozygous for the X allele are unable to 

express α-actinin-3 in type II muscle fibers as opposed to those with the RX or RR genotype. 

Interestingly, individuals with the ACTN3 XX genotype compensate the deficiency of α-

actinin-3 with a higher expression of α-actinin-2 (Seto et al. 2011). This in turn might confer 

different properties to the muscle fiber altering muscle function at rest or during exercise 

(Eynon et al. 2011; Santiago et al. 2010).  Thus, the physiological effects found in XX 

homozygotes are explicitly related to lack of α-actinin-3 instead of to a reduced amount of 

α-actinins within the muscle. Although α-actinin-2 and α-actinin-3 isoforms are almost 

identical in structure, subtle differences in the interaction with other proteins might have a 

crucial effect on both the Z-line and the entire sarcomere (Lee et al. 2016; Berman and North 

2010). Around one fifth (20%) of the world population has the XX genotype (MacArthur et 
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al. 2007). Although α-actinin-3 deficiency is not translated into any muscle disease, the 

current evidence suggests that it might affect muscle physiology in athletes (Alfred et al. 

2011), healthy individuals, (Broos et al. 2015) and in some clinical populations (Pickering 

and Kiely 2018).   

Literature suggests that α-actinin-3 deficiency might play a beneficial role that would 

explain the perpetuation of the X allele through natural selection in human evolution.  It has 

been postulated that the survival of the X allele has been influenced by ambient temperature 

(Lee et al. 2016) because its frequency in human populations increases with the distance 

from central latitudes (Amorim et al. 2015; Friedlander et al. 2013).  This was confirmed by 

different researches that have found that the frequency distribution of the ACTN3 XX 

genotype averages ~25% in Asians, 18% in Caucasians, 11% in Ethiopians, and 3% in US 

African Americans and only 1% in Kenyans (Yang et al. 2007; Scott et al. 2010; Pickering 

and Kiely 2017). The relatively high frequency of the XX genotype in human populations 

living in cold environments might be related to improved acclimatization and thermogenesis, 

due to increased metabolic heat generation during muscle activities (Head et al. 2015). In 

addition, the X allele offers enhanced metabolic efficiency (MacArthur et al. 2008; 

MacArthur et al. 2007) and therefore it might have persisted as a metabolically ‘thrifty’ allele 

(MacArthur and North 2004) that could have favoured hunting in environments with scarce 

food resources (Amorim et al. 2015).  

In this review, we will discuss the recent insights into the role of α-actinin-3 in 

muscle, based on studies in humans and the Actn3 knockout (KO) mouse model. We will 

then focus on the consequences of α-actinin-3 deficiency on human exercise performance, 

exercise-induced muscle damage, injury epidemiology and response to training.  
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CONSEQUENCES OF α-ACTININ-3 DEFICIENCY ON SPRINT/POWER-

ORIENTED PERFORMANCE 

The consequences of the ACTN3 genotype on human exercise performance were first 

investigated in elite athletes. Initially, it was found that the ACTN3 577XX genotype was 

under represented in sprint athletes, when compared to a control population of healthy 

untrained individuals (Yang et al. 2003). In fact, none of the Olympic power/sprint athletes 

included in this first investigation by Yang et al. (2003) were α-actinin-3 deficient (XX), 

suggesting that this genotype was unfavourable for fast and powerful muscle contractions, 

at least in elite sports.  This was replicated in several elite athlete cohorts where there is a 

higher frequency of the R allele in sprint and power disciplines (Eynon et al. 2013; Alfred 

et al. 2011; Kikuchi et al. 2014; Eynon et al. 2009; Roth et al. 2008; Ginszt et al. 2018; Niemi 

and Majamaa 2005) and demonstrated in subsequent meta-analyses ((Weyerstrass et al. 

2018; Ma et al. 2013); see Table 1 for a summary). Further, recent literature suggests that 

the presence of α-actinin-3 might be especially advantageous for sprint, and power-based 

sports but not for strength-based sports disciplines (Ben-Zaken et al. 2016; Kim et al. 2014a).  

