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Hermite-Hadamard type inequalities for
(m,M)-Ψ-convex functions when Ψ = − ln

Silvestru Sever Dragomir and Ian Gomm

Abstract. In this paper we establish some Hermite-Hadamard type
inequalities for (m,M)-Ψ-convex functions when Ψ = − ln . Applicati-
ons for power functions and weighted arithmetic mean and geometric
mean are also provided.

1. Introduction

The following integral inequality

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f (t) dt ≤ f (a) + f (b)

2
,

which holds for any convex function f : [a, b] → R, is well known in the
literature as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice
result which has many applications in the Theory of Special Means and in
Information Theory for divergence measures, for which we would like to refer
the reader to [1]-[4], [15]-[30], the monograph [13] and the references therein.

Assume that the function Ψ : I ⊆ R→ R (I is an interval) is convex on I
and m ∈ R. We shall say that the function Φ : I → R is m-Ψ-lower convex
if Φ −mΨ is a convex function on I. We may introduce (see [6]) the class
of functions

(2) L (I,m,Ψ) := {Φ : I → R|Φ−mΨ is convex on I} .

Similarly, for M ∈ R and Ψ as above, we can introduce the class of M -Ψ-
upper convex functions (see [6])

(3) U (I,M,Ψ) := {Φ : I → R|MΨ− Φ is convex on I} .
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The intersection of these two classes will be called the class of (m,M)-Ψ-
convex functions and will be denoted by [6]

(4) B (I,m,M,Ψ) := L (I,m,Ψ) ∩ U (I,M,Ψ) .

Remark 1.1. If Ψ ∈ B (I,m,M,Ψ), then Φ−mΨ and MΨ−Φ are convex
and then (Φ−mΨ)+(MΨ− Φ) is also convex which shows that (M −m) Ψ
is convex, implying thatM ≥ m (as Ψ is assumed not to be the trivial convex
function Ψ (t) = 0, t ∈ I).

The above concepts may be introduced in the general case of a convex
subset in a real linear space, but we do not consider this extension here.

In [12], S. S. Dragomir and N. M. Ionescu introduced the concept of g-
convex dominated functions, for a function f : I → R. We recall this, by
saying, for a given convex function g : I → R, the function f : I → R is
g-convex dominated iff g+f and g−f are convex functions on I. In [12], the
authors pointed out a number of inequalities for convex dominated functions
related to Jensen’s, Fuch’s, Pečarić’s, Barlow-Proschan and Vasić-Mijalković
results, etc.

We observe that the concept of g-convex dominated functions can be
obtained as a particular case from (m,M)-Ψ-convex functions by choosing
m = −1, M = 1 and Ψ = g.

The following lemma holds [6].

Lemma 1.1. Let Ψ,Φ : I ⊆ R→ R be differentiable functions on I̊ , the
interior of I and Ψ is a convex function on I̊.

(i) For m ∈ R, the function Φ ∈ L
(
I̊ ,m,Ψ

)
if and only if

(5) m
[
Ψ (t)−Ψ (s)−Ψ′ (s) (t− s)

]
≤ Φ (t)− Φ (s)− Φ′ (s) (t− s) ,

for all t, s ∈ I̊.
(ii) For M ∈ R, the function Φ ∈ U

(
I̊ ,M,Ψ

)
if and only if

(6) Φ (t)− Φ (s)− Φ′ (s) (t− s) ≤M
[
Ψ (t)−Ψ (s)−Ψ′ (s) (t− s)

]
,

for all t, s ∈ I̊.
(iii) For M,m ∈ R with M ≥ m, the function Φ ∈ B

(
I̊ ,m,M,Ψ

)
if and

only if both (5) and (6) hold.

Another elementary fact for twice differentiable functions also holds [6].

Lemma 1.2. Let Ψ,Φ : I ⊆ R→ R be twice differentiable on I̊ and Ψ is
convex on I̊.

(i) For m ∈ R, the function Φ ∈ L
(
I̊ ,m,Ψ

)
if and only if

(7) mΨ′′ (t) ≤ Φ′′ (t) for all t ∈ I̊ .
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(ii) For M ∈ R, the function Φ ∈ U
(
I̊ ,M,Ψ

)
if and only if

(8) Φ′′ (t) ≤MΨ′′ (t) for all t ∈ I̊ .

