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ABSTRACT 
________________________________________________________________ 

Probiotics are beneficial to the host through its contribution to the development and 

maintenance of a healthy immune system. Some probiotics are used in the food industry as 

secondary starter cultures to ferment dairy products including Streptococcus thermophilus 

(ST). ST bacteria were used to determine their modulatory effects on a promonocytic cell line 

which exhibited differential cytokine induction, in particular, IL-4 and IL-10 which are 

important in injury, infection and play a central role in anti-inflammatory responses. CXCL8 

and GM-CSF are also activated - important for chemotaxis and recruitment of cells at sites of 

inflammation, and, increased CD11c, CD86, C206, CD209, MHC-1 expression. As ST are 

used in the dairy industry, are well tolerated when consumed and remain viable during cold 

storage, their consumption might be a practical approach in modulating immune responses in 

the host, and be beneficial to an array of diseases, including, autoimmunity and inflammatory 

bowel diseases. 
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1. Introduction 
 
 The regular consumption of probiotics has been shown to contribute to the maintenance 

of a healthy microbiome in the intestinal tract and associated health benefits (Ahtesh, 

Stojanovska, & Apostolopoulos, 2018; Hardy, Harris, Lyon, Beal, & Foey, 2013). It has been 

documented that there are over 1,000 existing species within the microbiome - with 400 well 

known, which are all essential for the establishment and maintenance of a healthy and 

functional immune system (Jensen, Drømtorp, Axelsson, & Grimmer, 2015; A. J. Stagg, Hart, 

Knight, & Kamm, 2004; J. Stagg et al., 2011). Commensal strains of the human intestinal 

microbiota have been used as probiotic supplements, either in food or as capsules, for a variety 

of medical issues including diarrhoea, constipation and various infections (Di Caro et al., 2005; 

Isolauri, Sütas, Kankaanpää, Arvilommi, & Salminen, 2001; Ouwehand, Salminen, & Isolauri, 

2002; Vliagoftis, Kouranos, Betsi, & Falagas, 2008). This is based on the role that the 

microbiome plays in establishing a balanced immune response during early life and 

maintaining it throughout adulthood (Kelly, King, & Aminov, 2007; Langhendries, 2005, 

2006; Mead et al., 1999). These beneficial bacteria were termed “probiotic” by Fuller in 1989 

(AFRC, 1989), which were then defined by the Food and Agriculture Organization and the 

World Health Organization as ‘‘live microorganisms which upon administration in adequate 

amounts confer a health benefit to the host’’ (Guarner & Schaafsma, 1998; Lebeer, 

Vanderleyden, & De Keersmaecker, 2008; Vasiljevic & Shah, 2008). Likewise, “ghost 

probiotics”, i.e. non-viable microbial cells, intact or broken or crude cell extracts also confer 

benefits to the host (Deshpande, Athalye-Jape, & Patole, 2018).  

 Most probiotics today belong to the group of lactic acid bacteria (LAB) which represent 

gram-positive lactic acid producing microorganisms, and include several genera of lactobacilli, 

bifidobacteria and enterococci; LAB are abundantly present in the intestine, especially in the 

lower small intestinal lumen and the colon (Fink et al., 2007; Maassen et al., 2000; 

Michałkiewicz et al., 2003). LABs are commonly supplemented in foods as live probiotic 

strains and have been shown to confer health benefits to humans (Asarat, Apostolopoulos, 

Vasiljevic, & Donkor, 2015, 2016; Asarat, Vasiljevic, Apostolopoulos, & Donkor, 2015; Fink 

et al., 2007; Guarner & Schaafsma, 1998; Salazar et al., 2009). In addition, Streptococcus 

species (a member of the LAB), including exopolysaccharide-producing strains of 

Streptococcus thermophilus (ST) such as S. thermophilus ST1342, S. thermophilus ST1275 

and S. thermophilus ST285 (Purwandari & Vasiljevic, 2009; Salazar et al., 2009) are widely 

used due to their functional properties such as, immunosuppressive effects in the treatment of 
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acute ulcerative colitis, improving lactose digestion (Iyer, Tomar, Uma Maheswari, & Singh, 

2010; Rabot, Rafter, Rijkers, Watzl, & Antoine, 2010; Savaiano, 2014), improving the 

intestinal barrier function restricting adhesion and invasion of pathogens (Brigidi, Swennen, 

Vitali, Rossi, & Matteuzzi, 2003; Elli et al., 2006; Kebouchi et al., 2016) as well as their 

production of bacteriocins and vitamins (Iyer et al., 2010; Ng et al., 2010; Uriot et al., 2017). 

