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ABSTRACT 

 

Platelet Rich Plasma is an autologous and safe blood product containing a high concentration of 

platelets and leucocytes, in a small volume of plasma. Platelets, growth factors, leucocytes and plasma 

are fundamental fibroblast proliferation agents. The leucocytes' plasticity, reparative qualities, their 

cross-talk between cells and capacity to orchestrate such diverse outcomes is receiving a considerable 

commendation. This succession enables fibroblast cells to migrate and proliferate into the wound’s 

surrounding tissue and subsequently deposit granulation tissue to facilitate minimal scarring and also 

for anti-ageing benefits. The focus on leucocytes in tissue repair has enthused a new approach to tissue 

regeneration to form a new therapeutic modality, Immuno-Regenerative Medicine. 
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1. Introduction 

 

 The regenerative medicine armamentarium is classified as platelet-rich plasma (PRP), platelet 

gel (PG), fibrin glue, bone marrow concentrate, stromal vascular fraction, adipose tissue, growth factor 

(GF) serum and autologous conditioned serum [1]. PRP is a fundamental cellular therapy commonly 

used by medical specialists due to its’ ease of access, minimal manipulation and its’ markedly tissue 

regenerating properties. PRP therapy has progressed substantially in clinical practice, following the 

rising incidence of connective tissue inflammation and injury, which is vastly becoming a growing 

cause of chronic pain and disability [2]. A new approach to assist tissue regeneration is to restore 

locally compromised homeostasis progressively and to modify the biological microenvironment.  This 

can be achieved through administering PRP by percutaneous injection or topical application to the 

impaired tissue, such as skin, ligaments, tendons, osseous tissue or cartilage.  If an impaired tissue is 

unattended to, faulty healing can cause excessive, abnormal or inadequate scar formation, chronic 

infection and nerve damage that may predispose to secondary ailments associated with chronic 

disability [3].  

 

 PRP is an autologous and safe blood product containing a high concentration of platelets and 

leucocytes, in a small volume of plasma. PRP is obtained by density gradient centrifugation of whole 

blood which separates the plasma, leucocytes and platelets from the red blood cells to form a buffy 

coat and plasma layer.  The buffy coat is suspended in a small amount of plasma to form the final PRP 

product.  Platelet-poor Plasma (PPP) is the residual plasma once the PRP is extracted, which contains 

beneficial proteins, insulin-GF (IGF) and a low number of platelets [4].  PRP, GFs and leucocytes are 

fundamental fibroblast proliferation agents; however, their combined impact on challenged fibroblasts 

has been mostly overlooked, and current publishings are too few to merit a comprehensive review [5].  

Therefore, this review will chronologically evaluate the early development and outcomes of PRP 

research within a variety of medical specialities, and progress to the current research, addressing the 

methodologies, biological and clinical outcomes of a variety of connective tissue cells, and concluding 

with recommendations for the future research. 

 

2. Methodology  

 

  Searchers were conducted using PUBMED,  The Cochrane Library, and MEDLINE using the 

following search terms: platelet-rich-plasma, leucocyte-rich-platelet rich plasma, leucocyte-poor-

platelet-rich-plasma, platelets, plasma, fibrin, growth factors, leucocytes, mononuclear cells, 

monocytes, macrophages, neutrophils, lymphocytes, fibroblasts, myofibroblasts, regenerative 

medicine. In addition, the following terms were searched in the context of regenerative medicine: 

tissue regeneration, stem cell, collagen biostimulation, wound healing, burns, burns treatment, scar, 

scar revision, wound healing, tissue repair, keloid, hypertrophic, incision wound. English and 

American English spellings of leucocytes and its derivatives were included. Studies from 1970 to 

current time were included. Reference lists of reviewed articles were also assessed for other relevant 

articles. Inclusion criteria were peer-reviewed papers,  therapeutic use of PRP, clinical trials and case 

studies.  Non-English articles which were not able to be translated were excluded. Muscular-skeletal 

studies on tendon were excluded. Title and abstract analysis were performed to identify appropriate 

studies, and full texts of included studies were assessed.  In total, 38 studies were found on leucocyte-
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rich-platelet-rich-plasma covering a range of topics including: muscular skeletal medicine, 

inflammatory markers, healing potential, tissue inhibition, tissue regeneration.  Studies relating to 

leucocyte-rich-platelet-rich-plasma or platelet-rich -plasma and their effects on fibroblasts were 

included however due to the paucity of data studies from related fields were included.  

 

3. Platelet-Rich Plasma 

 

3.1. PRP Nomenclature 

 

 Initially, researchers had an equivocal knowledge of PRP and its’ influence on tissue 

regeneration. For instance, platelets were initially identified as a clotting and haemostatic agent.  

However, they are now known for a myriad of diverse functions, cytokine signalling, chemokine and 

GF release, human mesenchymal stem cells (hMSC) mitogenesis and thus contributing significantly 

to tissue renewal.  The PRP studies over the past decade originated as case studies that focused on 

clinical outcomes and gradually progressed to randomised control trials that also distinguished 

between the biochemical and biological mechanisms underlying these outcomes [6].   

  

 Many different terms have been applied to characterise PRP over the last 10 years, including 

platelet (plt) gel (PG), PLT concentrate, PLT therapy and PLT releasate, PLT rich fibrin (PRF), 

Leucocyte – PRP (L-PRP), Leucocyte-Rich (LR)-PRP and Leucocyte-Poor (LP)-PRP and platelet-rich 

growth factors (PRGF) [7]. Terminology standardisation is yet to be formalised for PRP,  and as a 

consequence, the literature lacks uniformity in dilutions and volume ratios, registers indistinguishable 

PRP concentrations, which has all substantially affected the interpretations of outcomes.  Moreover, 

Systematic Reviews too have injudiciously presumed the broad view approach in categorising all PRPs 

as analogous by excluding their apparent differences.   These obscurities have confused the literature 

because such a lack of standardisation permits the term “PRP” to be promoted equivocally, irrespective 

of the concentrations or the quality of the product  [8, 9].  