(iii) For M,m ∈ R with M ≥ m, the function Φ ∈ B
(
I̊ ,m,M,Ψ

)
if and

only if both (7) and (8) hold.

For various inequalities concerning these classes of function, see the survey
paper [11].

In what follows, we are considering the class of functions B (I,m,M,− ln)
for M, m ∈ R with M ≥ m that is obtained for Ψ : I ⊆ (0,∞)→ R,
Ψ (t) = − ln t.

If Φ : I ⊆ (0,∞)→ R is a differentiable function on I̊ then by Lemma 1.1
we have Φ ∈ B (I,m,M,− ln) if and only if

m

[
ln s− ln t− 1

s
(s− t)

]
≤ Φ (t)− Φ (s)− Φ′ (s) (t− s)(9)

≤M
[
ln s− ln t− 1

s
(s− t)

]
,

for any s, t ∈ I̊ .
If Φ : I ⊆ (0,∞)→ R is a twice differentiable function on I̊ then by

Lemma 1.2 we have Φ ∈ B (I,m,M,− ln) if and only if

(10) m ≤ t2Φ′′ (t) ≤M,

which is a convenient condition to verify in applications.
In this paper we establish some Hermite-Hadamard type inequalities for

(m,M)-Ψ-convex functions when Ψ = − ln . Applications for power functi-
ons and weighted arithmetic mean and geometric mean are also provided.

2. Hermite-Hadamard Type Inequalities

In 2002, Barnett, Cerone and Dragomir [5] obtained the following refi-
nement of the Hermite-Hadamard inequality for the convex function f :
[a, b]→ R:

f

(
a+ b

2

)
≤ νf

(
a+ ν

b− a
2

)
+ (1− ν) f

(
a+ b

2
+ ν

b− a
2

)(11)

≤ 1

b− a

∫ b

a
f (u) du

≤ 1

2
[f ((1− ν) a+ νb) + νf (a) + (1− ν) f (b)] ≤ f (a) + f (b)

2
,

for all ν ∈ [0, 1].
The inequality was also rediscovered in 2010 by A. E. Farissi in [14].
We give a simple proof by following [5].
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Applying the Hermite-Hadamard inequality for the convex function f on
each subinterval [a, (1− ν) a+ νb] , [(1− ν) a+ νb, b], ν ∈ (0, 1) , we have,

f

(
a+ (1− ν) a+ νb

2

)
[(1− ν) a+ νb− a]

≤
∫ (1−ν)a+νb

a
f (u) du

≤ f ((1− ν) a+ νb) + f (a)

2
[(1− ν) a+ νb− a]

and

f

(
(1− ν) a+ νb+ b

2

)
[b− (1− ν) a− νb]

≤
∫ b

(1−ν)a+νb
f (u) du

≤ f (b) + f ((1− ν) a+ νb)

2
[b− (1− ν) a− νb] ,

which are clearly equivalent to

νf

(
a+ ν

b− a
2

)
≤ 1

b− a

∫ (1−ν)a+νb

a
f (u) du(12)

≤ νf ((1− ν) a+ νb) + νf (a)

2

and

(1− ν) f

(
a+ b

2
+ ν

b− a
2

)
≤ 1

b− a

∫ b

(1−ν)a+νb
f (u) du

(13)

≤ (1− ν) f (b) + (1− ν) f ((1− ν) a+ νb)

2

respectively.
Summing (12) and (13), we obtain the second and third inequality in (11).
By the convexity property of f , we obtain

νf

(
a+ ν

b− a
2

)
+ (1− ν) f

(
a+ b

2
+ ν

b− a
2

)
≥ f

[
ν

(
a+ ν

b− a
2

)
+ (1− ν)

(
a+ b

2
+ ν

b− a
2

)]
= f

(
a+ b

2

)
and the first inequality in (11) is proved.