Furthermore, ST present characteristics that enable them to be used in fermented milk 

products (i.e. yogurt), flavoring of dairy, and is recognized as the next most important species 

after Lactococcus lactis (Hols et al., 2005). Since 2002, ST has been accepted to be safe and 

approved by the American Food and Drug Administration (FDA, 2018) and the Qualified 

Presumption of Safety grade/rank/status from the European Food Safety Authority (Kebouchi 

et al., 2016). However, in contrast with other LAB, using the term probiotic for ST is still a 

matter of debate (Mohammadi, Sohrabvandi, & Mohammad Mortazavian, 2012; Uriot et al., 

2017; Vasiljevic & Shah, 2008).  

 In studies of human primary macrophages, ST bacteria induce the anti-inflammatory 

interleukin (IL)-10 cytokine, although pro-inflammatory IL-12 cytokine is also produced 

(Latvala, Miettinen, Kekkonen, Korpela R., & I., 2011). Furthermore, ST1275 and 

Bifidobacterium longum BL536 were shown to stimulate high levels of transforming growth 

factor (TGF)-beta, important for the differentiation of regulatory T cells (Treg) and T-helper 

(Th)-17 cells from bulk cultures of peripheral blood mononuclear cells (Donkor et al., 2012a). 

S. salivarius, S. equinus and S. parasanguinus have been shown to induce IL-8, tumor necrosis 

factor (TNF)-alpha and IL-12 in human dendritic cells (DC).  Streptococcus and Veillonella 

often co-occur in bio-environments and can potentially have metabolic collaboration; in fact 

their combination collectively show immunomodulatory effects. Whilst Veillonella parvula 

was only able to stimulate IL-6 production; combinations of Streptococcus and Veillonella 

were able to down regulate IL-12 whilst up regulating IL-6, IL-8, IL-10 and TNF-alpha (van 

den Bogert, Meijerink, Zoetendal, Wells, & Kleerebezem, 2014). In mice, administration of 

ST either orally or intraperitoneally, was shown to enhance immune responses by activating 

phagocytic activity of macrophages and increased antibody production by B cells (Perdigon, 

Nader de Macias, Alvarez, Oliver, & Pesce de Ruiz Holgado, 1987). Mice with dextran sodium 

sulphate induced colitis showed reduced clinical signs of disease and decreased cellular 

infiltration (associated with inflammation) in the colon following ST oral administration 

(Bailey, Vince, Williams, & Cogan, 2017). Conversely, in a human clinical study, 20 

participants with positive skin prick tests and atopic history consumed yogurt that contained 

live ST and Lactobacillus bulgaricus did not show any improvement in immune cell 
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parameters; phagocytic function, antibody responses, cytokine secretion by T cells (IFN-

gamma, IL-2, IL-4), number and function of natural killer (NK) cells and neutrophils (Wheeler 

et al., 1997). Thus, although probiotics are able to modulate host immune responses, much is 

still unknown regarding their direct effect on immune cells such as monocyte/macrophages 

(Lebeer et al., 2008). Thus, we chose to investigate three strains of  S. thermophilus (ST1275, 

ST285, ST1342), to determine their direct effects on the human pro-monocytic cell line, U937 

cells that were differentiated into monocyte/macrophage cells using vitamin D3. (Mogensen, 

2009; Suresh & Mosser, 2013). Pattern recognition receptors present on monocytes and 

macrophages have been shown to be responsible for the recognition of bacteria, therefore these 

cells were used in the current study to determine the direct effect (cell surface markers and 

cytokine expression) of S. thermophilus bacteria on these cells. 

 

2. Material and Methods  

2.1. Bacterial strains  
 

 Pure bacterial cultures of S. thermophilus 1342 (ST1342), S. thermophilus 1275 

(ST1275) and S. thermophilus 285 (ST285) were obtained from Victoria University Culture 

Collection (Werribee, Victoria, Australia). Stock cultures were stored in 40 % glycerol at −80° 

C. Prior to each experiment the cultures were propagated in M17 broth (Oxoid, Melbourne 

Australia) and were incubated at 42° C. Bacteria were also cultured in M17 agar (1.5 % w/v 

agar) for characteristics and assessment of their purity, morphology and gram status by gram 

staining.  