 

3.2. Platelet concentration 

 

 The preliminary literature brought PRP therapy to the forefront of regenerative medicine in 

endeavouring to establish customised protocols for the medical specialities. These studies initiated 

discussions on the ambiguity of platelet characteristics, which lead to the hypothesis that various PRP 

concentrations influence the proportion of tissue regeneration [10, 11]. This hypothesis was further 

evaluated via testing increased PRP concentrations and their corresponding dose-response curve in a 

variety of studies. An early study [12] assessed the effects of PRP (338% greater than the whole blood 

baseline count), plus platelet-derived-GF (PDGF) and transforming-GF (TGF) on soft tissue healing 

and the regeneration of mandibular bone defects of 88 patients. The results demonstrated that the 

maturation rate was 2.16 times higher after the PRP treatment compared to the control; and achieved 

significantly faster radiographic maturation and denser bone regeneration.  A further study evaluated 

the effects of various PRP concentrations on hMSCs mitogenesis and their corresponding dose-

response curve [13].  The study reported that PRP concentrations of up to 5-10 fold higher than whole 

blood generated 848% and 720% more hMSCs on day seven than the growth medium, whereas the 

hMSCs exposed to 1.25 - 2.5 fold PRP responded with lower increases of 325% and 356%. Similar 
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observations occurred for human stromal stem cells as the PRP dose increased,  plus a marked increase 

in the proliferation and differentiation of the osteoblastic lineage occurred for up to nine days [14].  

These findings are consistent with current researchers that found PRP concentrations from 1.5 - 3 x 

106 plt/µl exhibited optimal cell proliferation with no inhibitory effects observed [15-19] 

   

3.3. Platelet degranulation  

 

 The platelet dose-responses and their effects on cell proliferation had developed further 

enquiries into the underlying biological mechanisms, thus, the effects of platelet-released GFs  [20]. 

For instance, a study investigating the signalling pathways of PRP demonstrated that PDGF-AB, FGF, 

and TGFβ activated AKT which subsequently stimulates the AKT/Smad2 pathway and thenceforth 

induces adipose stem cell proliferation via increasing the cyclin D1 [21]. These findings generated a 

particular focus on the TGF family (TGF-β1, TGF-β2 and TGF-β3) and SMAD for their contribution 

to reduced dermal scarring.  Other aspects that induce scarless healing include the downstream 

mediation of a multitude of GFs, such as the angiogenic vascular-endothelial GF (VEGF).  VEGF 

restores angiogenesis and subsequently activates endothelial cell receptors and the release of matrix 

metalloproteinases (MMPs).  This succession enables fibroblast and endothelial cells to migrate and 

proliferate into the wound’s surrounding tissue and subsequently deposit granulation tissue to facilitate 

optimal wound healing and minimal scarring [22].  

 

 PRP processing employs a multiple of ex vivo platelet activation methods (incubation, 

thrombin or calcium) and centrifugation specifications.   These processes may impact the efficacy of 

platelet activation and incidentally damage the platelets, initiating their premature degranulation and 

limiting their capacity to release GFs.  Consequently, this may compromise sufficient GF dosing and 

effects the physiochemical events in the treated tissue and hence, minimises wound healing  [23, 24].  

Platelet activation, in vivo, occurs at the time of percutaneous injection which instigates an interaction 

with the glycoprotein, von Willebrand factor (vWF).  Sequentially, vWF structures a connection from 

the exposed endothelium collagen to the platelet glycoprotein Ib-IX-V receptor complex, and 

thenceforth interacts with adenosine diphosphate (ADP) and thrombin, which subsequently activates 

the degranulation of the alpha and dense granules. The degranulation of alpha granules results in 

downstream GF signalling [3]. The GFs interconnect with the tyrosine kinase receptor to induce signal 

transduction, adenosine triphosphate (ATP) synthesis, chemotaxis for hMSC, effectors and 

macrophages, an increase in further GFs and fibroblast proliferation. Upon activation, the dense 

granules release catecholamines, such as, ADP, ATP, calcium, dopamine, noradrenaline, histamine 

and serotonin, which regulate haemostasis, thrombosis and pain relief. The second stage during 

activation is the clotting process in which fibrinogen forms into fibrin to stabilise the tissue and inhibit 

excessive bleeding. Hence, the wound healing cascade, the immune response, angiogenesis, stem cell 

activation, nerve repair and subsequently tissue regeneration transpire [25].  

 

 Some researchers have presumed the ex vivo pre-activated PRP (using calcium or thrombin) is 

more effective than in vivo PRP activation (contact with endothelial collagen) for the optimal release 

of GFs. To investigate these activation processes in detail,  the GF releases of three platelet activation 

methods (thrombin, no activation (control) and endothelial collagen) were assessed over seven days.  

The degranulation process expressed a direct proportionality between platelet numbers and GFs; plus, 
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the endothelial collagen activation method gradually released GFs in a time-dependent manner for up 

to five days; and this method proved superior to the alternative methods, showing an 80% greater 

increase for TGF-. [26]. Further still, a quantitative study compared the GF release of activated PRP 

(1.6 x 106 plt/l and 31.1 x 103 leucocytes/μl)  to the GF release of whole blood from the same sample. 

At first, the study confirmed platelet activation had not occurred during processing via a P-selectin 

test; therefore the GFs remained within the platelet granule, thus producing the maximum possible GF 

dose, in situ.  The outcome determined that the GF levels were significantly higher in the PRP 

supernatant compared to the whole blood; demonstrating VEGF increased from 155 to 995 pg/ml; 

PDGF-BB from 3.3 to 17 ng/ml; epidermal GF from 129 to 470 pg/ml; TGF-1 from 35 to 120 pg/ml 

but no increase for IGF-1 [27].  

 

3.4 Correlation of plasma volume in PRP  

  

 The research in platelet concentration efficacy has overlooked the value of plasma and 

neglected to appreciate that a sufficient plasma volume will maintain the nutrients for both the platelets 

and GFs [28]. Plasma is predominantly water containing serum albumins, globulins, fibrinogen, 

hormones, clotting factors, electrolytes, glucose, gases and IGF-1. IGF-1 is principally transported 

throughout the blood, and are therefore in higher amounts in the plasma compared to the platelet 

granules. It is hypothesised that the plasma’s contribution to tissue regeneration is likely due to the 

IGF-1, an endocrine hormone and the mediator of the effects of growth hormone, plus stimulates 

proliferation of the TGF-β1-activated myofibroblasts and thus influences scarless wound healing [29].  

In a study undertaking the comparison of plasma, whole blood and PRP, it was found  the plasma (3.1 

x 105 plt/l) stimulated procollagen type 1 carboxy-terminal peptide, protein production and higher 

MMP -1, -3 expressions, although the PRP (1.7 x 106 plt/l) was significantly higher [15]. Plasma’s 

regenerative effects are also noted in further research [13, 16], although less regenerative than PRP. 