The latter inequality in (11) is obvious by the convexity property of f .
Let us recall the following means:
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(i) The arithmetic mean

A = A (a, b) :=
a+ b

2
, a, b ≥ 0;

(ii) The geometric mean:

G = G (a, b) :=
√
ab, a, b ≥ 0;

(iii) The harmonic mean:

H = H (a, b) :=
2

1

a
+

1

b

, a, b ≥ 0;

(iv) The logarithmic mean:

L = L (a, b) :=


a, if a = b;

b− a
ln b− ln a

, if a 6= b;
a, b > 0;

(v) The identric mean:

I := I (a, b) =


a, if a = b;

1

e

(
bb

aa

) 1
b−a

, if a 6= b;

a, b > 0;

(vi) The p-logarithmic mean:

Lp = Lp (a, b) :=


[
bp+1 − ap+1

(p+ 1) (b− a)

] 1
p

, if a 6= b;

a, if a = b;

where p ∈ R\ {−1, 0} and a, b > 0.

It is well known that Lp is monotonic nondecreasing over p ∈ R with
L−1 := L and L0 := I.

In particular, we have the inequalities H ≤ G ≤ L ≤ I ≤ A. We also
notice that

1

b− a

∫ b

a
tpdt = Lpp (a, b) , p ∈ R\ {−1, 0} , 1

b− a

∫ b

a

dt

t
= L−1 (a, b)

and
1

b− a

∫ b

a
ln tdt = ln I (a, b) .

We define the weighted arithmetic and geometric means

Aν (a, b) := (1− ν) a+ νb and Gν (a, b) := a1−νbν

where ν ∈ [0, 1] and a, b > 0. If ν = 1
2 , then we recapture A (a, b) and

G (a, b) .
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Theorem 2.1. Let M, m ∈ R withM > m and Φ ∈ B ((0,∞) ,m,M,− ln) .
Then for any a, b > 0 and ν ∈ [0, 1] we have

ln

[(
a+ ν b−a2

)ν (a+b
2 + ν b−a2

)1−ν
I (a, b)

]m(14)

≤ 1

b− a

∫ b

a
Φ (u) du−

[
νΦ

(
a+ ν

b− a
2

)
+ (1− ν) Φ

(
a+ b

2
+ ν

b− a
2

)]

≤ ln

[(
a+ ν b−a2

)ν (a+b
2 + ν b−a2

)1−ν
I (a, b)

]M
and

ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]m
(15)

≤ 1

2
[Φ ((1− ν) a+ νb) + νΦ (a) + (1− ν) Φ (b)]− 1

b− a

∫ b

a
Φ (u) du

≤ ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]M
.

Proof. Since Φ ∈ B ((0,∞) ,m,M,− ln) , then Φm := Φ+m ln is convex and
by the second inequality in (11) we have

νΦ

(
a+ ν

b− a
2

)
+ (1− ν) Φ

(
a+ b

2
+ ν

b− a
2

)
(16)

+m ln

[(
a+ ν

b− a
2

)ν (a+ b

2
+ ν

b− a
2

)1−ν
]

≤ 1

b− a

∫ b

a
f (u) du+m

1

b− a

∫ b

a
lnudu

=
1

b− a

∫ b

a
f (u) du+m ln I (a, b) ,

while from the third inequality in (11) we have

1

b− a

∫ b

a
f (u) du+m

1

b− a

∫ b

a
lnudu(17)

≤ 1

2
[Φ ((1− ν) a+ νb) + νΦ (a) + (1− ν) Φ (b)]

+
1

2
m ln [Aν (a, b)G1−ν (a, b)] ,

for any a, b > 0 and ν ∈ [0, 1] .
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Since Φ ∈ B ((0,∞) ,m,M,− ln) , then also fM := −Φ −M ln is convex
and by the second inequality in (11) we have

− νΦ

(
a+ ν

b− a
2

)
− (1− ν) Φ

(
a+ b

2
+ ν

b− a
2

)
(18)

−M ln

[(
a+ ν

b− a
2

)ν (a+ b

2
+ ν

b− a
2

)1−ν
]

≤ − 1

b− a

∫ b

a
Φ (u) du−M ln I (a, b) ,

while from the third inequality in (11) we have

− 1

b− a

∫ b

a
Φ (u) du−M ln I (a, b)(19)