 

2.2. Preparation of live bacterial cell-suspensions 
 

 All media were prepared and sterilized by autoclaving at 121 °C for 15 min. Prior to 

actual experiments, the cultures were grown 3 times in M17 broth, at 37 °C for 18 hours with 

a 1 % inoculum transfer rate. S. thermophilus start to synthesize autolysins at the end of the 

exponential growth phase (Husson-Kao et al., 2000), or during or after the transition from 

exponential to stationary growth phase (Sandholm & Sarimo, 1981). Our cultures were 

obtained from Victoria University culture collection, which are cultured at 37-42° C for 24 

hours (Purwandari & Vasiljevic, 2009). We kept our culture growth time consistent 18 hours 

(at the end of the exponential growth phase) and before stationary growth phase to prevent cell 
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lysis. Growth rate varies for various subspecies as well as their temperature (30-50° C) (Tarrah 

et al., 2018). On the day of experiment, bacteria were harvested during stationary growth phase, 

by centrifugation (6000×g for 15 min at 4 °C, Beckman J2/HS centrifuge, JA-14 rotor, Palo 

Alto, CA, USA), washed twice with phosphate-buffered saline (PBS) (Gibco, Australia) and 

resuspended in RPMI 1640 culture media. These samples constituted the live-cell suspensions.  

 

2.3. Enumeration of bacterial cells 
 

 Bacterial strains were scraped from M17 agar and transferred into Dulbecco’s PBS 

(Invitrogen, Pty Ltd. Australia) adjusted to a final concentration of 108 cfu/ml by measuring 

the optical density at 600 nm, and washed twice with PBS before co-culturing with monocyte 

cell cultures. 

 

2.4. Culture, differentiation and stimulation of U937 cells 
  

 U937 cells were cultured in RPMI 1640 media supplemented with 10% heat-inactivated 

fetal bovine serum (FBS) (Invitrogen, Pty Ltd. Australia), 1% antibiotic-antimycotic solution 

and 2 mM L-glutamine at 37 °C, 5 % CO2. For differentiation of U937 cells into monocytes, 

U937 cells were adjusted to 3 × 105 cells/ml and 100 nM vitamin D3 was added followed by 

incubation for 72 h. The resulting cells have characteristics of monocytes with CD14, CD11b, 

CD86 and MHC class II surface expression (Table 1). 

 Differentiated U937 cells (5 × 105 cells/ml) were stimulated with 1.5 × 108 live 

probiotic bacteria (ST1342, ST1275 or ST285) or lipopolysaccharide (LPS, 1 µg/ml; internal 

positive control) or non-stimulated as reference background control. The ratio of cells to 

bacteria is usually 1:10, however this ratio is usually for PBMC in which there is only 10-13 

% monocytes present. Although there are only a few studies that use pure monocyte cultures, 

1:300 ratio of cells to bacteria has been reported (Jensen et al., 2015); hence in our experiments, 

1:300 ratio cells to ST bacteria was used. All cell cultures were incubated at 37 °C, 5 % CO2 

for either 24 hours or 48 hours. Supernatants were centrifuged and filtered to remove bacteria 

and were used for cytokine analysis and cells were used for cell surface marker expression by 

flow cytometry. Similar protocols have been used for other probiotic bacteria and on epithelial 

cells or PBMC (Asarat, Apostolopoulos, et al., 2015; Asarat, Vasiljevic, et al., 2015; Donkor 

et al., 2012b). 
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2.5. Cytokine analysis 
 

 Cytokine concentrations of supernatants were measured by commercially available 

capture and detection antibodies in a Bio-Plex assay using a 9-plex kit (BioRad, Melbourne 

Australia) to measure IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, IFNγ, and TNFα. 

Supernatants were collected and the assay procedures were performed according to the 

manufacturer’s instructions. Data was collected and expressed as the mean cytokine response 

minus background (pg/ml) of each treatment from 4 replicate wells, plus or minus the standard 

error of the mean.  