In addition, the role of α-actinin-3 for the generation of high-intensity muscle contractions 

has been confirmed in research with non-athletes. Untrained RR individuals have a higher 

baseline strength than their XX counterparts (Walsh et al. 2008; Clarkson et al. 2005a; 

Erskine et al. 2014) although this is contentious as other studies found no such differences 

between genotypes (Hanson et al. 2010; Norman et al. 2009). While muscle fiber 

composition is not affected by α-actinin-3 deficiency (Norman et al. 2014; Norman et al. 

2009), the cross-sectional area of type II muscle fibers might be larger in RR than in XX 

individuals (Broos et al. 2016). Nonetheless, α-actinin-3 deficiency does not totally preclude 

the possibility of achieving  high performance in power-like sports, because other cohorts of 
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elite power/sprint athletes have reported a normal frequency of XX individuals (Ruiz et al. 

2011; Sessa et al. 2011; Wang et al. 2013; Ruiz et al. 2013).   

It has been proposed that the higher capacity of RR individuals to perform in 

speed/power sports might be also coupled with a better response to strength, and power 

oriented training (Pickering and Kiely 2017).  For example, Delmonico et al. (2007) found 

greater increases in knee extensor peak power after 10 weeks of unilateral strength training 

in RR men and women compared to their XX counterparts.  Norman et al. (2014) reported a 

higher exercise-induced increase in the phosphorylation of the mammalian target of 

rapamycin (mTOR) and p70S6k proteins in R allele carriers compared to the XX allele 

carriers’ in human muscle fibers, suggesting an ameliorated muscle protein synthesis in α-

actinin-3 deficient individuals. The Actn3 KO mouse, firstly generated by MacArthur et al. 

(2007), mimics the α-actinin-3 deficient phenotype in humans. The Actn3 knockout mice 

have identical morphological characteristics to wild type (WT) mice and they compensate 

the lack of α-actinin-3 with α-actinin-2 (Lee et al. 2016).  In this mouse model, it has been 

found there is a higher calcineurin activity in Actn3 KO mice (Seto et al. 2013) that would 

suggest a unfavourable physiological adaptability of α-actinin-3-deficient individuals to 

strength and power training stimuli ((Seto et al. 2013; Garton et al. 2014; Chin et al. 1998); 

Table 2). Indeed, calcineurin is a cytoplasmic calcium-regulated phosphatase implicated in 

fiber type transformations (Dunn et al. 1999), where activation in skeletal muscle selectively 

up-regulates promoters of specific slow-fiber genes (Chin et al. 1998).  In this context, the 

muscle tissue of α-actinin-3-deficient individuals theoretically might be more prone to adapt 

to endurance training stimuli rather than to strength or power oriented programs (Seto et al. 

2013; Garton et al. 2014). 

While these investigations provide mechanistic support for an increased training 

response to strength/power-oriented programs in individuals who are able to express α-

actinin-3 (i.e., those with RR or RX genotypes) this might also be modulated by other genes. 
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A report on the combined association of ACTN3 and angiotensin converting enzyme (ACE) 

insertion (I)/deletion (D) genotypes in older women found that non α-actinin-3 deficient 

genotype (ACTN3 RR) combined with the ACE DD genotype might favour training gains in 

muscle strength, power and functionality (i.e., during the sit-stand test) after a 12-week 

speed/power training protocol (Pereira et al. 2013b; Pereira et al. 2013a). The effectiveness 

of personalized resistance training based on genetics requires further investigation as it has 

only proven effective in one investigation, which included a cumulative genotype score 

based on ACTN3 R77X and 14 other genetic polymorphisms (Jones et al. 2016).  Finally, 

other investigations have not found higher strength gains in RR individuals when compared 

to XX counterparts (Erskine et al. 2014; Clarkson et al. 2005a). Thus, the evidence available 

does not suffice yet to support that RR individuals are more prone to obtain benefits from 

strength or power-based exercise programs than XX individuals. 