≤ −1

2
[Φ ((1− ν) a+ νb) + νΦ (a) + (1− ν) Φ (b)]

− 1

2
M ln [Aν (a, b)G1−ν (a, b)] ,

for any a, b > 0 and ν ∈ [0, 1] .
Making use of (16)-(19) we deduce the desired results (14) and (15). �

Remark 2.1. If we write the second inequality in (11) for the convex
function − ln we have

ln I (a, b) ≤ ln

[(
a+ ν

b− a
2

)ν (a+ b

2
+ ν

b− a
2

)1−ν
]
,

which implies that

I (a, b) ≤
(
a+ ν

b− a
2

)ν (a+ b

2
+ ν

b− a
2

)1−ν

showing that

ln

[(
a+ ν b−a2

)ν (a+b
2 + ν b−a2

)1−ν
I (a, b)

]
≥ 0.

If we use the third inequality in (11) for the convex function − ln we have

ln
√
Aν (a, b)G1−ν (a, b) ≤ ln I (a, b) ,

which implies that √
Aν (a, b)G1−ν (a, b) ≤ I (a, b) ,

showing that

ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]
≥ 0.
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Corollary 2.1. With the assumptions of Theorem 2.1 we have

(20) ln

[
A (a, b)

I (a, b)

]m
≤ 1

b− a

∫ b

a
Φ (u) du− Φ

(
a+ b

2

)
≤ ln

[
A (a, b)

I (a, b)

]M
and

(21) ln

[
I (a, b)

G (a, b)

]m
≤ Φ (a) + Φ (b)

2
− 1

b− a

∫ b

a
Φ (u) du ≤ ln

[
I (a, b)

G (a, b)

]M
.

The inequality (20) was obtained in 2002 by Dragomir in [7], see also [11,
p. 197].

Corollary 2.2. With the assumptions of Theorem 2.1 we have

ln


√(

3a+b
4

) (
a+3b
4

)
I (a, b)

m(22)

≤ 1

b− a

∫ b

a
Φ (u) du− 1

2

[
Φ

(
3a+ b

4

)
+ Φ

(
a+ 3b

4

)]

≤ ln


√(

3a+b
4

) (
a+3b
4

)
I (a, b)

M

and

ln

[
I (a, b)√

A (a, b)G (a, b)

]m
(23)

≤ 1

2

[
Φ

(
a+ b

2

)
+

Φ (a) + Φ (b)

2

]
− 1

b− a

∫ b

a
Φ (u) du

≤ ln

[
I (a, b)√

A (a, b)G (a, b)

]M
.

For related results see [8] and [11, p. 197].

Theorem 2.2. Let M, m ∈ R withM > m and Φ ∈ B ((0,∞) ,m,M,− ln) .
Then for any a, b > 0 and ν ∈ [0, 1] we have

m

[
(b− a)2

8ab
− ln

(
I (a, b)

G (a, b)

)]
(24)

≤ 1

8
[Φ− (b)− Φ+ (a)] (b− a)−

[
Φ (a) + Φ (b)

2
− 1

b− a

∫ b

a
Φ (u) du

]
≤M

[
(b− a)2

8ab
− ln

(
I (a, b)

G (a, b)

)]
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and

m

[
(b− a)2

8ab
− ln

(
A (a, b)

I (a, b)

)]
(25)

≤ 1

8
[Φ− (b)− Φ+ (a)] (b− a)−

[
1

b− a

∫ b

a
Φ (x) dx− Φ

(
a+ b

2

)]
≤M

[
(b− a)2

8ab
− ln

(
A (a, b)

I (a, b)

)]
.

Proof. The following reverses of the Hermite-Hadamard inequality hold [9]
and [10]: Let h : [a, b]→ R be a convex function on [a, b] . Then

(0 ≤)
h (a) + h (b)

2
− 1

b− a

∫ b

a
h (x) dx(26)

≤ 1

8
[h− (b)− h+ (a)] (b− a)

and

(0 ≤)
1

b− a

∫ b

a
h (x) dx− h

(
a+ b

2

)
(27)

≤ 1

8
[h− (b)− h+ (a)] (b− a) .