 

2.6. Flow cytometry assay for cell surface markers  
 

 Following stimulation of differentiated U937 cells with probiotics, cells were 

centrifuged and 5×105 cells were incubated with Fc block (BD Life Sciences) for 45 minutes 

on ice. After washing, cells were labelled with cell surface marker antibodies (Biolegend and 

BD Life Sciences) linked to fluorochrome and incubated on ice for 45 minutes. The antibodies 

were diluted in PBS/FBS at the following dilutions according to the manufacturers 

recommendations (CD11b-PE 1:400; CD83-Alexafluor488 1:400;  CD14-BV421 1:200; 

CD40, CD80, CD83, CD86Alexafluor 488 1:400; CD16-PE 1:400; CD206, CD209-PE/Cy7 

1:200; MHCI, MHCII-BV510 1:200). Samples were analyzed using a BD fluorescence 

activated cell sorter (FACS) Canto II. Data was acquired using Cell Quest program (BD Life 

Sciences), and analysis performed using FACS Diva software (BD Life Sciences) for 

percentage of expressed markers; isotype antibody controls (Biolegend and BD Life Sciences) 

were used as background quadrants set up.  

 

2.7. Statistics 
 

 Significant differences between all treatment groups were tested by analysis of variance 

(ANOVA) followed by a comparison between treatments performed by Fisher’s least 

significant difference (LSD) method, with a level of significance of p < 0.05.  

 

3. Results and Discussion 
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3.1. S. thermophilus bacterial strains activate monocytes necessary for the innate 

immune response 
 

 The innate immune system is the first line of defence against invading pathogens which 

react quickly and non-specifically. Following this non-specific encounter cytokines (such as, 

IL-1β, IL-6, TNFα and IFNγ) and chemokines are secreted by innate cells (monocytes, 

macrophages, dendritic cells, NK cells, granulocytes) which play an important role in the innate 

immune response. This results in inflammation at the site of infection to aid in pathogen 

clearance (Parihar, Eubank, & Doseff, 2010). IL-1β, IL-6, TNFα and IFNγ are pro-

infammatory cytokines which also aid to recruit and activate T and B cells to mount an adaptive 

immune response {Lacy, 2011 #104}. Secretion of IL-1β by monocytes is involved in 

regulating immune and inflammatory responses to infections and injury, hence its role in innate 

immunity (Lopez-Castejon & Brough, 2011). S. thermophilus ST1342 stimulated high levels 

of IL-1β (p < 0.001), whereas, ST1275 (p < 0.05) and ST285 (p < 0.07) did not induce IL-1β 

cytokine by differentiated U937 cells (Figure 1). IL-6 regulates both innate and adaptive 

immune responses and is secreted by monocytes to stimulate immune responses during 

infection (Jones, 2005). TNFα is a pro-inflammatory cytokine and a main trigger of the 

inflammatory response by causing vasodilation and vascular permeability allowing the influx 

of immune cells to the site of infection (Matsuki & Duling, 2000). High levels of TNFα was 

secreted by monocytes in the presence of ST1342, ST1275 and ST285 (p < 0.001) (Figure 1). 

It has been shown that IL-1β, LPS and TNFα induce IL-6 production by monocytes, and IL-6 

is required for resistance against bacteria (Tosato & Jones, 1990). A trend towards increased 

levels of IL-6 was noted, although this was not significant for all probiotic strains ST1342, 

ST1275 and ST285 (Figure 1). In addition, all three ST1342, ST1275 and ST285 strains 

activated high levels of IFNγ secretion (Figure 1); a pro-inflammatory cytokine that is crucial 

in both innate and adaptive immune responses and has both anti-bacterial and anti-viral 

properties. It is clear that ST1342, ST1275 and ST285 activate cytokine secretion by 

monocytes, required for activation of the innate immune response and responsible for pathogen 

elimination. Similarly, it was noted that the probiotic L. paracasei DG commonly used in 

commercial probiotic products, has been shown to have immunostimulatory properties by 

increasing expression of IL-6, TNFα and CCL20 in the human monocyte cell line, THP-1 

(Balzaretti et al., 2017). 
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3.2. S. thermophilus bacterial strains activates CXCL8 and GM-CSF: role in 

chemotaxis and recruitment of cells at sites of inflammation 
 

 IL-8 (also known as chemokine CXCL8) is an important cytokine of the innate immune 

system. IL-8 induces chemotaxis of neutrophils and other granulocytes toward the site of 

infection and it is a key mediator associated with inflammation; it also induces phagocytosis at 

the site of infection (Baggiolini & Clark-Lewis, 1992). The probiotic L. paracasei DG has been 

shown to increase expression of IL-8 in the human monocyte cell line, THP-1 (Balzaretti et al., 