To thoroughly represent the mechanisms of regenerative medicine all components of PRP need equal 

representation; and, for the platelet dose to be directly linked to the plasma volume and that neither 

should be interpreted alone [30]. 

  

4. Leucocytes: LR-PRP and LP-PRP 

 

 Leucocytes are granulocytes and mononuclear cells (monocytes, T and B lymphocytes), which 

are heterogeneous effectors and versatile progenitor cells that emigrate from the blood into the tissue 

via diapedesis. The leucocytes’ plasticity, reparative qualities, their cross-talk between cells and 

capacity to orchestrate such diverse outcomes has enthused a new approach to tissue regeneration to 

form a new therapeutic modality, Immuno-Regenerative Medicine [31].  

 

 Neutrophils are the first immune cell recruited to injured sites for the phagocytosis of invading 

pathogens. After the pathogens are destroyed the neutrophil will undergo efferocytosis. Successively, 

the monocytes are recruited to mediate inflammation, and as they migrate into the tissue they 

differentiate into dendritic cells; including the pro-inflammatory M1 macrophage which facilitates 

phagocytosis and stimulates angiogenesis; and, the anti-inflammatory, reparative, macrophage 2 which 

enhances  fibroblast proliferation, extracellular matrix assembly, peripheral nerve and connective 
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tissue repair [32]. The innate and adaptive immune systems’ cross-talk is synchronised via monocytes, 

thus engaging the natural killer cells, and the B- and T-lymphocytes. Natural killer cells secrete 

cytokines and predominantly direct, control and kill viruses and cancer cells. The B-lymphocytes 

facilitates the production of antibodies which binds to and destroys antigens. Macrophages and 

dendritic cells present these antigens to T-lymphocytes to be terminated and thus generate pro- and 

anti-inflammatory cytokines.  These leucocyte interactions constitute the inflammatory response and 

are pivotal to minimising tissue damage and establishing homeostasis [31].  

 

 Researchers have questioned the use of highly concentrated leucocytes within PRP and profess 

they may contribute to a higher incidence of adverse events and post-treatment pain side effects. It is 

hypothesised that these side effects are caused by the catabolic potential induced by the interleukin-1β 

(IL-1β) and the tumour necrosis factor-α, and their subsequent stimulatory effects on the nuclear factor 

κB signalling pathway.  Furthermore, it is theorised that high concentrations of leucocytes in PRP may 

intensify MMP expressions and therefore cause excessive degradation of the extracellular matrix tissue 

and thus inhibit healing [5, 33, 34]. Conversely, though, tissue regeneration is equally reliant on the 

interactions and cross-talk between surrounding cells and leucocytes. For example, peripheral blood 

monocytes propagate pluripotent stem cells which display the markers of  CD14, CD34, and CD45. 

Subsequently, the proliferation of these pluripotent stem cells is induced by the macrophage colony-

stimulating factor [35].  Furthermore, the peripheral blood CD14 + monocyte differentiates into a 

fibrocyte, the non-active fibroblast, which successively produces cytokines, chemokines, and GFs for 

the promotion of tissue healing [36]; plus, the CD14 monocytes transdifferentiate into anti-fibrotic 

keratinocyte-like cells and subsequently regulates the inflammatory MMP-1 expression in dermal 

fibroblasts   [37].  

 

 Hence, leucocytes and especially mononuclear cells embody the mechanisms that stimulate 

fibroblasts and thus have a direct relationship with tissue remodelling, and this, therefore, challenges 

the viewpoint that leucocytes are principally catabolic.  To date, there are few publications focused on 

leucocytes and PRP studies and for those that exist have generally omitted the data distinctions 

between neutrophils, monocytes and lymphocytes.  Following is a brief review of LR-PRP studies 

which are summarised in Table 1. 

 

4.1. Leucocytes impact on tissue  

 

 Leucocytes within PRP were evaluated for their destructive tissue effects, and fibrosis 

induction and accordingly would, therefore, render the tissue’s mechanical properties weaker and less 

resilient to force.  LR-PRP and leucocyte-poor (LP-PRP)  were employed to test for tissue resilience 

in a specially designed plexiglass dog-bone-shape mould, which was fabricated to make the fibrin 

specimens, identical in size, volume and figure. As a result, the LR-PRP for all incidences produced a 

higher significant difference in tensile strength, toughness and stiffness with stronger mechanical 

properties compared to the LP-PRP [38]. A study that focused on the synergy between platelets and 

leucocytes revealed that the platelet has a direct relationship with balancing inflammation, for they 

express the chemokine receptors that regulate inflammation, thus, CCR1, CCR3, CCR4 and CXCR4 

and TGF- [39].    
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4.2. Mononuclear cells and Fibroblast  

  

      Thus far, platelets, GFs and plasma combined with leucocytes has been the focus of PRP research. 

However, in the following study, the platelets and plasma have been eliminated to determine the 

synergistic healing potential of mononuclear cells and cultured fibroblasts combined. This experiment 

applied single and multi-layered mixed sheets containing autologous fibroblasts and peripheral blood 

mononuclear cells on the cutaneous ulcers of mice.  On day 14, it was reported that the sheets released 

significantly higher VEGF, hepatocyte GF, TGF and C-X-C motif chemokine ligand -1 and -2, in 

comparison to the single layer sheet or the fibroblast sheet alone. These results were re-evaluated in 

an in vitro experiment, which too demonstrated angiogenic potency and fibroblast migration proved 

higher with the mononuclear cells and fibroblasts multi-layered mixed sheets [40].  

 

4.3. LP-PRP and whole blood impact on fibroblast  

 

 PRP processing specifications vary amongst manufacturers, and thus the PRP can be 

formulated to produce low or high concentrations of leukocytes, platelets and plasma.  The lack of 

PRP standardisation allows manufacturers to promote their PRP formulation as superior in its’ 

regenerative effects and in particular due to the exclusion of leucocytes without providing sufficient 

evidence. This notion was negated in a study that compared LP-PRP (427 x 103 plt/μl; 2.61 x 103 

leucocyte/μl) to LR-whole blood (257 x 103 plt/μl; 6.96 x 103 leucocytes/μl).  Fibroblast proliferation 

transpired for both samples, however, with no significant difference from day four to eight. 