 

CONSEQUENCES OF α-ACTININ-3 DEFICIENCY ON ENDURANCE-ORIENTED 

PERFORMANCE 

Recent literature has shown that the absence of α-actinin-3 within the skeletal muscle 

might be advantageous in certain and specific situations, explaining the survival of the 

ACTN3 577X homozygosity through natural selection.  In mouse model studies it has been 

found that there is a shift towards a more efficient aerobic muscle metabolism  coupled with 

an improved recovery from fatigue in Actn3 KO mice vs WT littermates (MacArthur et al. 

2008; MacArthur et al. 2007; Chan et al. 2008).  Actn3 KO mice present with a higher 

activity of key oxidative enzymes, especially in fast muscle fibers, such as NADH-

tetrazolium reductase and succinate dehydrogenase (MacArthur et al. 2007). This indicates 

an enhanced capacity for fat/carbohydrate oxidation during repeated and moderate-intensity 

muscle contractions (Table 2).  However, in humans, the potential advantage of the X allele 
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or the XX genotype for endurance sports performance is less clear, with some investigations 

reporting no increased frequency of the XX genotype in endurance athletes (Grealy et al. 

2013; Guilherme et al. 2018; Papadimitriou et al. 2018; Ma et al. 2013; Lucia et al. 2006; 

Saunders et al. 2007; Yang et al. 2007) or even an under-representation of this genotype 

(Ahmetov et al. 2010; Kikuchi et al. 2016; Li et al. 2017) respect to control/untrained 

populations. Thus, it can be assumed that perhaps lack of α-actinin-3 does not offer a major 

advantage for endurance performance, at least in athletic populations (Table 1).  

Regarding training adaptations, XX might be more of a ‘responder’ (i.e., able to 

improve fitness outcomes) to endurance training than those with the RR genotype (Jones et 

al. 2016; Pickering and Kiely 2017).  Actn3 KO mice showed an improved adaptive response 

to 4 weeks of endurance training compared to WT mice (Seto et al. 2013).  Interestingly, the 

muscle of WT mice did not display a shift in fiber type in response to endurance training 

whereas, Actn3 KO mice had a decrease in the cross-sectional area of 2B fibers (which is the 

fastest muscle fiber type in mice) and an increase in 2X fibers, suggesting a "slowing" of the 

metabolic and physiological properties of fast fibers in this α-actinin-3 deficient mice (Seto 

et al. 2013).  Further physiological changes within the muscle fiber produced by the lack of 

α-actinin-3 is higher calcineurin activity, which has been found in both Actn3 KO mice and 

humans with the XX genotype (Seto et al. 2013). In this context, the muscle tissue of α-

actinin-3-deficient individuals theoretically might be more prone to adapt to endurance 

training stimuli rather than to strength or power oriented programs (Seto et al. 2013; Garton 

et al. 2014). Although Silva et al. (2015) found that RR individuals presented a higher 

adaptive response to endurance training than those with the XX genotype (Silva et al. 2015), 

Magi et al. (2016) found no influence of ACTN3 genotype on the peak oxygen consumption 

responses to 5 years of endurance training in young cross-country skiers.  The contradictory 

results might be due, at least partly, to differences between studies in the training protocols 

implemented or in the baseline fitness levels of the participants. Future investigations in the 
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field should be carried out in both detrained and highly endurance trained individuals, with 

proper standardizations in the protocols used for training and controlling for factors that 

could affect trainability, such as the use of concurrent training sessions or of nutritional 

supplements and ergogenic aids.  