2017). In addition, short chain fatty acids, produced by probiotic bacteria, also stimulate IL-8 

secretion and mRNA levels in the human epithelial cell line HT-29 (Asarat, Vasiljevic, et al., 

2015). Likewise, ST1342 (p < 0.005), ST1275 (p < 0.07) and ST285 (p < 0.001) activated 

monocytes to secrete high levels of IL-8 compared to non-stimulated cells (Figure 2). GM-CSF 

stimulates the production of white blood cells, in particular, it rapidly increases macrophages 

in vivo, important cells necessary for fighting infections. It also enhances the anti-bacterial 

activity of monocytes and modulates macrophage/dendritic cell phenotypes; as such, molecular 

targeting of the GM-CSF pathway has recently been developed to treat a number of 

autoimmune disorders (Ushach & Zlotnik, 2016). Of interest, ST1275 and ST285 induced 

monocytes to secrete high levels of GM-CSF (p < 0.001) while, conversely, ST1342 stimulated 

lower levels of GM-CSF (p < 0.001) (Figure 2).  

 

3.3. S. thermophilus bacterial strains activate anti-inflammatory cytokines 

 

 IL-4 is an anti-inflammatory cytokine which differentiates naïve CD4+ Th0 cells to Th2 

cells. IL-4 stimulates B cells and T cells and is a key regulator of humoral and adaptive immune 

responses at sites of injury. IL-4 promotes M2 anti-inflammatory macrophages and inhibits 

classical M1 pro-inflammatory macrophages. IL-4 together with IL-10 are important at sites of 

injury or infection by inhibiting bacterial mediated induction of pro-inflammatory cytokines. 

In addition, IL-4 and IL-10 are important cytokines required for anti-inflammatory responses 

against inflammatory diseases such as, autoimmunity and allergies (Mitchell et al., 2017). The 

probiotic Bifidobacterium (B) breve but not Lactobacillus (L) casei has been shown to induce 

IL-10 producing intestinal Treg cells as well as intestinal CD103+ IL-10/IL-27 secreting DCs 

in mice (Jeon et al., 2012). Oral B. breve administration ameliorates colitis in mice but not in 

IL-10 knockout mice, demonstrating preventive effect of B. breve on colonic inflammation 
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(Jeon et al., 2012). Likewise, L. reuteri and L. lactis strains given in mice orally stimulates anti-

inflammatory IL-10 and Treg cells (Levkovich et al., 2013; Souza et al., 2016). Furthermore, 

co-culturing PBMC with selected bacteria (LAVRI-A1, L. rhamnosus GG, Bifidobacteria and 

L. acidophilus) induce anti-inflammatory cytokines IL-4, IL-10 and TGF-beta (Donkor et al., 

2012b; Donkor, Shah, Apostolopoulos, & Vasiljevic, 2010). These cytokines inhibit the 

production of IL-12, IFNγ and other pro-inflammatory cytokines which are beneficial for 

autoimmune and allergic responses. Here we show that, ST1342 stimulated IL-4 production by 

monocytes (p < 0.001) and to a lesser degree ST1275 (p < 0.07)  and ST285 (p < 0.005), (Figure 

3). Similarly, IL-10 was secreted by monocytes in the presence of ST1342, ST1275 and ST285 

(p < 0.001), with ST1275 and ST285 stimulating higher levels (Figure 3). It is clear that ST 

probiotic bacteria have potential anti-inflammatory properties which could have positive 

implications in chronic inflammatory diseases (autoimmunity and allergies) and warrant 

further investigation. 