Additionally, post the activation of each sample, the PDGF-AB/BB,  VEGF, IGF-1 and TGF-β1 levels 

increased in correlation to the fibroblast proliferation increase; and furthermore,  the GF release was 

within a time-dependent manner from eight to ten days, indicating an ongoing GF release in vivo  [41].  

 

4.4. LR‐PRP, LP‐PRP, MMP, fibroblast proliferation and GFs 

 

 Leukocytes, cytokines, and chemokines influence MMPs, which are partially responsible for 

the regeneration of the extracellular matrix, however, in excess MMPs are potentially catabolic to 

tissue [42, 43]. The following two studies investigated the effects of MMPs within their PRP 

experiments.  The first study examined fibroblast proliferation, MMP expressions and GF release after 

the treatment of LR- or LP-PRP within the dose ranges of 0.3 - 3 x 106 plt/μl [44].  The outcomes 

demonstrated fibroblast proliferation increased 2.5-fold for both samples compared to the untreated 

cells; however, no significant differences occurred between the PRP groups. In the wound healing 

assay, fibroblast migration was most significant from PRP of 0.3 - 1.5 x 106 plt/μl;  the most significant 

effect on motility was achieved by PRP of 1.5 x 106 plt/μl compared to the LP-PRP; however, 

fibroblast motility inhibition was observed at 2.5 x 106 plt/μl, compared to the untreated cells. The 

MMP-2 and -9 were expressed from both the LR-PRP and LP-PRP, with no significant difference.  GF 

release displayed no significant differences between the samples, except for VEGF which exhibited a 

significant decrease from the LP-PRP. IFN-γ and PDGF‐B expression in LP‐PRP showed a substantial 

increase vs the LR-PRP, whereas TNF-α and fibroblast–GF (FGF)7 levels were not detected.  A second 

study undertaking the expressions of MMP -2, -3, and -9 content in LP-PRP vs LR-PRP demonstrated 
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that each sample mutually released all active MMPs for up to six days post PRP treatment.  In the 

second stage of this study and to further investigate the potentially damaging effects of leucocytes,   

the fibroblasts were challenged with IL-1β and successively treated with LP-PRP and LR-PRP.  The 

outcome reported that the MMP-2 expressions increased while MMP-3 expressions decreased. 

However, the study could not establish whether the leucocytes were the catalysts and therefore the 

result was inconclusive [42].  

 

4.5. Defining LR- PRP  

 

 LR-PRP,  thus far,  has an ambiguous definition in the literature and the leucocyte components 

are not characterised as distinct cells with unique and interconnecting functions.  However, in a recent 

systematic review, to assign preparations unambiguously, LR-PRP was defined as PRP with a white 

blood cell (WBC) concentration of more than 100% that of the whole blood. The LP-PRP was defined 

as PRP with a WBC concentration less than 100% than that of whole blood.  Within the 34 muscular 

skeletal studies included in this review the majority did not record their cell characteristics, and 

subsequently, the researchers obtained this data from the manufacturers.  The investigation established 

that the patient functional outcome scores are only partially affected by leucocytes; and that the local 

inflammatory reactions to PRP injections are unrelated to the presence of leucocytes, but rather due to 

the patients already existence of osteoarthritis pain [5].   

 

 Collectively, these studies demonstrate that the exclusion of leucocytes does not achieve 

greater efficacy for tissue repair and that their inclusion does not cause adverse events or tissue 

destruction. From the evidence in these studies, it is highly plausible to propose that leucocytes in PRP 

have a cumulative on-going anabolic and ergogenic effect; and corollary generates numerous 

interactions, chemotaxis and migration, enhances cell proliferation, stimulates the differentiation and 

expansion of fibroblasts and thus contribute equivalently to new tissue growth.  

 

 

5. Fibroblasts in tissue healing  

 

 The fibroblast’s multifaceted capabilities, adaptabilities and proliferative effects, establish 

fibroblasts as pivotal in skin tissue repair. Fibroblasts are resident hMSCs and the principle progenitor 

cells in mammals that facilitates the maintenance and regeneration of the body’s architectural 

framework.  In the event of injury, fibroblasts will proliferate and subsequently differentiate into 

myofibroblasts and successively migrate into wounds to secrete type I and III collagen to facilitate 

healing [45].  In wound repair, the skin tissue’s structure and morphology rely on fibroblasts to interact 

with collagen fibrils and to continue accumulating collagen until the extracellular matrix and 

surrounding tissue reach equilibrium. To avoid abnormal scarring optimal fibroblast proliferation is 

necessary for the stimulation and production of gene expressions, glycosaminoglycan and collagen 

synthesis into the wound [15]. However, in impaired tissue these fibrils fragment, thus inhibiting the 

fibroblasts’ size, dispersal and interactions; plus TGF-β signalling and wound contraction are hindered, 

all of which increase the probability of abnormal scarring.  AKT phosphorylation activates fibroblast 

cell migration, proliferation and matrix synthesis and this action is induced when fibroblasts are 

exposed to platelets [46]. In the healing cascade, platelets influence fibroblast proliferation via the 
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degranulation of  PDGF–BB, VEGF and TGF-β1, and -β2.  Fibroblasts too secrete FGFs for 

extracellular matrix regulation, hepatocyte-GFs for wound repair, VEGFs for angiogenic stimulus and 

proteases MMP-9, -13; and can differentiate into an endothelial cell-like phenotype.  Fibroblasts will 

recruit, modulate and regulate the behaviour of immune cells and via the expression of chemokines, 

their duration in the injured tissue will determine the outcome of an acute or chronic wound [47]. 

Collectively, these interactions mediate standard tissue repair and demonstrate the emphasis for 

optimal fibroblast function to avoid impaired healing and abnormal scarring.    The crosstalk between 

platelets, leucocytes and fibroblasts is a complex cascade that orchestrates immune responses, 

inflammation, anti-inflammation, proapoptotic, antiapoptotic, debridement and regeneration which is 

outlined in Figure 1.  

 

5.1. Impact of PRP on Fibroblasts  

 

 The diverse experimental designs in the following fibroblast studies have made it difficult for 

interpretation for the reader.  For instance, the final PRP platelet concentrations range from 0.3-5 x 106 

plt/l with inconsistent leucocyte data and plasma volumes, which are then diluted with media, altering 

the original strength and volume. The new PRP formula is reported in percentages rendering the final 

dose as unknown and therefore non-translatable for the clinical setting, as displayed in Table 2.  These 

studies indicated that the higher PRP percentages resulted in a decrease in fibroblast proliferation and 

collagen production, and proposed that this be due to the high concentrations of TGF-β1 (81-fold) [15, 

48, 49]. However, the TGF-β1 was solely measured and omitted the TGF-β2 and -β3 that are the 

principal mediators for scarless tissue healing.  Fibroblast inhibition is likely due to the experiments’ 

limited evaluation time of  24 to 72-h, and therefore not allowing sufficient time for cell proliferation. 