 

THE ROLE OF α-ACTININ-3 TO REDUCE EXERCISE-INDUCED MUSCLE 

DAMAGE  

Exercise-induced muscle damage is a physiological process that typically occurs 

after unaccustomed exercise, particularly if the exercise involves a large amount of eccentric 

contractions (Clarkson and Hubal 2002). This phenomenon is associated with muscle 

soreness and is thought to start with mechanical disruption of the affected fibers (e.g., as 

manifested by Z-line streaming), which in turn leads to an inflammatory response. Surrogate 

markers such as increased levels of pro-inflammatory cytokines, and leakage of intra-muscle 

proteins in the blood, such as creatine kinase (CK), are used to assess exercise-induced 

muscle damage (Yamin et al. 2010). The protective role of α-actinin-3 against damage in 

type II muscle fibers has been shown in several research protocols that included acute 

eccentric or concentric muscle actions. Individuals with the XX genotype presented with 

higher serum CK levels and muscle pain values than RR individuals after a protocol of 

eccentric knee extensions (Vincent et al. 2010).  Similarly, XX soccer players showed higher 

serum CK concentrations than their R allele counterparts after a session of plyometric 

exercise (Pimenta et al. 2012). The athletes carrying the X allele presented higher reductions 

in jump height, and higher values of serum CK and self-reported muscle pain than RR 

athletes after a marathon (Del Coso et al. 2017a) or a half-ironman triathlon (Del Coso et al. 

2016). XX individuals also presented with higher serum concentrations of serum myoglobin 

and CK than R allele carriers after an ultra-endurance adventure race (Belli et al. 2017). This 
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role of α-actinin-3 for defending against damaging muscle activities during endurance/ultra-

endurance exercise is somewhat unexpected when considering that slow-twitch fibers are 

preferentially recruited during these exercise tasks (Asp et al. 1999; North 2008). Perhaps, 

α-actinin-3 plays a role during the eccentric phase of endurance exercise activities that 

confers a higher capacity to the muscle, as a whole, to resist muscle damage despite the 

restricted expression of this protein to fast-twitch fibers.   

Other investigations did not find an association between ACTN3 R577X genotypes 

and muscle damage induced by elbow flexion eccentric exercises (Clarkson et al. 2005b).  

Interestingly, the “repeated-bout effect”, that is, performing one bout of eccentric exercise 

to induce an adaptation such that the muscle is less vulnerable to muscle damage in a 

subsequent bout of the same type of exercise (Starbuck and Eston 2012) might be more 

marked in XX than in RR individuals suggesting that XX might be able to undertake more 

frequent training sessions (Venckunas et al. 2012). This finding was reported using drop 

jumps as the only exercise model to induce muscle damage and therefore requires further 

corroboration with other forms of exercise. A recent study found that, rather than the ACTN3 

R577X variant only, it was the cumulative influence of several genetic polymorphisms 

(including ACTN3 R577X) that was associated with the magnitude of muscle damage after 

a marathon (Del Coso et al. 2017b). This latter investigation agrees with a previous analysis 

in which the ACTN3 R577X genotype, in combination with other genes, was related to an 

increased likelihood of suffering a clinical case of exertional rhabdomyolysis (Deuster et al. 

2013).  Thus, the presence of α-actinin-3 could offer a structural benefit within the skeletal 

muscle fiber that might reduce the damage produced in the sarcomere during exercise but 

with other hereditable factors involved in the phenotype of resistance against muscle fiber 

damage. In this regard, the upregulated production of α-actinin-2 in muscle fibers found in 

XX individuals (Seto et al. 2011) does not suffice to prevent a higher likelihood of muscle 

damage and its accompanying symptoms in α-actinin-3 deficient individuals.   
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α-ACTININ-3 DEFICIENCY AND MUSCLE INJURY  

The influence of the ACTN3 R577X genotype on the levels of exercise-induced 

muscle damage, with the latter being a physiological phenomenon, might also suggest that 

α-actinin-3 deficiency can be associated with a higher incidence or severity of exercise-

related muscle injuries (i.e., a pathological phenomenon that might sometimes be linked to 

initial muscle damage, muscle contractures and strains, etc). It has been reported that XX 

soccer players (first league division, Italy) had almost a three- and two-fold higher 

probability of suffering muscle injuries in general and severe muscle injuries, respectively, 

than their RR counterparts (Massidda et al. 2017). Yet, another study found that R allele 

carriers had an increased likelihood of suffering non-contact muscle injury during different 

sports-activities when compared to X allele carriers (Iwao-Koizumi et al. 2015). 