The constant 1
8 is best possible in (26) and (27).

Since Φ ∈ B ((0,∞) ,m,M,− ln) , then Φm := Φ +m ln is convex and by
(26) we have

Φ (a) + Φ (b)

2
− 1

b− a

∫ b

a
Φ (x) dx+m ln

(
G (a, b)

I (a, b)

)
≤ 1

8
[Φ− (b)− Φ+ (a)] (b− a)− m

8ab
(b− a)2 ,

which proves the first inequality in (24).
Since Φ ∈ B ((0,∞) ,m,M,− ln) , then also fM := −Φ −M ln is convex

and by (26) we have

(0 ≤)
−Φ (a)− Φ (b)

2
+

1

b− a

∫ b

a
Φ (x) dx−M ln

(
G (a, b)

I (a, b)

)
≤ 1

8
[−Φ− (b) + Φ+ (a)] (b− a) +

M

8ab
(b− a)2 ,

which proves the second inequality in (24).
Further on, since Φ ∈ B ((0,∞) ,m,M,− ln) , then Φm := Φ + m ln is

convex and by (27) we have

(0 ≤)
1

b− a

∫ b

a
Φ (x) dx− Φ

(
a+ b

2

)
−m ln

(
A (a, b)

I (a, b)

)
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≤ 1

8
[Φ− (b)− Φ+ (a)] (b− a)− m

8ab
(b− a)2 ,

which is equivalent to the first inequality in (25).
Since Φ ∈ B ((0,∞) ,m,M,− ln) , then also fM := −Φ −M ln is convex

and by (27) we have

(0 ≤)− 1

b− a

∫ b

a
Φ (x) dx+ Φ

(
a+ b

2

)
+M ln

(
A (a, b)

I (a, b)

)
≤ 1

8
[−Φ− (b) + Φ+ (a)] (b− a) +

M

8ab
(b− a)2 ,

which is equivalent to the second inequality in (25). �

Remark 2.2. If we write the inequality (26) for the convex function − ln
we have

(0 ≤) ln I (a, b)− lnG (a, b) ≤ 1

8

(
1

a
− 1

b

)
(b− a) ,

which shows that
(b− a)2

8ab
− ln

(
I (a, b)

G (a, b)

)
≥ 0.

Also, if we write the inequality (27) for the convex function − ln we have

(0 ≤) lnA (a, b)− ln I (a, b) ≤ 1

8

(
1

a
− 1

b

)
(b− a) ,

which shows that
(b− a)2

8ab
− ln

(
A (a, b)

I (a, b)

)
≥ 0.

3. Applications for Special Means

For m, M with M > m > 0 we define

(28) Mp :=

 Mp if p > 1

mp if p < 0
and mp :=

 mp if p > 1

Mp if p < 0
.

Consider the function Φ (t) = tp, p ∈ (−∞, 0) ∪ (1,∞) . This is a convex
function and Φ′′ (t) = p (p− 1) tp−2, t > 0. Consider κ (t) := t2Φ′′ (t) =
p (p− 1) tp. We observe that

max
t∈[m,M ]

κ (t) = p (p− 1)Mp and min
t∈[m,M ]

κ (t) = p (p− 1)mp.

By making use of the inequalities (14) and (15) for the function Φ (t) = tp,
p ∈ (−∞, 0) ∪ (1,∞) , then for any a, b ∈ [m,M ] and ν ∈ [0, 1] we have

ln

[(
a+ ν b−a2

)ν (a+b
2 + ν b−a2

)1−ν
I (a, b)

]p(p−1)mp

(29)
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≤ Lpp (a, b)−
[
ν

(
a+ ν

b− a
2

)p
+ (1− ν)

(
a+ b

2
+ ν

b− a
2

)p]

≤ ln

[(
a+ ν b−a2

)ν (a+b
2 + ν b−a2

)1−ν
I (a, b)

]p(p−1)Mp

and

ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]p(p−1)mp

(30)

≤ 1

2
[((1− ν) a+ νb)p + νap + (1− ν) bp]− Lpp (a, b)

≤ ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]p(p−1)Mp

,

where mp and Mp are defined by (28).
If we take p = 2 in (30), then we get

ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]2m2

(31)

≤ 1

2

[
((1− ν) a+ νb)2 + νa2 + (1− ν) b2

]
− L2

2 (a, b)

≤ ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]2M2

.