 

3.4. S. thermophilus bacterial strains upregulate the expression of cell surface 

markers on differentiated U937 cells; role in initiating innate and adaptive 

immune responses 
 

Monocytes are major constituent cells of the innate immune system, which also play a 

role in the adaptive immune response. The expression of cell surface markers on monocytes is 

crucial in the ensuing immune responses.  The specific markers presented on monocytes is 

dependent on their environment and their exposure to pathogens and/or pathogenic peptides 

and pathogen derived metabolites; with these factors causing alterations in the profile of 

monocyte markers, accordingly (Ziegler-Heitbrock, 2015). The human pro-monocytic 

histiocytic lymphoma cell line, U937 cells, are commonly used to study the behavior and 

differentiation of monocytes. They exhibit pro-monocytic characteristics by displaying 

monoblast morphology, produce lysozymes and have esterase activity (dos Santos et al., 2009; 

Sundstrom & Nilsson, 1976). They are not phagocytic, they express low levels of CD14, CD54, 

CD86, and major histocompatibility complex (MHC)-class II is not detectable (Azam et al., 

2006). However, upon stimulation with viral or bacterial fragments, or, vitamin D3, they 

express markers demonstrating monocyte/macrophage morphology, with increased expression 

of CD14 (dos Santos et al., 2009; Koss, Lucero, & Koziner, 1996; Santegoets, Van Den 

Eertwegh, Van De Loosdrecht, Scheper, & De Gruijl, 2008).  
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Our data shows that U937 cells incubated with ST1342, ST1275 or ST285 results in 

enhanced expression of CD14, CD11c, CD86, CD206, CD209 and MHC1 cell surface markers 

at varying levels; CD11b, CD16, CD40, CD80 and CD83 were also up regulated, albeit at a 

much lower level (Table 1). In other studies, the combination of 3 probiotics (L. acidophilus, 

L. delbrueckii ssp. bulgaricus and B. bifidum) stimulated increased expression of cell surface 

markers, CD14, MHC class II and CD80 (Gutkowski et al., 2010). 

CD14 is expressed on the surface of monocytes and macrophages and primarily binds 

to bacterial LPS; although other bacterial cell wall constituents also bind to CD14 such as, lipid 

A, Staphylococcus aureus, Escherichia coli and lipoteichoic acid (Bron, Tomita, Mercenier, & 

Kleerebezem, 2013; Lee, Tomita, Kleerebezem, & Bron, 2013; van Baarlen, Wells, & 

Kleerebezem, 2013). The interaction between CD14 and its ligands initiates the innate immune 

response (Bedell et al., 2018), as well as further up regulating its expression (CD14 expression) 

(Landmann et al., 1996). Indeed, ST1342, ST1275 and ST285 up regulated CD14 expression 

on U937 cells after 24 and 48 hours incubation, with ST285 being the most significant at 48 

hours (Table 1).    

CD11c is a type I transmembrane protein expressed by DCs, monocytes, macrophages 

and neutrophils (Dyer, Garcia-Crespo, Killoran, & Rosenberg, 2011). The presence of CD11c 

on these cells allows their adherence to endothelial cells, phagocytosis of complement positive 

cells (important for innate immune defence) and activates cellular immune responses. Selected 

strains of Lactobacillus (L. reuteri, L. plantarum Lb1 and L. fermentum) cultured with murine 

bone marrow cells and GM-CSF, induce high levels (85-90 %) of CD11c+ cells (Christensen, 

Frøkiær, & Pestka, 2002). Basal expression levels of CD11c on U937 cells was 26-27%, which 

almost doubled following LPS (48-49%) and ST1342 (48-50%) stimulation; significant up 

regulation was also noted with ST1275 (37-43%) and ST285 (43-46%) after 24 or 48 hours 

respectively (Table 1). Interestingly, there were no major differences in CD11c expression, 

whether cells were stimulated for 24 or 48 hours.  

CD86 (B7-2) expression on antigen presenting cells (DCs, macrophages, B cells) is 

involved in co-stimulatory signalling that is required for the priming and proliferation of T cells 

(Fleischer et al., 1996). Monocytes express low levels of CD86 which is up regulated following 

stimulation with IFN-gamma or other ligands. In fact we showed that expression of CD86 

increased significantly from 8.6% to 33.4% (ST1342), 28.1% (ST1275) and 38% (ST285) after 

24 hour co-culture, which was lower than that after LPS stimulation (46.3%) (Table 1). The up 

regulation of CD86 was transient and after 48 hours the levels decreased significantly. It is 

clear that S. thermophilus bacteria  promote CD86 expression levels, required for T cell 
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activation and the maintenance of immune responses (Fleischer et al., 1996). Similarly, L 

plantarum WCFS1 and L. fermentum GR1485 have been shown to upregulate CD86 cell 

surface expression on monocytes, however, L. rhamnosus and L. delbruekii reduce cell surface 

expression of CD86 (Esmaeili et al., 2018). 