Interestingly, the authors hypothesised that the presence of α-actinin-3 would be associated 

with a higher magnitude of muscle strength in R allele carriers that would have produced a 

higher muscle strain during exercise, thereby explaining their results. In this regard, R allele 

carriers had increased passive hamstring stiffness compared to non-carriers, although this 

mechanical property did not increase the risk of strain injury (Miyamoto et al. 2018). In 

athletes of combat sports (judo, taekwondo, boxing), subjects with the XX genotype had a 

similar kinematic efficacy in the lower limbs than R allele carriers, as assessed with knee, 

angle and pelvis moments during a sprint with a change of direction and a vertical jump 

(Jung et al. 2016).  Thus, the evidences that relate deficiency of α-actinin-3 with a higher 

risk for muscle injury during exercise are still inconsistent (Table 2).   
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α-ACTININ-3 DEFICIENCY AND OTHER TYPES OF INJURIES  

Although the absence of α-actinin-3 in skeletal muscle fibers has not been linked with 

significant changes in connective or ligament tissues, dancers with the XX genotype show a 

higher incidence of ankle injuries than R allele carriers (Kim et al. 2014b). The XX genotype 

has also been associated with a higher incidence of non-contact acute ankle sprains (Qi et al. 

2016; Shang et al. 2015), although this association has not been replicated by others (Kim et 

al. 2017a). If accurate, the higher likelihood of injury in α-actinin-3 deficient individuals 

might be related to a dysfunction in the capacity of the muscle to hold the joint during the 

action, rather than to a dysfunction of the ligament tissue (Pickering and Kiely 2017). 

Another factor that is intrinsically related to the risk of joint injuries during exercise is the 

range of motion in active joints and muscle flexibility. In this context, Zempo et al. (2016) 

found that RR individuals had lower trunk flexibility than X allele carriers, as measured by 

the sit-and-reach test. This was replicated by Kikuchi et al. (2017) in a similar investigation 

with untrained individuals. However, a lower trunk flexibility has been found in XX 

ballerinas when compared to R allele carriers (Kim et al. 2014b). In regards to other joints, 

a reduced range of motion in the elbow has been found in RR homozygotes (Kikuchi et al. 

2018). The discrepancies in the outcomes of these investigations indicates that a clear effect 

of the ACTN3 R577X genotype on muscle flexibility and range of motion is yet to be 

elucidated.   

In addition to its presence in fast glycolytic skeletal muscle fibers, α-actinin-3 is 

expressed in osteoblasts. Actn3 KO mice presented lower bone mineral density and bone 

formation rates per unit of bone surface when compared to WT littermates, suggesting that 

the lack of α-actinin-3 is associated with disruptions in mineralisation and resorption (Yang 

et al. 2011) . α-actinin-3 deficient humans also presented with lower levels of bone mineral 

density (Yang et al. 2011; Min et al. 2016), as well as higher values of serum bone 

remodelling markers than R allele carriers at rest (Levinger et al. 2017). This information 
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suggests that XX genotype may contribute to a higher likelihood of bone injury during 

exercise but to the date, there is no evidence for an effect of the ACTN3 genotype on the risk 

or severity of bone injuries during exercise activities.  

There is need for more research to clearly associate α-actinin-3 deficiency with injury 

risk in athletic and non-athletic populations.  The use of genome-wide association studies 

might be effective in helping to fill the gaps of why some individuals are more susceptible 

to injury than others. This has already been found useful to explain higher risk of rotator cuff 

injury (Roos et al. 2017), Achilles tendinopathy and anterior cruciate ligament rupture (Kim 

et al. 2017b) and ankle injuries (Kim et al. 2017a).   