Longer PRP evaluation periods may be required as fibroblast cell inhibition occurred between 0 to 24-

h, and on day seven fibroblast proliferation achieved statistical significance [16].  Another study 

realised no significance occurred in fibroblast proliferation from 24 to 72-h after the co-culture of PRP, 

and at this time the higher concentrations exhibited cell inhibition [50].  To the contrary, another study 

displayed that high concentrations (0.3-5 x 106 plt/l) did not cause cell inhibition for up to 72-h and 

achieved the greatest proliferation up to 2 x 106 plt/l.  Furthermore, the greater fibroblast motility and 

migration, and MMP-2, -9 expressions exhibited at 1.5 x 106 plt/l;  plus, collagen production 

increased 15 times more than the lower concentrations; and, the GF release exhibited 107 times greater 

than the normal serum [17]. The controversy that high platelet concentrations cause adverse events has 

no evidence to support this claim and is more likely to be representative of the manufacturer’s 

commercial bias than a reflection of clinical results.  

 

 

 

5.2. Unchallenged vs Challenged Fibroblasts 

 

 In dermatology practice, PRP therapy is administered by percutaneous injection or topical 

application to treat burns, photoaged skin, acne, acne scars, keloid and hypertrophic scarring, incision 

wound, alopecia and ulcers [51, 52]. To represent the clinical setting, the measurements of survival 

and proliferation rates of senescent fibroblasts cells are essential; however, few studies evaluate PRP’s 
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effects on impaired fibroblasts [53].  The following studies have induced cell senescence to provide 

the much-needed tissue-engineered solutions for the damaged skin.  

 

5.2.1. UVA Challenged Fibroblasts 

 

 Chronic UVA irradiation exposure on skin cells shortens telomeres, inhibits the TGF-1 

receptor gene expression, increases MMP-1 gene expression, plus suppresses collagen synthesis and 

fibroblast proliferation. Photo-ageing skin is presumably irreversible, however, from the influence of 

leucocytes and GFs partial correction for this skin condition may be possible. The effects of various 

PRP doses on UVA-irradiated senescent fibroblasts determined 25% and 50% PRP both significantly 

increase fibroblast proliferation, collagen deposition and migration rates. Although the challenged 

fibroblasts proliferation rates are less than the unchallenged fibroblasts, survival and proliferation are 

nonetheless partially restored. The authors proposed that the fibroblasts restoration was due to the 

MMP-1 tissue inhibitors released from the PRP and TGF-1 signalling ameliorated suppressed 

proliferation [54].  

 

5.2.2. PRP and fibroblasts in chronic ulcers  

 

 Chronic ulcers present with depressed collagen deposition, suppressed fibroblast proliferation 

and migration and may necessitate the amputation of the affected appendage. In the following study,  

Fibroblasts were serum-starved for 24-h to mimic the challenged fibroblasts similar to that found in 

chronic ulcers. Thereafter, the PRP was diluted with media to concentrations of 100%, 50%, and 25% 

of PRP and subsequently applied to the challenged fibroblasts in which all samples ameliorated 

suppressed proliferation.  The highest migration capacity was restored via the 50% PRP, and the 100% 

PRP (no additional medium) restored collagen deposition in challenged fibroblasts [55]. These results 

propose PRP as an adjunct therapy for chronic ulcers and that higher platelet concentrations proved 

the most efficacious. Previous studies have reported that higher PRP concentrations inhibit cell 

proliferation; however, this study' results oppose this notion. For the fair interpretation of results, it is 

essential to assign particular attention to the methods details which can potentially influence the 

experiment’s outcome.  

 

6. PRP and clinical applications: dermal regeneration  

 

 The skin is the largest organ of the body and visibly reveals the effects of extrinsic and intrinsic 

ageing.  Medical specialists underestimate the dermal tissue's significance because skin regeneration 

is often considered cosmetic and not critical for the on-going health of the patient. The dermis is the 

connecting link between the epidermis and hypodermis and contains nerve endings, sweat and oil 

glands, immune and regenerative cells, and protects the underlying structures. The dermis is unable to 

regenerate in the same way as the bone, the epidermis or liver and if impaired so too is the body’s 

temperature control, immune response, and the protective barrier which can lead to dermatitis, eczema, 

psoriasis, allergies and possible skin cancers.  In recent times, PRP is injected into the dermis to order 

to restore the skin’s function and health; however, results vary due to the inestimable variables in tissue 

surfaces and fluctuating PRP formulas [9, 56].  
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6.1. Burns - PRP Treatments 

 

 Fresh skin burns and their subsequent scars comprise of senescent fibroblasts and on-going 

tissue impairment. Reducing the burns’ impact at the time of the incident minimises long-term medical 

care, lessens keloid scar risk, tissue pain and photosensitivity.  The theoretical benefits of PRP for 

chronic ulcers suggests this healing benefit could be transferred to burn wound therapy; however, PRP 

treatments for burns’ patients have not been as successful and still inconclusive.  A PRP review as a 

treatment for burns found that fibrin sealant, a by-product of PRP, was mostly applied to treat split 

skin grafts, however, due to the lack of sufficient studies no conclusive evidence for its’ use was found 

[57]. Furthermore,  in an in-vivo randomised, double-blind study enlisting 52 burns patients already 

undertaking skin grafts to trial LR-PRP topical therapy, combined with the graft or without,  resulted 

inconclusively. From seven days to twelve months, a DermoSpectoMeter acquired the measurements 

of the epithelialisation and graft uptake, which displayed no significant statistical difference for all 

time intervals and no improved or superior scar formation between the test areas. Several variables 

presented by the participants, such as vastness in age, the total surface burn areas and wound sepsis, 

all impact the wound healing capacity.  