Since

1

2

[
((1− ν) a+ νb)2 + νa2 + (1− ν) b2

]
− L2

2 (a, b)

=
1

2

[
(1− ν)2 a2 + 2ν (1− ν) ab+ ν2b2 + νa2 + (1− ν) b2

]
− 1

b− a

∫ b

a
t2dt

=
1

2

[
(1− ν)2 a2 + 2ν (1− ν) ab+ ν2b2 + νa2 + (1− ν) b2

]
− 1

3

(
a2 + ab+ b2

)
=

1

6
(b− a)2

(
3ν2 − 3ν + 1

)
,

then by (31) we get

ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]2m2

≤ 1

6
(b− a)2

(
3ν2 − 3ν + 1

)
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≤ ln

[
I (a, b)√

Aν (a, b)G1−ν (a, b)

]2M2

,

which is equivalent to

exp

[(
1

12
− 1

4
ν (1− ν)

)
(b− a)2

M2

]
≤ I (a, b)√

Aν (a, b)G1−ν (a, b)

(32)

≤ exp

[(
1

12
− 1

4
ν (1− ν)

)
(b− a)2

m2

]
,

for any a, b ∈ [m,M ] and ν ∈ [0, 1] .
If we take in (32) ν = 0, then we get

(33) exp

[
1

12

(b− a)2

M2

]
≤ I (a, b)

G (a, b)
≤ exp

[
1

12

(b− a)2

m2

]
,

for any a, b ∈ [m,M ] .
If we take in (32) ν = 1

2 , then we get

(34) exp

[
1

48

(b− a)2

M2

]
≤ I (a, b)√

A (a, b)G (a, b)
≤ exp

[
1

48

(b− a)2

m2

]
,

for any a, b ∈ [m,M ] .
If a, b > 0 then my taking M = max {a, b} and m = min {a, b} in (33)

and (34) and since

(b− a)2

max2 {a, b}
=

(
min {a, b}
max {a, b}

− 1

)2

and
(b− a)2

min2 {a, b}
=

(
max {a, b}
min {a, b}

− 1

)2

,

for any a, b > 0, then we have

exp

[
1

12

(
min {a, b}
max {a, b}

− 1

)2
]
≤ I (a, b)

G (a, b)
(35)

≤ exp

[
1

12

(
max {a, b}
min {a, b}

− 1

)2
]

and

exp

[
1

48

(
min {a, b}
max {a, b}

− 1

)2
]
≤ I (a, b)√

A (a, b)G (a, b)
(36)

≤ exp

[
1

48

(
max {a, b}
min {a, b}

− 1

)2
]
,

for any a, b > 0.
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By making use of the inequalities (24) and (25) for the function Φ (t) = tp,
p ∈ (−∞, 0) ∪ (1,∞) , then for any a, b ∈ [m,M ] and ν ∈ [0, 1] we have

p (p− 1)mp

[
(b− a)2

8ab
− ln

(
I (a, b)

G (a, b)

)]
(37)

≤ 1

8
p
(
bp−1 − ap−1

)
(b− a)−

[
ap + bp

2
− Lpp (a, b)

]
≤ p (p− 1)Mp

[
(b− a)2

8ab
− ln

(
I (a, b)

G (a, b)

)]
and

p (p− 1)mp

[
(b− a)2

8ab
− ln

(
A (a, b)

I (a, b)

)]
(38)

≤ 1

8
p
(
bp−1 − ap−1

)
(b− a)−

[
Lpp (a, b)−Ap (a, b)

]
≤ p (p− 1)Mp

[
(b− a)2

8ab
− ln

(
A (a, b)

I (a, b)

)]
,

where mp and Mp are defined by (28).
The case p = 2 provides some simpler inequalities, however the details

are left to the interested reader.
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