 

SUMMARY AND CONCLUSIONS 

ACTN3 R577X genotype influences human performance in several manners related 

to the structural, metabolic and signalling effects by the absence or presence of α-actinin-3 

within the skeletal muscle. Table 3 includes an evidence-based analysis of the association 

between ACTN3 genotype and different muscle phenotypes in human and animal 

experiments. The RR genotype, which results in the full expression α-actinin-3 in fast-twitch 

fibers, favours the ability to generate powerful and forceful muscle contractions, leading to 

an overall advantage of this genotype for performance in some speed and power sports. 

Although more research is needed, this genotype might also favour the ability to withstand 

exercise-induced muscle damage. On the other hand, theoretically a beneficial influence of 

the XX genotype on aerobic exercise performance remains to be corroborated in human 

studies.  More information is required to unveil the association of ACTN3 genotype with 

injury risk during acute or chronic exercise.   

Most of the information included in this review refers to research on ACTN3 

genotype frequency and their association with phenotypes related to elite athletic status. 
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Hence, it is still too early to determine whether the information that is currently available on 

the ACTN3 genotype-phenotype associations can be directly used for genetic testing in the 

general/amateur population. Studies on the impact of α-actinin-3 deficiency in amateur 

athlete populations with more ecological research protocols should be the focus of future 

lines of investigation.   
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Figure 1.  Localisation of α-actinin in skeletal muscle.  

The sarcomeric α-actinins are essential for the contractile apparatus at the Z-line because 

they bind and cross-link the ends of F-actin filaments from adjacent sarcomeres. While the 

expression of α- actinin-2 is ubiquitous in all types of muscle fibers, α-actinin-3 is restricted 

to fast type II fibres, suggesting a different physiological role of each isoform for muscle 

contraction. α-actinins are antiparallel homodimers of more than 200 kDa, comprising an 

actin-binding domain (ABD), a central domain of four spectrin-like repeats (SR1-4), and a 

C-terminal calmodulin-like domain with two pairs of EF hand motifs (EF).  Adapted from 

(Ribeiro Ede et al. 2014).   

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



27 

 

Figure 2.  Most common phenotypes related to α-actinin-3 deficiency due to 

homozygosity for the X allele in the ACTN3 R577X polymorphism.  
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Table 1.  Summary of the physiological/performance consequences of α-actinin-3 deficiency in humans. 

 Sprint/power Endurance Muscle damage Trainability Risk of injury 
 

Overview ↓ sprint/power performance 

↓ muscle strength 

Mixed results for 

endurance performance 

and fatigue resistance 

↑ muscle damage 

after eccentric 

exercise or weight-

bearing endurance 

exercise 

Mixed results for 

strength and 

endurance 

trainability 

↑ risk of ligament 

injury and mixed 

results for risk of 

muscle injury or 

muscle flexibility 

 

Proposed 

mechanism 

↓ capacity to generate 

muscle force and power 

specially in muscle 

contractions that requires the 

recruitment of type 2 muscle 

fibers 

↑ metabolic efficiency  

↑ aerobic metabolism 

↓ capacity to resist 

muscle strain during 

acute eccentric or 

repeated concentric 

contractions  

↓ exercise-induced 

increase mTOR 

and p70S6k 

↑ calcineurin 

activity 

↓ capacity to resist 

muscle strain that 

could lead to reduced 

joint stability 

↑ ligament tension 

 

Consequence 

for exercise and 

sport 

↓ frequency of XX 

individuals although this 

effect is minor in strength-

based disciplines 

↑ frequency of XX 

individuals initially 

found but this has been 

disputed in more recent 

investigations.  

↑ levels of serum 

markers of muscle 

damage 

↑ muscle pain after 

damaging exercise 

No measurable 

consequences have 

been identified in 

sport 

↑ frequency of XX 

individuals among 

patients with ankle 

joint injuries 

compared to their 

injury-free peers. 

 

 

Abbreviation: mTOR, mammalian target of rapamycin 

 

Table 1



Table 2.  Summary of the physiological consequences of α-actinin-3 deficiency identified with the knock-out mouse model for the α-actinin-3 

gene (Actn3). 