 

 Furthermore, systemic changes transpire within the patients’ as a consequence of the burn. Such as, 

the platelets are in a state of heightened activity and hyper-coagulated for up to one-week post burns, 

thus compromised [58]. Patients’ too may require immediate general anaesthetic, which pre-activates 

the platelets in vivo.  It is therefore advised to delay PRP treatment for burns patients until their platelets 

have returned to their normal state. More so, it would be expected a deep wound, such as a burn, would 

require multiple PRP treatments to address each wound healing phase; the phagocytosis and 

debridement of infected and necrotic tissue, angiogenesis, granulation and re-epithelisation.  Also, the 

burn wounds’ exudate will inhibit PRP absorption, and in the event of an imbalanced exudate wound 

breakdown occurs; all of which inhibits debridement and epithelial migration. For this reason, the PRP 

percutaneous injection into the burn’s underlying healthy tissue, which contains less damaged and 

functioning fibroblasts would have a higher proliferation potential and migrate more proficiently to 

the burn wound.   A comparison study of PRP injection vs topical application for the effective 

treatment of burn wounds would evaluate this hypothesis [59].  

 

6.2. PRP and Collagen Regeneration 

 

 In aesthetic medicine, PRP is applied as an adjunct therapy in replace of or in conjunction with 

dermal fillers to stimulate collagen regeneration and volume augmentation.  In a prospective cohort 

pilot study, combined PRP and cultured fibroblasts were injected into nasolabial rhytids to evaluate 

the collagen rejuvenation effects. Subsequently, at nine months post-treatment, there was still notable 

softening of the nasolabial fold and the surrounding skin.  Dermal fillers augment collagen defects and 

remain in the tissue from three to twelve months, however due to their foreign body status and gel 

substance, they can present with adverse events, such as granulomas, artery occlusion causing necrosis, 

and uneven volume affecting a distorted appearance.  Considering that PRP is autologous, anti-

microbial and a bio-stimulant these complications are unlikely to occur and hence effecting PRP as an 

alternative and safer treatment [60].  



 

 12 

 

   

6.3. PRP and Post-Surgical Tissue Defects 

 

 In a dental study of 102-patients undergoing surgery to remove an odontogenic mandibular 

cyst, thus an aggressive and destructive wound locally, the patients received one LR-PRP treatment 

(1.7 x 106 plt/l; 39 x 109 leucocytes/L) to augment the excision tissue defect. Results demonstrated 

notably decreased bleeding throughout the surgery, advanced healing of the oral mucosa, less visible 

erythema within the suture margins and no inflammation at the surgical site 14 days post-surgery.  In 

stage two of this study, 18 patients undergoing surgery for a double mandibular fracture were divided 

into two groups: half the group received no fluids while the other half received LR-PRP.  There was 

minimal difference between the groups; however, the LR-PRP group healed more efficiently [61].  

  

6.4. Combination Therapy: PRP and Cells 

 

 PRP research is progressing beyond platelets and GFs to supplement with 

tissue cell combinations. A combination of human keratinocytes and fibroblasts and PRP was 

applied to full thickness wounds in mice. The results displayed greater re-

epithelialization at day 7 and 14; some wounds achieved complete closure, whereas 

the non-treatment group (saline) expressed no epidermal growth in the wound centre. 

TGF-1 expression was higher in the PRP + fibroblast + keratinocyte group, and PDGF-BB and 

VEGF expressed higher in the non-treatment group compared to the treatment 

groups [62].  

 

7. Research Limitations 

  

 Throughout the studies, the PRP point-of-care devices vary from conventional laboratory tubes 

to highly advanced automated cell separating apparatuses, and changeable centrifugation parameters. 

Step-by-step protocols for PRP processing are often not included or mostly non-reproducible for 

clinical practice. The preparation methods activated PRP to produce GF concentrate gel as a 

supernatant to the medium, without considering that each preparation has a different initial platelet 

concentration. Although plasma volumes within PRP formulae carry equal importance to the platelet 

concentration, it is often data omitted. In clinical practice, such variances prevent precise dosing and 

may well affect the PRP quality, and thus, reducing the regenerative benefits.   

 Collectively, these studies validated that PRP induces fibroblast migration and proliferation 

and this process is dose-dependent. The ambiguous dilutions, methods and conflicting results 

throughout the studies obscure interpretation for the clinician. Throughout the studies, concentrations 

vary from 250%, 20%, 10% to 5% and hence claim to be the most proficient, but these data are not of 

equal value.  The original platelet count and plasma volumes vary between experiments; and, the ratio 

percentage of platelet secretome and plasma volumes or dilutions are not recorded.  Therefore, it 

cannot be determined if disproportions affected outcomes, affecting it impossible to make a valid 

comparison between studies.  
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 Furthermore, the PRP studies are mostly compared through their platelet concentration and 

thus, overlooking the platelet yield concentration in the plasma volume; thus, the mean platelet 

volume. Whole blood volumes and cell count differ for each study and subsequently so will the buffy 

coat cell count, and plasma volumes; plus,  the platelet mass is only contained in the lower third of the 

plasma, and therefore the formulas will differ [28].  Studies employed short evaluation periods which 

proved insufficient for significant fibroblast proliferation compared to the experiments that evaluated 

for up to 14 days and did observe substantial proliferation [63]. These obscurities make it challenging 

to perform comparisons or to draw conclusions and potentially allows for misinterpretation and bias 

in studies. Due to these inconsistencies, the evidence is not yet established to support that the higher 

concentrations of platelets or leucocytes have an inhibitory effect on fibroblasts.    

 

8. Conclusion  

 

 There is a paucity of data of leucocytes in PRP and for those that exist have mostly presented 

these immune cells as catabolic, or neglected to classify them, and have not yet fully appreciated their 

critical influence in tissue regeneration. In summary,  the studies have presented with varying and 

undefined methodologies, complex processing, uncertain cellular parameters, insufficient data,  

obscure valid endpoints,  lacked a translatable relationship between platelet concentrations and platelet 

gel supernatants coupled with inconsistent results.  Consequently, this allowed for unfair comparisons, 

the misinterpretation of results and provided for bias.  Researchers will better serve the medical 

community scientifically by adhering to reproducible methodologies and the reporting of accurate 

clinical data. Nonetheless, the studies demonstrated clear evidence that PRP does affect fibroblast 

proliferation and migration and that this varies according to the dose. The effects of leucocytes 

combined with PRP are yet to be established; however, it is evident that the leucocyte is not tissue 

destructive. 