CD206 (mannose receptor, MR) (Geurtsen et al., 2009), is primarily present on the 

surface of macrophages and immature DCs (Kerrigan & Brown, 2009), and functions to arrest 

antigens and pathogenic components, followed by processing and presentation to T cells 

(Engering et al., 2004). The MR recognizes mannose, fucose and N-acetylglucosamine residues 

(Kerrigan & Brown, 2009; Mitchell et al., 2017) commonly expressed on the surface of 

microorganisms (such as Pneumocystis, Candida, Mycobacterium, Leishmania), and capsular 

polysaccharides of Streptococcus and Klebisella (Geurtsen et al., 2009; Kerrigan & Brown, 

2009; Zamze et al., 2002), which results in the destruction of bacteria (innate immune response) 

and activation of the adaptive immune response (cellular responses). Poly-mannose (mannan) 

linked to protein antigens as a model, targets the MR on DCs and macrophages resulting in 

stimulation of either pro- or anti-inflammatory responses, significant in a number of diseases 

from cancers to autoimmunity (Apostolopoulos, Barnes, Pietersz, & McKenzie, 2000; 

Apostolopoulos & McKenzie, 2001; Apostolopoulos, Pietersz, Gordon, Martinez-Pomares, & 

McKenzie, 2000; Apostolopoulos, Pietersz, Loveland, Sandrin, & McKenzie, 1995; 

Apostolopoulos, Pietersz, & McKenzie, 1996; Sheng et al., 2006). Here we show that U937 

cells co-cultured with ST1342, ST1275 or ST285 up regulated the expression levels of CD206 

within 24 hours (ST285 inducing the highest levels) which subsided by 48 hours, but did not 

reach basal level expression (Table 1, Figure 4). In addition, CD209 (DC-SIGN), a C-type 

lectin receptor expressed on the surface of macrophages and DCs also binds to mannose 

residues present on bacteria, viruses and fungi. The interaction between CD209 and mannose 

moieties activates phagocytosis as well as endocytosis for processing and presentation to T 

cells (Apostolopoulos et al., 2014; Cambi et al., 2003; Proudfoot, Apostolopoulos, & Pietersz, 

2007; Sheng et al., 2008; Sheng, Pietersz, Wright, & Apostolopoulos, 2005). U937 cells 

cultured in the presence of ST strains also up regulated the expression of CD209 with maximal 

up regulation noted within 24 hours (Table 1); ST285 stimulation resulted in the highest up 

regulation at both 24 and 48 hours. Thus, S. thermophilus strains induce CD206 and CD209 

expression, as a result have a positive role in activating both the innate and adaptive immune 

responses (Apostolopoulos et al., 2006; Apostolopoulos et al., 2014). 

The major histocompatibility complex class I (MHC-I) is expressed by all nucleated 

cells and presents processed antigenic peptides on its surface to activate CD8+ T cells (Neefjes, 
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Jongsma, Paul, & Bakke, 2011). U937 cells express low levels of MHC-I which is up regulated 

within 24 hours in the presence of ST1342, ST1275 or ST285 and remains up regulated after 

48 hours of stimulation (Table 1). Hence, S. thermophilus strains are beneficial in upregulating 

MHC-I molecules on monocyte/macrophage cells for enhanced CD8+ T cell stimulation, 

required for the elimination of tumour cells and viruses. 

 

3.5. Conclusion  
 
 Activation of monocyte cells with Streptococcus thermophilus such as S. thermophilus 

ST1342, S. thermophilus ST1275 and S. thermophilus ST285 strains, and secretion of IL-1β, 

IL-6, TNFα and IFN-γ suggests their role in the subsequent activation of the immune responses 

aiding in the elimination of pathogens. In addition, S. thermophilus strains, up regulated the 

secretion of IL-8, a chemokine involved in chemotaxis and phagocytosis, as well as up 

regulating the secretion of GM-CSF, a major cytokine for increasing the number of 

macrophages at the site of infection. Clearly, S. thermophilus strains up regulated cytokine 

levels by monocytes, required for activation of the innate immune response. Furthermore, the 

activation of anti-inflammatory cytokines (IL-4 and IL-10) could be beneficial in modulating 

chronic inflammatory conditions and allergies. Moreover, S. thermophilus strains up regulated 