 Metabolic Signalling Structural Calcium-handling 

 

Overview Shift towards more 

aerobic metabolism 

↑ adaptive response to endurance 

stimuli 

Altered contractile properties Altered calcium kinetics  

      

Mechanism ↑ oxidative enzymes and 

↓ glycolytic enzymes  

↑ calcineurin activity ↑ expression of Z-line proteins ↑ calcium release and 

absorption 

 

      

Physiological 

impact 

↑endurance capacity and 

resistance to fatigue 

↑ endurance trainability ↓ production of force ↑ production of metabolic heat  

      

Further 

considerations 

It is the result of changes 

in various enzymes 

It is the result of the preferential 

binding of calsarcin 2 to α-

actinin-2 

It is the result of the preferential 

binding of Z-line proteins to α-

actinin-2 

It is the result of higher levels 

of SERCA1 

 

 

Abbreviations: SERCA1, Sarcoplasmic/endoplasmic reticulum calcium ATPase 1. 

Table 2



Table 3.  Level of evidence from human and mouse model research for the effects of the α-actinin-3 deficiency on different muscle phenotype 

traits. 

Muscle trait Human Mouse Applications for exercise References for human studies 

References for mouse 

studies 

↓ sprint/power-

based performance 
I I 

Genotyping can be used to 

determine the likelihood of 

success in a sprint/power-based 

sport 

(Alfred et al. 2011; Yang et al. 

2003; Weyerstrass et al. 2018; Ma 

et al. 2013; Eynon et al. 2013; 

Kikuchi et al. 2014) 

(MacArthur et al. 2008; 

Quinlan et al. 2010; Lee et al. 

2016; North 2008) 

↑ training response 

to endurance 

training 

V II 

Too early to use personalise 

endurance training based on 

ACTN3 genotyping  

(Silva et al. 2015; Magi et al. 2016) 
(Seto et al. 2013; Chan et al. 

2008) 

↑ endurance 

performance 
III II 

Genotyping does not seem 

useful for detection of 

endurance talents 

(Yang et al. 2003; Silva et al. 2015; 

Pasqua et al. 2016; Eynon et al. 

2012) 

(MacArthur et al. 2007; Chan 

et al. 2008; Seto et al. 2013; 

North 2008) 

↓ training response 

to strength training 
IV II 

Too early to personalise 

strength training based on 

ACTN3 genotyping  

(Norman et al. 2014; Delmonico et 

al. 2007) 

(Garton et al. 2014; Seto et al. 

2013; Lee et al. 2016) 

↑ risk of muscle 

damage 
II IV 

Specific training might be used 

to ameliorate muscle damage in 

XX individuals 

(Vincent et al. 2010; Del Coso et al. 

2017a; Del Coso et al. 2016) 
(Seto et al. 2011) 

↑ risk of 

muscle/ligament 

injury 

IV - 

Prevention plans to reduce 

ligament injuries in XX 

individuals 

(Massidda et al. 2017; Kim et al. 

2014b; Qi et al. 2016; Shang et al. 

2015) 

- 

↑ risk of bone injury IV IV 

Too early to develop prevention 

plants to avoid bone injuries in 

XX individuals 

(Yang et al. 2011; Min et al. 2016; 

Levinger et al. 2017) 
(Yang et al. 2011) 

 

Table 3



Level I:  Systematic and narrative reviews, meta-analyses and high-quality prospective cohort studies with adequate power and with consistent 

results regarding the association of ACTN3 genotype and the specific muscle trait.  Level II:  Lesser high-quality prospective cohort studies, 

retrospective/comparative studies or systematic reviews and meta-analysis with inconsistent results regarding the ACTN3 genotype and the specific 

muscle trait. Level III:  Case-control and retrospective studies with inconsistent results regarding the association of ACTN3 genotype and the 

specific muscle trait.  Level IV:  Absence of association between the ACTN3 genotype and the specific muscle trait or inconsistent results derived 

from cases series or poorly referenced investigations with no sensitivity analyses of phenotypes. Level V:  Expert opinion. Adapted from (Burns 

et al. 2011).  Abbreviation: ACTN3, α-actinin-3 gene. 
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