 

9. Future Directions 

 

 The recent research generation has predominantly focused on platelet concentration, activation 

methods, GFs and the controversy of leucocytes.  However, PRP classification systems are poorly 

characterised in data reporting. To assess clinical efficacy and to distinguish between formulation 

variances, it is essential to employ accurately calculated PRP characteristics and to report more 

comprehensive data. Nonetheless, as the studies progressed to understand the pathways of these 

biological factors, so too reflected a more extensive knowledge of molecular signalling and 

inter/intracellular communications, hence providing the next generation with a stronger scientific 

foundation. Moreover, an increased focus on the combination of leucocytes, PRP and plasma 

combined tested on challenged fibroblasts would better evaluate their synergistic regenerative 

potential. Collectively, these data will provide the physiological changes that occur in the challenged 

cell and how these tissue healing mechanisms on a molecular level differ to the unchallenged cell. 

These combined methods will set a new standard for data reporting and a precedent for the next 

generation of regenerative medicine researchers. Hence supporting self-healing mechanisms with 

Immuno-Regenerative Medicine. 
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Table 1. The effects of Leucocytes and Platelets on Tissue Regeneration   

Cell type LR- PRP Time  Outcome Ref 

a. Expression of MMP-2, -3, -9 

 

b. Fibroblast challenged by IL-1β 

LP-PRP 

vs. LR-PRP  

 

Data omitted    

ACP (Arthrex) 

GPS (Biomet) 

24 – 

144 

hours 

(h) 

LR-PRP exhibited higher total MMP-2, -3, -9 

concentrations for up to 144 h.  

 

LR-PRP - significantly higher total and 

endogenous MMP-2 activity. 

Once normalisedd to platelet count, 

differences in MMP activity were not 

significant between L Pv. LR-PRP. 

 

Cells stimulated with IL-1β and treated with 

LP-PRP showed significantly higher MMP-2, 

-3 concentrations at 24  hs. LR-PRP.  

 

48 h - IL-1β stimulated cells treated with LR-

PRP exhibited higher MMP-2 concentration, 

but no difference in MMP-3. 

 

48 h - significantly higher concentration of 

MMP-9 in the LP-PRPvs. LR-PRP treated 

cells.  

[42] 

 

 

A specially designed plexiglas 

smould was fabricated to make the 

fibrin specimens identical in size, 

volume, and figure, into a dog-

bone- shape. 

LR-PRP 

vs. LP-PRP 

 

Data omitted  

(Endoret)  

NA  LR-PRP - greater tensile strength, toughness 

and stronger mechanical properties. 

 

LR-PRP - Tensile strength of early group was 

significantly higherthan thee  PRP group. 

 

Early LR- PRP group was stiffer than LP-

PRP group but not statistically significant.  

Thetoughnesss ofthe  early LR-PRP group 

was significantly higher than LP-PRP group. 

[38] 

 

 

 

 

Split Skin Graft           (SSG) LR-PRP  

Topical application  

2139.3 x 10
9 

plt/L;  

51.5 x  10
9 

 

leucocyte/L  

1 year No significant statistical difference for all 

time intervals. 

No improved or superior scar formation.  

Several variables - vastness in age, the total 

surface burn areas and wound sepsis  

[58] 
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Nasolabial rhytid injection  PRP and 

fibroblasts  

9 

month

s (m)  

16 patients - 80 % increase in skin thickness 

at 9-month. 

 

15 patients - increase in dermal density. 

 

7 patients - increase in skin hydration. 

 

16 patients, improved sebum quality adjacent 

to the nasolabial fold. 

 

Nasolabial fold wrinkle depth reduced in 15 

patients. 

 

85%of  patients were satisfied. 

[60] 

a.Thedefectt resulting from an 

odontogenic mandibular cyst 

excision 

b. Double mandibular fracture  

LR-PRP  

1.7 x 10
6
 plt/l; 

39 x 10
9 

leucocyte/L 

14 

days 

(d) 

Decreased bleeding in surgery. 

 

Advanced healing.  

 

No inflammation,less visibles erythema in 

suture margins. 

 

The LR-PRP group healed more efficiently. 

[61] 

 

 

 

Angiogenic potency and fibroblast 

migratio 

 mMultilayeredd 

sheets fibroblasts  

(1.25 x 10
5
) and 

peripheral blood 

mononuclear cells 

(2.0 x 10
5 

)vs. 

single layer sheet 

2 d  Multilayeredd sheet - greater angiogenic 

potency and fibroblast migration. 

[40] 

 

 

 

a. Fibroblast proliferation 

 

 

LP-PRP  

427.61 x 10
3
 

plt/μl;  

2.26 x 10
3
 

leucocyte/μl 

 

LR-whole blood 

257 x 10
3
plt/μl;  

6.96 x 10
3 

leucocyte/μl 

10 d  Fibroblasts showed a significant increase in 

proliferation compared to untreated cells - up 

to 8 days. 

 

No significant difference between the 

groups,exceptpfort a significant increase for 

both groups compared to untreated cells - 

from day 4-8. 

[41] 

 

 

 

b. GF release LP-PRP  

427.61 x 10
3
 

plt/μl; 2.61 x 10
3
 

leucocyte/μl 

 

LR-whole blood; 

257 x 10
3
plt/μl  

10 d PDGF-AB/BB increased immediately before 

fibroblast proliferation and decreased over 10 

days. 

 

IGF-1 and TGF-β1 increased as fibroblasts 

proliferation increased,peaked atn 4 and 6 d  

up to 8 d. 

[41] 
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6.96 x 10
3 

leucocyte/μl 

VEGF was the lowest but increased along 

with cell proliferation.  

a. Fibroblast proliferation, 

migration and motility 

 

LP-PRP  

1.5 - 3.0 x 106 

plt/μl 

0 – WBC 

 

LR-PRP 

1.5 - 3.0 x 106 

plt/μl 

8.1-13.2 x 103 

leucocyte/μl 

72-h Both supernatants stimulated proliferation 

(2.5-fold) compared with untreated cells. 

No significant differences in the proliferative 

response between LP and LR-PRP treated 

cells.  

[44] 

 

 

 

b. Wound healing assay LR-PRP  

0.3 - 2.5 x 106 

plt/μl 

 

72-h Greater fibroblasts migration from the 0.3-1.5 

x 106 plt/μl compared to untreated cells. 

 

Fibroblast motility inhibition -  observed at 

2.5 x 106 plt/μl.  

 

Greatest motility at 1.5 x 106 plt/μlvs. LP-

PRP.  