monocyte cell surface markers, CD14, CD11c, CD86, CD206, CD209 and MHC-I suggestive 

of their potential benefit to activate innate and adaptive immune responses. These findings 

support a role for these probiotic strains in the healthy modulation of monocyte activity and 

their roles in innate and cellular immunity. The results also present a potential role for these 

strains in modulating the inflammatory response, which warrants further investigation. Overall, 

these findings are in agreement with the body of research that supports the role that the regular 

consumption of probiotics (including S. thermophilus) has in the establishment and 

maintenance of a healthy immune system and opens pathways to further determine the 

mechanisms by which these strains modulate immune responses.  
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Table 1  
Proportion (%) of  cell surface marker expression shown, as analyzed by flow cytometry  
at 24 and 48 hours of stimulation of U937 cells with S. thermophilus strains 
 

 
 
 
 
 
 
 
 
 
  

                     Control       LPS    ST1342   ST1275    ST285  
                   24        48 24        48 24       48 24       48 24       48 
CD11b 6.1 4.1 13.9 9.1 12.1 8.6 12 7.5 11.8 21 
CD11c 27.3 26.2 48 49 50 48 37 43 43 47 
CD14 6.6 4 13.5 19 15.6 21 19.1 16 19.8 35 
CD16 3 4 7.1 6.5 7.5 6 8.9 4 9.1 12 
CD40 1.6 4 6 6 6.2 5.8 8.5 5 6 13 
CD80 4 4 5.5 5.5 7.5 5.7 7.5 5.2 5.5 11 
CD83 1.7 4 7 6.5 6.8 4.7 13 5 7.1 10 
CD86 8.6 4.5 46.3 16 33.4 13 29.8 12.5 38 16.5 
CD206 17 7 40.9 30 38.5 30 36.4 34 47.8 34.5 
CD209 4 4.5 37.1 20 38.7 18.8 30 16.8 39 31 
MHCI 4.2 10 18.7 23 18.9 24 20.8 22.5 22.7 24 
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Figure Legends 
 

Fig. 1. S. thermophilus bacterial strains activate monocytes necessary for the innate 
immune response. U937 cells were differentitated into monocytes and stimlated with S. 
thermophilus (ST) - ST1342, ST1275 or ST285 for 24 hours and secretion of IL-1β, IL-6, 
TNFα and IFNγ were measured. LPS was used as an internal positive control and untreated 
refers to differentiatied U937 cells not stimulated with ST probiotic bacteria (background 
control). Symbols represent p value for Tukey Test (One way ANOVA) where * p < 0.05 and 
*** p < 0.001. 
 
Fig. 2. S. thermophilus bacterial strains activate CXCL8 and GM-CSF essential for 
recruitment of cells at sites of inflammation. U937 cells were differentitated into monocytes 
and stimlated with S. thermophilus (ST) - ST1342, ST1275 or ST285 for 24 hours and secretion 
of IL-8 and GM-CSF were measured. LPS was was used as an internal positive control and 
untreated refers to differentiatied U937 cells not stimulated with ST probiotic bacteria 
(background control). Significant differences between treatments were tested by analysis of 
variance (ANOVA). Symbols represent p value for Tukey Test (One way ANOVA) where # p 
< 0.07, ** p < 0.005 and *** p < 0.001. 
 
Fig. 3. S. thermophilus bacterial strains activate anti-inflammatory cytokines. U937 cells 
were differentitated into monocytes and stimlated with S. thermophilus (ST) - ST1342, ST1275 
or ST285 for 24 hours and secretion of IL-8 and GM-CSF were measured. LPS was was used 
as an internal positive control and untreated refers to differentiatied U937 cells not stimulated 
with ST probiotic bacteria (background control). Symbols represent p value for Tukey Test 
(One way ANOVA) where # p < 0.07, ** p < 0.005 and *** p < 0.001. 
 
Fig. 4. S. thermophilus (ST) bacterial strains increase cell surface marker expression. 
U937 cells were differentiated into monocytes and stimlated with ST1342, ST1275 or ST285 
for 24 or 48 hours and cell surface marker expression assessed. Upregulation of CD14, CD11c, 
CD86, CD206, CD209 and MHC class I are shown at 24 hours for ST285. LPS was was used 
as an internal positive control and untreated refers to differentiatied U937 cells not stimulated 
with ST probiotic bacteria (background control). 
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Figure 4 
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