MMP-2,, -9 expressions - present for both 

LR- and LP-PRP, no significant differences. 

 

No significant difference - GF release.  

 

VEGF exhibited a significant decrease from 

the LP-PRP.  

 

IFN-γ and PDGF‐B in LP‐PRP showed a 

significant increas ev.Thee LR-PRP. TNF-α 

and FGF‐7 levels could not be detected. 

[44] 
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Table 2. Platelet concentrations and their effects on tissue cells   

Cell  PRP  Dilution % Time Outcome Ref 

hMSCs 315 - 1600 x 

103 plt/l  

 

 

DMEM + 10% 

& 20% PRP 

releasate.  

 

DMEM +10% 

PRP releasate 

diluted in PPP.  

  

Final PRP 

releasate 

concentration 

ranged from 

0.625 -2.5 fold  

7 

days 

(d) 

Significant difference for hMSC mitogenesis - 1 x 106 

plt/µl. 

 

 

5 to 10-fold PRP - 848% and 720% more hMSCs by 

day 7vs. growth medium. 

 

 

Cells exposed to 2.5 or 1.25-fold PRP - increases of 

325%  and 356%. 

 

1.25-fold PRP was more mitogeni cv the freshh blood 

clot serum, which stimulated proliferation by 208%. 

[13] 

 

 

 

Fibroblast 1416 x 103 

plt/l  

0, 0.2, 2, 10, 

20% 

96 

hours 

(h)  

Lower % proved insufficient. 

 

20% PRP - highest proliferation. 

 

No  cytotoxicity occurred 

[48] 

Fibroblast 

and hMSCs  

Determinati

on of TGF-

 and 

PDGF 

levels  

132.26 x 104 

plt/l 

 

PPP-   16.74 x 

104  plt/l 

 

WB-     5.12 x 

104  plt/l 

 

 

1, 5, 10, 20% 1, 4, 

7 d 

5% aPRP - Proliferation peaked on day 7  

 

10% and 20% PRP - proliferation decreased from 

higher concentrations.  

 

The mean PDGF-AB level in nonactivated PRP was 

0.773 pg/ml and increased to 184-fold to 144.46 

pg/ml. 

 

The mean TGF-1 level in nonactivated PRP was 

0.982 pg/ml and increased 81-fold to 96.38  pg/ml. 

[16] 
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Fibroblast  

VEGF, 

HGH, HA, 

TGF-1 in 

type 1 

collagen 

and HA 

synthesis  

 

Fibroblast 

Phenotype: 

Skin, 

Synovium 

and Tendon 

PPP-   

6 x 106 plt/ml 

 

PRP-  

404 x  106  

plt/ml 

 

PRP(2) -767 x 

106 plt/ml 

20% PPP 

 

 

 

20% PRP 

 

 

 

20% PRP(2) 

72 h Each sample, statistically significantly stimulated 

each phenotype compared to the non-stimulated cells. 

 

PRP and PRP(2) - maximum fibroblast proliferation. 

 

VEGF release - the highest in tendon cells. 

 

A different pattern for Hepatocyte-GF production. 

 

Enhanced HA synthesis, but did not alter collagen 

type I production. 

 

TGF- may be involved in enhanced HA, but not in 

type I procollagen synthesis.    

[49] 

 

 

 

Endothelial  

Angiogenes

is 

1.5 to 3 x 106 

plt/µl  

 72 h PRP of 1.5 x 106 plt/µl - optimal angiogenesis. 

 

No inhibitory effects up to 3 x 106 plt/µl. 

[18] 

Fibroblast;  

type 1 

carboxy-

terminal 

peptide 

production; 

type 1 

collagen 

mRNA, 

MMP-1, -3 

expression.  

PPP –  

3.1 x 105 plt/l  

vs.  

PRP – 

1.7 x 106 plt/l   

1, 5, 10, 20 % 5 d 5% - most effective for all outcomes. 

 

10 to 20% - a proliferation decrease.  

 

All samples exhibited growth in procollagen type 1 

carboxy-terminal peptide, protein production and 

higher MMP -1, -3. 

 

PRP - significantly higher cell expressions. 

[15] 

 

UVAirradia

tedd 

fibroblasts 

compared 

to normal 

fibroblasts 

Data omitted   25, 50% 72 h 25% and 50% PRP significantly increased fibroblast 

proliferation, collagen deposition and migration rates. 

 

The challenged fibroblasts proliferationrate wass less 

than the unchallenged fibroblasts, survival and 

proliferationwase nonetheless restored. 

[54] 

 

24-h Serum 

starved 

fibroblasts  

Data omitted  25, 50, 100%   All samples ameliorated suppressed proliferation.  

 

Highest migration capacity - 50% PRP.  

 

100% PRP restored collagen deposition. 

[55] 
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Fibroblast 980,000 plts 

in 2 ml 

10, 25, 50,  

75 % 

24, 

48, 

72 h 

No significance in proliferation for all % 

  

10% aPRP - the highest proliferation and optical 

density at all time points. 

[50] 

 

 

Fibroblasts  

+keratinocy

tess  + PRP 

applied to 

full 

thickness 

wounds of 

mice 

Data omitted  10%  7, 14 

d 

Greater  re-epithelialization - 7 & 14 d 

 

Some wounds achieved full closure. 

The nontreatmentt group expressed no epidermal 

growth. 

 

TGF-1 expression was higher in the PRP + 

fibroblast + keratinocyte group. 

 

PDGF-BB and VEGF expressed higher in the non-

treatment group compared to the treatment groups. 

[62] 
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Figure Legend 

 

Figure 1. Cellcrosstalkk, expressions and secretions in tissue healing processes.  

Abbreviations: bFGF: basic Fibroblast growth factor; CTGF: Connective tissue growth factor; 

CXCL8: C-X-C motif chemokine ligand 8; ECM: Extra Cellular Matrix; EGF: Epidermal growth 

factor; FGF: Fibroblast growth factor; HGF: Hepatocyte growth factor; IFN: Interferon; IGF: Insulin 

growth factor; IL: Interleukin; KGF: Keratinocyte growth factor; MDGF:Monocytederivedd growth 

factor; MMP: Matrix metalloproteinase; PDGF: Platelet-derivedgrowth factoro; SDF: Stromal growth 

factor; TGF: Transforming growth factor; Th: T helper;  TNF: Tumor Necrosis Factor; Vascular 

Endothelial growth factor. 

 

 

 

 

 

 


